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We consider the random-field Heisenberg model, a paradigmatic model for many-body localization
(MBL), and add a Markovian dephasing bath coupled to the Anderson orbitals of the model’s non-
interacting limit. We map this system to a classical facilitated hopping model that is computationally
tractable for large system sizes, and investigate its dynamics. The classical model exhibits a robust
crossover between an ergodic (thermal) phase and a frozen (localized) phase. The frozen phase is
destabilized by thermal subregions (bubbles), which thermalize surrounding sites by providing a
fluctuating interaction energy and so enable off-resonance particle transport. Investigating steady
state transport, we observe that the interplay between thermal and frozen bubbles leads to a clear
transition between diffusive and subdiffusive regimes. This phenomenology both describes the MBL
system coupled to a bath, and provides a classical analogue for the many-body localization transition
in the corresponding quantum model, in that the classical model displays long local memory times.
It also highlights the importance of the details of the bath coupling in studies of MBL systems
coupled to thermal environments.

I. INTRODUCTION

Generic isolated interacting quantum systems are er-
godic and evolve to local thermal equilibrium, regard-
less of the system’s initial state. This phenomenon has
been broadly observed in numerical simulations and ex-
periments, and is explained by the Eigenstate Thermal-
ization Hypothesis (ETH)1–5. Some interacting quan-
tum systems, however, display non-ergodic dynamics. Of
particular interest are many-body localized (MBL) sys-
tems, which are interacting many-body systems that be-
come localized upon increasing disorder above a criti-
cal strength6–10. MBL dynamics have been experimen-
tally observed in cold-atom experiments in one dimen-
sion11,12, and there is an ongoing debate over the exis-
tence of a stable MBL phase in higher dimensions. The
transition between an ergodic (thermalizing) phase and
a non-ergodic (localized) phase falls outside the standard
Landau paradigm of phase transitions and has therefore
attracted much attention13–20.

A number of phenomenological pictures amenable to
renormalization group treatment have been put forward
to describe the transition16,17,20–24. These theories rest
implicitly or explicitly on the notion that interactions
destabilize an Anderson insulator by hybridizing the An-
derson orbitals25–27. Even deep in the localized phase,
rare regions of locally weak disorder bring nearby Ander-
son orbitals into resonance. As the system approaches
the MBL transition these rare regions grow more common
and their influence expands via an “avalanche” process;
at the transition, this process results in resonant cou-
plings throughout the system. Conversely even when the
system is ergodic, rare regions of locally strong disorder
act as bottlenecks for transport and cause subdiffusion.
But the precise nature of the transition and the associ-

Figure 1. (a) Particle hopping in the facilitated network
model requires the presence of a nearby occupied orbital
(green) to facilitate the transition. (b) Transition in the
network structure (via log-scaled time averaged link weights)
from a highly connected graph at weak disorder to a sparse
graph with several strongly connected components corre-
sponding to thermal bubbles. (c) The level-statistics in the
quantum network model reproduce the MBL transition in the
random field Heisenberg model with high accuracy. (d) Phase
diagram for the classical model, showing a transition in the
fraction of frozen sites as a function of the disorder strength
h and dephasing time τ .

ated real-time dynamics remain challenging to study in
a fully microscopic setting, because numerical methods
are stymied by the development of delicate networks of
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resonating Anderson orbitals near the transition28.

In the avalanche picture, thermal inclusions play the
role of a bath which seeds a delocalizing cascade. The
difficulty of simulating networks of resonating Anderson
orbitals combined with the extensive literature on MBL
systems coupled to baths 29–39 suggests that one break
the resonant network by adding baths in a numerically
tractable manner. We then ask if there is a bath structure
that not only admits easy simulation but also preserves
key features of the MBL transition. For example, a bulk
dephasing bath is accessible to matrix product operator
simulations, but it results in diffusion after length- and
time-scales determined by the bath coupling—even in
regimes where the model without bath coupling displays
subdiffusion40. A bath of this kind is not sensitive to
the distinction between Anderson localization and many-
body localization. Even in the non-interacting limit, a
homogeneous bath will destroy the system’s Anderson
orbitals, resulting in diffusive transport.

In this work, we investigate what characteristics of the
MBL transition remain when we weakly couple an in-
teracting, disordered spin chain to a bath via its non-
interacting Anderson orbitals. The crucial property of
such a bath is that it preserves the integrity of the Ander-
son orbitals; in the non-interacting limit the system will
still behave as an an Anderson insulator even in the pres-
ence of a bath. This setup therefore specifically probes
the interplay of interaction and homogeneous dephasing
in destabilizing the Anderson insulator. Moreover, by
tuning the bath coupling we can crudely probe the role
of specifically resonant interactions.

We start from a disordered spin chain weakly coupled
to a Markovian dephasing bath, and map it to a kinet-
ically constrained classical model. In the original quan-
tum model, interactions have two effects: they give fa-
cilitated transitions between Anderson orbitals, and they
renormalize the energies of those Anderson orbitals. The
coupling to the bath then induces a dephasing of the
exponentially slow hopping processes, which results in
classical Markov dynamics: in a fermionized model, the
fermions hop between sites at rates determined by the
magnitude of the facilitated hopping term and the differ-
ence between configuration energies. Crucially, this de-
phasing results in hopping between slightly off-resonant
orbitals; the allowable energy difference can be tuned by
the bath coupling. We simulate this classical model using
a kinetic Monte Carlo scheme.

We find that the resulting system displays qualitatively
different physics compared to systems where Anderson
localization is destroyed by coupling baths to individual
physical sites. In particular, we see many signatures of
localization which survive at finite bath-coupling. Sys-
tems where Anderson localization is broken by the bath
are well-characterized by a single timescale polynomial
in the bath coupling rate and the disorder width.29–31

Our system, in contrast, displays a crossover character-
ized by a diverging correlation time, indicating that—in
the “frozen” regime—it has the “memory” characteristic

of MBL systems. This diverging correlation time results
from the formation of rare regions of anomalously slow
dynamics, whose average size increases with the disor-
der strength. These regions act as a bottleneck to parti-
cle transport: once their density has become sufficiently
large, we see nonequilibrium steady state current scaling
with length as

j ∝ L−α ,

where α > 1. Unlike the local (single orbital)
observables—for which there is a smooth crossover be-
tween the active and frozen phases—the particle current
shows a clearer transition from diffusive to subdiffusive
transport. The onset of subdiffusion at sufficiently strong
disorder reproduces an essential feature of the MBL tran-
sition. We then propose a feedback mechanism for the
bath bandwidth that may reproduce the appropriate crit-
ical disorder strength observed in the isolated quantum
model when the system is considered its own bath.

The paper is organized as follows. In Sec. II we re-
view the random-field Heisenberg model, and then ap-
proximate it by a quantum facilitated hopping model on
Anderson orbitals. We then describe the details and the
effect of a bath coupled to those Anderson orbitals, and
map the resulting dynamics to a classical facilitated net-
work model. We present the results of kinetic Monte
Carlo simulations of the classical model in Sec. III; there
we explore the freezing transition, the presence of rare
thermal bubbles, and the onset of subdiffusion in the
nonequilibrium steady state current. Finally, in Sec. V
we strengthen the connection between the classical model
and the quantum facilitated hopping model by identify-
ing the freezing transition in the dynamics as a real-space
projection of a percolation-type transition in the hyper-
graph defined over configuration space.

II. MODELS: FROM THE RANDOM-FIELD
HEISENBERG CHAIN TO A CLASSICAL
FACILITATED ANDERSON NETWORK

Before we present the details of this section, we provide
a brief summary. We start with a paradigmatic setup
for MBL, the random-field Heisenberg model (Sec. II A).
Then we rephrase this in the language of Anderson or-
bitals, keeping the leading order and next to leading or-
der interaction terms; this results in a quantum facili-
tated hopping network (Sec. II B). In order to control-
lably probe the effect of resonant sub-networks of Ander-
son orbitals on transport, we weakly couple the system’s
Anderson orbitals to a particle number conserving, i.e.,
dephasing, bath. We take the bath to be Markovian with
a tunable coupling strength τ−1 (Sec. II C); τ is then the
dephasing time for the Anderson orbitals.

