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Duality places an important constraint on the renormalization group flows and the phase diagrams.
For self-dual theories, the self-duality can be promoted as a symmetry, this leads to the multi-
criticalities. This work investigates a description of the deconfined quantum criticality, the Nf = 2
QED3, as an example of self-dual theories and its multi-critical behavior under perturbative
deformations. The multi-criticality is described by the theory with Gross-Neveu couplings and falls
in a different universality class than the standard deconfined quantum criticality. We systematically
calculate the scaling dimensions of various operators in the 3d quantum electrodynamics with the
Chern-Simons term and Gross-Neveu couplings by the large-N renormalization group analysis.
Specifically, we find certain non-relativistic four-fermion interactions which correspond to the dimer-
dimer interactions in the lattice model will drive the deconfined quantum criticality to the first-order
transition, this result is consistent with previous numerical studies.

I. INTRODUCTION

Duality plays an important role in relating different
phases of matter. One famous example is the Kramers-
Wannier duality[1] in (1+1)D transverse field Ising model
H =

∑
i−JZiZi+1− hXi, which exchanges J and h and

maps the ferromagnetic (Ising symmetry breaking) phase
to the paramagnetic (Ising symmetric) phase and vice
versa. More generally, two theories are dual to each other
when they have different ultraviolet (UV) descriptions
but flow to the same infrared (IR) theory. A well-known
example in (2+1)D is the particle-vortex duality, which
states that the XY model is dual to the abelian Higgs
model [2–4]. Recent developments further extend this
understanding and discover many theories and their dual
partners, altogether they form a web of duality[5].

If the theory remains the same under a duality, the
duality will be called a self-duality. For example, the
Kramers-Wannier duality is a self-duality for the (1+1)D
Ising model at the critical point. Recent studies [6–
9] further propose to interpret the self-duality as a
categorical symmetry, making connections to the fusion
category of anyon excitations in the corresponding bulk
topological order in one higher dimension. When the
self-duality is imposed as a symmetry, the system is
enforced to stay on the phase boundary between the
two duality-related phases, leading to the self-duality
protected criticality and multi-criticality[10–15]. For
example, as illustrated in Fig. 1(a), in the presence of
the Kramers-Wannier duality (enforcing J = h), a
generic Ising chain (with all additional duality-allowed
terms like −K(XiXi+1 +Zi−1Zi+1)) can either preserve
the self-duality and remain gapless along the Ising
critical line (K < Kc), or spontaneously break the
self-duality and becomes gapped along the first-order
transition line (K > Kc). The continuous and first-
order Ising transitions are separated by a multi-critical
point (K = Kc), i.e. the tricritical Ising point[16, 17].
The multi-critical point can be circumvented if the self-
duality is explicitly broken (e.g. by J 6= h). In this sense,
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FIG. 1. Quantum phases related by the duality or
emergent symmetry: (a) ferromagnetic (ordered) and the
paramagnetic (disordered) phases across the Ising transition
are related by the Kramers-Wannier duality, (b) bosonic
symmetry protected topological (SPT) and trivial phases
are related by the fermionic particle-vortex duality, (c) XY
antiferromagnetic (AFM) and valence bond solid (VBS)
phases are related by an emergent Z2 symmetry. In all
phase diagrams, the vertical axis is the relevant perturbation
that drives the transition between the duality/symmetry-
related phases, and the horizontal axis is always taken to
be the square of the transition-driving perturbation. In
phase diagrams (b,c), the existence of continuous transitions
between the adjacent phases is assumed, which corresponds
to the Nf = 2 QED3 field theory without four-fermion
interactions.

the multi-criticality is protected by self-duality.
Similar continuous to first-order transition also hap-

pens in higher dimensions between the duality-related
quantum phases. Here we will explore the (2+1)D exam-
ple of self-duality-protected multi-criticality. In partic-
ular, we will consider the topological transition between
the bosonic symmetry protected topological (SPT) phase
and the trivial phase, as illustrated in Fig. 1(b), where
the two phases across the transition are related by the
self-duality[5, 18–21] of the quantum electrodynamics in
(2+1)D (QED3) with fermionic matters at flavor number
Nf = 2. This theory also describes the deconfined quan-
tum critical point (DQCP)[22–24] between the XY an-
tiferromagnet (AFM) and the valence bond solid (VBS)
in square-lattice quantum magnets with the easy-plane
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spin anisotropy, as shown in Fig. 1(c). In this case, the
two phases are related by a Z2 subgroup of the emergent
O(4) symmetry that maps the two-component XY-AFM
order parameter to the two-component VBS order pa-
rameter. Imposing these emergent symmetries (including
the self-duality) essentially promotes the tuning param-
eters to the fluctuating scalar fields and prohibits the
explicit mass terms. This leads to a unified field theory
that describes the continuous-to-first-order transition in
these systems. Such multi-critical point lies in the univer-
sality class described by the QED3-Gross-Neveu[2, 5, 25]
(QED3-GN) theory. More generally, the Chern-Simons
(CS) term for the gauge fields can be included to describe
the multi-critical point of the exotic quantum phase tran-
sitions.

To further investigate the stability of this (2+1)D self-
duality-protected multi-criticality, we extend the field
theory to the large fermion flavor number (large Nf )
limit, and use the 1/Nf expansion[25–31] to analyze the
renormalization group (RG) flow of the fermion quartic
operators, including the mass-mass (ψ̄Mψ)2 and current-
current (ψ̄γµMψ)2 interactions, at the QED3-GN fixed
point. Our analysis indicates that the DQCP and the
multi-criticality can be driven to the first-order transition
by current-current interactions. Such current-current
interactions can be realized in the lattice spin model
as a staggered dimer-dimer interaction (or stagger-Q)
as proposed and observed in the recent quantum Monte
Carlo (QMC) studies[32, 33]. Unlike the conventional
dimer-dimer interaction that couples the dimers along
the vertical or horizontal directions on the square lattice,
the stagger-Q interaction couples the dimers along the

diagonal direction. The QMC results indicate that such
a stagger-Q interaction may be responsible for driving
the DQCP between continuous and first-order transitions
(see Sec. IV B for more concrete discussion of the QMC
results and our theoretical explanation).

The RG analysis can be further generalized to the
QED3-GN theory with additional Chern-Simons (CS)
terms for the gauge field. Although there is a lack of
known examples of self-dual theory with a non-zero-
level CS term, a similar multi-critical point separating
the continuous and first-order transition still exists and
can be analyzed. The result can be applied to the
direct transition between bosonic fraction quantum Hall
(FQH) and superfluid (SF) phases in interacting boson
systems[34, 35].

II. SELF-DUALITY OF Nf = 2 QED3

The fermionic particle-vortex duality[36, 37] dualizes
a free Dirac fermion theory to Nf = 1 QED3 theory
with CS terms and the fermion operator is mapped
to the fermion operator combined with gauge fluxes.
Since CS terms break parity symmetry, the orientation
reversed version of the fermionic particle-vortex duality
is obtained by changing the sign of the CS terms. By
combining the fermion particle-vortex duality and its
orientation reversed version, one can obtain a duality
between two Nf = 2 QED3 theories[18, 19, 21] described
by the following Lagrangians,

iψ̄1 /Da+Xψ1 + iψ̄2 /Da−Xψ2 +
1

4π
(a+ Y )d(a+ Y ) +

2

4π
(XdX − Y dY ) (1)

⇐⇒ iχ̄1 /Dã+Y χ1 + iχ̄2 /Dã−Y χ2 +
1

4π
(ã+X)d(ã+X), (2)

where ψi, χi are fermion fields, /Da ≡ γµ(∂µ − iaµ) is
the Dirac operator coupled to the U(1) gauge field a.
ada ≡ εµνρaµ∂νaρ is understood as the exterior product
a∧da, and the same applies for other CS terms. We adopt
the convention as the lower case letters a, ã represent
the dynamical U(1) gauge fields which will be integrated
over in the path integral, and the upper case letters X,Y
represent the background gauge fields which are used to
keep track of the U(1)X and U(1)Y global symmetries.

The two theories (at least) have the common UV
symmetry U(1)X × U(1)Y . For the U(1) gauge theories
in 2+1d, they automatically have an emergent global
U(1)M magnetic symmetry due to the Bianchi identity
εµνλ∂µFνλ = 0 where Fνλ is the gauge field strength.
The charged operator of this U(1)M symmetry is the
magnetic monopole operator which creates the gauge flux

and its coupling with the background gauge field are
1

2πadY,
1

2π ãdX in the both hand sides respectively. The
symmetry charges of the operators are,

U(1)a U(1)X U(1)Y
Ma 1 0 1
ψ1 1 1 0
ψ2 1 −1 0

↔

U(1)ã U(1)X U(1)Y
Mã 1 1 0
χ1 1 0 1
χ2 1 0 −1

(3)
and the gauge invariant operators are built from these
operators.

Renaming the fermion fields ψ ↔ χ will exchange
X ↔ Y and add a background term 2

4π (XdX − Y dY )
to the Lagrangian, the left-hand-side (LHS) Eq. (1) and
the right-hand-side (RHS) Eq. (2) of the duality will be
swapped, therefore, establishes the self-duality.
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This self-duality can also be understood as exchanging
the “electric charge” and the “magnetic charge”. On
the LHS of the duality, the fermion field ψi is charged
under the U(1)X flavor symmetry, and the magnetic
monopole operator Ma which creates 2π-flux for a is
charged under the magnetic U(1)Y due to the mixed
CS term 1

2πadY (note that Ma is the bare magnetic
monopole operator which is not gauge invariant due to
the CS term 1

4πada, the gauge-invariant operators are the
combination of theMa and fermion creation operators).
However, on the RHS, the fermion field χi is charged
under U(1)Y and the magnetic monopole operator Mã

is charged under U(1)X . This suggests that the fermion
creation operators (resp. monopole operators) on the
LHS become monopole operators (resp. fermion creation
operators) on the RHS. More details of the self-duality
are presented in App. B

Here is a side-note on the conventions to regularize the
fermion path integral:

One convention is that integrating out a single Dirac
fermion in (2+1)D will contribute a (−1)-level CS term
for the negative fermion mass and a 0-level CS term
for the positive fermion mass. Physically, fermions are
doubled when putting on the lattice, one Dirac fermion is
accompanied by a massive fermionic partner, otherwise,
the single Dirac fermion will have parity anomaly in
(2+1)D [38]. This convention assumes that the massive
fermionic partner is not integrated out beforehand and it
is more explicit on the quantization of the level of Chern-
Simons term, this is easier to analyze the symmetry
charges of the operators since the magnetic monopole
operator has charge k if there is a level-k CS term. We
will use this convention in discussing the dualities of
quantum field theories, such as the self-duality of Nf = 2
QED3 .

