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We demonstrate that the presence of a localized state at the corner of an insulating domain is not
always a predictor nor a direct consequence of a certain non-trivial higher-order topological invariant,
even though they appear to co-exist in the same Hamiltonian parameter space. Our analysis of Cn-
symmetric crystalline insulators and their multi-layer stacks reveals that topological corner states
are not necessarily correlated with other well-established higher-order boundary observables, such as
fractional corner charge or filling anomaly. In a C3-symmetric breathing Kagome lattice, for example,
we show that the bulk polarization, which successfully predicts the fractional corner anomaly, fails
to be the relevant topological invariant for zero-energy corner states; instead, these corner states
are explained by the decoration of topological edges. Also, while the corner states at the interface
between C4-symmetric topological crystalline insulators and their trivial counterpart have long been
reported to be the result of the bulk polarization of the lowest band, we reveal that such embedded
corner states are trivial defect states. By refining several bulk-corner correspondences in two-
dimensional topological crystalline insulators, our work motivates further development of rigorous
theoretical grounds for associating the existence of corner states with higher-order topology of host
materials.

I. INTRODUCTION

Bulk-boundary correspondence (BBC) lies at the heart
of topological physics. BBC bridges abstract mathemat-
ical indices called topological invariants, which are calcu-
lated from band structures of a bulk material, to physical
observables at its boundary. Early efforts in establishing
BBC focused on boundaries of co-dimension 1 such as
edges of two-dimensional (2D) materials or surfaces of
three-dimensional (3D) materials [1–5]. Inspired by the
discovery—both theoretical[6–11] and experimental[12–
16]—of topological materials that feature gapless states
at boundaries of co-dimension d ≥ 2, efforts have re-
cently been made to extend the framework of BBC to
these higher-order topological phases [17–19].

The study of BBC sometimes takes a form of an-
alytic case studies with a specific form of topological
invariant [3, 4, 19], or relies on algebraic topology for
generic classification of bulk and boundary Hamiltoni-
ans [1, 2, 5, 17, 18]. While the latter approach provides
more comprehensive formulation of BBC than the for-
mer does, its concern does not aim further than identi-
fying the classification group of Hamiltonian in certain
symmetry classes, thereby evading the task of finding
the actual topological invariants relevant to the bound-
ary signatures. For example, the algebraic knowledge of
”the homotopy group of unitary symmetry group is Z in
2D” [1, 2] does not reveal the definition of a relevant bulk
invariant nor the mechanism of how a certain invariant
leads to boundary signature. In contrast, the BBC of
2D unitary symmetry group was undoubtedly completed
by the famous work by Thouless-Kohmoto-Nightingale-
denNijs [20] that provided an analytic derivation on the
relationship between Chern number and the quantized

Hall-conductivity. Therefore, while the algebraic classi-
fication method allows an insightful start for the search
of topological structures, rigorous BBC cannot be estab-
lished without rigorous analytic studies that specifically
address a certain pair of a bulk invariant and a boundary
signature.

As the field of higher-order topological insulators (HO-
TIs) rapidly expanded, however, rigorous BBCs have of-
ten been replaced by an implicit assumption that it suf-
fices to show merely that the boundary signatures (e.g.
corner-localized states) ”appear at the same time” with
a bulk invariant that the host bulk Hamiltonian can be
characterized by (e.g. bulk polarization). To be specific,
the following prescriptive framework is widely used in the
field of HOTIs [21–45]: (1) find a symmetry-protected
bulk topological invariant of a given Hamiltonian model
within a certain range of parameters, (2) uncover corner-
localized states for the same parameters of the Hamilto-
nian as in (1), and (3) conflate (1) and (2) because both
occur for the same parameters range. Because correla-
tion does not imply causation, the above procedure does
not necessarily imply that the boundary signature has a
topological origin. A physical explanation is necessary to
establish the causal relationship between bulk invariants
and the emergence of anomalous boundary properties.
Otherwise, a topological nature of a boundary can be
attributed to an irrelevant bulk invariant, or a trivial de-
fect state can be mistaken for a topological one, thereby
obscuring true BBCs.