This dephasing time is the key parameter in our treat-
ment of transport in resonant networks. The bath gives
incoherent transport between sites i, j when the differ-
ence ∆ij in many-body energies is |∆ij | . τ−1, so by
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tuning τ we tune the energy window for (bath-induced)
resonance between different Anderson orbitals. The inco-
herent transport then leads naturally to a classical hop-
ping model (Sec. II D).

A. Random-Field Heisenberg Chain

The random-field Heisenberg model is a paradigmatic
model for many-body localization8,15,41,42. When writ-
ten with spin operators it describes a chain of spin- 1

2 de-
grees of freedom with nearest-neighbor interactions and
random onsite fields. Applying the Jordan-Wigner trans-
formation gives fermions with nearest-neighbor hopping
and interactions, as well as a random onsite energy: if fl
are fermion operators {fm, f†l } = δl,m and nl = f†l fl on
a lattice site l, the Hamiltonian is

H = V
∑
l

(
f†l fl+1 + f†l+1fl + 2Jnlnl+1 + hlnl

)
. (1)

The onsite energy hl is drawn uniformly from hl ∈
[−h, h]. We choose energy units so that V = 1. Through-
out this work we take the dimensionless interaction pa-
rameter J = 0 for a non-interacting model or J = 1 for
an interacting model.

The non-interacting model at J = 0 is called the An-
derson model43. It displays Anderson localization: the
energy eigenstates are (Slater determinants of) single-
particle Anderson orbitals

cj =
∑
l

ψ
(j)
l fl (2)

where each wavefunction ψ(j) is exponentially localized
around site j44

ψ
(j)
l ∼ exp(−|j − l|/ξj) (3)

with localization length ξj ≈ 1/(2 log h).

When J 6= 0 one might expect the resulting inter-
actions to destroy the Anderson orbitals, either by hy-
bridization or by an effective, self-induced dephasing, re-
sulting in a system that comes to (local) thermal equi-
librium. But in the limit of large disorder h � J this
model has been rigorously shown to exhibit many-body
localization, in which eigenstate correlations are short-
ranged and dynamical correlations do not decay45. For
h ∼ J , competition between localization and interaction-
induced dephasing results in a phase transition from
that many-body localized phase to one in which the sys-
tem quickly comes to equilibrium6–8. This phase is de-
scribed by the eigenstate thermalization hypothesis1–5

which states that local operators have energy eigenstate
expectation values very similar to their Gibbs state ex-
pectation values.

B. Quantum Facilitated Network Model

We wish to fully take into account Anderson physics,
while selectively probing the effects of interactions and
resonances. We therefore work in the basis of the Ander-
son orbitals. In this basis the fermion Hamiltonian (1)
has the form46

H = Hnetwork +
∑
jklm

Wjklmc
†
jc
†
kclcm , (4)

where Hnetwork is the facilitated network Hamiltonian

Hnetwork =
∑
j

εjnj +
∑
j,l

Ujlnjnl +
∑
jkl

V
(k)
jl c†jnkcl .

(5)

This Hamiltonian enables hopping between different An-

derson orbitals j, l with rate V
(k)
jl only if the hopping is

facilitated by another particle in orbital k. In this sense,

{V (k)
ij } describes a dynamical network in which a link

between orbitals i, j is active only if the orbital k is oc-
cupied by a fermion. (See Fig. 1b for the average network
topology). It also includes a many-body correction to the
energy of Anderson orbitals ∼ Ujl. The matrix elements

Ujl, V
(k)
jl are zero if two (or more) indices coincide. The

facilitated hopping term respects particle-hole symmetry

as a result of a sum rule
∑
k V

(k)
jl = 0. For large disorder

h� 1, the coefficients on the three and four-body terms
fall off exponentially with the separation between the
sites. Additionally the average nearest-neighbor hopping
terms fall off as 1/h and 1/h2 for three and four-body
interactions, respectively15. Deep in the MBL regime, εj
and Ujl accurately capture the local integrals of motion,
with the l-bits converging to the Anderson orbitals. This
has previously motivated effective descriptions of the lo-
calized phase in which both three and four-body terms
are neglected15,47 or truncated to finite link-weight48,49.

Given the stronger suppression of two-particle hop-

ping terms ∼ c†jc†kclcm compared to the facilitated single-

particle hopping ∼ c†jnlcm in the MBL phase, we con-
sider a reduced model which discards two-particle hop-
ping Wjklm → 0, but retains the facilitated hoppings.
The resulting model describes a network of Anderson or-
bitals connected only by the facilitated hopping terms

V
(k)
jl . In this network model, all particle transport be-

tween Anderson orbitals requires the presence of a nearby
occupied orbital to facilitate the hopping (Fig. 1a).

Figure 1b shows the emergent network structure,
where the links represent effective hopping amplitudes

tjl =
∑
k V

(k)
jl nk which are time-averaged over several

many-body configurations. The color intensity of the arc
between sites j and l is proportional to log |tjl|; we use the
log scale so all three disorder values can be plotted with
the same scale. The links become increasingly sparse
as the disorder strength is increased, because increasing
disorder reduces the spatial overlap of the orbitals. It
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will also increase the difficulty of matching the resonance
conditions.

We anticipate that neglecting the two-body hopping
terms reduces particle hopping and therefore leads to
stronger localization in the effective model compared to
the full model. This would yield an enlarged localized
phase in our facilitated hopping model compared to the
full model. Nonetheless, for numerically accessible sys-
tem sizes the apparent shift relative to the full model is
negligible. We verify this by comparing the level statis-
tics of the full Hamiltonian with the facilitated hopping
model by means of exact diagonalization (see Fig. 1d).
This suggests that the facilitated hopping model pre-
serves the essential structure of the MBL transition and
provides a more tractable, minimal model to study.

The facilitated hopping model with hopping ampli-
tudes tjl may also connect Anderson orbitals that are
spatially well separated. The MBL transition in this net-
work therefore shares some similarities with the idea of
Anderson localization in random regular graphs or the
Bethe lattice. Interactions induce a fixed network struc-
ture on the Fock space of the non-interacting Hamilto-
nian50, and so studies of Anderson localization on con-
trolled network models, like the Bethe lattice and random
regular graphs (RRGs) have attracted much attention for
describing the MBL transition51–57.

One might interpret our facilitated hopping model in
Eq. (5) as a single-particle hopping on a graph whose ver-
tices are Fock space states. However, our network model
describes a dynamical, state dependent network topol-
ogy in real space. At a given time, the links depend on
the instantaneous arrangement of particles, and change
as the system evolves over time. This sets it apart from
other network-inspired treatments which have a static
topology.

Despite those differences, we would expect RRGs to
describe the facilitated hopping Hamiltonian to exactly
the same extent it describes the random-field Heisenberg
model. An important distinction arises, however, when
we introduce an external dephasing bath in Sec. II C.
Nonetheless, we can connect our approach to the RRG
view of the MBL transition: we consider the hypergraph
induced on Fock space in Sec. V, and demonstrate that
there is indeed a comparable crossover in the network
structure of Fock space as we observe in the dynamics on
the real-space network.