Another convention is that integrating out the fermion

will contribute a sgn(m)
2 -level CS term, this assumes that

the massive fermionic partner has been integrated out
beforehand and this is relevant to the analysis of the
scaling dimensions of the critical theory since the massive
fermionic partner does not involve in the transition.
Using the later convention, half level CS term will involve
in the massless theory, and now the Chern-Simons level

is effectively −Nf2 +k where Nf is the number of fermion
flavors. We will adopt this convention in the discussion
of renormalization group analysis on the critical behavior
of the theory.

Schematically, the fermion theory with the level-k CS
term using the first convention is related to that using
the second convention by,

i

Nf∑
i=1

ψ̄i /Daψi +
k

4π
ada︸ ︷︷ ︸

the 1st convention

∼= i

Nf∑
i=1

ψ̄i /Daψi +
k −Nf/2

4π
ada︸ ︷︷ ︸

the 2nd convention

.

(4)
The duality presented in Eq. (1) and (2) will be equivalent
to the self-dual theory presented in Ref. 18 by converting

to the second convention of the fermion path integral
regularization. However, both conventions have the
same gauge-invariant operators and they yield the same
response theories in the gapped phases.

A. Phase Diagram

The Nf = 2 QED3 has two relevant fermion mass
deformations, the singlet mass mψ̄1ψ ≡ m(ψ̄1ψ1 +ψ̄2ψ2)
and the triplet mass m′ψ̄σ3ψ ≡ m′(ψ̄1ψ1 − ψ̄2ψ2),
where σi is the i-th Pauli matrix. Under these mass
deformations, one can integrate out the fermions and
obtain the following effective theories for the background
gauge fields Eq. (1)[18, 20],{

2
4π (XdX − Y dY ) m > 0, m′ = 0

0 m < 0, m′ = 0
(5){

1
2πad(Y +X) + 1

4e2 f
2 + ... m′ > 0 m = 0

1
2πad(Y −X) + 1

4e2 f
2 + ... m′ < 0 m = 0

. (6)

where e is the electron charge. The ... represents the
gapped degrees of freedom that are not important at low
energy since the low-energy physics is dominated by the
Maxwell term 1

4e2 f
2 and the first term which describes

the gapless Goldstone boson associated to the broken
symmetry U(1)Y+X or U(1)Y−X .

When the singlet mass m is non-zero, the two response
theories in Eq. (5) differ by a U(1)X,2 × U(1)Y,−2 CS
term, where the number indicates the level of the
CS term, i.e. 2

4π (XdX − Y dY ), which corresponds
to the topological response of a bosonic SPT state
with U(1)X × U(1)Y symmetry[39]. Therefore, the
m > 0 and m < 0 phases should be ascribed to
the topological and trivial SPT phases respectively[40].
When the triplet mass term m′ is non-zero, the effective
theories in Eq. (6) describe the Goldstone modes in
the spontaneous symmetry breaking (SSB) phases with
broken symmetries associated to Y + X and Y − X
respectively (two different combinations of the generators
of U(1)X ,U(1)Y ). In the context of square-lattice easy-
plane quantum magnets[41, 42], we might interpret
U(1)Y+X as the in-plane spin rotation symmetry and
U(1)Y−X as the lattice rotation symmetry (ignoring
the discrete nature of the actual C4 rotation), then
the m′ > 0 and m′ < 0 phases could be identified
as the XY-AFM and the VBS phases respectively.
Fig. 2(a) shows the phase diagram summarizing the
above interpretations. Under the duality transformation,
the singlet mass is odd (m → −m) while the triplet
mass is even (m′ → m′), which effectively swap the
SPT and trivial phases but leaving the AFM and VBS
phases unchanged (see Fig. 2). To restore the original
phase diagram after the duality transformation, one
should exchange U(1)X ↔ U(1)Y and add a background
U(1)X,2 × U(1)Y,−2 CS term to the Lagrangian.
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FIG. 2. The phase diagram of Nf = 2 QED3 theory.
The singlet mass m drives the SPT transition between two
symmetric phases, and the triplet mass m′ drives AFM-VBS
transition between two symmetry broken phases.

B. Self-Duality as a Symmetry

As pointed out in Ref. 19 and 21, the explicit UV
symmetry U(1)X × U(1)Y in Eq. (1) and (2) can be

enhanced to the emergent symmetry SU(2)X×SU(2)Y
Z2

∼=
SO(4) in the IR. Together with the self-duality ZD2
which exchanges SU(2)X ↔ SU(2)Y and attaches a
SU(2)X,1 × SU(2)Y,−1 CS term (which falls back to the
U(1)X,2×U(1)Y,−2 CS term in the UV), the IR symmetry
becomes SO(4)oZD2 ∼= O(4). However, as the IR theory is
shifted by the SU(2)X,1×SU(2)Y,−1 background response
under the self-duality transformation, the ZD2 and the
SO(4) have the mixed ’t Hooft anomaly, thus they cannot
be simultaneously coupled to the background gauge fields
and promoted to the dynamical ones. Nonetheless, it can
be viewed as the boundary of a (3+1)D SPT with the
full O(4) symmetry. With appropriate counterterm in
the bulk, the whole system can also have time-reversal
symmetry ZT

2 , altogether gives O(4)×ZT
2 as suggested in

Ref. 43.
Note that the singlet mass m is invariant under SO(4)

but is odd under ZD2 , while the triplet mass m′ explicitly
breaks SO(4) (as it is in the (3,3) representation[20, 43]
of SU(2)X×SU(2)Y ) but is even under ZD2 . Hence, if both
the emergent SO(4) and the self-duality ZD2 symmetries
are imposed, no fermion bilinear mass could be included
in the Lagrangian.

C. Self-Duality Protected Multi-Criticality

Although the mass term cannot be added to the
Lagrangian, squares of the mass term still can, which
may take the form of four-fermion interactions (ψ̄Maψ)2,
where Mas are mass matrices acting on the flavor
indices. Adding these mass-squared deformations to
the QED theory Eq. (1) could potentially drive the
theory to new fixed points[28]. The fate of the self-
duality ZD2 and the SO(4) symmetry depends on the
RG flow of such mass-squared deformations. If both
symmetries are preserved, the theory will remain critical

(as no mass deformation is allowed), which describes the
continuous transition between AFM and VBS phases (as
well as the transition between SPT and trivial phases),
which is also known as the O(4) DQCP. When the
self-duality ZD2 symmetry is spontaneously broken, the
SPT transition becomes first-order. When the emergent
SO(4) symmetry (more specifically the Z2 subgroup
that swaps U(1)Y+X and U(1)Y−X) is spontaneously
broken, the AFM-VBS transition becomes first-order.
These first-order transitions are separated from the
continuous transition by the multi-critical points/lines.
We will analyze the RG flow of the generic four-fermion
interactions at these multi-critical points, aiming to
understand how certain kinds of interactions can drive
the DQCP from a continuous transition to a first-order
transition.

The multi-critical point happens when Dirac fermion
masses change the sign. To analyze the scaling
dimensions of the operators at the multi-critical point,
we do not need to include the massive fermionic parton
which is served to cancel the subtlety in the fermion path
integral regularization. We rewrite Eq. (1) as

iψ̄1 /Da+Xψ1 + iψ̄2 /Da−Xψ2 +
1

2π
adY +

1

4π
(XdX−Y dY ).

(7)
The CS terms look different from Eq. (1), because we
integrate out the massive fermionic partners beforehand
and it corresponds to the second convention as discussed
in the last three paragraphs of Sec. II, following from
Ref. 18. Note that the changing of convention will not
change the gauge invariant operators as well as the
different gapped phases. The background gauge fields
X and Y won’t affect the dynamics and can be set to
zero. Adding the mass-squared deformations amounts
to promoting the mass terms m and m′ to the dynamic
scalar fields φ1 and φ2, that are coupled to the fermions
via Yukawa-type couplings φaψ̄M

aψ, this can also be
seen by using the HubbardStratonovich transformation.
Together with their own boson mass terms raφ

2
a, the

action reads as,

2∑
i=1

iψ̄i /Daψi + φ1ψ̄1ψ + φ2ψ̄σ
3ψ

+

2∑
a=1

1

2g2
φa(ra − ∂2)φa +

λ

4
(φaφa)2. (8)

For each scalar field φa, the boson mass ra has a
corresponding critical value ra,c. When ra � ra,c, the
boson is gapped and 〈φa〉 = 0. When ra � ra,c, the
boson is condensed, such that 〈φa〉 6= 0 and the symmetry
is spontaneously broken. This will dynamically generate
the corresponding fermion mass terms. We may loosely
set ra,c = 0 and assume the bosons are critical when
ra = 0 in the following discussion.

The qualitative phase diagram of Eq. (8) is shown
in Fig. 3, which can be considered as the extension of
the Fig. 2’s origin, since no fermion mass terms m,m′
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FIG. 3. Mean-field phase diagram of Eq. (8).

are added in the Eq. (8). In the phase diagram, when
r1, r2 � 0 (the blue region), both bosons are gapped,
leaving Eq. (8) to be the Nf = 2 QED3 theory at low
energy. As discussed previously, this theory has an
emergent O(4) symmetry and describes the continuous
DQCP transition between the AFM and VBS phases
(i.e. between the U(1)Y+X and U(1)Y−X SSB phases)
when tuning the triplet fermion mass m′ externally. If
r1 is at its critical value and r2 � 0 (along the red
line), the critical theory becomes Nf = 2 QED3-Gross-
Neveu model, which describes the continuous DQCP
with emergent SO(5) symmetry as proposed in Ref. 43.
If instead, r2 is at its critical value and r1 � 0
(across the blue line), the theory describes the multi-
criticality between the O(4) DQCP and the first-order
AFM-VBS transition. If both r1 and r2 are critical (the
purple point), the theory describes the multi-criticality
between the SO(5) DQCP and the first-order AFM-VBS
transition.

To see that the φ2 condensed phase (the orange region)
corresponds to the first-order AFM-VBS transition, we
consider driving the AFM-VBS transition by an external
triplet mass m′. The actual mass term seen by the
fermion will be (m′ + 〈φ2〉)ψ̄σ3ψ, meaning that the
driving parameter m′ needs to overcome the expectation
value 〈φ2〉 in order to change the sign of the triplet
mass effectively and switch the system from one phase
to another. Therefore 〈ψ̄σ3ψ〉 will exhibit the hysteresis
behavior as m′ is tuned back and forth, which manifests
the first-order transition. Without the external driving
(m′ = 0), the ground state will be degenerated between
AFM and VBS phases.

