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After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect
(NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate
another family of Hall effect, namely, chiral anomaly induced nonlinear Hall effect (CNHE) in multi-
Weyl semimetal (mWSM). In contrast to the BCD induced NLHE, CNHE appears because of the
combination of both chiral anomaly and anomalous velocity due to non-trivial Berry curvature.
Using the semiclassical Boltzmann theory within the relaxation time approximation, we show that,
in contrast to the chiral anomaly induced linear Hall effect, the magnitude of CNHE decreases with
the topological charge n. Interestingly, we find that the CNHE has different behaviors in different
planes for single and triple Weyl semimetals. Our prediction on the behavior of CNHE in mWSM
can directly be checked in experiments.

I. INTRODUCTION

In recent years, the three-dimensional Dirac and Weyl
semimetals have attracted tremendous interest in topo-
logical condensed matter physics. Weyl semimetals
(WSMs) can accommodate gapless chiral quasiparticles,
known as Weyl fermions, near the touching of a pair of
non-degenerate bands (also called Weyl nodes)1–9. In a
WSM, the non-trivial topological properties emerge due
to Weyl nodes which can act as a source or sink of the
Abelian Berry curvature. Each Weyl node is associated
with a chirality quantum number, known as the topologi-
cal charge whose strength is related to the Chern number
and is quantized in integer values10.

Recently a number of inversion broken and time-
reversal (TR) symmetric materials such as (TaAs,
MoTe2, WTe2) have been experimentally proposed as
WSM11–16. Although these systems have Weyl nodes
with topological charge (n) equal to ±1, it has been pro-
posed that Weyl nodes with higher topological charge
n > 1 can also be realized in condensed matter sys-
tems9,17–19. These are called multi-Weyl semimetals
(mWSMs). Unlike the single WSM whose disper-
sion is linear in momentum along all directions (i.e.
isotropic dispersion), the mWSM (n > 1) shows natu-
ral anisotropy in dispersion. In particular, the double
WSM (n = 2) and triple WSM (n = 3) depict linear dis-
persion along one symmetry direction and quadratic and
cubic energy dispersion relations for the other two direc-
tions respectively. Using the density functional theory
(DFT) calculations, it has been proposed that HgCr2Se4
and SrSi2

9,17,18 can be the candidate materials for double
WSM, whereas A(MoX)3 (with A = Rb, TI; X = Te)
can accommodate triple-Weyl points20. It is important
to note that only the Weyl nodes with topological charge
n ≤ 3 can be allowed in real materials due to restric-
tion arising from discrete rotational symmetry on a lat-
tice17,19. Moreover, the single WSM can be viewed as 3D

analogue of graphene whereas the double WSM and triple
WSM can be represented as 3D counterparts of bilayer
and ABC-stacked trilayer graphene, respectively21–23.

Weyl semimetals offer a plethora of fascinating trans-
port properties due to the manifestation of quantum
anomalies in the presence of external electromagnetic
fields. Till now, chiral anomaly (also known as Adler-
Bell-Jackiw anomaly) induced negative longitudinal mag-
netoresistance (LMR) and planar Hall effect (PHE) are
the two most remarkable transport properties studied
in theory and experiments24–30. In WSMs, the num-
bers of left-handed and right-handed Weyl fermions are
separately conserved in the absence of any external
gauge or gravitational field coupling. On the other
hand, this number conservation is violated in the pres-
ence of non-orthogonal electric (E) and magnetic (B)
fields (i.e., E ·B 6= 0). This effect is known as chiral
anomaly7–9,31–38. The proposed LMR and PHE induced
by the chiral anomaly have already been realized in sev-
eral experiments39–50. The corresponding current (J),
which is linear in electric field in both cases, can be ex-
pressed as J ∝ (E ·B)B.

Recently, another interesting transport property in-
duced by chiral anomaly – nonlinear Hall effect (NLHE) –
has been proposed in the context of single WSM51. This
chiral anomaly induced nonlinear Hall effect (CNHE) is
different from NLHE induced by Berry curvature dipole
(BCD)52,53 because the latter can survive in the absence
of external magnetic field. The CNHE is second-order in
electric field and appears due to the combination of both
the chiral anomaly and the anomalous velocity (va) due
to Berry curvature (Ωk). The corresponding current den-
sity can be expressed as JCN = −e

∑
k,s vsa∆nsk where s

is the chirality of the Weyl node, vsa ∼ E × Ωk,s
10 and

∆nsk ∼ sE ·B is the modification of the chiral electron
density in the vicinity of each Weyl node. The NLHE
caused by both the chiral anomaly as well as BCD have
been studied in single WSMs51,54–56 whereas they have
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not yet been explored in the context of mWSMs. Recent
experimental realizations57,58 of BCD induced NLHE in
single WSM add to the interest of experimental verifica-
tion of these effects in various systems.