C. Markovian Dephasing

In addition to the Hamiltonian dynamics, we consider
an external source of dissipation, which gives rise to de-
phasing. We desire dephasing that preserves the integrity
of the Anderson orbitals. This is achieved by adding ran-
dom fluctuations to the energy of each individual Ander-
son orbital via a fluctuating Hamiltonian

Hfluc(t) =
∑
l

c†l clηl,t . (6)

We take the fluctuating energies ηl,t to be Markovian, i.e.,
to have zero mean and to be uncorrelated for different
times or positions:

〈〈ηl,t〉〉 = 0

〈〈ηl,tηl′t′〉〉 = τ−1δll′δ(t− t′)
(7)

where we write 〈〈·〉〉 for a noise average. The full Hamil-
tonian is then the time-dependent H(t) = Hnetwork +
Hfluc(t). The fluctuating bath has two effects: it de-
phases, i.e., destroys coherence between the Anderson
orbitals, and it temporarily brings into resonance or-
bitals that would otherwise have a small energy differ-
ence. Both of these effects combined mean that the
dynamics of charge is well-described by a classical rate
equation—the classical model of the next section.

From a Hilbert space perspective, the kinetic con-
straints imposed by the resonance condition fractionalize
the Hilbert space into equal energy subspaces of configu-
rations accessible by facilitated hoppings. Loosening the
resonance condition by allowing the system to borrow en-
ergy from the bath spoils this fractionalization. Instead,
the formerly disconnected subspaces become weakly con-
nected on some characteristic timescale set by the bath.
One might then anticipate that the dynamics appear
non-ergodic on this timescale, beyond which slow mixing
via off-resonant transitions may thermalize the system.
We explore this crossover in both the real-time dynamics
(Sec. III A) and in the Hilbert space itself (Sec. V).

D. Classical Dynamical Network Model

Above, we have introduced an external bath that fluc-
tuates on timescales fast compared with any in the sys-
tem’s Hamiltonian and which destroys coherence between
successive hopping processes. The resulting dynamics
can be well approximated by classical transitions with

rate controlled by the hopping matrix elements V
(k)
ij . To

this end, we argue that charge dynamics in the model of
Sec. II B is well-described by a related classical network
model.

1. Markov Transition Rates

A detailed discussion of the effect of the bath is given
in Appendix A. Heuristically, one can understand it as
follows. Consider an Anderson-orbital particle density
eigenstate

|k, i〉 =
∏

l∈k∪{i}

c†l |0〉 .

Without the bath, one can estimate transition rates be-
tween |k, i〉 and |k, j〉 by Fermi’s golden rule

w
(coherent)
ij = 2π|Vij |2δ(Ek,i − Ek,j)



5

where Ek,j =
∑

l∈k∪{j} εl+
∑
l,m∈k∪{j} Ulm is the many-

body energy of |k, j〉 and

Vij =
∑
k∈k

V
(k)
ij (8)

is the total effective hopping. The bath broadens the
delta function to a Lorentzian with width τ by temporar-
ily bringing orbitals into resonance; the result is a rate

wij = 2V 2
ij

τ

1 + τ2(Ek,i − Ek,j)2
. (9)

In Eq. (9) we see that τ plays the role of a tuning pa-
rameter for the degree to which the resonance condition
must be satisfied in order for particles to hop. But τ
has an additional, unwanted effect: for exactly resonant
transitions, for which ∆ij ≡ Ek,i−Ek,j = 0, the hopping
timescale of Eq. (9) goes as 1/τ . We rescale all hopping
rates by a factor of τ , so that the timescale for resonant
transitions is constant and τ acts only to set the scale for
the resonance condition. That is, we take the hopping
rates to be

wij → wij/τ . (10)

This rescaling is familiar from studies of MBL sys-
tems coupled to physically local baths.29–31 Those stud-
ies found that the system’s dynamics show good collapse
when one rescales time to (in our notation)

t̃ = tτ−1(V/h)2

By rescaling the rates as in Eq. (10) we eliminate this
straightforward dependence: all the variation in τ we see
goes beyond the physics of MBL systems coupled to local,
Anderson-orbital-destroying baths.

Let us briefly comment on the essential differences be-
tween the classical network model defined in Eq. (9) and
the resonant cluster renormalization group (RG) descrip-
tion of the MBL transition16,17. Both approaches con-
sider a classical effective model where resonant transi-
tions play a central role, with Potter et al. 16 focusing
specifically on the Anderson basis of a random-field spin-
1
2 system. Starting from bare transition rates (analogous
to wjl), the RG scheme merges clusters which satisfy the
resonance condition, accounting for line broadening as
the scheme progresses. Our scheme, on the other hand,
emphasizes real time dynamics and so retains the config-
uration dependence of the energy differences ∆lm stem-
ming from the two-body interactions Uil. This naturally
imbues the network with a dynamical topology which is
washed out in RG schemes. Instead, the line broaden-
ing is encoded in both τ and the fluctuating interaction
energy due to exploration of phase space by weakly local-
ized particles. This also is an essential difference between
the network model and a corresponding mean-field rate
equation where the local occupation may vary continu-
ously between 0 and 1.

2. Method: Kinetic Monte Carlo Dynamics

We have argued that the classical network model with
transition rates given by Eq. (9) captures the dynamics
of the quantum model Eq. (1) coupled to a peculiar bath.
We use a kinetic Monte Carlo algorithm to simulate the
dynamics of this classical model. First, we prepare a ran-
dom initial state in the Anderson basis with occupation
numbers nj ∈ {0, 1} on each site. Then, we implement
the following update scheme:

1. For all occupied sites, calculate the effective escape
rate Γi =

∑
j wij(1− nj).

2. Draw waiting times ti for each particle from an ex-
ponential distribution with scale Γi.

3. For the fastest particle i∗ = argmin
i

(ti), randomly

select an allowed transition i∗ → j with probability
∝ wi∗j .

The physical time updates as t→ t+ ti∗ .
58

For a fixed filling fraction ν in system size L, the com-
putational cost of the update step scales as O(L2). This
can be achieved by storing the link weights Vij and up-
dating after each particle transition. The expectation
value of the waiting time ti∗ falls off as 1/L, and so for
a fixed physical time we anticipate that computational
cost scales as O(L3). It is noteworthy, however, that
for large system sizes the computational cost is domi-
nated by the O(L4) time required to calculate all entries

of V
(k)
jl . This could be reduced to O(L3) by truncating

the allowed range of such elements, but in the interest of
keeping long-range hopping elements, we do not imple-
ment such a truncation.

III. RESULTS

In this section we discuss the dynamics of particles in
the classical network model, which we obtain from the
kinetic Monte Carlo simulations of Sec. II D 2.

We begin by describing the phase diagram as a function
of disorder strength, the dephasing time scale, and the
particle density. We distinguish a frozen regime, in which
a majority of the particles becomes immobile and local-
ized in single Anderson orbitals, from an ergodic regime,
in which the majority of particles is mobile and delocal-
ized. In Sec. III B we investigate and characterize rare
ergodic bubbles, i.e. regions of mobile particles, which
survive deep into the frozen regime. We briefly com-
ment on the relationship of these bubbles to those of the
avalanche picture, and the need for a timescale on which
a system is considered frozen (localized).

In Sec. III C we turn our attention to the nonequilib-
rium steady state (NESS) current induced by coupling
the system to baths at the boundaries. We observe a
transition from diffusive to subdiffusive transport upon
crossing over into the frozen phase.
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A. Dynamics and Localization in Single Orbital
Observables

We aim to distinguish an ergodic regime, in which the
particles are mobile and able to traverse the entire sys-
tem, from a localized regime in which the particle dynam-
ics freezes out. The former corresponds to a situation in
which there is non-trivial overlap between nearby Ander-
son orbitals that are close to resonance, so particles can
readily hop along the lattice. The latter then corresponds
to the limit of large disorder (h � 1) and/or large de-
phasing timescale (τ � 1), for which the timescales asso-
ciated with particle hopping become arbitrarily long. We
probe this localization-delocalization crossover through
a number of observables, including the autocorrelation
function of Anderson orbitals, the statistics of their oc-
cupation numbers and the statistics of waiting times be-
tween transitions.