On the other hand, the φ1 condensed phase (the
green region) is a symmetric gapped phase whose ground
state is degenerated between topological and trivial SPT
phases, which may as well be interpreted as the 1st-order
SPT transition if the singlet mass m is tuned externally.
The φ1 condensed phase and the φ2 condensed phase do
not coexist, because they compete with each other to
gap out the fermion, and the ground state is determined
by the condensate that has a larger vacuum expectation

value |〈φa〉|. When the competition reaches a balance at
|〈φ1〉| = |〈φ2〉| (along the gray dashed line), it triggers
a direct transition between the symmetric and the SSB
phases (either the in-plane magnetic order or the VBS
order), which is of the 3d XY universality.

The multi-criticality between the continuous and
first-order transitions cannot be circumvented in the
presence of the anomalous O(4) symmetry. However,
it is possible that the protecting symmetry may be
broken spontaneously under other potentially relevant
perturbations, such that the O(4) DQCP is not stable
in general. In the following, we will explore this
possibility by analyzing the effect of generic four-fermion
interactions in the QED-GN theory using the large-N
renormalization group (RG) approach.

III. LARGE-N RENORMALIZATION GROUP
ANALYSIS

A. QED-Gross-Neveu-Chern-Simons Theory

We extend Eq. (8) to Nf flavors of Dirac fermions
ψ = (ψ1, · · · , ψNf )ᵀ coupled to the dynamical U(1) gauge
field, together with Yukawa-type couplings to Nb flavors
of scalar bosons φa (a = 1, ..., Nb). The bosons will
have their kinetic terms and can be tuned critical by
the ra parameters. We also add the level-k CS term
for the dynamical U(1) gauge field (to be general) and
consider the QED3-Gross-Neveu-Chern-Simons (QED-
GN-CS) theory as follows

L = ψ̄(1Nf ⊗ γµ)(∂µ − iaµ)ψ + φaψ̄(Ma ⊗ 12)ψ

+
1

2g2
φa(ra − ∂2)φa +

λ

4
(φaφa)2

+
ik

4π
εµνλaµ∂νaλ +

1

4e2
fµνf

µν .

(9)

Here, matrices 1Nf ,M
a act on the flavor space, while

matrices 12, γ
µ act on the spinor space. We take the γ-

matrices to be (σ3, σ1, σ2). Mas are vertices of Yukawa
couplings associated with fermion bilinear masses, which
are assumed to be orthogonal to each other such that
tr
(
MaM b

)
= Mδab. The last term is the Maxwell term,

with the gauge curvature defined as fµν = ∂µaν − ∂νaµ.
The multi-critical points/lines in the phase diagram

Fig. 3 correspond to tuning one or more scalar bosons
to critical. We assume that all scalar fields in
the effective theory Eq. (9) correspond to the critical
bosons (other gapped bosons will be dropped from the
effective theory automatically). The theory is tuned to
the QED-GN-CS fixed point. The boson mass term
(ra − ra,c)φ

2
a is a relevant perturbation that drives

the system away from the multi-criticality. It also is
possible that some types of fermion interactions may
flow to the boson mass term φ2

a, as it is equivalent
to the mass-mass interaction (ψ̄(Ma ⊗ 12)ψ)2 under
the HubbardStratonovich transform. Such fermion
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interactions will appear relevant at the QED-GN-CS
fixed point and can drive the system away from multi-
criticality as well.

B. Renormalization of Four-Fermion Interactions

To explore this possibility, we carry out a systematic
study of the scaling dimension of four-fermion interac-
tions at the QED-GN-CS fixed point (see App. A for
technical details). We will follow the large-Nf expansion
approach recently developed for the QED3-GN model in
Ref. 31, where the scaling dimensions of fermion and bo-
son bilinear operators were analyzed. Here, we will carry
over the analysis to four-fermion operators, which has
not been presented yet. To be more general, we also
include a CS term, such that our result could poten-
tially be applied to other DQCP such as the superfluid
to bosonic fractional quantum Hall transition (described
by the QED-GN-CS fixed point at level k = 1[34]).

In particular, our scheme to extend Eq. (8) to large Nf
corresponds to generalizing the fermion flavor symmetry
group from SU(2) → SU(2N), such that the fermion
flavor number scales as Nf = 2N with N → ∞. The
Yukawa vertices are generalized to

{Ma} = {12, σ
3} → {Ma

N} = {12, σ
3} ⊗ 1N . (10)

where {Ma} denotes the set formed by Mas, similar for
{V α}. The perturbative interactions are,

Lint = uα,m(ψ̄V α ⊗ 12ψ)2 + uα,µ(ψ̄V α ⊗ γµψ)2 (11)

where V α = σα⊗1N (α = 0, 1, 2, 3). uα,m, uα,µ represent
the coupling coefficient of the mass-mass interactions and
the current-current interactions respectively, which can
be combined to a vector uα,i = (uα,m, uα,0, uα,1, uα,2)ᵀ

in each α-channel. The RG equations for uα,i takes the
following general form,

duα,i
d`

=

(
−1 +

64

3π2Nf
M(α,i),(β,j)

)
uβ,j (12)

where the repeated indices are summed over and M is
a matrix with entries given by the O(1/Nf ) corrections,
the detailed calculations are presented in App. A. One
can further diagonalize M to find the eigen-channels.
We take Nf → 2 to restore the case of Eq. (8). The
large-Nf analysis is not well controlled for small Nf ,
as sub-leading corrections may not be sufficiently small.
However, in our case, we assume the Nf = 2 QED3 has
the IR conformal fixed point which is suggested by the
QMC simulation[41] and then perform the analysis on the
perturbative four-fermion interactions. It turns out that
our large-Nf RG results are consistent with the latest
QMC simulation[32, 33, 44].
The first quadrant, O(4) DQCP: Without the
contribution from the critical bosons, there is no relevant

channel for α = 0. But for α = 1, 2, 3, it has one relevant
channel,

duα,i
d`

= 2.24uα,i, with uα,i = (3, 1, 1, 1)ᵀ, (13)

and the spatio-temporal anisotropic channels are irrele-
vant. Therefore the mass-mass interaction can be gener-
ated from the current-current interaction under the RG
flow, which could potentially drive the O(4) DQCP to a
first-order transition (if the generated mass-squared in-
teraction is strong enough to overcome the bare r2 term).

With large-Nf , uα,i are independent parameters. But
for Nf = 2 (i.e. N = 1), the Fierz identity demands
the uniform combination

∑
α=1,2,3 uα,i “fuses” into the

α = 0 channel, which is irrelevant. Additionally, the
explicit U(1)X ×U(1)Y symmetry guarantees u1,i = u2,i,
hence for Nf = 2, there is only one independent channel
of the relevant four-fermion interaction with α = 3.

The positive-r2 axis, SO(5) DQCP: In this case, the
scalar boson associated to the singlet mass is critical,
{Ma} = 12. There is still no relevant channel for α = 0.
For α = 1, 2, 3, it has the same relevant channel as the
previous case,

duα,i
d`

= 1.70uα,i, with uα,i = (3, 1, 1, 1)ᵀ. (14)

Hence, the stagger-Q term still overlaps with the relevant
channel at SO(5) DQCP fixed point. Similarly, as
discussed in the last paragraph, for Nf = 2, there is
only one independent channel of the relevant four-fermion
interaction with α = 3.

The positive-r1 axis and the origin: Both cases
are more involved. The positive-r1 axis describes the
transition between the O(4) DQCP and first-order
transition, and the origin is a multi-critical point where
3 critical lines joins. Both φ1 and φ2 scalar fields are
critical at the origin, such that the Yukawa vertices are
{Ma} = {12, σ

3}. The eigen-channels will have mixture
of V 0, V 3 or V 1, V 2, because Ma will mix V 0 with V 3

as well as V 1 with V 2. Considering {V α} = {V 0, V 3},
there is one relevant channel with u03 ≡ (u0,i;u3,i) =
(−0.03,−0.071,−0.071,−0.071; 0.82, 0.32, 0.32, 0.32)ᵀ,
and the RG equation reads

du03

d`
= 1.89u03 (positive-r1 axis),

du03

d`
= 1.35u03 (origin).

(15)

The detailed calculation is presented in App. A. With
one more critical boson at the origin compared to
the positive-r1 axis, the RG eigenvalue of the relevant
interaction is smaller at the SO(5) multi-critical point
compared to the O(4) multi-critical line.
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IV. IMPLICATIONS OF RG ANALYSIS

A. Consequence of the Relevant Interactions

The RG analysis suggests that the SO(5) and O(4)
DQCP may not be stable against the perturbation
of certain Lorentz symmetry breaking four-fermion
interactions in the field theory. The interaction is
relevant and flows to the following form

Lint = u(3(ψ̄σ3ψ)2 + (ψ̄σ3γµψ)2). (16)

Depending on the sign of the coefficient u, the interaction
may drive different instabilities of the QED theory. By
analyzing all possible Wick decomposition of the inter-
action term, we found the leading eigen decompositions
with both positive and negative interaction strength is
Lint = u(ψ̄σ3ψ)2 + · · · −u(ψ̄ψ)2. Therefore, if u < 0, the
interaction favors the condensation of the triplet mass
term ψ̄σ3ψ, or equivalently the scalar field φ2 that cou-
ples to it. In this case, the emergent SO(4) symmetry
is spontaneously broken, and the AFM-VBS transition
becomes first-order. On the other hand, if u > 0, the
interaction favors the condensation of the singlet mass
term ψ̄ψ, or equivalently the corresponding scalar field
φ1, which spontaneously breaks the self-duality and re-
sults in the symmetric gapped state. Fig. 4 shows the
extension of the phase diagram in the presence of four-
fermion interaction.

The next leading eigen decompositions of the interac-
tion are the singlet pairing channels − 2

3u|ψ
ᵀσ2γ0γxψ|2

and − 2
3u|ψ

ᵀσ2γ0γyψ|2 with slightly less interaction
strength. When u > 0, the system may condense the
Cooper pairs ψᵀσ2γ0γx,yψ, breaking the Lorentz sym-
metry. Since this term commutes with some of the ki-
netic terms in the Hamiltonian, it will split the Dirac
points in the momentum space but will not gap out the
fermions. It will also Higgs the U(1) gauge group down to
Z2. Therefore, it opens the possibility for the gapless Z2

spin liquid phase instead of the symmetric gapped phase
away from the multicritical point, which provides a can-
didate scenario for the phase diagram observed in the re-
cent QMC study Ref. 44 where the first-order transition
and the gapless Z2 spin liquid phase are separated by
the multicritical point. Another scenario of the gapless
Z2 spin liquid phase near the DQCP is recently proposed
in Ref. 45. The Lorentz symmetry is also broken by the
Higgs field. However, the fermion flavors are doubled in
that proposal compared to ours, thus it describes a differ-
ent gapless Z2 spin liquid phase (see App. C for details).
For example, the entanglement entropy contributed from
the massless degrees of freedom will be different, which
could be distinguished in future numerical studies.