In this work, we address several cases of such weakly
conjectured higher-order BBC, specifically in the context
of corner-localized states and bulk polarization in 2D Cn-
symmetric topological crystalline insulators (TCIs). By
introducing the multilayer stacking construction of TCIs,
inspired by Ref. [46], we clearly reveal that ZCSs in C3-
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FIG. 1. A Venn diagram classification of crystalline insulators
in regard to the existence of nonzero p or Qc and the existence
of ZCSs; I : a class of models that support both nontrivial
bulk higher-order topology and ZCSs, II : support nonzero
p or Qc only, but no ZCSs, and III : support ZCSs despite
trivial bulk topology.

symmetric TCI (also known as breathing Kagome lat-
tices) are not well correlated with the bulk polarization
characterized by Z3, in contrary to many previous works
that claimed BBC between ZCS and bulk polarization
in C3-symmetric TCI [21–34]. We show that, at best,
ZCSs in C3-symmetric TCI can be understood as purely
an edge effect associated with Z2 composite Zak-phase of
chiral-symmetric edge bands.

Also, we discuss the issues with the corner states in
4-band C4-symmetric TCI model. First, we clarify and
complement the BBC regarding the ZCS in the open-
boundary—i.e. terminated with vacuum—system re-
ported by Ref [47, 48]. We show that, for an unam-
biguous BBC, it is necessary to introduce a half corner
charge index at the half-filling despite the lack of bandgap
at zero energy. It turns out that the corner charge index
defined at half-filling (the first and the second band alto-
gether) becomes a proper bulk invariant responsible for
ZCSs under the presence of the chiral symmetry and the
reflection symmetry. Second, we reveal that the corner
states, which appear at 90◦-cornered interfaces between
topological and trivial domains, are trivial defect states
without any topological origin, while many previous stud-
ies regarding this C4-symmetric TCI model [35–43] sug-
gested BBC between these embedded corner states and

FIG. 2. (a) C3-symmetric crystalline insulator model h(3);
t and λ are the nearest-neighbor coupling within and across
unit cells, respectively. (b) C4-symmetric crystalline insula-

tor model h(4); g is the next-nearest-neighbor coupling across
diagonally adjacent unit cells. (c) N -layer stacking of a
Hamiltonian model h, ⊕Nh; γ denotes the interlayer coupling
strength.

TABLE I. Hamiltonian models of C3- and C4-symmetric in-
sulators for each classification set introduced in Fig. 1.

C3-symm. models C4-symm. models

I ⊕1,5,7,11,...h
(3)(|t| < |λ|) h(4)(|t| < |λ|; g = 0)

II ⊕2,4,8,10,...h
(3)(|t| < |λ|) h(4)(|t| < |λ|; g 6= 0)

III ⊕3,9,15,...h
(3)(|t| < |λ|)

the bulk polarization of the lowest energy band because
they appear at the bandgap right above the lowest band.
The underyling theory work [35] of those studies explic-
itly claimed such correspondence between the embedded
corner states at the embedded-boundary and the ZCS in
the open-boundary system. However, we show that the
counterpart zero-energy state in the embedded-boundary
system exists as a state delocalized in the outer domain,
and the trivial embedded corner states at the bandgap
above the lowest band can be independently made to dis-
appear by a local perturbation that respects all essential
symmetries of the system (C4v and chiral symmetry).
These examples clearly demonstrate that a precise for-
mulation of BBC requires more than simply identifying
the phase diagrams of a bulk invariant and a boundary
state.

To set some good examples on the contrary, we briefly
review several well-established BBCs. A classic exam-
ple is the forementioned correspondence between the Hall
conductivity (a surface effect) and Chern number (a bulk
topological index). The two are directly related through
an analytic expression [20]. Because conduction can-
not occur in an insulating bulk, nonzero Hall conductiv-
ity in a Chern insulator must indicate metallic channels
on its edge or, in other words, gapless edge states [49].
Another analytically straightforward BBC is found be-
tween fractional edge charge and bulk polarization in a
one-dimensional (1D) TCI [50], i.e. Su-Schrieffer-Heeger
(SSH) model. Recent works [11, 46] established higher-
order versions of similar correspondences in 2D TCIs by
explicitly constructing bulk invariants for fractional cor-
ner charges. Even though these boundary anomalies in
the form of fractional charge excess/deficit have yet to be
incorporated in the framework of the algebraic classifica-
tion method [18], they have recently attracted attention
as alternative observables of higher-order topology [51].