Before delving into the details, we again emphasize
that we see a crossover between two regimes, not a phase
transition between two phases. In particular, the location
of the crossover depends on the timescales we consider.
Both of these observations are inherent to the model and
to our focus on the occupations of individual Anderson
orbitals, which are not exact eigenstates even in the lo-
calized regime: for sufficiently (exponentially) long simu-
lation times every particle will move eventually due to ex-
ponentially suppressed but non-zero transition rates wij .

1. Autocorrelation Functions

In the ergodic regime, one expects particles to rapidly
and randomly move between different nearby Anderson
orbitals. Local correlations are thereby rapidly erased.
Conversely, in the frozen phase particles remain local-
ized in their initial positions, giving rise to long-lived
correlations. The difference in behavior between the two
regimes can be quantified by the autocorrelation function
of the Anderson orbitals

c(T ) =
1

n̄2

[
〈ni(t)ni(t+ T )〉i,t − n̄2

]
. (11)

Here 〈· · · 〉i,t denotes the average over all sites i in the
chain and initial times t and n̄ = 1

L

∑
i ni is the average

filling. For an individual orbital i, the autocorrelation
function is 1

n̄ − 1 (= 1 for half-filling) for small T , and
then starts to fluctuate at the characteristic rate at which
particles hop into or out of this Anderson orbital. The
characteristic correlation time is then defined as the time
T at which ni(t) and ni(t+ T ) start to become uncorre-
lated and for which c(T ) decays to zero (see Fig. 2c).

The fraction of particles that remains frozen after some
large time is then described by the integral

c̃ = lim
T→∞

1

T

∫ T

0

dT ′c(T ′). (12)
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Figure 2. (a) Phase diagram on the h−τ plane showing c̃
for a runtime T ∼ 104 in the numerics. Correlations survive
at late times only in a parameter regime where the disorder
strength is large or the resonance condition is strictly enforced
(i.e. large τ). (b) Phase diagram in the n̄−τ plane for fixed
disorder strength h = 3. We show the renormalized correla-
tion c̃/(n̄−1 − 1) such that perfect freezing has a value of 1.
At a fixed value of τ we see that the filling factor can tune
between a frozen and active phase. (c,d) Temporal decay of
correlations c(T ) as the disorder strength (c) or dephasing
time (d) is varied. For strong disorder or small dephasing
rates, the correlations survive to very late times.

Ergodic regions have a finite correlation time, such that
their contribution to c̃ vanishes for sufficiently large times
T . Frozen regions, however, are characterized by a long
correlation time, and therefore yield a non-zero contribu-
tion to c̃ for large times T . The frozen fraction c̃ therefore
provides a diagnostic with which to map out the phase
diagram: if c̃ = 0, the system is fully ergodic, while if
c̃ = 1 it is completely frozen.

We first focus on a chain at filling fraction n̄ = 1
2 and

map out the frozen fraction c̃ in the h−τ plane in Fig. 2a.
The frozen fraction shows a crossover from the delocal-
ized regime, with short-lived correlations and c̃ ≈ 0, to
a frozen regime, where correlations may last arbitrar-
ily long. However, even for parameters h, τ � 1, the
frozen fraction does not saturate to the upper bound
c̃ → 1. This corresponds to imperfect freezing, which
we attribute to the presence of rare regions which re-
main mobile (delocalized) while the rest of the system’s
configuration is frozen.

Two related situations in the underlying quantum sys-
tem can give rise to this imperfect freezing. Both re-
sult from the formation of true many-body l-bits by
interaction-induced hybridization of Anderson orbitals.
First, imagine that the number of orbitals involved is
small. In an Anderson basis, quantum dynamics due
to these l-bits appears as precession—oscillation between
Anderson orbitals. That precession appears in our classi-
cal model as hopping between the few involved orbitals.
Second, imagine that a large number of orbitals is in-
volved. Then this hybridization may result in an ergodic
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grain or a long-range resonant network. Our classical
model does not distinguish between these situations, and
it does not distinguish these situations from bath-induced
transport between l-bits.

Additionally, the mobile regions may facilitate hop-
ping in nearby regions which would be otherwise frozen,
effectively blurring the freezing transition into a smooth
crossover. We observe that the mobile regions strongly
modify the dynamics in the presence of a nonzero dephas-
ing time; we will focus on the interplay between frozen
and mobile regions below in Sec. III B. This is consis-
tent with the observation of persistent particle number
fluctuations at large but finite disorder in the disordered
Heisenberg chain59–61.

If we move away from half-filling, we again observe
a crossover between a mobile and a frozen region in the
n̄−τ plane (see Fig. 2b) for fixed random field h, which is
reminiscent of a mobility edge. The phase diagram is ap-
proximately symmetric about n̄ = 1

2 in Fig. 2b. (Residual
asymmetry results from the fact that individual disorder
realizations are not particle-hole symmetric.)

The crossover in n̄ is unsurprising, since for sufficiently
small filling fraction (n̄ � 1

2 ) the typical interparticle
distance far exceeds the correlation length for the Ander-
son orbitals. The associated hopping rates wjl are then
exponentially suppressed, giving a very long timescale
for transitions between different Anderson orbitals. At
n̄ = 1/L there is perfect freezing in the sense that the
model prohibits hopping without a second occupied or-
bital to facilitate the process, i.e., one recovers single-
particle Anderson localization.

If the system has only two particles there may be a sub-
set of the configuration space where the particles remain
active. This is only possible when the inter-particle dis-
tance remains small so that they continuously facilitate
transport in the same direction, or at the same position,
giving short average times between particle hops. While
such states become rare in the thermodynamic limit (or
for strong disorder), the system will be dynamically at-
tracted towards configurations which have a high mobil-
ity, and therefore continue frequent hopping.

2. Distribution of the Time-Averaged Occupation

In order to obtain a more detailed picture of the dif-
ferent dynamical regimes, we examine the distribution
P (n̄i) of the time-averaged orbital occupations,

n̄i = lim
T→∞

1

T

∫ T

0

dt ni(t), (13)

where T is once again the physical time interval. We take
filling fraction n̄ = 1/2. The first moment of P (n̄i) then
is the filling fraction E[n̄i] = n̄ = 1

2 . The second moment,
the variance

var(n̄i) ≡ E[n̄2
i ]− E[n̄i]

2, (14)
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Figure 3. Time averaged site occupations 〈n̄i〉 for N = 250
sites and a fixed time interval T = 103. (a) A phase diagram
in the h−τ plane at half-filling showing the variance in the dis-
tribution of average occupations. At large τ or strong disorder
h, the majority of sites are frozen and the variance approaches
0.25. (b) The distribution of time-averaged site occupations
as a function of τ for fixed disorder strength h = 4. For small
τ , off-resonant transitions are permitted and the system re-
mains ergodic over a range of disorder strengths, showing a
unimodal distribution about ¯〈ni〉 ≈ 1

2
. At large τ the distri-

bution becomes bimodal about 0 and 1, with remaining weight
near 1

2
owing to rare-regions which remain active. (c) Similar

results as in (b) but for fixed τ = 1
2
, showing the freezing

transition at large disorder. It is noteworthy that for fixed h
in (b), at small τ there remain a number of sites which are
frozen, even when most other sites are active. This should be
contrasted with (c) where all sites are active at weak disorder.

provides an alternative means to probe the active-frozen
transition. For a region of mobile particles, we expect
n̄i = 1

2 . For a completely frozen region, by contrast,
we expect a bimodel distribution n̄i = 0, 1. The vari-
ance then is expected to be minimal, var(n̄i)→ 0 in the
ergodic regime, while it approaches its maximum value
var(n̄i)→ 1

4 for a frozen network.

We show in Fig. 3a that the variance of P (n̄i) identi-
fies a very similar phase structure to that obtained from
the autocorrelation function in Fig. 2a. Once again one
observes a crossover between an ergodic and a localized
regime. Only deep in the localized regime is the upper
bound var(n̄i)→ 1

4 reached.