B. Role of the Stagger-Q Perturbation

Recent QMC studies revealed the possibility of
tuning the DQCP between continuous and first-order

FIG. 4. Extended phase diagram in the presence of relevant
interaction u. The u = 0 plane corresponds to the phase
diagram in Fig. 3.

transitions[32, 33]. In particular, the stagger-Q term
(denoted by Qs, or the so-called Z-deformation) was
proposed in Ref. 32 as a modification of the J-Q model,

H = HJQ +HQs ,

HJQ = −J
∑
i

P xi −Q
∑
i

P xi P
x
i+ŷ + (x↔ y),

HQs = −Qs
∑
i

P xi P
x
i+x̂+ŷ + (x↔ y),

(17)

where P xi = 1/4−Si·Si+x̂ and P yi = 1/4−Si·Si+ŷ are the
dimer operators on the x and y bonds respectively. The
stagger-Q term Qs favors a staggered VBS pattern, and
hence the name. Another version of the stagger-Q term
that involves three dimers interacting along the diagonal
direction is studied in Ref. 33. The three-dimer stagger-Q
term has the same symmetry as the two-dimer stagger-
Q term, and shares the similar physical effect (both
favors the same staggered VBS order). The QMC phase
diagram in Ref. 33 explicitly shows that the stagger-Q
term can drive the DQCP to a first-order transition. We
will connect this observation to our field-theory analysis.

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

QsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQs

QsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQsQs

FIG. 5. Illustration of the (standard) Q term (in blue) and
the stagger-Q term (Qs, in red) on the square lattice. Both
are dimer-dimer interactions, but along different directions.

In the momentum space, the stagger-Q term should
correspond to the dimer-dimer interaction near mo-
mentum (π, π), which can be argued as follows. Let
P x,yq =

∑
i P

x,y
i e−iq·ri be the dimer operator of momen-

tum q. A large Qs term favors the dimer to order in the
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staggered pattern (along the diagonal direction), which
corresponds to the condensation of the dimer order pa-
rameter at momentum q = (π, π), i.e. 〈P x(π,π)〉 6= 0 or

〈P y(π,π)〉 6= 0. Therefore, the effect of the stagger-Q inter-

action HQs can be expressed as

HQs ∼ −Qs
(
(P x(π,π))

2 + (P y(π,π))
2
)
, (18)

because a large Qs in Eq. (18) also promotes the ordering
of P x,y(π,π), matching the effect of HQs in the real space

Eq. (17).
At low-energy, the dimer fluctuation near momentum

(π, π) should correspond to the spatial component of the
Noether current associated with the emergent U(1)Y−X
symmetry that rotates the VBS order parameters:

P x(π,π) ∼ j
y
VBS, P

y
(π,π) ∼ j

x
VBS. (19)

This mapping was derived in Ref. 46 from the fermionic
parton construction. A simple symmetry argument is as
follows. We first notice that P x(π,0) and P y(0,π) are the

VBS order parameters favored by the standard Q term
in the J-Q model. They can be combined into a complex
order parameter ΨVBS = P x(π,0) + iP y(0,π). The U(1)Y−X

rotation corresponds to ΨVBS → eiθΨVBS, therefore the
associated current operator should be

jxVBS = iΨ†VBS∂xΨVBS + h.c.

= P y(0,π)∂xP
x
(π,0) − P

x
(π,0)∂xP

y
(0,π),

jyVBS = iΨ†VBS∂yΨVBS + h.c.

= P y(0,π)∂yP
x
(π,0) − P

x
(π,0)∂yP

y
(0,π).

(20)

Thus both jxVBS and jyVBS carry the total momentum
(π, π) (as a summation of (π, 0) and (0, π)). Under the
(site-centered) reflection about the y axis, i.e. (x, y) →
(−x, y), we have (P x, P y) → (−P x, P y), (∂x, ∂y) →
(−∂x, ∂y), thus (jxVBS, j

y
VBS)→ (jxBVS,−j

y
BVS) transforms

as a pseudo-vector. Similarly, under the reflection
(x, y)→ (x,−y), we have (jxVBS, j

y
VBS)→ (−jxBVS, j

y
BVS).

Furthermore, jx,yVBS does not transform under spin
rotation symmetry. All these symmetry properties are
precisely matched by Eq. (19), which speaks for its
validity.

Using the operator correspondence in Eq. (19), Eq. (18)
can be casted into

HQs ∼ −Qs
(
(jyVBS)2 + (jxVBS)2

)
, (21)

which identifies the stagger-Q term to the current-
current interaction in the spatial channel. We can
make further connection to the field theory. Since the

U(1)Y−X symmetry is generated by ψ†1ψ1 − ψ†2ψ2 in the
Nf = 2 QED3 theory, the corresponding Noether current
should be jµVBS = ψ̄σ3γµψ, therefore the current-current
interaction in Eq. (21) further translates to the four-
fermion interaction in Eq. (11) with u3,i ∝ Qs(0, 0, 1, 1)ᵀ.
According to the RG analysis above, the current-current

0
Δ Δ > 0Δ < 0

Q
/J

VBS

AFM

1st-order
SU(2)

gapped
〈Sz〉 ≠ 0

FIG. 6. Schematic phase diagram of the easy-plane J-Q
model Eq. (22).

interaction will generate the mass-mass interaction and
flow towards the combined interaction in Eq. (16).

Since the u term in Eq. (16) corresponds to the stagger-
Q term in the lattice model, the original J-Q model may
be very close to u = 0, i.e. the QED-GN fixed point
in the field theory, though u should never be precisely
zero. But the stagger-Q term in the lattice model will
turn on a non-negligible u term in the field theory which
is relevant at the QED-GN fixed point, therefore render
the transition first order, as was observed numerically.
In fact, according to Eq. (14), our calculation of the
scaling dimension of the relevant four fermion term is
1.3 = 3 − 1.7 at the SO(5) DQCP, which is close to the
observed scaling dimension of the stagger-Q deformation
of the J-Q model (∆Z ∼ 1.4 in Ref. 32).

The above field theory understanding also applies to
the easy-plane J-Q model[41, 42],

H = HJQ +H∆,

H∆ = −J∆
∑
i

Szi S
z
i+x̂ + (x↔ y), (22)

where the parameter ∆ tunes the easy-plane anisotropy.
∆ = 0 is the SU(2) isotropic limit, and ∆ = 1 is the
U(1) o Z2 easy-plane limit.

Tuning ∆ away from 0 breaks the spin SU(2) symmetry
and the u term should in principle also exist for the
easy-plane J-Q model, but because it is more relevant
compared to that in the SU(2) symmetric case (according
to Eq. (13) and Eq. (14)), the easy-plane J-Q model
may be a first-order transition more obviously than
the isotropic limit. Based on the phase diagram
Fig. 4, the system will either enter an intermediate
symmetric gapped phase or exhibit a first-order AFM-
VBS transition, in the presence of spin anisotropy. Given
the physical meaning of the anisotropy term ∆, we
can identify the symmetry gapped phase to the easy-
axis anisotropy (∆ < 0) and the first-order transition
to the easy-plane anisotropy (∆ > 0). A schematic
phase diagram is presented in Fig. 6 for the lattice model
Eq. (22). The symmetric gapped phase may as well be
interpreted as the Ising ordered phase of 〈Sz〉 6= 0, since
the condensation of φ1 field corresponds to the ordering
of 〈Sz〉. The scenario that the AFM-VBS transition
becomes first-order as the easy-plane anisotropy is turned
on is consistent with the recent QMC study Ref. 47.
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V. SUMMARY

In this work, we studied the Nf = 2 QED3 with
self-duality. The Nf = 2 QED3 has SO(4) symmetry
in the IR, if imposing the self-duality symmetry, it
can be enhanced to O(4). The singlet mass is
invariant under SO(4) but self-duality odd and the
triplet mass is transformed by SO(4) but self-duality
even. Requiring the O(4) symmetry, the theory cannot
have explicit mass terms, which enables us to treat the
mass terms as fluctuation scalar fields and to investigate
the continuous-to-first-order transition driven by the
mass fluctuations. The multi-critical points (lines)
separating the continuous and first-order transitions can
be described by the QED-GN theory.

We further analyzed the stability of the theory under
the four-fermion interactions. In particular, we focus
on the spatial current-current interaction of fermions
in the field theory, which corresponds to a class of
dimer-dimer interaction (the stagger-Q term) in the
lattice spin model[32, 33]. This operator has been
shown to drive the continuous DQCP to a first-order
transition in recent numerical works. Our analysis
indicates that such dimer interaction can be relevant at

the O(4) DQCP and adjacent multi-critical lines, which
generally destabilize the continuous DQCP to first-order
transitions (or intermediate gapped phases). Our finding
provides a theoretical understanding of the numerically
observed first-order transition driven by the dimer-dimer
interaction. Our analysis also suggests a possibility to
have Z2 spin liquid in this model[44].

We provide systematically large-N renormalization
group calculation of the general Nf = 2 QED3 with
Gross-Neveu term in App. A. Thanks to viewing the
Feynman diagrams as string diagrams of symmetry group
representations[48], the complicated diagram at O(1/Nf )
can be expressed by a few group parameters. Scaling
dimensions of generic fermion/boson bilinear terms and
four-fermion perturbations are presented. We expect
these general results will find broader applications in
other exotic quantum critical systems.
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Appendix A: Large-N renormalization group

The theory considered in the main text is the QED3 with level-k Chern-Simons term and Yukawa coupling between
the fermion bilinear terms and the scalar fields,

L = ψ̄(1Nf ⊗ γµ)(∂µ − iaµ)ψ + φaψ̄(Ma ⊗ 12)ψ

+
1

2g2
φa(ra − ∂2)φa +

λ

4
(φaφa)2

+
ik

4π
εµνλaµ∂νaλ +

1

4e2
fµνf

µν

(A1)

where ψ, ψ̄ represents Nf flavors of 2-component Dirac fermion fields, 1N ,M
a act on the Nf -dimensional flavor space

while 12, γ
µ,Γ(m),I act on the 2-dimensional spinor space. Γ(m),µ1,...,µm is defined as γ[µ1 ...γµm] (antisymmetrize the

indices) and any product of γ matrices can be reduced to this form. Since the spacetime dimension is 3, Γ(i) and
Γ(3−i) are related by the Levi-Civita tensor. φa with a = 1, ..., Nb represent the scalar fields which are coupled to the
fermion bilinears via a Yukawa type interaction. The last term in the Lagrangian is the Chern-Simons term with level
k.