Our key message is that, unlike the above-mentioned
non-vanishing Chern number being a necessary and suf-
ficient condition for the existence of gapless edge states
under a clear BBC [20, 49], nontrivial bulk polarization p
or secondary topological index for corner charge Qc [46]
are not always sufficient or necessary for the existence
of corner states, even though they appear to co-exist
in some systems. As recently pointed out [46, 51], the
observables in a straightforward BBC with p or Qc are
fractional corner or edge charge anomalies. Therefore,
the treatment of BBC regarding to the corner states re-
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quires extra caution. The Venn diagram shown in Fig.1
schematically illustrates our key result: a ZCS might not
exist despite nontrivial p and Qc (classification set II) or
a ZCS can arise despite vanishing p and Qc (classification
set III). Figure 2(a) and (b) depict C3- and C4-symmetric
crystalline insulators, respectively, that are used as ex-
emplary models to support our key results, and Table I
summarizes various C3- and C4-symmetric Hamiltonian
models according to each classification category defined
in Fig.1. In Table I and Fig.1, C3-symmetric models
that belong to the set I are (6N − 5)- or (6N − 1)-layer
stacking of h(3) model given in Fig.2(a) with |t| < |λ|,
as these stacked models possess nonzero bulk polariza-
tion and ZCSs. (6N − 4)- or (6N − 2)-layer stacking of
h(3)(|t| < |λ|) model belong to the set II, as these stacked
models possess nonzero p but don’t exhibit ZCSs. On
contrary, (6N− 3)-layer stacking of h(3)(|t| < |λ|) model
belong to the set III, as these stacked models possess
ZCSs despite vanishing p. Therefore, it is clear that the
BBC for ZCSs C3-symmetric models cannot be explained
by the bulk polarization. For C4-symmetric models, h(4)

model given in Fig.2(b) with |t| < |λ| and g = 0 possesses
ZCSs along with nonzero p and Qc, thereby belonging to
the set I. But, h(4)(|t| < |λ|) model with nonzero g loses
the ZCSs due to the lack of chiral symmetry despite car-
rying the same p and Qc to the vanishing g case. Each
Hamiltonian model elements in Table I is discussed in
more details in the following sections.

II. STACKING OPERATION

We introduce the stacking operation ⊕ between two
crystalline insulators h1 and h2, as defined in Ref.[46]

h1 ⊕ h2 =

[
h1 γ
γ† h2

]
, (1)

where γ describes the nearest-neighbor coupling between
adjacent layers. The strength of interlayer coupling is
set to be reasonably small so that the shared bandgap
of h1,2 is not closed. We denote an N layer stack of h
as ⊕Nh, as depicted in Fig. 2(c). This operation allows
us to easily access other topologically distinct phases, as
the topological indices of a stacked insulator are simply
given as addition of those in each layer [46]; for example,

ph1⊕h2 ≡ ph1 + ph2 (mod {R}), (2)

where the composite polarization p (normalized to a unit
charge) is evaluated in each model for all bands below the
shared bandgap of interest, and is given in modulo the
set of primitive lattice vectors {R}. The same relation
holds for Qc as well in modulo unit charge. The stacking
operation defined here in Eq. (1) and its property in
Eq. (2) turn out to be extremely useful in constructing
case models that belong to each category of the Venn

diagram in Fig. 1, especially for C3-symmetric crystalline
insulators as shown in Table I.

III. ZCS IN C3-SYMMETRIC TCI AS
BOUNDARY TOPOLOGICAL EFFECTS

Now, we consider the example model h(3) in Fig. 2(a),
also known as a breating Kagome lattice, with three-
fold rotational C3-symmetry. When the nearest-neighbor
coupling strengths across unit cells, λ, are greater than
those within unit cells, t, the considered model is known
to carry a ZCS emerging at every 60◦-angled corners of
a type with a single corner-most sublattice, as depicted
in Fig. 3(a) (another type of 60◦-angled corners with
two corner-most sublattices doesn’t support ZCSs). The
same condition |t| < |λ| produces nonzero bulk polar-
ization p(1) = 2

3R1 + 2
3R2 in the lowest energy band

[22–24, 46], which is separated from the second and third
bands by a bandgap, see Fig. 3(b). Figure 3(c) illus-
trates that each Wannier center is displaced from the
origin of each unit cell by bulk polarization vector p(1),
and therefore located at the junction vertice of three ad-
jacent hexagonal unit cells. Thus, in the limit of |t| � |λ|
(i.e. localization length of wannier function is much
smaller than the unit cell size), a unit cell gains frac-
tional charge of 1

3 from each Wannier center in contact,
when the lowest energy band is occupied. For exam-

FIG. 3. (a) A 60◦-angled corner with a single corner-most

sublattice. (b) Band structure of h(3); t = −0.25 and λ = −1.
(c) Charge distribution around a 60◦-angled corner at 1