A finer resolution of the dynamics in the crossover and
in the frozen regime can be obtained by inspecting the
distribution P (n̄i) directly. It is displayed in Fig. 3b,c,
and it shows a transition from an unimodal distribution,
peaked at n̄ = 1

2 in the ergodic regime, to a bimodal dis-
tribution in the frozen regime. But even for parameters
that we expect to be deep in the frozen regime (h, τ � 1),
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there remains a nonzero probability density for n̄i ≈ 1
2 ,

which we attribute to the presence of rare ergodic regions.
Like the autocorrelation function, the averaged site oc-

cupations tend to overestimate the extent of the active
phase: (i) even orbitals with rare activity may appear
active, if they are populated/unpopulated for an equal
amount of time, which would shift n̄i → 1

2 , and (ii) rare,
isolated regions with a small number of resonant Ander-
son orbitals will always appear with a nonzero probabil-
ity. This yields a nonzero density of small and isolated
clusters of mobile particles, which enter the statistics of
n̄i but will have no impact on the majority of frozen An-
derson orbitals. In both scenarios, despite the fact that
the vast majority of the evolution is frozen, the time-
averaged site occupation would suggest that the system
is not frozen.

3. Waiting Times

To address the mentioned limitations of the time-
averaged occupation as a probe, we inspect the distri-
bution of waiting times—that is, the time δt an individ-
ual particle stays in the same Anderson orbital before
hopping to another orbital. The distribution of wait-
ing times is displayed in Fig. 4, for varying disorder
strengths and fixed dephasing time τ = 4. For all disor-
der strengths, there is appreciable weight at short waiting
times (δt . 1). We attribute this behavior again to the
presence of small clusters, which can undergo frequent
dynamics due to a resonance in the potential energy.

For large waiting times δt ≥ 1, however, the distri-
bution shows a significant dependence on the disorder
strength. For small disorder, the distribution is cut off
at a finite time, indicating a lower bound for the tran-
sition rates in the ergodic phase. Increasing the disor-
der strength, the cut off shifts to larger waiting times,
and eventually reaches the total simulation time (i.e.,
diverges). In this limit, the distribution approaches a
power law with exponent approximately equal to −1.86
for h ≥ 5. Above this disorder strength, the long-time
tail of the distribution no longer changes, and we expect
a divergence of the mean waiting time for larger disor-
der strengths and in the thermodynamic limit. This is
reminiscent of the dynamics in spin glasses, where upon
reaching the freezing transition, the width of the relax-
ation time distribution typically diverges. In resonant
cluster renormalization group studies, the distribution of
effective tunneling rates plays a comparable role to the
waiting times here. Similarly in studies of Anderson lo-
calization on RRGs, this power-law distribution of wait-
ing times has been discussed in the context of a closely
related classical random walk model57. The power-law
tail at large waiting times can yield a diverging mean
waiting time, which has been previously associated with
subdiffusive energy transport16 at the onset of the MBL
transition. As shown in Sec. III C, our model shows a cor-
responding subdiffusive regime upon increasing the dis-
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Figure 4. Distribution of (onsite) waiting times between
particle hoppings for various disorder strengths with a fixed
energy window τ = 4. At weak disorder, the distribution falls
off rapidly such that the typical waiting time is much shorter,
as one would expect in an ergodic regime. The freezing tran-
sition at large disorder is accompanied by the appearance of
an algebraic distribution of long waiting times, decaying with
an exponent of approximately −1.86 (see dashed black line
for visual guide).

order strength above values of h ≈ 3.

B. Griffiths Effects

For a wide range of parameters, the dynamics of the
network is characterized by the simultaneous presence of
frozen and mobile regions, which prevents us from unam-
biguously defining a frozen or localized phase. Instead it
gives rise to a smooth crossover from the ergodic to a
more and more (but never completely) frozen regime. In
the following, we shift the focus away from single-orbital
observables and instead seek to characterize the mobile
and frozen regions, which we term bubbles, by quantifying
their size, lifetime, and associated energy fluctuations.

1. Defining Ergodic and Frozen Bubbles

We consider an ergodic bubble to be a region (not nec-
essarily contiguous) in which the typical particle activity
rate is large. In order to quantify the extent and dis-
tribution of such bubbles, we define a graph G = (V,E)
with nodes (V ) representing the Anderson orbitals and
edges (E) with weight Eij equal to the number of times
a particle has hopped between sites i and j. If this is
taken over a physical time interval T , then the activity
rates are Aij = Eij/T . We can now introduce an activ-

ity threshold ε and define a new edge set Ẽ such that
Ẽij = Θ(Aij − ε). The connected components of the
resulting graph now represent regions of high particle ac-
tivity and are designated ergodic bubbles. The size of
such active bubbles is given by the number of nodes in
each connected component (not the physical diameter of
the region spanned by the component). Intervening sites
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i with Aij < ε for all j then comprise the (contiguous)
frozen regions.

An ergodic bubble defined in this way represents the
classical analogue of what has been considered previously
as an ergodic subregion in the quantum mechanical MBL
setting. The latter are characterized as a set of states,
connected by resonant couplings. We observe that, simi-
lar to the phenomenology in the quantum model, ergodic
bubbles, once formed, tend to grow spatially towards
the most active configuration20,25. This results from the
construction of our model, which treats the transitions
|nl〉 → |nm〉 and |nl〉 ← |nm〉 on equal footing, i.e., at-
tributes the same transition rate to both processes. Tran-
sitions with higher transition rates are generally more
likely to occur, so the system naturally evolves towards
more active configurations.

The instantaneous onsite activity rate (
∑
j Aij) for a

chain of L = 250 sites is shown in Fig. 5a. Several re-
gions of activity are visible, and separated by inactive
regions. We also readily observe regions where extended
periods of inactivity are separated by periods of intense
activity. We also note that near site 175 in Fig. 5a there
is an active region which is not contiguous. In this case,
a single (or a few) frozen particles facilitate the hopping
between adjacent sites without actively participating in
the dynamics. This is a nascent example of a so-called
“resonant backbone”, i.e. an extended configuration with
resonant hopping processes that is interrupted by seem-
ingly inactive sites, which are, however, crucial for the
facilitation of nearby activity.

Before analyzing the distribution of bubble sizes, we
would like to mention that previous works have suggested
both that at criticality the distribution of ergodic bubble
sizes should either follow a power-law25 or exponential18

distribution. The latter has been associated with the
presence of an underlying resonant backbone18.

2. Bubble Sizes

Following the procedure above, we extract the size of
frozen and active regions from the dynamics. In the ac-
tive regime, the whole system is ergodic, giving an ex-
tensive mean ergodic bubble size. Crossing over into the
frozen regime, thermal regions become rare and small,
tending toward an average size of order unity (Fig. 5b).
Around the extended localization-delocalization cross-
over, the active and frozen bubble sizes are both exponen-
tially distributed (see Fig. 5c). The distribution function
P (sa,f) for the size sa,f of active (frozen) bubbles then
takes the form

P (sa,f) = Aa,f exp(−sa,f/va,f), (15)

where va,f > 0 is the characteristic size for active (frozen)
bubbles, which is subextensive in the crossover regime.