The bare propagators and vertices can be read off from the Lagrangian Eq. (A1),

= −i
pµ(1Nf ⊗ γµ)

p2
, a b = D

(0)
ab (q) =

g2

q2
δa,b

µ ν= Π(0)
µν (q) =

e2

q2

(
q2δµν − qµqν + k

2π e
2εµνρq

ρ

q2 + ( k
2π )2e4

+ ξ
qµqν
q2

) (A2)

where ξ is the gauge parameter. The vertices are,

µ = i1Nf ⊗ γµ, a = Ma ⊗ 12 (A3)

The bare gauge and critical boson propagator will receive corrections, in the large-N limit, the corrections are
dominated by fermion loops, for the gauge propagator,

k + q

k

µ ν= (−1)[i1Nf ⊗ γµ][−i
kρ(1Nf ⊗ γρ)

k2
][i1Nf ⊗ γν ][−i

(k + q)σ(1Nf ⊗ γσ)

(k + q)2
]

= (−1) tr
[
1Nf ⊗ γµγργνγσ

] ∫ d3k

(2π)3

kρ(k + q)σ
k2(k + q)2

= −Nf |q|
16

(δµν −
qµqν
q2

)

(A4)

where Nf comes from trace over the identity matrix 1Nf . Similar for the critical boson propagator,

k + q

k

a b = (−1)[Ma ⊗ 12][−i
kρ(1Nf ⊗ γρ)

k2
][M b ⊗ 12][−i

(k + q)σ(1Nf ⊗ γσ)

(k + q)2
]

= tr
[
MaM b ⊗ γργσ

] ∫ d3k

(2π)3

kρ(k + q)σ
k2(k + q)2

= − tr
[
MaM b

] |q|
8
≡ −M

|q|
8
δab

(A5)

where in the last step we define tr
[
MaM b

]
= Mδab, this is true when Ma is irreducible representation. The corrected

propagator can be found by using Dyson’s equation,

Π(q) = {[Π(0)(q)]−1 − Σ(0)(q)}−1



12

Note that in the large-N limit, this model flows to an interacting conformal field theory in the infrared limit, where
the momentum scale q is much smaller than the coupling constants e, g, therefore the leading order of the dressed
gauge and critical boson propagators are,

µ ν=µ ν+µ ν+µ ν

Πµν(q) ' A
Nf |q|

(
δµν − ξ

qµqν
q2

)
+

B
Nf

εµνρqρ
q2

+O(|q|/e2)

(A6)

a b =a b+a b+a b

Dab(q) '
8

M|q|
δab +O(|q|/g2) ≡ D(q)δab

(A7)

where A =
(
16−1 + 16κ2

)−1
,B =

(
(256κ)−1 + κ

)−1
, and κ = k/(2πNf ), a simple check is when k = 0, A = 16,B = 0

match the coefficients in the large-N analysis of QED3 theory. Note that κ is not inverse proportional to the ’t Hooft
coupling and can be any real number, the large-N limit is to take Nf , k to ∞ while keeping κ fixed. We also keep the
gauge parameter ξ in the calculation and check that the final result does not depend on ξ.

1. Basic diagrams for 1/N corrections: Self-energy

We extract the logarithmic divergences from the diagrams and using k,Λ to denote the external momentum and
UV cutoff respectively, the self-energy corrections are,

=

∫
d3q

(2π)3
[Πµν(q)][i1Nf ⊗ γµ][−i

(k + q)σ(1Nf ⊗ γσ)

(k + q)2
][i1Nf ⊗ γν ]

= (i1Nf ⊗ γµ)kµ
A(1− 3ξ)

6π2Nf
ln(k/Λ) + reg.

(A8)

=

∫
d3q

(2π)3
[D(q)δab][M

a ⊗ 12][−i
(k + q)σ(1Nf ⊗ γσ)

(k + q)2
][M b ⊗ 12]

= (i1Nf ⊗ γµ)kµ
8CM
6π2M

ln(k/Λ) + reg.

(A9)

where we define MaMa = CM1Nf in analogy of the Casimir.

2. Basic diagrams for 1/N corrections: Vertex corrections

The four-fermion interactions in general can be added to the Lagrangian perturbatively, and assuming the small
four-fermion perturbations won’t drive the system to other fixed points. The general form for such interactions is,

K(α,(m1),I),(β,(m2),J)ψ̄(V α ⊗ Γ(m1),I)ψψ̄(V β ⊗ Γ(m2),J)ψ

For simplicity and physical relevance, we will consider a subset of the four-fermion interactions with the form,

L ⊃ Lint = uα,(m),I(ψ̄(V α ⊗ Γ(m),I)ψ)2 (A10)

We introduce the diagrams for the interaction vertices as,

= uα,(m),I(V
α ⊗ Γ(m),I), = K(α,(m1),I),(β,(m2),J)

(V α ⊗ Γ(m1),I)
⊗

(V β ⊗ Γ(m2),J)

 (A11)
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The vertex corrections are

= uα,(m),I(V
α ⊗ Γ(m),I)

A(−3− 2Cγ,(m),I + 3ξ)

6π2Nf
ln(k/Λ) + reg. (A12)

= uα,(m),I(V
α ⊗ Γ(m),I)

8Cγ,(m),ICM,α

6π2M
ln(k/Λ) + reg. (A13)

where we define CM,α, Cγ,(m),I as MaV αMa ≡ CM,αV
α and γµΓ(m),Iγµ ≡ Cγ,(m),IΓ

(m),I , repeated indices a, µ mean
summation.
Note that there are also two-loop diagrams for the 1/N corrections, we begin with the calculation of the mass bubbles,

ΠAnticlockwise
L,R = −iuα,(m),I tr

[
(VL)(1Nf ⊗ γa)(VR)(V α ⊗ (γbΓ(m),Iγc))

]
1

128q3
(qaqbqc − q2qcδa,b − q2qbδa,c + q2qaδb,c),

(A14)

ΠClockwise
L,R = iuα,(m),I tr

[
(VL)(V α ⊗ (γbΓ(m),Iγc)(VR)(1Nf ⊗ γa))

]
1

128q3
(qaqbqc − q2qcδa,b − q2qbδa,c + q2qaδb,c),

(A15)

where VL, VR stands for the vertex insertion, they could be gauge-gauge, boson-boson or gauge-boson. The formula
is complicated in general. For the 3-dimensional theory, the γ-matrices are simply the Pauli matrices and m in Γ(m),I

is up to 3. Besides, Γ(3),{i1,i2,i3} = iεi1,i2,i3Γ(0), Γ(2),{i1,i2} = iεi1,i2lΓ
(1),l.

a. The gauge-gauge insertion: Only Γ(0),Γ(3) will have non-zero contribution, as their relation is discussed
previously, we can calculate Γ(0) and derive the result for Γ(3). The mass bubble result for Γ(0) is,

= uα,(0) tr(V )
qlε

lij

4q
(A16)

The two-loop diagrams give similar results for Γ(0),Γ(3),

=


uα,(0)(1Nf ⊗ Γ(0))

tr(V )

Nf

(A2 − B2)

4π2Nf
ln(k/Λ) + reg. for m = 0

uα,(3),{i1,i2,i3}(1Nf ⊗ Γ(3),{i1,i2,i3})
tr(V )

Nf

(A2 − B2)

4π2Nf
ln(k/Λ) + reg. for m = 3

(A17)

b. The boson-boson insertion: The non-zero contributions will occur only if tr
(
M iM jV α

)
= − tr

(
M iV αM j

)
,

this requires non-trivial choices of the Ma, V α. If so, the two-loop contributions are,

for tr
(
M iM jV α

)
= − tr

(
M iV αM j

)
=


−iuα,(1),i1 tr

(
M iV αM j

)qi1
4q

for m = 1

−iuα,(2),{i1,i2} tr
(
M iV αM j

) iqlεl,i1,i2
2q

for m = 2

(A18)

=


uα,(1),i1(M iM j ⊗ Γ(1),i1)

−8 tr
(
M iV αM j

)
3π2M2

ln(k/Λ) + reg. for m = 1

uα,(2),{i1,i2}(M
iM j ⊗ Γ(2),{i1,i2})

−8 tr
(
M iV αM j

)
3π2M2

ln(k/Λ) + reg. for m = 2

(A19)

For example, the boson 2-loop will contribute when Ma = {12, σ
1, σ2} and V α = {12, σ

1, σ2, σ3} and it will only
contribute to the current-current interaction.
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Notation Definition
κ k/(2πNf )

A A =
(
16−1 + 16κ2

)−1

B B =
(
(256κ)−1 + κ

)−1

M tr
[
MaMb

]
= Mδab

CM MaMa = CM1Nf
CM,α MaV αMa ≡ CM,αV α

Cγ,(m),I
γµΓ(m),Iγµ ≡ Cγ,(m),IΓ

(m),I

Cγ,(0), = 3, Cγ,(1),µ = −1

fabc σaσb = fabc σc, 1
2

tr
(
σaσbσc

)
Fαβ ({Ma}), F̃αβ ({Ma})

Fαβ ({Ma}) =
∑
a∈{Ma} f

αa
β fαaβ ,

F̃αβ ({Ma}) =
∑
a∈{Ma} f

αa
β faαβ , α, β ∈ {V α}

TABLE I. The definition for the coefficients that are universal for chosen fermion-boson vertex and interaction matrix.

c. Mixed gauge-boson insertion The mixed gauge-boson insertion will vanish for all the choices of V α and Γ(m),I ,
part of the reason is because tr

(
M iV α

)
= tr

(
V αM i

)
and it will never have a minus sign.

3. Basic diagrams for 1/N corrections: Ladder corrections

The four-fermion interaction vertices as depicted in Eq. (A11) will receive O(1/N) correction from gauge and boson
propagators as well,

+

= K(α,(m1),I),(β,(m2),J)

V α⊗
V β

⊗
Γ(m1),Iγµ

⊗
Γ(m2),Jγµ

+

Γ(m1),Iγµ

⊗
γµΓ(m2),J

 −2A
6π2Nf

ln(k/Λ) + reg. (A20)

⇒ u(α,(m),I)

V α⊗
V α

⊗
Γ(m),Iγµ

⊗
Γ(m),Iγµ

+

Γ(m),Iγµ

⊗
γµΓ(m),I

 −2A
6π2Nf

ln(k/Λ) + reg. (A21)

where the last equation is the correction for the simplified four-fermion interaction as in Eq. A10.