3
-filling

(upto the first band only); turquoise circles denote the Wan-
nier centers displaced by p = 2

3
R1 + 2

3
R2 from the unit cell

centers. (d) Eigenspectra of a finite-sized system (190 unit
cells) with open boundaries of triangular termination like in
(a); corner-localized modes are highlighted as dark red dots.
(e) Field profile of a ZCS; the area of black circles are pro-
portional to the wavefunction amplitude. (f) Edge dispersion
of nano-ribbon structure with an edge termination like one of
the edges in (a); the edge localized band is colored red along
with its inversion eigenvalues at high symmetry points.
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ple, the corner-most unit cell carries no charge ρ = 0
as there is no Wannier center in contact, each unit cell
along both edges carries a fractional charge of ρ = 1

3 as
there is a Wannier center in contact, and each unit cell
in the bulk carry a whole charge ρ ≡ 0 (mod 1) as there
are three Wannier centers in contact. From this observa-
tion, it has been recently established that nonzero bulk
polarization in h(3) gives rise to a higher-order topolog-
ical observable called fractional corner anomaly (FCA)
φ = ρcorner−ρedge1−ρedge2 = 0− 1

3 −
1
3 ≡

1
3 (mod 1)[51].

Note that FCA is non-vanishing even in the absence of
corner charge ρcorner = Qc.

Regarding the existence of a ZCS shown in Fig.3 (d)
and (e), many previous works [21–34] labeled the ZCS to
be higher-order-topological merely due to its co-existence
with the bulk polarization p(1) in the Hamiltonian pa-
rameter space (|t| < |λ|). This conjecture, however, is
disproved by our analysis of multi-layer stacking con-
structions of ⊕1,2,3...h

(3) (|t| < |λ|) described below. In-
stead, we prove that the existence of a ZCS is a re-
sult of topological Zak phase of the edge localized band.
Figure 3(f) shows the band dispersion of 1D-periodic
nano-ribbon structure terminated by an edge shown in
Fig 3(a), where the red line denotes an edge-localized
band. This edge band carries the inversion eigenvalues
of +1 at k1d = 0 and −1 at k1d = π, thereby fea-
turing a Zak phase of θedgeZ = π [50] (or polarization
of 1

2 [11]). The energy dispersion of this band follows

E(k1d) = −
√
t2 + λ2 + 2tλ cos(k1d), which is reminis-

cent of a 1D chiral-symmetric SSH chain [50]. In fact,
the chiral partner band of this edge band in Fig. 3(d)
does not stand out since it is hybridized with other bulk
bands at positive energy. The detailed discussion on how
this edge-localized band is exactly mapped onto a 1D
chiral-symmetric SSH chain is provided in Appendix.

In what follows, we analyze the multi-layer stacks of
h(3) (|t| < |λ|) to show that the existence of ZCSs of a
breathing Kagome lattice is correlated with neither fi-
nite bulk polarization nor with finite FCA. Such corre-
lation has been widely assumed because the existence
conditions |t| < |λ| for ZCSs and nonzero p appear to
coincide with each other [22–24]. Bilayer and trilayer
stacks of h(3) (|t| < |λ|), according to Eq. (2), carry the
bulk polarization of p(2) ≡ 2p(1) ≡ 1

3R1 + 1
3R2 and

p(3) ≡ 3p(1) ≡ 0, respectively. Thus, based on their bulk

polarization, ⊕2h
(3) is classified as topologically nontriv-

ial, and ⊕3h
(3) as trivial. This distinction will indeed

physically manifest in their FCA; φ = 2
3 for ⊕2h

(3) and

φ = 0 for ⊕3h
(3). Therefore, if the presence of a ZCS

were predicated on the finite FCA, we would expect that
⊕2h

(3) should posses a ZCS while ⊕3h
(3) should not. Re-

markably, the opposite is true, as observed from Fig. 4(a-
b). Furthermore, the quad-layer stack ⊕4h

(3) shares ex-
actly the same bulk polarization p(4) ≡ 4p(1) ≡ p(1) and

FCA φ = 1
3 with the original monolayer structure h(3)

