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Ferroquadrupole order of local atomic orbitals provides a specific realization of electronic nematic
order. TmVO4 is an insulator and undergoes ferroquadrupolar order associated with the local Tm
4f orbitals at TQ = 2.15 K. The material is a model system to study nematic order and the roles
played by nematic fluctuations. Here we present 51V nuclear magnetic resonance data as a function
of field orientation in a single crystal. Although the spectra are well understood in terms of direct
dipolar hyperfine couplings, the spin lattice relaxation rate exhibits strong anisotropy that cannot
be understood in terms of magnetic fluctuations. We find that the spin lattice relaxation rate scales
with the shear elastic constant associated with the ferroquadrupole phase transition, suggesting that
quadrupole (nematic) fluctuations dominate the spin lattice relaxation for in-plane fields.

I. INTRODUCTION

Electronic nematic order refers to spontaneous break-
ing of discrete rotational symmetry in a crystal lat-
tice by low energy electronic degrees of freedom, with-
out further breaking translational symmetry. Bilinear
coupling to lattice strain with the same symmetry nec-
essarily leads to an accompanying lattice deformation.
For the specific case corresponding to a tetragonal-to-
orthorhombic phase transition, the nematic order param-
eter is an Ising variable, and hence in the absence of a
symmetry-breaking field, domains with both possible ori-
entations of the nematic director can be anticipated, each
with a local C2 symmetry but oriented at 90 degrees with
respect to each other. Nematicity and nematic correla-
tions may play a role in the low temperature behavior of
a number of strongly correlated electron systems, includ-
ing the iron-based superconductors [1, 2] and the high
temperature superconducting cuprates [3–5]. The corre-
lation between large values of the nematic susceptibility,
a putative nematic quantum critical point, and optimal
superconductivity in several materials, point to a possi-
ble role for nematic fluctuations in the pairing interac-
tion, as well as non-Fermi-liquid behavior in the normal
state [6–9]. Disentangling the effects of nematicity can
be complicated by the presence of other intertwined order
parameters in such systems. It is challenging to discern
whether nematic or antiferromagnetic fluctuations dom-
inate, especially in a conducting system [10]. Moreover,
since nematic order couples bilinearly to elastic strain
with the same symmetry, the local strains that are asso-
ciated with quenched random disorder, for example due
to chemical substitution and other crystal defects, act
as a random field for the nematic, and may give rise to
inhomogeneous glassy behavior [11, 12]. It is therefore
important to investigate critical fluctuations in an Ising
nematic system in the absence of metallicity or inhomo-
geneous strain fields.

Ferroquadrupole order of local atomic orbitals breaks
only point symmetries and is a realization of nematic or-

FIG. 1. (a) 51V spectra in TmVO4 at 11.7294T for H0 ⊥ c
at several different temperatures. The full-width half max-
imum (b) and quadrupolar splitting (c) versus temperature
for several different angles, θ. The inset shows the unit cell
structure. Tm is blue, V is green (within the pyramids) and
O is red.

der. Such a phase transition requires local atomic states
with either a non-Kramers or pseudo-Kramers degener-
acy. Several rare earth ions in suitable point symmetries
meet this criterion, and have the specific advantage that
the underlying effective Hamiltonian is very well under-
stood. The specific material studied here has the ad-
ditional advantage that the crystal field ground state,
which is a non-Kramers doublet, is well-separated in en-
ergy from excited crystal field levels. Hence, an elegant
pseudo-spin representation can be used to describe the
system, at least in weak fields, making this a model ma-
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terial system to study the effects of nematic fluctuations
in insulators [13].