+

= K(α,(m1),I),(β,(m2),J)

V αMa

⊗
V βMa

⊗
Γ(m1),Iγµ

⊗
Γ(m2),Jγµ

−
V αMa

⊗
MaV β

⊗
Γ(m1),Iγµ

⊗
γµΓ(m2),J

 −8

6π2M
ln(k/Λ) + reg. (A22)

= u(α,(m),I)

V αMa

⊗
V αMa

⊗
Γ(m),Iγµ

⊗
Γ(m),Iγµ

−
V αMa

⊗
MaV α

⊗
Γ(m),Iγµ

⊗
γµΓ(m),I

 −8

6π2M
ln(k/Λ) + reg. (A23)

the repeated indices µ, a should be summed over.

4. Examples

Above general calculations will be concrete with certain assumptions,

1. Since Γ(i) and Γ(3−i) are related by Levi-Civita symbol in 3 dimension, we only need to consider Γ(0) = 12 and
Γ(1),µ = γµ.
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2. For the physical relevance, we consider the four-fermion interactions in the form of uα,m(ψ̄(V α ⊗ 12)ψ)2 and
uα,µ(ψ̄(V α ⊗ γµ)ψ)2 with µ = 0, 1, 2.

3. We further assume V α,Ma are represented by Pauli matrices. This kind of interaction vertices arise when doing
fermionic parton construction of the spin models, i.e. the spin operators correspond to the fermion bilinears
with Pauli matrices inserted in the middle.

4. We also view V αs as the basis of certain vector space and form a set {V α} as well as Mas form a set {Ma},
such that V αMa ∈ {V α}. For example, for {Ma} = {12} or {Ma} = {12, σ

3}, {V α} can be {V α} = {12, σ
3}

or {V α} = {12, σ
1, σ2, σ3}

Since V α,Ma can be represented by Pauli matrices as assumed, we can exploit the underlying algebraic structure of
Pauli matrices. We further define the structure constants when multiplying the V α,Ma as

V αM b =
∑
β

fαbβ V β , M bV α =
∑
β

f bαβ V β (A24)

where fαbβ , f bαβ can be viewed as σaσb =
∑
c f

ab
c σ

c with a, b, c being restricted. The fabc for Pauli matrices are,

fabc = iεabc ,with a, b, c = 1, 2, 3, f0a
b = δab , f

a0
b = δab , f

ab
0 = δab,with a, b = 0, 1, 2, 3. (A25)

The structure constants are also calculated by,

fabc =
1

2
tr
(
σaσbσc

)
(A26)

The γ,Γ matrices are also represented by Pauli matrices and therefore have this structure as well,

Γiγµ =
∑
j

f iµj Γj , γµΓi =
∑
j

fµij Γj . (A27)

We arrange the coupling constants in a vector as uα,i = (uα,m, uα,0, uα,1, uα,2), where the first term is the mass-mass
interaction and the last 3 terms are the current-current interactions in τ, x, y directions. The corresponding γ-matrices
are Γi = {12, γ

0, γ1, γ2} = {12, σ
3, σ1, σ2}.

With the structure constants, the ladder corrections Eq. A20 can be simplified as,

u(α,(m),I)

V α⊗
V α

⊗
Γ(m),Iγµ

⊗
Γ(m),Iγµ

+

Γ(m),Iγµ

⊗
γµΓ(m),I

 −2A
6π2Nf

ln(k/Λ) + reg. (A28)

=u(α,i)

V α⊗
V α

⊗
Γj

⊗
Γj

∑
µ

(
f iµj f

iµ
j + f iµj f

µi
j

) −2A
6π2Nf

ln(k/Λ) + reg. (A29)

=u(α,i)

V α⊗
V α

⊗
Γj

⊗
Γj

(1dim{V α} ⊗
(
Fij + F̃ij

)) −2A
6π2Nf

ln(k/Λ) + reg. (A30)

where Fij ≡
∑
µ={3,1,2} f

iµ
j f

iµ
j , F̃

i
j ≡

∑
µ={3,1,2} f

iµ
j f

µi
j , i, j = 0, 3, 1, 2 and Eq. A22 can be simplified as,

u(α,(m),I)

V αMa

⊗
V αMa

⊗
Γ(m),Iγµ

⊗
Γ(m),Iγµ

−
V αMa

⊗
MaV α

⊗
Γ(m),Iγµ

⊗
γµΓ(m),I

 −8

6π2M
ln(k/Λ) + reg. (A31)

=u(α,i)

V β⊗
V β

⊗
Γj

⊗
Γj

((∑
a

fαaβ fαaβ

)(∑
µ

f iµj f
iµ
j

)
−

(∑
a

fαaβ faαβ

)(∑
µ

f iµj f
µi
j

))
−8

6π2M
ln(k/Λ) + reg. (A32)

=u(α,i)

V β⊗
V β

⊗
Γj

⊗
Γj

(Fαβ({Ma})⊗ Fij − F̃αβ({Ma})⊗ F̃ij

) −8

6π2M
ln(k/Λ) + reg. (A33)



16

Both of the ladder contributions will depend on the structure constants with specific forms, and we define
Fαβ({Ma}) ≡

∑
a∈{Ma} f

αa
β fαaβ , F̃αβ({Ma}) ≡

∑
a∈{Ma} f

αa
β faαβ , α, β ∈ {V α} similar to the above definition for

the Γ-matrices.
The self-energy corrections and the vertex corrections will be diagonal matrices acting on the vector uα,i. The

self-energy corrections are the same for every uα,i, while the vertex corrections depend on the α, i. As listed in the
Table. I, the coefficient Cγ,(0), = 3, Cγ,(1),µ = −1 are distinct for mass-mass and current-current. The structure
constants in Eq. A25 also have these distinctions, this suggests the RG equations are in block forms.

5. Renormalization group equation for four-fermion interactions

The 1/N corrections for the four-fermion interaction vertices are,

−2×

{
+ +

 +

+

+ + +

 +

+

}
.

(A34)

As discussed previously, for generic boson-fermion vertices, the ladder correction diagram of one interaction vertex
will contribute to another interaction vertex, therefore, one need to include all the possible interaction vertices as the
basis. For example, if {Ma} = {12, σ

3} and {V α} = {12, σ
1}, then σ2, σ3 also need to be included in {V α}.

We will analyze the example in the main text Section. III B in detail. Due to the reason provided
in the previous paragraph, we choose the interaction vertex to be {V α} = {12, σ

1, σ2, σ3} ⊗ 1N and
{Ma} = {}, {12} ⊗ 1N , {σ3} ⊗ 1N , {12, σ

3} ⊗ 1N . Combining with the Γ-matrices, the basis of the interaction
vertices uα,i = (uα,m, uα,0, uα,1, uα,2) is 4× 4 = 16 dimensional. The RG equation is organized as,

duα,i
d`

=

(
−1+

64

3π2(2N)
M(α,i),(β,j)

)
uβ,j (A35)

where α, β are the indices of the flavors, and i, j are the indices of the Γ-matrices, i = 0, 1, 2, 3 corresponds to
{12, γ

0, γ1, γ2} = {12, σ
3, σ1, σ2} in 3d.

The matrix M(α,i),(β,j) contains several parts,

M(α,i),(β,j) = Msv
(α,i),(β,j) + MgL

(α,i),(β,j) + MbL
(α,i),(β,j) (A36)

The self-energy and vertex corrections are in the diagonal,

Msv
(α,0),(β,0) =

(
16A

6π2Nf
+
−2 tr(V α)

Nf

(A2 − B2)

4π2Nf
+
−16(CM + 3CM,α)

6π2M

)
1α,β (A37)

Msv
(α,i),(β,i) =

(
0 +
−16(CM − CM,α)

6π2M

)
1α,β , with i = 1, 2, 3 (A38)

The ladder correction from the gauge vertex contributes the off-diagonal part,

MgL
(α,0),(β,i) = MgL

(α,i),(β,0) =
8A

6π2Nf
1α,β , with i = 1, 2, 3. (A39)

The ladder corrections from the boson vertex are complicated, in the (i, j) space, there are two parts,

MbL
(α,0),(β,i) = MbL

(α,i),(β,0) =
16

6π2M
(Fαβ({Ma})− F̃αβ({Ma})), with i = 1, 2, 3 (A40)

MbL
(α,i),(β,j) =

16

6π2M
(−Fαβ({Ma})− F̃αβ({Ma})), with i, j = 1, 2, 3, i 6= j (A41)
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where Fαβ({Ma}) =
∑
a∈{Ma} f

αa
β fαaβ , F̃αβ({Ma}) =

∑
a∈{Ma} f

αa
β faαβ , α, β ∈ {V α} is defined previously. This can

be simplified if we take subset of {V α} with proper {Ma}, and restrict the indices α, β in the subset.

The first quadrant, continuous O(4) DQCP: There is no critical boson in the system, {Ma} = {}. There is no
mixture in the flavor space of the eigen-channel. For V a = 12N ,

du0,i

d`
=

(
−1 +

64

3π2(2N)
M(0,i),(0,j)

)
u0,j , M =

1

256κ2 + 1


4(512κ2−1)

256κ2+1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 (A42)

In our case, 2N = 2, κ = 0, the RG equation becomes,

du0,i

d`
=


−1− 128

3π2
32

3π2
32

3π2
32

3π2

32
3π2 −1 0 0
32

3π2 0 −1 0
32

3π2 0 0 −1

u0,j (A43)

And the eigenvalues of this matrix are all negative, meaning the perturbation is irrelevant among all the channels.

For V α = σα ⊗ 1N , α = 1, 2, 3, the RG equations are the same for different αs,

duα,i
d`

=

(
−1 +

64

3π2(2N)
M(α,i),(α,j)

)
uα,j , M =

1

256κ2 + 1

 2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 (A44)

In our case, there is one relevant channel, and plug that into the Eq. A44, we get,

uα,i = gα(3, 1, 1, 1)T ,
dgα
d`

= 2.24gα. (A45)

Follow the same procedure, we will present the RG equations and the relevant channel results for other cases.

The r2 axis, continuous SO(5) DQCP: The boson corresponding to the singlet mass is critical, {Ma} = {12N}.
There is also no mixture in the flavor space. For V α = 12N ,

du0,i

d`
=

(
−1 +

64

3π2(2N)
M(0,i),(0,j)

)
u0,j , M =


4(512κ2−1)
(256κ2+1)2

− 1
2

1
256κ2+1

1
256κ2+1

1
256κ2+1

1
256κ2+1 0 − 1

4 − 1
4

1
256κ2+1 − 1

4 0 − 1
4

1
256κ2+1 − 1

4 − 1
4 0

 . (A46)

There is no relevant channel in this case.