FIG. 4. (a)-(c) Eigenspectra of a finite-sized system—190
unit cells as in Fig. 3(d)—of the bi-, tri-, and quad-layer

stacked structures of h(3)(t = −0.25, λ = −1), respectively,
with the interlayer coupling strength of γ = −0.3; corner-
localized modes are highlighted as dark red dots. (d)-(f) Edge
dispersion of nano-ribbon structure of bi-, tri-, and quad-layer
structures, respectively, as in Fig. 3(f); the composite Zak
phases of the edge-localized bands (dark red) are denoted
together. (g) Energies of all corner-localized states in bi-
(dashed green), tri-(solid blue), and quad-layer(dot/dashed
orange) structures as a function of γ. (h) At the corner, each
of two edge-localized SSH chains (i = 1, 2) supports a zero-
energy termination-localized state, where it is localized along
the edge with the edge-to-corner localization factor βe→c

i and
localized with respect to the bulk with the bulk-to-edge local-
ization factor βb→e

i . These two states coalesce to each other
as βb→e

1 = βe→c
2 and βb→e

2 = βe→c
1 , giving rise to a ZCS to

the bulk Hamiltonian.

that supports ZCSs, but ⊕4h
(3) does not support a ZCS

as shown in Fig. 4(c).
On the other hand, the composite Zak phase of the

edge-localized bands in those structures, as shown in Fig.
4(d)-(f), predicts well the existence of ZCSs. In the pres-
ence of multiple bands below a certain bandgap of in-
terest, the existence of a mid-gap boundary/dislocation
state in 1D systems is determined by the composite Zak
phase of all bands below the bandgap [52, 53]. Thus,
we find that a stack with an even number of layers fea-
tures vanishing θedgeZ = 0 (mod 2π) and a stack with

an odd number of layer has nontrivial θedgeZ = π. Ac-
cordingly, we observe the ZCSs in odd-layer stacks, but
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not in even-layer stacks. We note that there exist two
corner-localized states in the bilayer stack structure as
well, but they are not pinned at zero-energy. Their spec-
tral positions are at E = ±γ, where γ is the interlayer
coupling strength. Consequently, these corner states are
not spectrally stable against perturbations in γ (e.g. ver-
tical compression). Similarly, the trilayer stack also car-
ries two spectrally unstable corner states at E = ±

√
2γ

other than the ZCS. The spectral shifts of these corner
states with respect to the change in γ is drawn in Fig.
4(g).

In general, ⊕Nh(3) (|t| < |λ|) carries N corner-localized
states, and, one of them becomes a ZCS with topo-
logical spectral pinning, when N is an odd number.
Therefore, it is clear that the existence of ZCSs is de-
termined not by Z3 bulk polarization, but by Z2 edge
band Zak phase. To be specific, a corner acts as a ter-
mination to each of two edge-localized SSH chains, and
each topological (θedgeZ = π) SSH chain is expected to
support a zero-energy state localized at the termina-
tion: |v1〉 =

∑
n,m≥0

[
βb→e1

]n
[βe→c1 ]

m |A;nR1 + mR2〉
and |v2〉 =

∑
n,m≥0

[
βb→e2

]n
[βe→c2 ]

m |A;nR2 + mR1〉.
Here, A is the sublattice index of the corner-most sublat-
tice, |A; R〉 is the basis vector that occupies the sublattice
A in the unit cell located at position R, and βb→ei /βe→ci is
the bulk-to-edge/edge-to-corner localization factor as de-
picted in Fig. 4(h). It turns out that these two localized
states from each edge coalesce |v1〉 = |v2〉, as the bulk-
to-edge localization factor of an edge matches exactly to
the edge-to-corner localization factor of the other edge:
βb→e1 = βe→c2 = −t/λ and βb→e2 = βe→c1 = −t/λ.

Lastly, we show that ZCSs still arise in a breathing
Kagome lattice, when there is no bulk crystalline sym-
metry. Figure 5 clearly demonstrates that ZCSs are well
preserved even though hopping strengths are all differ-
ent for three sides and C3-rotational and mirror sym-
metries are broken. Like this case where we observe
edge-induced corner states without any connection to
bulk properties, several recent works have similarly iden-
tified higher-order topological signatures stemming from
boundary (not bulk) topology in the language of deco-
ration subgroups [18] or embedded topological insulators
[54].