In this paper, we investigate the chiral anomaly in-
duced nonlinear Hall effect in mWSMs using low-energy
model. The main findings of this work are the follow-
ing: Using the quasiclassical Boltzmann transport theory
within the relaxation time approximation, we show that
the CNHE in mWSMs can only survive in the presence of
achiral tilt (i.e., tilt of the opposite chirality nodes are in
same direction) of the Weyl nodes when the Weyl nodes
are at same energy. On the other hand, this restriction no
longer exists in WSMs with nonzero chiral chemical po-
tential (i.e., the Weyl nodes are located at different ener-
gies). We further analytically show that the magnitude of
CNHE depends non-trivially on topological charge n [see
Eqs. (7) and (8)]. Although the dependencies are non-
trivial, the magnitude of CNHE decreases with n. This
is in contrast with the case of chiral anomaly induced
linear Hall effect where the magnitude increases with n.
Interestingly, the chemical potential dependence (µ−2/n)
remains unchanged in both linear and nonlinear cases.
Moreover, we also find that the CNHE shows different
behavior (i.e., different coefficients) in single and triple
WSMs when external electromagnetic fields are rotated
in different planes whereas they have the same behavior
in the case of double WSM [see Eqs. (7) and (8)].

The rest of the paper is organized as follows. In Sec. II,
we formulate the general expression of CNHE using qua-
siclassical Boltzmann formalism. In Sec. III, we intro-
duce the low-energy Hamiltonian of multi-Weyl semimet-
als. In Sec. IV, we derive the analytical expressions of
CNHE in mWSMs and find the dependencies of CNHE
with topological charge n. Finally, we summarize our
results and discuss possible future directions in Sec. V.

II. FORMALISM OF CHIRAL ANOMALY
INDUCED NLHE

In the presence of electric and magnetic fields, trans-
port properties get substantially modified due to the
presence of non-trivial Berry curvature which acts as
a fictitious magnetic field in the momentum space.
The steady state phenomenological Boltzmann transport
equation within the relaxation time approximation takes
the form59

(ṙ · ∇r + k̇ · ∇k)gk =
g0 − gk
τ(k)

, (1)

where g0 = 1
1+exp (εk−µ)/kBT is the equilibrium Fermi-

Dirac distribution function with T , µ and εk are the tem-
perature, chemical potential and energy dispersion re-
spectively. τ(k) is the intranode scattering time assuming
the internode scattering time (τs) is much greater than
intranode scattering time. We neglect internode scatter-
ing time because the terms related to internode scattering

do not contribute to CNHE as shown in Ref.51. Here, gk
is the distribution function in the presence of perturba-
tive fields. In this work, we ignore the momentum depen-
dence of τ for simplifying the calculations and assume it
to be a constant25,27,51. In presence of Berry curvature as
well as an electromagnetic field, the semiclassical equa-
tions of motion for an electron can be written as60,61

ṙ = D(B,Ωk)[vk +
e

~
(E×Ωk) +

e

~
(vk ·Ωk)B],

~k̇ = D(B,Ωk)[eE +
e

~
(vk ×B) +

e2

~
(E ·B)Ωk],

(2)

where vk is the group velocity and D(B,Ωk) = (1+ e
~ (B·

Ωk))−1 is the phase space factor as the Berry curvature
Ωk modifies the phase space volume element dkdx →
D(B,Ωk)dkdx60. The term ∝ (E ·B) is responsible for
chiral anomaly which arises in axion-electrodynamics of
WSM. Now plugging the above equation into Eq. (1),
the distribution function gk upto second-order in E for
spatially uniform external fields can be obtained as gk =
g0 + g1 + g2 where

g1 =
τ

D(B,Ωk)

[
eE · vk +

e2

~
(E ·B)(Ωk · vk)

](
∂g0
∂εk

)
,

g2 =
τ

D(B,Ωk)

[
eE · vk +

e2

~
(E ·B)(Ωk · vk)

](
∂g1
∂εk

)
.