This observation is fairly robust with respect to the
finite timescale of the simulation (see Fig. 5e). However,
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Figure 5. (a) Local activity rates during the evolution with
h = 6 and τ = 4. Active versus frozen regions are readily
distinguished. (b) Average active bubble size as a function
of disorder strength and dephasing time. Here bubbles are
determined by considering the activity graph over fixed time
intervals of T = 103 with a threshold ε = 3 · 10−3. There
is a clear crossover from completely delocalized particles to
rare thermal bubbles. (c) Distribution of bubble sizes as de-
termined by the activity rate during a fixed physical time
interval T = 103 with cutoff ε = 3 · 10−3 for various disorder
strengths. (d,e) Mean frozen/active region size (sf/a) as a
function of (d) the activity rate threshold for qualifying as
an active bubble or (e) the time interval over which activ-
ity rate is computed. The minimum possible bubble size has
been subtracted off to highlight the scaling. Poor averaging
for large T at small disorder strength is responsible for devi-
ations from the trend in 〈sf 〉 in (e).

if we compute the average bubble size

〈sα〉 =

∫
dsαsαP (sα) (16)

from the numerical simulations, we find that it remains
sensitive to the choice of threshold ε (Fig. 5d). For suf-
ficiently large (small) ε, all regions are considered frozen
(active). However, over a broad range of ε there is an
approximate power-law relationship between ε and the
mean bubble size. This implies the same power-law rela-
tionship between the (in-) activity time scale (threshold)
ε−1, and the characteristic length scale va of bubbles with
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precisely this activity time scale. In the corresponding
regime, this yields a dynamical scaling relation for active
regions va ∼ ε−νa . From fitting the numerical results, we
find that the exponent νa decreases monotonically with
increasing disorder strength, i.e. for τ = 1

2 it starts close
to νa = 2.5 for weak disorder (h = 1) and continuously
decreases for stronger disorder, taking values νa = 1.0
(νa = 0.18) at h = 2 (h = 5).

The results in Fig. 5c-e are averaged over several disor-
der realizations and initial particle configurations. When
the typical frozen bubble size 〈sf 〉 and number of frozen
bubbles becomes small, individual realizations of the sys-
tem are more susceptible to large fluctuations. In partic-
ular, an exponentially rare large frozen region may ap-
pear and act as a bottleneck in the system. Such rare
fluctuations are responsible for the non-monotonic be-
havior at h = 2 in Fig. 5e. With additional disorder
averaging or in the thermodynamic limit, we anticipate
that this will approach a smooth curve with respect to
varying T .

C. Nonequilibrium Steady State Currents

In order to characterize the transport behavior of our
network model, we turn our attention to the dynamics
in the presence of a particle source and sink. We there-
fore introduce a non-zero tunneling probability at the two
ends of the network (where ordering is defined by the
mean coordinate of the Anderson orbitals), with which
particles are tunneling into the network at one end (par-
ticle source) and tunneling out of the network at the op-
posing end (particle drain). We fix the tunneling rates
to be equal on both ends so that particle-hole symmetry
is maintained on average (i.e. the time averaged particle
density remains near n̄ ≈ 1

2 ). Furthermore we let the
tunneling rate be independent of the energetic gain or
penalty incurred by the tunneling. Physically we may
motivate this unidirectional, energy-independent tunnel-
ing by considering the source and sink as thermal reser-
voirs with chemical potential above and below, respec-
tively, all energy scales of the network (and the particles
hopping on this network). Under these conditions we
measure the nonequilibrium steady state (NESS) parti-
cle current, which is given by

j(h, τ, L) = lim
T→∞

Nlost(T )

T
. (17)

Here Nlost(T ) is the number of particles tunneling out of
the system in a time interval T . Practically, this scenario
is realized by adding (removing) particles to the right end
(from the left end) of the system with a fixed rate, i.e.,
a fixed characteristic time scale. Within the numerical
simulations, adding or removing a particle is proposed
with a waiting time drawn from an exponential distribu-
tion the characteristic timescale. When such an addition
or removal is allowed (depending on occupation of the or-
bitals), these proposed moves are included in step (iii) of
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Figure 6. Scaling of the particle current with disorder
strength (h) for a fixed energy window τ = 1

2
. Faint cir-

cles correspond to individual data points from different Monte
Carlo trajectories. (a) Scaling of the nonequilibrium steady
state current j with system size as a function of the disorder
strength for fixed τ = 1

2
. The data show a power-law scal-

ing j(h, L) ∼ DhL−α, with Dh a disorder dependent diffusion
coefficient and α the scaling exponent. Several initial config-
urations and disorder realizations are taken for each disorder
strength h and system size L. (b) The fitted scaling exponent
α shows a transition from diffusive (α ≈ 1) to subdiffusive
(α > 1) for disorder strength exceeding h ≈ 2 for τ = 1

2
.

(inset) The diffusion coefficient Dh decays exponentially with
disorder strength in the ergodic regime (h ≤ 2) and the frozen
regime (h > 2), albeit with different scales. Deeper into the
frozen regime it becomes increasingly computationally inten-
sive to obtain accurate estimates of the scaling exponent as
the necessary runtime rapidly increases with L and h.

the update scheme. When addition or removal or a par-
ticle at the boundary is the fastest proposed move, it is
implemented instead of the fastest inter-orbital hopping.

This current depends sensitively on both the disorder
strength h and the dephasing time τ . For a fixed dephas-
ing time τ we find that the NESS current j(h, L) is well
described by a scaling function j(h, L) ∼ DhL

−α for sys-
tem sizes L much larger than the correlation length. Here
Dh is a disorder dependent diffusion coefficient which
falls off rapidly with stronger disorder, and α is the scal-
ing exponent with respect to system size. As seen in
Fig. 6, the exponent is fixed at α ≈ 1 for weak disorder,
corresponding to diffusive transport. At larger disorder,
around h = 2.5, the transport becomes subdiffusive, with
α > 1. From the τ = 1

2 data in Fig. 6b we see that the
scaling of the NESS current shows a clearer transition
than the crossover seen in the correlation and variance in
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occupation. Upon varying τ the critical disorder strength
at which we observe the onset of subdiffusion varies in a
manner similar to the crossover observed in local observ-
ables (see Fig. 2).

In the full quantum model, subdiffusive trans-
port has been observed in the vicinity of the MBL
transition16,17,25,62–65 and may be attributed to Griffiths
effects. Despite not showing a sharp transition between
the active and frozen regimes, our data do reproduce
this crossover in transport properties. Much as there is
no perfect freezing observed in the correlation (Fig. 2),
transport does not completely vanish in the frozen phase.
In the parameter regime explored here we observe subd-
iffusion everywhere in the frozen phase, consistent with
Ref. 66, where onsite dephasing in the disordered XX
model yields a diffusion-subdiffusion transition. Other
works report that non-zero dephasing in the local, lat-
tice basis may eliminate subdiffusive transport in MBL
systems, and instead gives rise diffusive transport for all
disorder strengths40,67. By tuning the dephasing τ in the
classical network model, we are able to better probe the
role of off-resonant transitions in facilitating this transi-
tion in particle transport. The disorder strength at which
we observe the onset of subdiffusion is appreciably larger
than that observed in numerical studies of the boundary-
driven random-field Heisenberg model without dephas-
ing62,65. While this is in part due to an explicit sensitivity
to the choice of dephasing τ , we expect that this discrep-
ancy can be attributed more generally to (i) the approxi-
mation of uniform dephasing τ throughout the chain, (ii)
the breakdown of the validity of Eq. (9) in regions with
typical hopping rates much faster than the dephasing,
and (iii) the increasing relevance of the truncated four-
body hopping terms at weak disorder. Nonetheless, the
classical facilitated network model faithfully reproduces
a transition between diffusive and subdiffusive transport
that one anticipates in this system.