Again, for V α = σα ⊗ 1N , α = 1, 2, 3, the RG equations are the same for different αs,

duα,i
d`

=

(
−1 +

64

3π2(2N)
M(α,i),(α,j)

)
uα,j , M =


2

256κ2+1 −
1
2

1
256κ2+1

1
256κ2+1

1
256κ2+1

1
256κ2+1 0 − 1

4 − 1
4

1
256κ2+1 − 1

4 0 − 1
4

1
256κ2+1 − 1

4 − 1
4 0

 (A47)

And the relevant channel is the same as the case of the first quadrant, but with a smaller eigenvalue,

uα,i = gα(3, 1, 1, 1)T ,
dgα
d`

= 1.70gα. (A48)

The r1 axis, transition between the O(4) DQCP and first-order transition: The boson corresponding to
the triplet mass is critical, {Ma} = {σ3 ⊗ 1N}. There are mixture between V 0, V 3 and also between V 1, V 2, we will
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present the RG equation for V 0, V 3 and V 1, V 2 separately. For {V 0, V 3},

duα,i
d`

=

(
−1 +

64

3π2(2N)
M(α,i),(β,j)

)
uβ,j , (A49)

M =



(
4(512κ2−1)
(256κ2+1)2

− 1
2 0

0 2
256κ2+1 −

1
2

)
(256κ2 + 1)−112 (256κ2 + 1)−112 (256κ2 + 1)−112

(256κ2 + 1)−112 02 − 1
4σ

1 − 1
4σ

1

(256κ2 + 1)−112 − 1
4σ

1 02 − 1
4σ

1

(256κ2 + 1)−112 − 1
4σ

1 − 1
4σ

1 02

 (A50)

where the 2 × 2 matrices act on the {V 0, V 3} space, 02 is 2 × 2 matrix with all entries being 0. The only relevant
channel is,

uα,i = g(0,3)((−0.03, 0.82), (−0.071, 0.32), (−0.071, 0.32), (−0.071, 0.32))T ,
dg(0,3)

d`
= 1.89g(0,3). (A51)

For {V 1, V 2},

duα,i
d`

=

(
−1 +

64

3π2(2N)
M(α,i),(β,j)

)
uβ,j , (A52)

M =


(

2
256κ2+1 + 1

4

)
12 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 02 02

(256κ2 + 1)−112 − 1
4σ

1 02 − 1
412 02

(256κ2 + 1)−112 − 1
4σ

1 02 02 − 1
412

 . (A53)

There are two relevant channels,

uα,i = g
(1)
(1,2)((−3, 3), (−1, 1), (−1, 1), (−1, 1))T ,

dg
(1)
(1,2)

d`
= 2.78g

(1)
(1,2), (A54)

uα,i = g
(2)
(1,2)((4.1, 4.1), (1, 1), (1, 1), (1, 1))T ,

dg
(2)
(1,2)

d`
= 2.02g

(2)
(1,2). (A55)

The first channel is antisymmetric combination of V 1, V 2 and the second is symmetric combination.

The origin, multi-critical point: Both bosons are critical, the boson-fermion vertices are {Ma} = {12N , σ
3⊗1N}.

Again, there will be mixture between V 0, V 3 and also between V 1, V 2. For {V 0, V 3},

duα,i
d`

=

(
−1 +

64

3π2(2N)
M(α,i),(β,j)

)
uβ,j , (A56)

M =



(
4(512κ2−1)
(256κ2+1)2

− 1 0

0 2
256κ2+1 − 1

)
(256κ2 + 1)−112 (256κ2 + 1)−112 (256κ2 + 1)−112

(256κ2 + 1)−112 02 − 1
4 (12 + σ1) − 1

4 (12 + σ1)
(256κ2 + 1)−112 − 1

4 (12 + σ1) 02 − 1
4 (12 + σ1)

(256κ2 + 1)−112 − 1
4 (12 + σ1) − 1

4 (12 + σ1) 02

 . (A57)

And the relevant channel is the same as previous case with a smaller eigenvalue,

uα,i = g(0,3)((−0.03, 0.82), (−0.071, 0.32), (−0.071, 0.32), (−0.071, 0.32))T ,
dg(0,3)

d`
= 1.35g(0,3). (A58)

For {V 1, V 2},

duα,i
d`

=

(
−1 +

64

3π2(2N)
M(α,i),(β,j)

)
uβ,j , (A59)

M =


(

2
256κ2+1 −

1
4

)
12 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 − 1

412 − 1
412

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 − 1

412 − 1
412

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 − 1

412 − 1
412

 . (A60)
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There are two relevant channels,

uα,i = g
(1)
(1,2)((−3, 3), (−1, 1), (−1, 1), (−1, 1))T ,

dg
(1)
(1,2)

d`
= 2.24g

(1)
(1,2), (A61)

uα,i = g
(2)
(1,2)((4.1, 4.1), (1, 1), (1, 1), (1, 1))T ,

dg
(2)
(1,2)

d`
= 1.49g

(2)
(1,2). (A62)

The first relevant channel is the antisymmetric combination of V 1, V 2, it is interesting that this relevant channel has
the same scaling dimension as the relevant channel V 3 with (3, 1, 1, 1)T in the O(4) DQCP (Eq. A45).

6. Mass scaling

Combining the diagrams in previous sections allows us to calculate the scaling dimension for the fermion mass term,
which corresponds to the vertex ψ̄V α⊗Γ(0)ψ ≡ ψ̄V α⊗12ψ. As discussed in the main text, we use the Nf = 2 QED3

description of DQCP, and consider its large-N generalization. The vertex of singlet mass is thus V α = 12N and for
the triplet mass is V α = σ3 ⊗ 1N . The diagram equation for the corrections of the mass scaling dimension is,

+ +

+ +

(A63)

For Ma being full rank, M = 2N , CM equals to the number of critical boson Nb. For singlet mass term,
CM,α = Nb, but for the triplet mass, CM,α depends on the choices of Ma, the coefficient is calculated explicitly
by CM,α = tr[(

∑
aM

aV αMa)V α]/ tr[V αV α]. For boson associated to singlet mass, the result is simple, Ma = 1,
with a = 1, ..., Nb, CM,α = Nb.

For the mass scaling, m = 0, Cγ,(0),{} = 3, and there is no two-loop correction by critical boson. Collecting the
logarithmic divergent part, we get,

∆ψ̄12Nψ = 2− 128(512κ2 − 1)

3π2(2N)(1 + 256κ2)2
+

16Nb
3π2(2N)

(A64)

∆ψ̄(σ3⊗1N )ψ = 2− 64

3π2(2N)(1 + 256κ2)
+

4(3CM,α +Nb)

3π2(2N)
(A65)

where the last term in each equation comes from the critical boson contribution. This general result agrees with
previous work with certain parameters.

7. Boson mass scaling

We can also calculate the scaling dimension of the boson operator φ2
a. Following Ref. 31, we define the scalar two-

point function as Gφab ≡ 〈φa(p)φb(−p)〉, and its O(1/N) 1PI scalar self-energy contribution is represented by Σ
φ(1)
ab (p).

From the Dysons equation, the two-point function to O(1/N) is,

Gφab = Dab(p) +Dac(p)Σ
φ(1)
cd (p)Gφdb(p) ' Dab(p) +Dac(p)Σ

φ(1)
cd (p)Ddb(p) (A66)

where the self-energy is obtained by summing over the basic diagrams for fermion mass scaling but with nontrivial
choices of Mas. Because of the coupling φaψ̄M

aψ, the self-energy corrections depend on Mas and can therefore
change the scaling dimensions of the corresponding bosons. The self-energy has the following generic form,

Σ
φ(1)
ab (p) = δab

ca|p|
π2N

ln

(
Λ2

p2

)
(A67)
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{Ma} ∆φ2
a

{12} 2− 8
3π2N

+
256(512κ2−1)

3π2(256κ2+1)2N
κ→0
= 2− 88

π2N

{σ3} 2− 8
3π2N

+ 128

3π2(256κ2+1)N
κ→0
= 2 + 40

π2N

{12, σ
3} {2− 40

3π2N
+

256(512κ2−1)
3π2(256κ2+1)2N

, 2− 40
3π2N

+ 128

3π2(256κ2+1)N
} κ→0

= {2− 296
3π2N

, 2 + 88
3π2N

}

TABLE II. The scaling dimensions of φ2
a with several choices of the boson-fermion vertices, these choices correspond to the

axis and origin of the phase diagram Fig. 3 in the main text.

For example, for Ma = 1, c = 2
3 −

16(512κ2−1)
3(256κ2+1)2

κ→0
= 6, and for Ma is traceless, c = 2

3 −
8

3(256κ2+1)

κ→0
= −2. The

self-energy will contribute to the scaling dimension of the φ2 in the following diagram,

(A68)

where the shaded bubble is the self-energy correction Σ
φ(1)
ab (p). There is one more diagram at O(1/N) will contribute

to the scaling of φ2, as following,

,

(A69)

the fermion “box” is the summation of fermions running clockwise and anti-clockwise. The scaling dimension of φ2

is combining Eq. A68 and Eq. A69, this gives,

∆φ2
a

= 2− 16ca
π2N

+
8

π2N
. (A70)

Note that the hourglass diagram (the first diagram in Eq. A71) won’t contribute to the anomalous dimension, a simple
argument is that similar diagram with one internal boson line appears in the self-energy correction (second and third
diagram in Eq. A71) and it contributes to the anomalous dimension, while the hourglass diagram has two internal
boson line, the power in the denominator is larger by 1, hence, it won’t contribute to the anomalous dimension.

, ⊂ (A71)

With O(1/N) correction, the scaling dimension of the boson operator φ2
a are listed in the Tabel. II. These scaling

dimensions are not trustworthy for small fermion flavors N , but they show a trend for the scaling dimensions when
having different boson-fermion vertices in large N .

Appendix B: Details of Nf = 2 QED3 and self-duality

The single flavor fermion coupled to the U(1) gauge field is dual to free fermion theory and this is dubbed as
fermion/fermion duality[5, 19],

iΨ̄ /DA1
Ψ⇐⇒ iχ̄ /Da1χ−

2

4π
b1db1 +

1

2π
a1db1 +

1

2π
A1db1 −

1

4π
A1dA1 − 2CSg, (B1)

iΨ̄ /DA2
Ψ⇐⇒ iχ̄ /Da2χ+

1

4π
a2da2 +

2

4π
b2db2 −

1

2π
a2db2 −

1

2π
A2db2 + 2CSg, (B2)

where CSg denotes the gravitational Chern-Simons term which will vanish in the flat spacetimes. The second line is the
orientation reversed (time-reversal) version of the first one. We can then product them together on each side with the
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substitution A1 → A,A2 → A−2X. Next, adding the counterterms 1
2πAd(Y −X)+ 1

4π (XdX−Y dY )+ 1
4πAdA+2CSg

to both sides and gauging A, after integrating out most of the gauge fields, we get,

iΨ̄1 /DaΨ1 + iΨ̄2 /Da−2XΨ2 +
1

4π
ada+

1

2π
ad(Y −X) +

1

4π
(XdX − Y dY ) + 2CSg ⇐⇒ (B3)

iχ̄1 /Dã−2Y χ1 + iχ̄2 /Dãχ2 +
1

4π
ãdã+

1

2π
ãd(X − Y ) +

1

4π
(Y dY −XdX) + 2CSg, (B4)

the self-duality exchanges X ↔ Y and χi ↔ Ψī. After relabeling the dynamical gauge fields a, ã, it gives back Eq. (1)
and Eq. (2).