(3)

From the general expression of the current density J =

−e
∫

[dk]D−1ṙgk where [dk] = d3k
(2π)3 , the nonlinear Hall

current density upto the order of (τE2B) in the presence
of external fields can be obtained as51

JCN=
∑
s

e4τ

~2

∫
d3k

(2π)3
[(E · vk,s)(B ·Ωk,s)− (E ·B)

(vk,s ·Ωk,s)](E×Ωk,s)

(
∂gk,s0

∂εk,s

)
, (4)

where εk,s is the energy dispersion of a Weyl node associ-
ated with chirality s. The above equation indicates that
the CNHE is a purely Fermi surface quantity and van-
ishes in an inversion-symmetric system. Here, we have
ignored the higher order (i.e., τ2 dependent) contribu-
tion.

It is important to note that along with the chiral
anomaly induced contribution, there may exist other con-
tributions to the nonlinear Hall current such as BCD in-
duced contribution and disorder-mediated contributions
such as nonlinear side jump and skew-scattering contri-
butions. However, the chiral anomaly induced NLHE is
different from the BCD induced53 as well as disorder-
mediated NLHE63, both of which are independent of
magnetic field. Therefore, CNHE can be separated from
BCD- and disorder-induced NLHE by examining their
dependence on the magnetic field53,55,56,62,63. Moreover,
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the chiral anomaly induced nonlinear Hall effect can also
be differentiated from linear Hall effects by measuring
second harmonic Hall resistance in a.c experiments.

III. MODEL HAMILTONIAN

The low-energy effective Hamiltonian describing a
Weyl node with topological charge n and chirality s can
be written as64–66

Hs
n (k)

= s [αnk
n
⊥ [cos (nφk)σx + sin (nφk)σy] + v(kz − sQ)σz]

+Csv(kz − sQ)− sQ0, (5)

where k⊥ =
√
k2x + k2y, φk = arctan(ky/kx) and

σi’s (σx, σy, σz) are the Pauli matrices representing the
pseudo-spin indices. The Weyl nodes are shifted by an
amount ±Q in momentum space due to broken time-
reversal symmetry whereas the broken inversion symme-
try shifts the nodes in energy by ±Q0. Here, αn = v⊥

kn−1
0

where v⊥ is the effective velocity of the quasiparticles
in the plane perpendicular to the z axis and k0 repre-
sents a material-dependent parameter having the dimen-
sion of momentum. v and Cs denote the velocity and
tilt parameter along the z-direction respectively. In this
work, we restrict ourselves to type-I multi-Weyl node
i.e., |Cs| < 1 which indicates that the Fermi surface is
point-like at the Weyl node. The energy dispersion of
the multi-Weyl node associated with chirality s is given
by ε±k,s = Csv(kz − sQ)− sQ0±

√
α2
nk

2n
⊥ + v2(kz − sQ)2

where ± represents conduction and valence bands respec-
tively. It is now clear that the dispersion around a Weyl
node with n = 1 is isotropic in all momentum directions
for v = v⊥. On the other hand, for n > 1, we find that
the dispersion around a double (triple) Weyl node be-
comes quadratic (cubic) along both kx and ky directions
whereas varies linearly with kz. Now, the different Berry
curvature components of a multi-Weyl node associated
with the chirality s are given by

Ω±k,s = ±s
2

nvα2
nk

2n−2
⊥

β3
k,s

{kx, ky, n(kz − sQ)}, (6)

where βk,s =
√
α2
nk

2n
⊥ + v2(kz − sQ)2 and ± represents

conduction and valence bands respectively. It is clear
from the Eq. (6) that, similar to energy dispersion, the
Berry curvature is isotropic in all momentum directions
for single Weyl case whereas becomes anisotropic for
WSMs with n > 1 i.e., for double WSM (n = 2) and
triple WSM (n = 3) due to the presence of k2n−2⊥ fac-
tor and monopole charge n. The above observation itself
is an indication that the multi-Weyl nature can indeed
modify CNHE, which appears due to combination of both
chiral anomaly and anomalous velocity induced by non-
trivial Berry curvature, in double and triple WSMs as
compared to single Weyl case.

It is important to note that to calculate NLHE we as-
sume that the Weyl nodes are reasonably well separated
such that the Fermi surface is a set of disconnected re-
gions around each Weyl node. Therefore, each Weyl node
will contribute to the total CNHE additively. In a real
WSM or a lattice model of a WSM where multiple pairs
of Weyl node coexist, we expect that the qualitative be-
havior will remain similar to the linearized model studied
here if we consider those Weyl nodes in the Brillouin zone
whose energies are very close to the Fermi energy and add
the contributions from each of those Weyl nodes.