IV. ZCS IN C4-SYMMETRIC TCI WITH
OPEN-BOUNDARIES

Next, we consider the example model h(4) in Fig. 2(b)
with four-fold rotational C4-symmetry. Before we ad-
dress the main issue of the embedded corner states that
arise at the 90◦-cornered embedded-boundary between
the trivial (|t| > |λ|) and the topological (|t| < |λ|) do-
mains, we first investigate the ZCS in the open-boundary
system. For the ZCS in the open-boundary system of
C4-symmetric TCI model h(4) (|t| < |λ|; g = 0), we estab-

FIG. 5. (a) Breathing Kagome lattice without any bulk crys-
talline (C3- nor mirror) symmetries. (b) Eigenspectra of
a finite-sized system—190 unit cells as in Fig. 3(d)—with
t1 = −0.5, λ1 = −0.9, t2 = −0.3, λ2 = −1, t3 = −0.1, and
λ3 = −0.4. (c) Field profiles of ZCSs at each corner.

lish an alternative BBC that complements the study pre-
sented in Ref [47, 48]. Ref [47, 48] report that the reflec-
tion symmetry (thus, C4v-symmetry along with the un-
derlying rotational symmetry) and the chiral symmetry
prevent the inseparable hybridization of the corner state
and the bulk states at the zero energy, allowing the well-
localized ZCS to exist as a bound-state-in-continuum.
The proof given in Ref [47] starts by assuming the ex-
istence of a zero-energy eigenstate that consists of a
corner-localized part and a bulk part, and proves that
the bulk part is trivially separable under C4v and chi-
ral symmetries. Their initial assumption of the existence
of such zero-energy eigenstate with corner-concentrated
(even though not fully localized) distribution, however,
eventually relies on the phenomenological observation of
the corner density-of-state being peaked at the zero en-
ergy, rather than being unambiguously explained through
topological effects, for the following reasons.

As shown in Fig. 6(a), h(4) (|t| < |λ|; g = 0) model has
no bandgap at half-filling; in other words, the second and
the third band touch at zero energy. Thus, the higher-
order topology of this system has been described by the
corner charge index of the first band, the middle two
bands together, and the fourth band: Qc = (− 1

4 ,
1
2 ,−

1
4 )

mod 1. An important thing to note is that this topo-
logical corner charge index is always given in modulo 1,
and Qc = 1

2 can manifest either as an excess charge of
+ 1

2 or as a deficit charge of − 1
2 in the open-boundary

system. The presence of a corner-localized state can be
unambiguously predicted only with the prior-knowledge
that all Qc manifests as a deficit charge, thereby requir-
ing a whole charge compensation by a corner state. Since
the middle two bands are grouped together, however, the
bit of information Qc = 1

2 itself cannot tell any specific
arrangement of eigenstates at the zero energy.

Even with the chiral symmetry, at best we know that
the half charge of two middle bands should be split into
two quarters with respect to the zero energy, but still,
before diagonalizing the finite system, there is no way to
predict whether the split quarter charge for the second
and the third bands will be − 1

4 or + 1
4 mod 1. If the

split charges are − 1
4—Qc = (− 1

4 ,−
1
4 ,−

1
4 ,−

1
4 )—under
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FIG. 6. (a) Band structure of h(4) along with C4-rotation
eigenvalues at Γ and M ; t = −0.25, λ = −1, and g = 0. (b)
Staggering phase flux of θ realizes a quadrupole insulator, and
the same structure in (a) viewed as a zero-flux limit (θ → 0) of
quadrupole insulator; the C4-rotation eigenvalues at Γ and M
for the second and third bands are assigned differently. (c)
Charge distribution around a corner at quarter-filling (the
first band only); turquoise circles are Wannier centers. (d)
Charge distribution around a corner at half-filling (upto the
second band); two wannier centers are overlapping at each
position. (e) Eigenspectra of a finite-sized system with open
boundaries (12 by 12 unit cells); the corner modes are marked
as dark red dots. (f) A uniform on-site loss of δ = −0.05 was
applied to a open-boundary domain of 12×12 unit cells except
at each 2× 2 corner unit cells. (g) Resulting eigenvalues in a
complex energy plane. (h) Field profile of the corner modes
marked as dark red dots in (f) and (h).

the chiral symmetry, all Qc need to manifest as charge
deficits. Otherwise, the charge-neutrality of the entire
system cannot be met due to a pair (by chiral symmetry)
of charge excess of + 3

4 ; there will be + 3
4 × 2 − 1

4 × 2 =
+1 excess charge, even if the other pair comes in the
deficit of − 1

4 . Thus, in this case, a ZCS is guaranteed.
If the split charges are + 1

4—Qc = (− 1
4 ,+

1
4 ,+

1
4 ,−

1
4 )—

under the chiral symmetry, however, a ZCS cannot exist.
Therefore, the presence of the ZCS cannot be predicted
directly out of Qc = (− 1

4 ,
1
2 ,−

1
4 ) mod 1, as there is the

latter possibility.