TmVO4 is an insulator with Tm ions in the 4f12 config-
uration (L = 5, S = 1, J = 6) that crystallizes in space
group I41/amd (see inset of Fig. 1). The tetragonal
crystal field splits the J = 6 multiplet giving rise to a Γ5

ground state doublet separated by a gap of ∼ 77 K to the
lowest excited state [14, 15]. The wavefunctions of the
ground state doublet are |ψ1,2〉 = e|±5〉+f |±1〉+g|∓3〉
in the Jz basis, where e ≈ 0.92, f ≈ −0.37, and g ≈ 0.12.
The degeneracy of these ground states cannot be lifted by
a magnetic field perpendicular to the z-direction because
〈ψ1,2|J±|ψ1,2〉 = 0, hence these form a non-Kramers dou-
blet. The doublet can, however, be linearly split by either
a magnetic field oriented along the c-axis, or by lattice
strains with either a B1g (x2−y2) or B2g (xy) symmetry.
Quadrupole-quadrupole interactions mediated by the lat-
tice dominate the magnetic interactions, and the material
undergoes a cooperative Jahn-Teller ferroquadrupolar or-
dering with a B2g symmetry at TQ = 2.15K, accompa-
nied by an orthorhombic lattice distortion of the same
symmetry [16]. The low-temperature behavior of the Tm
quadrupoles can be well-described by the transverse field
Ising model, in which pseudospins (S̃ = 1/2) experience
in-plane ferroquadrupolar Ising couplings and couple to
a transverse magnetic field along the z-axis [17]. These
fields will enhance the fluctuations of the pseudospins and
can tune the system to an Ising-nematic quantum phase
transition. This material thus offers an important plat-
form to investigate quantum critical nematic fluctuations
in an insulator.

In order to better understand the nature of these fluc-
tuations we have investigated 51V (I = 7/2, Q = 52 mb,
99.75% abundant) NMR in a single crystal of TmVO4

in a magnetic field H0 = 11.72 T oriented perpendicu-
lar to the c-axis. We find that the magnetic shift and
spin-lattice-relaxation rate are strongly angular depen-
dent (rotating the field in the a− c plane) below ∼ 80 K,
reflecting the anisotropy of the ground state doublet. The
spin-lattice-relaxation rate is non-monotonic, exhibiting
a large enhancement at low temperature that may be
associated with critical nematic fluctuations. The spec-
trum exhibits a strong temperature-dependent magnetic
linewidth broadening at low temperatures caused by in-
homogeneous magnetic demagnetization fields.

II. NMR SPECTRA AND MAGNETIC SHIFT

TmVO4 crystals were grown from a Pb2V2O7 flux us-
ing 4 mole percent of Tm2O3, following the methods de-
scribed in [18, 19]. The crystals have a rod-like morphol-
ogy with the the c-axis along the long axis. A single
crystal of approximate dimension 1mm × 1mm × 4mm
was selected and mounted on a cryogenic NMR probe
equipped with a mechanical goniometer [20]. The mag-
netic susceptibility is strongly anisotropic, reflecting that
of the unusual g-factor (gc ≈ 10.2, g⊥ = 0) of the ground

FIG. 2. Magnetic shift, K, versus temperature (a) and versus
angle (b). The dotted lines are fits as described in the text.

state doublet. Although a crystal mounted with c ⊥ H0

experiences zero torque, it is an unstable equilibrium and
there is a large torque for infinitesimal deviations from
90◦. To alleviate this issue we secured the crystal with
epoxy to a mounting plate that itself is rotated. Spin
echoes were acquired at several different frequencies, and
the Fourier transforms were summed to measure the full
spectra including all nuclear spin transitions. Fig. 1(a)
shows several representative spectra of the 51V as a func-
tion of temperature. There are seven peaks separated by
the quadrupolar interaction. Because the V has axial
symmetry, the peaks frequencies are given by:

ν = γH0 (1 +K(θ)) + nνq(θ), (1)

where the magnetic, K(θ), and quadrupolar, νq(θ), shifts
vary with the angle θ between the c-axis and H0:

K(θ) = Kcc cos2 θ +Kaa sin2 θ (2)

νq(θ) = νzz
(
3 cos2 θ − 1

)
/2. (3)

Here γ = 11.193 MHz/T, n = −3, · · · , 3, νzz =
eQVzz/12h and Vzz is the electric field gradient at the
V site. We measured the spectra for several angles 86◦ ≤
θ ≤ 90◦ and fit the spectra to a sum of Lorentzians. The
temperature and angular dependence of the linewidths,
EFG, and magnetic shifts are shown in Figs. 1(b, c) and
2(a).