IV. RESULTS

To calculate the different components of chiral
anomaly induced nonlinear current (CNC), we apply in-
plane (xy plane) electric and magnetic fields. To perform
the integration (Eq. 4) for type-I multi-Weyl semimetal,
we use cylindrical coordinate geometry and make sev-

eral transformations–(i) k⊥ = k⊥α
−1/n
n , kz = kz/v; (ii)

k⊥ = k
−1/n
⊥ ; (iii) k⊥ = k sin θ, kz = k cos θ. After some

algebra, JCN at zero temperature can be obtained as

[JCN ]xy =
e4τα

2
n
n

64π
3
2 ~2

n[n(9 + 2n)− 2]Γ[2− 1
n ]

Γ[ 92 −
1
n ]

∑
s

Cs

µ
2/n
s

(E ·B)(ẑ×E),

(7)

where we have added the contribution of two nodes of op-
posite chirality. Here, µs = µ+sQ0 and Γ(m) = (m−1)!
for any positive integer m. It is clear from the Eq. (7)
that the nonlinear current is restricted in the same plane
(xy) with the applied fields and flows perpendicular to
the tilt direction (z-direction in current study). There-
fore, we can define this effect as chiral anomaly induced
nonlinear planar Hall effect.

We now first consider Q0 = 0 i.e., the Weyl nodes
are at same energies. In this case, it is evident from the
above equation that the chiral anomaly induced nonlinear
planar Hall current (CNPHC) becomes only finite when
the sign of the tilt of opposite chirality nodes are same
(C+ = C−). In other words, the CNPHC vanishes in the
absence of tilt (C+ = C− = 0) and even in the presence
of chiral tilt (C+ = −C−) of the Weyl node. Considering
Q0 6= 0 i.e., when the Weyl nodes are located in different
energy, one can see from the Eq. (7) that the condition
for finite CNPHC changes. In this case, the CNPHC can
be non-zero in both cases i.e., for chiral as well as achiral
tilt configurations of the Weyl nodes.

From the Eq. (7), it is clear that the magnitude of
chiral anomaly induced nonlinear Hall current depends
non-trivially on topological charge n. Although the de-
pendency is nontrivial, the magnitude of CNPHC de-
creases with n. This is in contrast with the case of linear
planar Hall effect where the magnitude increases with
n68. Moreover, we also find that the multi-Weyl nature
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(i.e., the n dependence) also comes into CNPHC through

chemical potential as µ
−2/n
s . Interestingly, the chemi-

cal potential dependence (µ
−2/n
s ) remains unchanged in

both linear and nonlinear cases68. These scaling factors
of CNPHC with the topological charge might distinguish
a single, double and triple WSM from each other in ex-
periment. Having done a more detailed analysis, sur-
prisingly we find that in the presence of non-orthogonal
external fields (i.e., E ·B 6= 0), although the second term
of Eq. (4) is contributing to CNPHC for all WSMs, the
first term vanishes in the case of double WSM.

We would like to point out the most striking difference
between the BCD induced and chiral anomaly induced
nonlinear Hall effect. In the case of BCD induced nonlin-
ear Hall effect, the contribution associated with the Weyl
nodes vanishes (irrespective of the presence or absence of
the tilt of the Weyl nodes). On the other hand, the whole
contribution of the chiral anomaly induced nonlinear Hall
effect is generated from the Weyl nodes.

Now we study the CNHE when the external fields are
restricted in xz plane. In this configuration, JCN at zero
temperature can be written as

[JCN ]xz =
e4τnα

2
n
n

64π
3
2 ~2

[
[n(9 + 2n)− 2]Γ[2− 1

n ]ExBx

Γ[ 92 −
1
n ]

+
48n5Γ[3− 1

n ]EzBz

(7n− 2)(5n− 2)(3n− 2)Γ[ 12 −
1
n ]

]
∑
s

Cs

µ
2/n
s

(ẑ×Ex).