In order to resolve this ambiguity, we demonstrate that
a half corner charge Qc = 1

2 is well defined at half-filling
for the first and the second band considered together,
even though the system is gapless at zero energy between
the second and the third band. In a time reversal- and
C4-symmetric crystalline insulator, the following expres-

sions can be used to determine its topological indices [46]:

p =
1

2

[
X

(2)
+1

]
(x̂ + ŷ) (mod {x̂, ŷ}), (3a)

Qc =
1

4

([
X

(2)
+1

]
+ 2

[
M

(4)
+1

]
+ 3

[
M

(4)
+i

])
(mod 1), (3b)

where [k
(n)
p ] ≡ #k

(n)
p − #Γ

(n)
p , and #k

(n)
p refers to the

number of eigenstates with Cn-rotation eigenvalue p at
a Cn-rotational invariant momentum k. The eigenstates
are counted from the lowest propagation band up to the
band of interest. For example, in h(4) (|t| < |λ|; g = 0),
the C2-rotation eigenvalues are (−1,+1,+1,−1) at X
and (+1,−1,−1,+1) at Γ in order from the lowest band

to the fourth band. Then, we get [X
(2)
+1] = #X

(2)
+1 −

#Γ
(2)
+1 = 0 − 1 = −1 for the lowest band only and

[X
(2)
+1] = 1 − 1 = 0 for the first two bands together.

Thus, according to Eq. (3a), the lowest band carries a
nonzero bulk polarization of p = 1

2 (x̂ + ŷ), but the first
two bands together feature vanishing polarization p = 0.

Figure 6(a) depicts the band structure of
h(4) (|t| < |λ|; g = 0) model along with C4-rotation
eigenvalues at M and at Γ. At M and Γ, the second
and third bands are degenerate at zero energy. As these
degenerate modes have different eigenvalues ±i, there
arises an ambiguity of whether we assign +i or −i to
the C4-rotation eigenvalue of the second band. This
ambiguity, however, can be lifted up partially by the

time-reversal symmetry, which enforces [M
(4)
+i ] = [M

(4)
−i ]

(see the supplementary material of Ref [46]), that we
should choose the same values at M and at Γ. Without
loss of generality, −i is assigned to the second band, see

Fig. 6(a), which gives [M
(4)
+i ] = 1−1 = 0 for the first two

bands. Then, along with [X
(2)
+1] = 0 and [M

(4)
+1] = −1,

Equation 3b yields a half corner charge Qc = 1
2 for the

first two bands.
Another way of interpreting this half charge is to con-

sider this C4-symmetric TCI model as a quadrupole in-
sulator in a zero flux limit. A phase flux of θ can be
achieved by complex tight-binding parameters [t, λ] →
[t, λ] × e+iθ/4(×e−iθ/4) for hopping along(against) the
direction of arrows illustrated in Fig. 6(b). Any fi-
nite phase flux upon a cyclic hopping opens a complete
bandgap between the second and the third band, while
maintaining the chiral symmetry [16]. In this setting, the
C4-rotation eigenvalue of the second band at M, +i, is
different from that at Γ, −i, as shown in Fig. 6(c). While
we cannot apply Eq. (3) no longer as the time-reversal
symmetry is broken due to the finite flux, the quadrupole
moment qxy can be evaluated as

ei2πqxy = r+4 (M)r+4 (Γ)∗ = r−4 (M)r−4 (Γ)∗, (4)

where r±4 (k) is the C4-rotation eigenvalue at k = M/Γ
that satisfies r±4 (k)2 = ±1 [11, 55]. From Fig. 5(c), we
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get r+4 (M) = −1, r+4 (Γ) = +1, r−4 (M) = +i, r−4 (Γ) =
−i, and therefore qxy = Qc = 1

2 [11].

Figure 6(c) shows the location of Wannier centers p =
1
2 (x̂ + ŷ) and the resulting charge distribution (in mod-
ulo unit charge) at quarter-filling (when the lowest energy
band is filled) in the limit of |t| � |λ| [46]. This quarter-
filled configuration features edge charge density of 1

2 per
unit cell and FCA of φ = − 1

4 [51]. At half-filling (when
the first two bands are filled), we have provided two dif-
ferent perspectives—(1) enforcing time-reversal symme-
try or (2) treating the system as a time-reversal-broken
quadrupole insulator with infinitesimal bandgap—that a
corner charge index Qc = 1

2 can still be well-defined de-
spite lack of a band gap at zero energy. The resulting
charge distribution at half-filling (upto the second band)
drawn in Fig. 6(d) shows a half corner charge and van-
ishing edge charge, as two overlapping Wannier centers
from the first and second bands cancel the contribution
to bulk polarization from each other.