We find that the EFG is similar to previous measure-
ments, [14, 21] however the linewidths are broad. For
this orientation, the quadrupolar splitting is νzz/2, which
is comparable to the FWHM of each resonance. As a
result, the individual peaks become difficult to resolve
at low temperatures. Each of the satellite resonances
has the same linewidth, implying that the broadening
is due to magnetic field inhomogeneity within the sam-
ple. Moreover, we find that the spectra are narrower
at lower applied fields and that the FWHM varies ap-
proximately linear with field. Since the susceptibility
is strongly anisotropic, distortions of the internal field
B due to demagnetization effects within the needle-like
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FIG. 3. Kaa and Kcc versus temperature (a) and versus bulk
susceptibility (b). The open points correspond to values re-
ported in [14]. The solid lines are fits as described in the text.
The inset displays the bulk susceptibility versus temperature.

prism of the crystal can create a large distribution of lo-
cal resonance frequencies [22]. The spectra also display
a suppression of intensity for the inner satellites, partic-
ularly at low temperature. This phenomenon arises due
to fast spin-spin decoherence rates (T−12 ) with high spin
nuclei [23, 24].

The magnetic shift shown in Fig. 2 is negative and
strongly angular dependent at low temperature. We fit
the angular dependence to extract the tensor components
Kaa and Kcc, shown as dotted lines in Fig. 2(b). This
approach enables us to extract the magnetic shift for the c
direction without needing to fully align the crystal in this
orientation, albeit the error bars for Kcc are larger than
for Kaa. The temperature dependence of Kaa and Kcc

are shown in Fig. 3(a). Kcc is large and positive. Fig.
3(b) shows these shift components plotted versus the bulk
susceptibility χaa,cc, which was measured independently
in a SQUID magnetometer. The shift varies linearly with
susceptibility as Kαα = Korb

αα + Aααχαα, where Aαβ are

FIG. 4. Magnetization recovery curves at 20 K, 40 K, and 80
K for θ = 88◦. Solid lines are fits as described in the text. The
data have been normalized and offset vertically for clarity.

the components of the hyperfine coupling tensor. We find
thatKorb

aa = −0.315±0.009%, Korb
cc = −0.4±0.1%, Aaa =

−0.32± 0.07 kOe/µB and Acc = 1.29± 0.05 kOe/µB .

These values of the hyperfine couplings are consistent
with a direct dipolar coupling mechanism between the
Tm moments and the V nuclear spins. The direct dipo-

lar coupling is given by: Adipαβ =
∑
i(∇×Ai)α/µβ , where

Ai = µ × ri/r
3
i is the vector potential of a dipole mo-

ment, µ, located at lattice site ri relative to a central
nucleus. For the TmVO4 lattice, we estimate Adipaa =

Adipbb = −0.336 kOe/µB and Adipcc = 0.671 kOe/µB at the
V site. The theoretical value for the perpendicular direc-
tion is the same as the measured value within the error
limits. For the c axis, the theoretical value is within a
factor of two of the measured values, and it is likely there
are larger systematic measurement errors involved in ex-
tracting this value. Thus the anisotropic magnetic shift
tensor can be fully explained via direct dipolar interac-
tions, as expected for an insulator.

III. SPIN LATTICE RELAXATION RATE

The spin-lattice-relaxation rate, T−11 , was measured
by applying initialization pulses at the central transition
(n = 0) and measuring the echo intensity as a function
of recovery time using low power pulses with small band-
widths (pulse widths 6-8 µs), repetition time 10 ms, pulse
spacing 20 µs, and pulse power of 39-44 dBm. Represen-
tative recovery curves are displayed in Fig. 4. The mag-
netization recovery was fit to the standard expression
for magnetic fluctuations: M(t) = M0 (1− 2fφ(t/T1)),
where M0 is the equilibrium magnetization, f is the in-
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FIG. 5. (a) T−1
1 vs temperature for multiple angles. (b)