(8)

The above equation suggests that unlike xy plane, the
nonlinear Hall current flows perpendicular to the plane
containing external electric and magnetic fields (i.e.,
along y direction). Comparing Eq. (7) and Eq. (8), it
is clear that in the case of [JCN ]xz, the coefficients pro-
portional to E2

xBx and ExEzBz are different whereas the
coefficients proportional to E2

xBx and ExEyBy for JCNxy
are same. This leads to the fact that the current in the
y direction in the presence of external electromagnetic
fields restricted in xy plane will be different when the
electromagnetic fields are rotated in xz plane. This fact
gives rise to the planar anisotropy for chiral anomaly in-
duced nonlinear Hall effect. Interestingly, we find that
this planar anisotropy is present in the case of single and
triple WSMs whereas this is no longer exists in double
WSM.

From Eq. (8), it is clear that similar to the xy plane,
the chiral anomaly induced nonlinear Hall current de-
pends non-trivially on topological charge n. In particu-
lar, the magnitude of CNC decreases as we go from single
WSM to higher order WSMs (n > 1) at a fixed chemical
potential. Although the topological charge dependence
of CNC is different for xz plane compared to xy plane,
the chemical potential dependence (µ−2/n) remains un-
changed in both planes.

The analytical results obtained in Eqs. (7), (8) agree
very well with the numerical calculations, as shown in
Fig. 1. Note that, JCNxy has same coefficients propor-

(a)

(b)

(c)

(d)

FIG. 1. (Color online) Chiral anomaly induced nonlinear Hall
current JCN as a function of chemical potential with different
tilt strength (Cs = 0.1, 0.5, 0.8v) for a single multi-Weyl node
with chirality s = +1. Panel (a),(b) show the component
JCN
xy of the nonlinear Hall current with n = 2 and n = 3

respectively, while panel (c), (d) show the component JCN
xz of

the nonlinear Hall current with n = 2 and n = 3 respectively.
The symbols represent numerical results calculated directly
from Eq. (4), while the corresponding black lines indicate the
analytical results based on Eq. (7),(8) (for a single node s =
+1 only). Here we use v = 0.37 eV Å, v⊥ = 0.32 eV Å, k0 =
0.8Å,Q0 = 0.1 eV .

tional to E2
xBx and ExEyBy while JCNxz shows different

coefficients proportional to E2
xBx and ExEzBz. To il-

lustrate this point more clearly, we plot the magnitude
of JCNxz as a function of angle θ, the angle formed be-
tween the projections of the electric and magnetic fields
on the xz-plane (i.e., 〈E,B〉 = θ). As shown in Fig. 2,
JCNxz (θ = π/2, 3π/2) equals to zero for the case of n = 2,
while JCNxz (n = 3) shows an obvious anisotropy among
its x-direction (θ = 0, π/2, the first term in Eq. (8)) and
z-direction (θ = π/2, 3π/2,the second term in Eq. (8))
contribution, whose magnitudes are implied by the blue
and red solid lines respectively. Interestingly, a close look
into Eqs. (7) and (8) suggests that the magnitude as well
as n dependence of nonlinear Hall current along the y
direction is different for single and triple WSMs whereas
remains same for double WSM.

The wave packet of a Bloch electron carries an orbital
magnetic moment (OMM) in addition to its spin moment
due to the self rotation around its center of mass. The
orbital moment m(k) which couples to the magnetic field
(B) through a Zeeman-like term m(k) ·B, modifies the
unperturbed band energy and quasiparticle group veloc-
ity as ε̃k = εk−m ·B and ṽk = vk− 1

~∇(m ·B) and con-
sequently, semiclassical equations of motion. The orbital
magnetic moment for a multi-Weyl node with chirality s
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(a) (b)

FIG. 2. (Color online) The polar plot of chiral anomaly in-
duced nonlinear Hall current JCN

xz as a function of field angle
θ (where θ is the angle between the components of electric
and magnetic fields on the xz-plane) for a single multi-Weyl
node with chirality s = +1. Panel (a) and (b) show the po-
lar distribution JCN

xz (θ) for n = 2 and n = 3 respectively.
The solid red and blue lines indicate the magnitudes of JCN

xz

proportional to ExBx (θ = 0, π) and EzBz (θ = π/2, 3π/2),
respectively. The different lengths of the blue and red lines
indicate the anisotropy of the chiral anomaly induced nonlin-
ear Hall effect in multi-Weyl systems. Note that, the factor
(ẑ ×Ex) as given in Eq (8) is perpendicular to the xz-plane
and is ignored here. We also consider the effect of orbital
magnetic moment (OMM) on the magnitude of JCN

xz ,the nu-
merical results are represented by the green dots.