IV. LOCAL ENERGY FLUCTUATIONS AND
SELF-THERMALIZATION

So far we have treated the dephasing time τ as an ex-
ternal parameter, resulting from an external bath, and
we have used it as tunable parameter with spatially
uniform effect. However, if we consider a closed quan-
tum system, a similar type of dephasing effect is caused
by rapidly fluctuating particle densities in thermal bub-
bles. Orbitals inside and in close vicinity to a thermal
bubble experience fast temporal fluctuations of the lo-
cal interaction energy Ek,i, which acts similar as the
randomly fluctuating onsite energy in Eq. (6). Due to
the inhomogeneous distribution of the thermal bubbles,
this will result in dephasing, which we can character-
ize by a spatially varying local dephasing time τ(x).
This time is then interpreted as the dephasing of many-
body hopping matrix elements (in the interaction pic-
ture) Vlm({ni})ei(Ek,l−Ek,m)t between states l,m due to

rapid fluctuations of the occupations on nearby sites k,
i.e., the many-body energy difference Ek,l−Ek,m for the
transition l↔ m undergoes temporal fluctuations due to
changes in the configuration k. If these changes happen
on a faster scale than the typical hopping time, the fluc-
tuations have the same effect as the dephasing bath, c.f.
Eq. (6). This self-induced dephasing in the Anderson ba-
sis arises from a breakdown of the perturbative construc-
tion of l-bits, which here we truncated at first order by
taking only the Anderson orbitals of the non-interacting
model50. In order to compare such a self-generated de-
phasing time with our external dephasing time τ , we
analyze in this part the dynamical energy fluctuations
in active and in frozen regions. These fluctuations are
conceptually the first step in an iterative solution of a
self-consistent mean field theory like that of Ref. 68.

We start by defining an instantaneous, “local” energy
for a region ` via

E` = 〈n|H|` |n〉 . (18)

Here the local energy H|` contains (i) all single-particle
terms of the facilitated network Hamiltonian (Eq. (5))
in the subregion ` and (ii) all many-body operators of
Eq. (5) that contain at least one density operator nl with
l ∈ `. From the local energy E`, we determine the density
of dynamical energy fluctuations from

f2
` =

E2
` − E`

2

s2
`

. (19)

Here the overbar indicates time-averaging and s` is the
number of sites contained in the subregion (active or in-
active). It is worth noting that since subregion ` need not
be contiguous (for thermal bubbles), then E` and f` are
not wholly local quantities. However, this should only
be relevant when the disorder is sufficiently weak that
long-range resonant hoppings are possible.

As shown in Fig. 7, at weak disorder there are finite
energy fluctuations in both active and frozen regions.
At larger disorder, however, frozen regions have an ap-
preciable probability of vanishingly small fluctuations.
Nonetheless, there remains a finite probability for ap-
preciable energy fluctuations in the frozen regions, with
the distribution P (f`, h) falling off exponentially with in-
creasing f`. This should be understood as arising from
rare off-resonant transitions occurring within these re-
gions. For frozen regions, these rare hoppings necessarily
are accompanied by a large energy change. If this were
not the case, then the region would experience far more
particle transitions and become thermal. The narrower
distribution of fluctuations in the active regions then can
be understood as arising from the frequent particle tran-
sitions between nearly resonant sites, which incurs only
a small energy difference. Unlike in frozen regions, how-
ever, at increasing disorder the probability weight in-
creases in the tail of the distribution.

Here we observe an important qualitative distinction
between active and inactive bubbles: (i) for active re-
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Figure 7. (a) The distribution of energy density fluctuations
f` in active (left) versus frozen (right) regions for L = 250
and τ = 1

2
calculated over time intervals T = 103. (b) The

distribution of effective dephasing times τ` ≈ 1/f` in active
and frozen regions. We see that frozen regions show an effec-
tive dephasing time which may be several orders of magnitude
larger than that seen in the active regions.

gions `, the energy fluctuations are due to genuine explo-
ration of the configuration space within the subregion `,
while (ii) for an inactive region ` a significant fraction of
energy fluctuations has to be attributed to the configu-
ration changes outside the region `, i.e., to fluctuations
in nearby active regions. In particular, let P` be the pro-
jector onto the region `. If we restrict the computation
of the local energy E` to operators which are acting only

on the subregion ` via E` = 〈n| P†`HP` |n〉, the density
fluctuations remain nearly unaffected in active regions
but are significantly reduced in the inactive regions (by
about 25%).

Active sub-regions ` thus lead to fast variations of the
phase of the hopping matrix elements ∼ ei(Ek,l−Ek,m)t

and generate an effective dephasing time τ` ≈ 1/f` for
the active regions themselves and also for nearby inactive
regions. The latter mechanism allows otherwise frozen
regions to experience a broader spectrum of energy lev-
els (smeared spectral lines), giving a greater likelihood
of satisfying a resonance condition and having a parti-
cle hop. This can be viewed as a classical, dynamical
analogue to the renormalization schemes developed to
describe how thermal inclusions grow and destabilize an
otherwise nonergodic phase in isolated systems16,17,19,25.

We anticipate that in a closed system, where all de-
phasing times τ` vary spatially and are self-generated
(mainly by active regions), the distinction between frozen
and active regions would become more sharp and the
presence of entirely frozen regions in the chain would be
more likely. Here, where we work with a global, exter-
nally determined dephasing time τ , it acts as a threshold
which suppresses complete localization. Whether or not
a sharp freezing (or localization) transition would occur
for a closed system with self-generated dephasing times

remains to be investigated and we emphasize that it is
closely related to conditions on stability of a nonergodic
phase with thermal inclusions.

V. WEAK FRACTIONALIZATION IN FOCK
SPACE

Thus far we have focused on the (classical) real-time
dynamics on a facilitated Anderson network, with a dy-
namical connectivity that depends on the real-space oc-
cupations. The original, quantum mechanical MBL tran-
sition, however, is mostly seen as involving the entire
Fock space hypergraph, whose dimension grows exponen-
tially with the system size. Recent works48,49,69,70 have
argued that imposing a resonance condition to truncate
the set of allowed particle hoppings leads to a percola-
tion transition in the Fock space hypergraph, which can
then be viewed as a proxy for the MBL transition. In
this framework, the real-space dynamics on the facili-
tated Anderson network can be seen as a projection of the
random-walk on the Fock space hypergraph. Whereas
the topology of the facilitated Anderson network is time-
dependent (changing as particles hop), the hypergraph in
Fock space is static and depends only on a particular dis-
order realization {hj}. We will show that both pictures,
the freezing of the real-time dynamics in a classical facili-
tated Anderson network and the percolation transition in
Fock space of Hnetwork from Eq. (5) are equivalent under
appropriate conditions.

To this end, we construct a hypergraph G = (V,E)
representing Hnetwork in Fock space. Each Fock state
then corresponds to a vertex v ∈ V . We introduce a cut-
off activity rate ε and add the edge (vi, vl) to the set E
if a transition matrix element wil (defined in Eq. (9))
connecting the two Fock states vi and vl exceeds the
threshold wil > ε. Depending on the parameters h, τ, ε,
dropping edges with wil < ε may cause the hypergraph
to either remain in one giant connected component or
to fractionalize into a finite set of mutually disconnected
clusters.

This approach of constructing an effective hypergraph
resembles previous ideas15,48,49, where a resonance con-

dition for direct transitions

∣∣∣∣V (k)
i,l

∆i,l

∣∣∣∣ ≥ ε̃ was used in order

to determine whether an edge (vi, vl) is added to the hy-
pergraph or not. Despite this distinction, the clustering
properties of the graph constructions are closely related.
In our case, the threshold ε has a direct physical mean-
ing. Like the determination of the ergodic bubble sizes,
the inverse rate ε−1 sets a time-scale, below which we
consider an edge to be present (active), and above which
we consider it to be inactive (frozen).

The hypergraph undergoes a percolation transition (or
crossover) when its giant connected component decays
into a large set off mutually disconnected clusters (see
Fig. 8). This corresponds to a crossover from an ergodic
regime where all Fock states are connected on timescales
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Figure 8. The mean number of clusters (left column) and
cluster sizes (right column) in the hypergraph defined over
Fock space at half-filling for L = 12 sites. In (a) we vary
the dephasing time τ and the edge-weight threshold ε with
fixed h = 6, whereas in (b) we vary τ and h with fixed
ε = 10−2. Both metrics show a phase boundary separating
a regime where the hypergraph is fully connected (ergodic)
from a regime where the hypergraph is broken into many dis-
connected components (non-ergodic). (c) The distribution of
cluster sizes for varying disorder strength (left) and varying
dephasing time (right) for system size L = 14 averaged over
several hundred disorder realizations. As we pass through the
phase boundary the distribution falls off as a power-law with
exponent ≈ 2.5 (dotted black line). This is consistent with a
percolation type transition, for which we expect a mean-field
critical exponent of 5/2 describing the distribution of cluster
sizes.