Calculated T−1
1 versus θ for magnetic fluctuations (solid lines)

and for quadrupole fluctuations (dashed lines). (c) Calculated
T−1
1 versus temperature and angle using Eq. 5, where the

angle is increased in 5◦ increments between 0 and 90◦.

version fraction, and

φ(t) =
1225

1716
e−28t +

75

364
e−15t +

3

44
e−6t +

1

84
e−t. (4)

This expression fits the data well without the need for
a stretching exponent, but the fraction f is reduced at
lower temperatures due to the inhomogeneous magnetic
broadening. Fig. 5 shows the temperature and angu-
lar dependence of T−11 . For θ = 90◦, T−11 decreases
strongly below 80K as the excited crystal field levels are
thermally depopulated. In this temperature range T−11

become strongly angular dependent, increasing by more
than a factor of 30 as the field H0 rotates by only 4◦ away
from the perpendicular configuration, and the spin-spin
relaxation time T2 grows shorter, to less than 100 µs.
This behavior likely reflects the anisotropy of the g fac-
tor of the ground state doublet, however the anisotropy of
T−11 is puzzling. If the relaxation is driven by magnetic
fluctuations of the Tm ground state, then T−11 should
exhibit a maximum at θ = 90◦ rather than a minimum
because fluctuations of the non-Kramers doublet should
lie exclusively along the c-axis. Therefore T−11 (0◦) should
be much smaller than T−11 (90◦), in contrast to our ob-
servations.

A. Magnetic fluctuations

On the other hand, the hyperfine couplings can give
rise to a more complicated relationship between the di-
rection of the Tm moments and the direction of the hy-
perfine fields. To properly account for these couplings we
use the Moriya expression:

T−11m = γ2kBT lim
ω→0

∑
q,α,β

Fαβ(q)
Imχαβ(q, ω)

}ω
, (5)

where the form factors Fαβ(q) (see Appendix A for de-
tails) depend on the local dipolar hyperfine couplings,
and χαβ(q, ω) is the dynamical magnetic susceptibility
of the Tm moments. For simplicity we only include the
two nearest neighbor and four next-nearest neighbor Tm
atoms in the form factors. Because the Tm system ex-
hibits ferroquadrupolar order at TQ, we assume that the
structure of the dynamical susceptibility can be modeled
as:

χαα(q, ω) =
χαα(T )

ξ−2 + f(q)− iω/Γq
(6)

where ξ is a correlation length, Γ is a characteristic fluc-
tuation energy, f(q) = q2x + q2y + ηq2z , η is a dimension-
less parameter that reflects the tetragonal nature, and
χαα(T ) is the static (q = 0) susceptibility. ξ and η are
unknown parameters, but we compute the temperature
and angular dependence using ξ = 2 and η = 1/2. Fig.
5(b) shows the expected angular dependence of T−11m for
χcc/χaa = 10 (red), close to the experimental value, and
for χcc/χaa = 0.1 (blue). The former clearly exhibits a
maximum of T−11m at θ = 90◦, in contrast to our obser-
vations. The latter exhibits a shallow minimum at 90◦,
but the susceptibility anisotropy does not agree with ex-
periment. Fig. 5(c) shows the temperature dependence
using the measured values of the static susceptibility. Al-
though there is an overall decrease in T−11m at lower tem-
peratures, the detailed temperature dependence does not
match experiment, and the calculated T−11 still exhibits
a maximum for θ = 90◦ at all temperatures. Despite the
complex form factors for the direct dipolar couplings, the
expected magnetic fluctuations of the Tm ground state
cannot explain the observed increase in T−11 as the field
rotates out of the plane. Moreover, we have checked a
model for the dynamical susceptibility with antiferro-
magnet fluctuations that peaks at a finite wavevector,
q, and find that the expected anisotropy of T−11 does not
match our observations.