is given by

m±k,s =
senvα2

nk
2n−2
⊥

2~β2
k,s

{kx, ky, n(kz − sQ)}, (9)

where ± represents valence and conduction bands respec-
tively. It is clear from the Eq. (9) that the orbital mag-
netic moment is anisotropic in mWSMs compared to sin-
gle WSM. In order to calculate chiral anomaly induced
nonlinear Hall current numerically in mWSMs, we have
chosen k0 = 0.8, v = 0.37 eV · Å,v⊥ = 0.32 eV · Å,
|Cs| = 0.8, Q0 = 0, Q = 0. We find that the presence of
orbital magnetic moment does not affect the magnitude
of JCN , as shown in Fig. 2. This feature, distinct from
that in the anomalous responses in the linear regime70,71,
in turn can also be used to distinguish the chiral anomaly
induced nonlinear Hall effect from linear Hall effects in
experiments.

V. DISCUSSION AND CONCLUSION

We investigate the chiral anomaly induced nonlinear
Hall effect in multi-Weyl semimetals. In the presence of
non-orthogonal electromagnetic fields, it appears because
of the combination of both chiral anomaly and anoma-
lous velocity due to non-trivial Berry curvature in WSM.
Using the quasiclassical Boltzmann theory within the re-
laxation time approximation, we have predicted the be-

havior of CNHE considering low-energy model of type-
I mWSMs, specifically, using two separate multi-Weyl
nodes of opposite chiralities in the presence of external
electric and magnetic fields rotating in the i) xy plane
and ii) xz plane.

We find that the chiral anomaly induced nonlinear Hall
current flows perpendicular to the tilt direction i.e., per-
pendicular to the z direction in the present work. In
both cases, we show that, when the Weyl nodes are lo-
cated at same energy, the CNHE in mWSMs can only
be nonzero in the presence of achiral tilt (i.e., tilt of
the opposite chirality nodes are in same direction) of the
Weyl nodes. Interestingly, this restriction no longer ex-
ists when the Weyl nodes are located at different energies
in WSM (i.e., in the presence of a nonzero chiral chemi-
cal potential). We further analytically show that, in both
cases, the magnitude of CNHE depends non-trivially on
topological charge n (see Eqs. 7 and 8). Although the
dependencies is nontrivial, the magnitude of CNHE de-
creases with n. This is in contrast with the case of chiral
anomaly induced linear Hall effect where the magnitude
increases with n. Interestingly, the chemical potential de-

pendence (µ
−2/n
s ) remains unchanged in both linear and

nonlinear cases.

We find that the CNHE shows different behavior
(i.e., different coefficients) when external electromagnetic
fields are rotated in different planes (see Eqs. 7 and 8).
Specifically, we find that the current in the y direction
with the external electromagnetic fields rotated in xy
plane will be different than the case when the external
electromagnetic fields are rotated in xz plane. This fact
gives rise to the planar anisotropy for chiral anomaly in-
duced nonlinear Hall effect. Interestingly, we find that
this planar anisotropy is present in the case of single and
triple WSMs whereas this is no longer exists in double
WSM. Therefore, the CNHE can be used as a probe to
distinguish single, double and triple WSMs from each
other in experiments. We also find that unlike the lin-
ear response case, the orbital magnetic moment does not
affect on CNHE.

In contrast to the linearized model we used in this
work, a real mWSM may contain Weyl nodes with dif-
ferent tilt with respect to one another as well as number
of pair of nodes can be greater than one. In addition,
the CNHE calculated using the low energy model be-
comes dependent on the momentum cutoff in the case of
type-II mWSMs51. On the other hand, we know that a
lattice model of Weyl fermions with lattice regularization
provides a natural ultra-violet cut-off to the low-energy
Dirac spectrum. Therefore, to predict the quantitatively
correct experimental behavior of CNHE in mWSMs, one
needs to study a mWSM Hamiltonian using DFT or a lat-
tice Hamiltonian of an inversion broken mWSM. Finding
a lattice description of an inversion broken mWSM and
calculation of CNHE are interesting questions which we
leave for future study. Investigating CNHE in the quan-
tum regime (high magnetic field), where the Landau level
quantization is applicable, would also be a fascinating
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question to look into. Similar to chiral anomaly induced
linear Nernst effect67,68, we also expect a finite nonlin-
ear Nernst effect induced by chiral anomaly in mWSMs,
which is yet to be explored.
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