ε−1, to a frozen regime where any non-trivial clusters of
states (thermal bubbles) are sub-extensive. Varying τ
determines the strength of the energy conservation con-
dition, and may split connected components of the hy-
pergraph further into subgraphs of (approximately) equal
energy. The formation of these connected clusters of Fock
states on the hypergraph corresponds to the development
of a non-trivial resonant backbone structure on the real-
space network. We find that the h—τ phase diagram ob-
tained from the Monte Carlo dynamics is well-reproduced
from the connectivity of the hypergraph (see Fig. 8), with
ε determining the position of the phase boundary.

Near the phase boundary, the distribution of cluster
sizes P (s) obeys a power-law P (s) ∼ s−η. At the phase
boundary the exponent is consistent with the (mean-
field) exponent for percolation η = 5/2 (see dashed black
line in Fig 8c), in line with Ref. 49. Upon varying any of
the parameters ε, τ, h, we generally move away from the
critical point and see power-law scaling of cluster sizes
with an exponent no longer equal to the value for perco-
lation. Nonetheless, for a fixed disorder strength h near

the critical value there is an extended range of τ for which
the exponent remains stable near 5/2. To this end we de-
note this transition as being percolation-like, appealing
to the picture in which it separates a regime with a gi-
ant connected component from a phase of disconnected
clusters.

By examining the transition in Fock space we may bet-
ter connect the dynamical freezing transition observed in
our classical network model to the genuine MBL transi-
tion observed in the random field Heisenberg model and
the facilitated hopping model.

VI. DISCUSSION

We started with the random-field Heisenberg model,
which hosts a transition from an ergodic (ETH) phase
to a many-body localized phase. We argued that this
was well-approximated by quantum facilitated hopping
model: interactions make transitions between Anderson
orbitals possible. We then coupled this quantum facili-
tated hopping model to a bath. Crucially, we chose the
bath to couple to the system’s Anderson orbitals, not to
physical sites. We argued that the the resulting system-
bath combination was well-approximated by a classical
facilitated hopping model, and studied the dynamics of
that model.

We observed that—in contrast to MBL systems cou-
pled to baths by physical sites29–31—the Anderson-
coupled system displays a crossover between “ergodic”
and “frozen” regimes. The disorder strength h and
dephasing time τ act as tuning parameters for this
crossover. The presence of rare thermal bubbles which
survive even deep into the frozen phase spoils sharp sig-
natures of the transition in local observables, yielding
a smooth crossover between these two phase that is only
well defined upon fixing the timescale. Both thermal and
frozen bubbles follow an exponential distribution of sizes
in the critical regime, suggesting that the transition is
driven not strictly by contiguous bubbles but rather by a
resonant backbone of thermal regions and sites. A clearer
transition is observed upon examining the NESS parti-
cle current, which shows a transition from diffusion at
weak disorder to subdiffusion at strong disorder, consis-
tent with expectations from the MBL transition in the
fully quantum model.

Because we couple the bath to Anderson orbitals,
transport in our system is entirely determined by the in-
terplay among interactions (in particular the facilitated
hopping of Eq. (5)), resonances, and the bath coupling
strength. We speculate that this facilitated hopping
mechanism explains the interaction dependence seen in
previous studies33,71.

While the classical model admits a computationally
tractable approach for studying the real-time dynamics
of a system with a localization-delocalization transition,
there may be limitations and potential improvements as-
sociated with the numerical method. Since the facili-
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tated hopping coefficients fall off exponentially with dis-
tance, in sufficiently large systems very distant regions
may evolve independently of one another. To this end
it may be possible to improve the runtime by some par-
allelization scheme which separately evolves disjoint seg-
ments of the chain simultaneously. We note also that
the derivation of the rates wij implicitly takes the limit
where δt � τ . For very fast hopping in ergodic re-
gions this may no longer be an appropriate assumption.
Nonetheless we expect this approach to perform well in
the strong-disorder regime. Despite neglecting accumu-
lated phases and coherence, this classical model captures
well the distribution of bubble sizes and the subdiffusive
transport expected from the MBL transition. This may
be attributed to the the fact that the numerical method
employs the true distribution of link weights V

(k)
ij ob-

tained from the quantum model while truncating terms
which are increasingly irrelevant at strong disorder. Es-
pecially, the onset of subdiffusive transport must orig-
inate from a change in the distribution of link weights
when approaching the MBL transition.

While we motivated the dephasing here as coming from
an external bath, we point out that a local dephasing
may arise in an isolated system acting as its own bath.

In this case, a uniform dephasing τ presents a signifi-
cant simplification over the inhomogeneous spectral line
broadening that one should anticipate from ergodic bub-
bles embedded in a nonergodic phase. On the one hand,
a larger τ in thermal bubbles would allow these ergodic
regions to grow and enlarge the thermal phase. On the
other hand, however, a reduced energy window in the
frozen regions would strengthen their role as bottlenecks
to transport, potentially allowing for a sharper transition
in the transport properties. The precise manner in which
the results presented here are modified when introducing
a self-consistent inhomogeneous τ remains to be studied.
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given in Eq. (9), let us consider a simplified instance of
our model involving only two sites. The Hamiltonian is
then given by

H0 = ε0c
†
0c0 + ε1c

†
1c1 +

[
V c†0c1 + h.c.

]
. (A1)

Now introduce the random fluctuations given in Eq. (6)
and Eq. (7). Let us suppose that we have an initial state
|ψ(0)〉 = |0, 1〉 such that a particle initially resides on site
1. We are then interested in the probability of finding the
particle at site 0 at time t, given by

P1→0(t) = 〈〈|〈1, 0|U(t) |0, 1〉|2〉〉, (A2)
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where U(t) is the unitary time-evolution operator. At
leading order in perturbation theory the overlap is just
given by

〈1, 0|U(t) |0, 1〉 ≈ V
∫ t

0

dt1e
−iϕ(t1), (A3)

where the phase ϕ is defined as

ϕ(t1) = ε0(t−t1)+ε1t1 +

∫ t1

0

dt′η1,t′+

∫ t

t1

dt′η0,t′ . (A4)

It is now useful to observe that the integral of the noise
variables η just corresponds to a Wiener process. To this
end, define

λi(t) =

∫ t

0

dt′ηi,t′ (A5)

such that the phase may be compactly expressed as
ϕ(t1) = ε0t+ ∆t1 + λ1(t1) + λ0(t− t1). The probability

of finding the particle at site 0 then becomes

V 2

∫ t

0

dt1 dt2

∫
D[λ]P (λ)ei∆(t1−t2)ei(λ1(t1)−λ1(t2))

× ei(λ0(t−t1)−λ0(t−t2)).
(A6)

Here we have taken the notation
∫
D[λ]P (λ) for the noise

averaging. Since λi are Wiener processes, we have a prob-
ability distribution

P (λ(t1)− λ(t2)) =
e
− |λ(t1)−λ(t2)|2

2τ−1|t1−t2|√
2πτ−1|t1 − t2|

. (A7)

Then integrating over the noise gives a transition proba-
bility

P1→0(t) = V 2

∫ t

0

dt1 dt2e
i∆(t1−t2)e−|t1−t2|τ

−1

. (A8)

For t � τ it is straightforward to find the average rate
w1→0 = ∂tP1→0(t) such that

w1→0 = 2V 2 τ

1 + ∆2τ2
. (A9)

We take this as the generic form of the classical tran-
sitions rates for the Monte Carlo as given in the main
text.
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