B. Quadrupolar fluctuations

An alternative explanation is that the spin-lattice-
relaxation rate is dominated by quadrupolar fluctuations
rather than magnetic. The Tm quadrupole moments
couple to the EFG at the V site, giving rise to a sec-
ond nuclear quadrupolar relaxation channel [10]. The
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enhancement of T−11 below 20K for θ = 90◦ may rep-
resent the growth of critical fluctuations near TQ. Note

that changing θ by only 0.25◦ dramatically alters T−11 ,
which is close to the limit of precision of our goniometer.
Thus it is possible that the enhancement below 20K may
vanish or become smaller for better alignment. In the
presence of both magnetic and quadrupolar relaxation,
the expression for φ(t) (Eq. 4) changes, and includes
three independent rates: T−11m , WQ1 and WQ2, where the
latter two are associated with ∆m = ±1 and ∆m = ±2
quadrupolar relaxation. We are unable, however, to in-
dependently extract these parameters with sufficient res-
olution. Moreover, the line broadening observed in Fig.
1 also means that the magnetization relaxation at the
central transition may also include contributions from
nearby satellite transitions, further complicating any at-
tempts to extract the independent relaxation channels.
Nevertheless, it is instructive to consider the case where
quadrupole fluctuations dominate and magnetic fluctua-
tions can be neglected.

For a tetragonal to orthorhombic distortion, quadrupo-
lar relaxation is driven by fluctuations of the spherical
tensor components of the EFG: V±1 = Vzx ± iVzy and
V±2 = 1

2 (Vxx − Vyy)± iVxy, where the Vαβ are the EFG
tensor components relative to the direction of H0. These
give rise to nuclear spin relaxation rates:

WQ1,Q2 = (eQ/~)2
∫ ∞
0

〈V+1,2(τ)V−1,2(0)〉e−ωLτdτ (7)

where ωL is the Larmor frequency [25]. The ferro-
quadrupolar order in this system has B2g symmetry, so
Vxx−Vyy 6= 0, where z corresponds to the c-direction and
x and y are along the principal axes of the EFG tensor,
which are rotated 45◦ relative to the tetragonal a-axes.
Above TQ fluctuations of V±2 should dominate those of
V±1, and as a result we anticipate that WQ1(θ = 0) can
be neglected. As the field is rotated towards the plane,
the EFG tensor components change, and the relaxation
rates become angular dependent (see Appendix B for de-
tails):

WQ2(θ)/WQ2(0) =
(
cos4 θ + 6 cos2 θ + 1

)
/8 (8)

WQ1(θ)/WQ2(0) = sin2 θ(cos(2θ) + 3)/4. (9)

These quantities are shown in Fig. 5(b) as dashed lines.
WQ2 exhibits a minimum for θ = 90◦, whereas WQ1 is
nearly independent of θ at this angle. This behavior
agrees qualitatively with our observations, but the in-
creases we observe are in fact a much stronger function
of angle than expected for quadrupolar relaxation. Ro-
tating θ by 1-2◦ out of the plane enhances T−11 by an or-
der of magnitude, whereas WQ2 exhibits only a quadratic
minimum at this angle.

The interpretation that relaxation is driven by
quadrupole fluctuations is supported by comparisons of
the temperature dependence of T−11 with that of the
shear elastic stiffness coefficient, c66, which softens with
decreasing temperature and vanishes at TQ [26]. This

FIG. 6. The shear elastic stiffness coefficient c66 (solid line,
reproduced from [26]) and the quantity 1/(1 + (aT1T )−1) as
as a function of temperature. INSET: 1/(c66,0/c66−1) versus
T1T , with temperature implicit. The solid black line is the
best linear fit, giving a = 18.5± 0.4 sec−1 K−1.