The self-duality exchanges the monopole symmetry and the Cartan subgroup of the flavor symmetry. It is also the
duality between strong and weak couplings, this can be seen from the duality transformations amongst the derivation
and their corresponding transformations in the 3+1d bulk. Considering the 2+1d U(1) gauge matter theories live at
the boundary of 3+1d U(1) gauge theory with the coupling constant τ ,

I(A) =
1

8π

∫
X

d4x
√
g

(
2π

e2
FmnF

mn +
iθ

4π
εmnpqF

mnF pq
)

(B5)

=
i

8π

∫
X

d4x
√
g(τ̄F+

mnF
+mn − τF−mnF−mn), τ =

θ

2π
+

2πi

e2
(B6)

where g is the metric for the spacetime, the theory and the transformation properties are well-defined also in the
curved spacetime. F = dA and F is decomposed into self-dual and anti-self-dual pieces, F±mn = 1

2 (Fmn ± (?F )mn)

with (?F )mn = 1
2εmnpqF

pq, also (?F )mn(?F )mn = FmnF
mn. The S transformation and T transformation act as,

S : τ → τ ′ = −1

τ
,

(
0 −1
1 0

)
,

∫
∂X

J ·A→
∫
∂X

J · a− 1

2π
adA′ (B7)

−S : τ → τ ′ = −1

τ
,

(
0 −1
1 0

)
,

∫
∂X

J ·A→
∫
∂X

J · a+
1

2π
adA′ (B8)

T [k] : τ → τ ′ = τ + k,

(
1 k
0 1

)
,

∫
∂X

J ·A→
∫
∂X

J ·A− k

4π
AdA (B9)

The SL(2,Z) matrix acts on the coupling constant τ as,

τ → τ ′ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z) (B10)

The fermion/fermion duality in the derivation of the Nf = 2 QED3 self-duality is essential in connecting the left-
hand-side and the right-hand-side (the other procedures, adding the counterterms and gauging the background gauge
fields are the same for both hand sides). Using the above notation, the fermion/fermion duality and its orientation
reversed version is,

T [1] ◦ (−S) ◦ T [2] ◦ (−S), τ → 1

2
− 1

2(2τ − 1)
(B11)

S ◦ T [−2] ◦ S ◦ T [−1], τ → 1

2
− 1

2(2τ − 1)
. (B12)

Take the coupling of the bulk theory τ = 1
2 + 2πi

e2 , under the duality τ → 1
2 −

1
2(2τ−1) = 1

2 + e2i
8π . If e → 0, which is

the weak coupling limit, the dual theory has the strong coupling with τ → 1
2 + 0i. This suggests the fermion/fermion

duality is a strong-weak duality, and similar calculation can be done for the Nf = 2 QED3 , which involves the
U(1)× U(1) gauge theory in the bulk.

Appendix C: Connection to the gapless Z2 spin liquid in Ref. 45

1. Matrix form of fermion operators

The 2 flavor Nambu spinor can be written in matrix form,

Xi =

(
fi↑ −f†i↓
fi↓ f†i↑

)
(C1)
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The SU(2) gauge symmetry and physical spin symmetry act as,

SU(2)g : Xi → XiU†g,i (C2)

SU(2)s : Xi → Us,iXi. (C3)

In majorana basis, one has,

Xi =
1√
2

(χ0 + iχaσ
a). (C4)

Note that there is a discrepancy in the conventional notation and this, but it is merely relabeling,
f↑
f†↑
f↓
f†↓

 =

1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i


χ1,1

χ1,2

χ2,1

χ2,2

 =

1 0 0 i
1 0 0 −i
0 i −1 0
0 −i −1 0


χ0

χ1

χ2

χ3

 (C5)

the relabeling is, χ0

χ1

χ2

χ3

 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


χ1,1

χ1,2

χ2,1

χ2,2

 . (C6)

χa → χa1,a2 .

2. Hamiltonian and Higgs fields

Define the 4× 2 matrix operator,

Xα,v;β =
1√
2

(χ0,v1αβ + iχa,vσ
a
αβ) (C7)

Xv =
1√
2

(χ0,vσ
0 + iχa,vσ

a) (C8)

with χa,v, a = 0 ∼ 3, v = 1, 2. The γ-matrices act on the spinor index m in χm,a,v, and it is left implicit. The
mean-field Lagrangian is,

L = iTr
{
X̄γµ∂µX

}
= iTr

{
(χT0,vγ

0σ0 − iχTa,vγ
0σa)γµ∂µ(χ0,vσ

0 + iχb,vσ
b)
}

=
∑
a,v

iχTa,vγ
0γµ∂µχa,v

where γµ = {σ2, σ3, σ1} and X̄ = X†γ0.
Let’s now proceed to translate the Lagrangian for the Higgs fields in Ref. 45, the matrix µi acts on the v indices,

one of the Z2 Higgs field is,

Φa1 Tr
{
σaX̄µzγxX

}
=Φc1 Tr

{
σc(χT0,vγ

0σ0 − iχTa,vγ
0σa)µzv,wγ

x(χ0,wσ
0 + iχb,wσ

b)
}

=Φc1i(χ
T
0,vγ

0γxµzv,wχc,w − χTc,vγ0γxµzv,wχ0,w) (C9)

one can also get the matrices that act on the index a,

c = 1, δi,0δj,1 − δi,1δj,0 = −i(σ02 + σ32) (C10)

c = 2, δi,0δj,1 − δi,1δj,0 = −i(σ20 + σ23) (C11)

c = 3, δi,0δj,1 − δi,1δj,0 = −i(σ12 + σ21) (C12)
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To compare with our model, we need to change the basis following Eq. C6,

c = 1,−iM1 = −i(σ12 + σ21) (C13)

c = 2,−iM2 = −i(σ20 + σ23) (C14)

c = 3,−iM3 = −i(σ02 + σ32) (C15)

and using the basis χm,v,a1,a2 , therefore, the Higgs field becomes,

Φc1χ
T [(γ0γx)⊗ µz ⊗M c]χ (C16)

the other Z2 Higgs field is,

Φc2χ
T [(γ0γy)⊗ µx ⊗M c]χ (C17)

and the U(1) Higgs field is,

Φc3χ
T [γ0(γykx + γxky)⊗ µy ⊗M c]χ (C18)

3. The Higgs configuration

Ref. 45 proposes the staggered flux state is obtained when 〈Φ3〉 ∝ (0, 0, δφ) and the Z2Azz13 state follows from
〈Φ1〉 ∝ (γ1 − γ2, γ1 + γ2, 0) and 〈Φ2〉 ∝ (−γ1 − γ2, γ1 − γ2, 0). Recall that, γµ = {σ2, σ3, σ1} and

c = 1,−iM1 = −i(σ12 + σ21) (C19)

c = 2,−iM2 = −i(σ20 + σ23) (C20)

c = 3,−iM3 = −i(σ02 + σ32). (C21)

When condensing the Higgs fields, it corresponds to generate the mass for the combination of the fermion bilinears,

Φ1,2
1 : σ1312 + σ1321, σ1320 + σ1323 (C22)

Φ1,2
2 : σ3112 + σ3121, σ3120 + σ3123 (C23)

Φ3
3 : σ1202ky + σ1232ky, σ

3202kx + σ3232kx (C24)

and the kinetic terms are,

σ1000kx, σ
3000ky. (C25)

The only Pauli matrix commutes with the above matrices is σ0230, which is also the symmetry generator.
a. Our model In our model, the kinetic terms are,

σ100kx, σ
300ky (C26)

and the pairing terms are

σ323, σ321, σ123, σ121 (C27)

and the Pauli matrices that commute with the above are,

σ012, σ020, σ032 (C28)

4. Basis rotation

We can match both theories by examining their symmetry generators. The only matrix σ0230 that commutes with
other matrices in Ref. 45 can be rotated to,

σ0012, by ei
π
4 σ

0222

(C29)

σ0020, by ei
π
4 σ

0210

(C30)

σ0332, by ei
π
4 σ

0102

(C31)
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where the rotation is generated by σI → e−i
π
4 σ

J

σIei
π
4 σ

J

. The Z2 Higgs fields in Eq. (C22) will be rotated to,

Φ1,2
1 : σ1312 + σ1321, σ1102 + σ1323

Φ1,2
2 : σ3112 + σ3121,−σ3302 + σ3123 by ei

π
4 σ

0222

(C32)

Φ1,2
1 : σ1102 + σ1321, σ1320 + σ1323

Φ1,2
2 : −σ3302 + σ3121, σ3120 + σ3123 by ei

π
4 σ

0210

(C33)

Φ1,2
1 : −σ1210 + σ1321,−σ1222 + σ1323

Φ1,2
2 : σ3112 − σ3023, σ3120 + σ3021 by ei

π
4 σ

0102

(C34)

If one takes the second index as labeling the original theory and the dual theory in our model, some terms of the Z2

Higgs fields in Ref. 45 correspond to the pairing in the form of σ121, σ123, σ321, σ323 that appear in both the original
theory and the dual theory according to the Eq. (C34). For example,

...+ χTσ1321χ = ...+ χT1 σ
121χ1 − χT2 σ121χ2 ∼ ...+ ψᵀσ2γ0γxψ − ψ̃ᵀσ2γ0γxψ̃ (C35)

...+ χTσ3021χ = ...+ χT1 σ
321χ1 + χT2 σ

321χ2 ∼ ...+ ψᵀσ2γ0γyψ + ψ̃ᵀσ2γ0γyψ̃ (C36)

where ψ is the original fermion and ψ̃ is the dual fermion, they are corresponding to the pairing fermion bilinears that
appear in the Z2 Higgs fields Eq. (C34). However, the dual fermion pairings are not explicit in the self-dual Nf = 2
QED3 theory and the linear combinations with another fermion bilinears are crucial to obtain the Z2 Higgs fields in
Ref. 45, for example, Φ1

1χ
T (−σ1210 + σ1321)χ in the first line of Eq. (C34).
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