behavior is driven by the nematic susceptibility: χnem =
c66,0(1 − c66,0/c66)/λ2, where λ is the coupling between
the lattice and the Tm 4f orbitals, and c66,0 is the stiff-

ness coefficient in the absence of the coupling [27]. If T−11

is also determined by the Tm orbital fluctuations, then
(T1T )−1 ∼ χnem (see Appendix C for details) [10, 28, 29].
We thus expect T1T ∼ (c66,0/c66−1)−1, which is demon-
strated in Fig. 6. The main panel compares the temper-
ature dependence of c66 with the measured T−11 values,
and the inset shows the scaling between the shear modu-
lus and T−11 with temperature as an implicit parameter.
The scaling in Fig. 6 suggests that the spin lattice re-
laxation is driven primarily by quadrupole fluctuations,
which are reflected in the softening of c66. The temper-
ature dependence of c66 also includes contributions from
the higher CEF levels [26], which suggest that these also
play a role in the spin-lattice-relaxation rate at these tem-
peratures. Note that the sharp drop in c66 below ∼ 30 K
corresponds roughly with the increase in νzz observed in
Fig. 1(c). It is possible that the softening of the lattice
is reflected in changes to the static EFG as well.

IV. DISCUSSION

A slightly different scaling relationship was found
in the iron pnictide superconductors via a microscopic
model that assumes that the nematicity arises in the
magnetic susceptibility, which in turn affects the nu-
clei through a magnetic hyperfine interaction [27]. In
TmVO4, the nematicity arises from the Tm electronic or-
bitals, and the coupling to the nuclei may be through the
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quadrupolar interaction. Moreover, the pnictide model
assumed the presence of Landau damping by a Fermi
surface of quasiparticles, which is not the case for in-
sulating TmVO4. The relaxation in TmVO4 must also
involve a damping term, but the origin of this term is
unknown. The fact that the scaling relationship in Fig.
6 holds suggests that this damping term is temperature
independent.

Rotating the field away from 90◦ can enhance
quadrupole fluctuations. A rotation of H0 by 4◦ cor-
responds to a field of 0.82 T along the c-axis. This is
greater than the critical field of Hc = 0.52 T to suppress
the long-range nematic order, which naturally enhances
fluctuations of both V±2 and V±1. However, these critical
fluctuations are not likely to persist to higher tempera-
tures beyond ∼ 10TQ, thus are unlikely to be responsible
for the large anisotropy observed up to 80K. An alter-
native scenario is that the higher CEF levels cannot be
ignored. Indeed, even though the in-plane g-factor of the
non-Kramers doublet vanishes in zero applied field, the
excited CEF levels can be mixed into the ground state
wavefunctions by an in-plane field. As a result, there can
be an induced magnetic moment in the plane, which may
also contribute to the relaxation [26].

It is likely that the spin lattice relaxation is dominated
by both magnetic and quadrupolar fluctuations, however
it is difficult to disentangle these two relaxation channels
without more detailed measurements of the relaxation
at the higher satellite transitions [25]. However, as illus-
trated in Fig. 1, the satellites are magnetically broadened
and cannot be well resolved, especially at lower temper-
atures. This broadening is due to the demagnetization
field inhomogeneity of our crystal. In principle, it is pos-
sible to improve the spectral resolution by removing the
sharp edges and corners of the sample and/or operat-
ing at lower applied fields, in order to better discern the
individual satellite transitions.

Nuclear spin lattice relaxation rates have also been
studied in both PrAlO3 and CsCuCl3, materials that ex-
hibit structural distortions due to the cooperative Jahn-
Teller effect with non-magnetic ground states [30–32]. In
contrast to our observations in TmVO4, T−11 did not
exhibit any enhancement above the phase transition in
these cases, even though the EFG changed below. On
the other hand, unlike TmVO4, the phase transitions in
these cases are first order, thus T−11 should not reflect any
critical slowing down. The spin-lattice-relaxation rate in
the disordered state was analyzed in terms of magnetic
(hyperfine) fluctuations, although the nuclei in question

(27Al, I = 5/2 and 133Cs, I = 7/2) are quadrupolar and
should be sensitive to fluctuations of the EFG.

In summary, we have measured the spectra and re-
laxation rates in TmVO4 as a function of field direction
oriented perpendicular to the c-axis. We find that the
magnetic shift tensor agrees quantitatively with direct
dipolar coupling between the V nuclear moments and
the Tm 4f moments. The spin lattice relaxation rate
exhibits a steep minimum for field oriented 90◦ to the c
axis, which is inconsistent with purely magnetic fluctua-
tions. We find that T1 scales with the lattice constant for
shear strain, c66, which softens and vanishes at the ne-
matic transition. It is likely that both quadrupolar and
magnetic fluctuations are present and drive spin lattice
relaxation. However, the origin of the the steep angular
dependence of T−11 remains an open question.
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Appendix A: Magnetic Relaxation Form Factors

We assume that the dominant hyperfine fields at the
V site arise from the two nearest neighbor and four next-
nearest Tm moments, whose positions are given in Table
I. We define:

Aαβ(q) =
∑
i

eiq·riAdipαβ (A1)

where Adipαβ is defined in the main text. For an applied
field H0 oriented at angles θ and φ relative to the crys-
talline axes, the form factors are [33]:

Fαβ(q) =
∑
ε,δ

[RxεRxδ +RyεRyδ]Aεα(q)Aδβ(−q),

(A2)
where the Rαβ are elements of the 3D rotation matrix:

R =

 cos θ cos2 φ+ sin2 φ cos θ cosφ sinφ− cosφ sinφ cosφ sin θ
cos θ cosφ sinφ− cosφ sinφ cos2 φ+ cos θ sin2 φ sin θ sinφ

− cosφ sin θ − sin θ sinφ cos θ

 . (A3)

Appendix B: Quadrupolar Relaxation Anisotropy

Equation 7 gives the expression for quadrupolar relax-
ation in terms of the spherical tensor components of the

EFG tensor. The quadrupolar interaction is only on-site,



7

TABLE I. Position vectors for six nearest neighbor Tm sites
to V, in spherical coordinates.

ri r (Å) θ (◦) φ (◦)

1 3.13030 0 0

2 3.13030 180 0

3 3.86654 66.1218 0

4 3.86654 113.8782 90

5 3.86654 66.1218 180

6 3.86654 113.8782 270

so there are no form factors. However, the EFG tensor

must be rotated properly as the field direction changes.
Under a rotation the tensor operators Vm(τ) transform
as:

V ′m(τ) =
∑
m′

D
(2)
mm′Vm′(τ) (B1)

where

D
(l)
mm′(α, β, γ) = e−imαdlmm′(β)e−im

′γ , (B2)

are the Wigner D matrices, and the Euler angles are
(α = φ, β = θ, γ = 0). The correlation functions
〈Vm(τ)V−m(0)〉 are thus given by:

〈V ′m(τ)V ′−m(0)〉 =
∑
m′,m′′

D
(2)
2m′(φ, θ)D

(2)
−2m′′(φ, θ)〈Vm′(τ)Vm′′(0)〉. (B3)

We assume that 〈Vm(τ)Vm′(0)〉 = 0 for all m,m′ except
for m = −m′ = 2 and m = m′ = 1. Moreover, we assume
that 〈V2(τ)V−2(0)〉 � 〈V1(τ)V−1(0)〉, since 〈V±2〉 6= 0
and 〈V±1〉 = 0 in the nematic phase. We thus expect
WQ1(θ = 0) ≈ 0, and:

WQ2(θ)/WQ2(0) =
(
cos4 θ + 6 cos2 θ + 1

)
/8 (B4)

WQ1(θ)/WQ2(0) = sin2 θ(cos(2θ) + 3)/4. (B5)

as given in the main text in Eqs. 8 and Eqs. 9.

Appendix C: Relaxation driven by nematic
fluctuations

We note that Eq. 7 can be expressed in terms of the
dynamical nematic susceptibility [10]:

WQ2(0) =

(
eQ

~

)2

kBT lim
ω→0

∑
q

Imχnem(q, ω)

}ω
. (C1)

The dynamical susceptibility can be expressed phe-
nomenologically as: χnem(q, ω) = χnem(1− iω/ωn)−1,
where χnem is the static nematic susceptibility and ωn
is a damping term [28, 29]. In this case WQ2(0) =

(eQ)
2
kBTχnem/~2ωn.
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