Now that we have established a proper invariant Qc =
1
2 at half-filling, we investigate the crucial role of the chi-
ral symmetry at half-filling for the existence of ZCSs. It
is well studied in various systems [7, 8, 11, 13–16, 46, 56]
that the combination of a half fractional corner charge
and the chiral symmetry guarantees a ZCS. If the bands
below zero energy carry a half charge at a corner, the chi-
ral symmetry ensures that the bands above zero energy
also carry a half charge at the corner. Since the integra-
tion of local density of states over energy must be equal
to the number of bands at each unit cell (i.e. charge neu-
trality), the fractional corner charge in this case cannot
be a charge excess as it implies that the integration at the
corner unit cell exceeds the number of bands. Thus, two
half charge deficits, each from the lower and the upper
bands, requires the existence of a corner state to compen-
sate for total whole charge deficit, and this corner state
should be pinned at zero energy due to the chiral sym-
metry. This BBC based on Qc = 1

2 at half-filling and the
chiral symmetry does not leave any ambiguity that we
discussed in the beginning of this section regarding the
BBC based on the lumped treatment of the second and
the third band.

We note that, due to the lack of bandgap at zero en-
ergy, the reflection symmetry (C4v) is additionally re-
quired to ensure that the predicted ZCS is immune to
inseparable hybridization with the bulk states at the
zero energy [47]. Without the reflection symmetry, even
though our BBC still predicts the existence of a set of
corner-loaded states at or around zero-energy that com-
pensates the corner charge deficit, these states may leak
into the bulk continuum. Also, our approach to define
a topological invariant at the half-filling works only be-
cause the second and the third band simply touch each
other at zero energy and don’t overlap with each other in
a finite energy range. This non-overlapping band touch
is in fact ensured by the chiral symmetry, which enforces

FIG. 7. (a) Band structure of a chiral-symmetry-broken h(4)

structure along with C4-rotation eigenvalues at Γ and M; t =
−0.25, λ = −1, and g = −0.3. (b) Eigenvalues in a complex
energy plane obtained by using the same setting described in
Fig. 6(f). (c) Field profile of the modes marked as dark red
dots in (b). (d) Zoom on one of the quadrants of (c). (e)
Zoom on one of the quadrants of a ZCS wavefunction Fig.
6(h). (f) Average wavefunction amplitude |ψ|2 in a unit cell
as a function of the number of grid steps (x+y) from the
corner-most unit cell.

the energy range of the second(third) band to be strictly
less(greater) than or equal to zero energy.

The chiral symmetry in C4-symmetric TCI is given as
S = diag[1,−1, 1,−1] where the four sublattices are in-
dexed in a clockwise order, and its presence Sh(4)S−1 =
−h(4) gives rise to a band structure that is mirror-
symmetric with respect to the zero energy as shown in
Fig. 6(a)-(b). Since we have a half-corner charge and the
chiral symmetry, a ZCS is expected to arise. Figure 6(e)
shows that the expected ZCS is embedded in the bulk
continuum due to absence of a bandgap at zero energy.
In order to avoid numerical complication that the ZCS
wavefunction gets generally mixed with other degener-
ate bulk states, we adopt the method used in Ref. [47]:
as shown in Fig. 6(f), we introduced a uniform loss of
iδ (δ = −0.05) in the system except at small subsystems
(2×2 unit cell) at each corner. Then, the corner-localized
states will be easily identified, as their imaginary part of
eigenvalue becomes much smaller than other bulk modes,
see Fig. 6(g). As expected, Figure 6(h) clearly shows the
wavefunction of a truly corner-localized zero energy state
at each corner.

The diagonal hopping across diagonally adjacent unit
cells g, see Fig. 2(b), can be used to remove the chi-
ral symmetry while preserving C4v symmetry. Since C4

symmtery is preserved, the perturbed structure with a fi-
nite g still inherits the same C4- and C2-rotation eigenval-
ues for the modes at rotation-invariant momenta, given
that g is not too large to cause band inversion. In other
words, a moderate strength of g doesn’t change bulk
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topological invariants p and Qc that are discussed in the
previous section. Figure 7(a) shows that a finite g breaks
the chiral symmetry, as seen in the band structure that is
not mirror-symmetric around the zero energy. Then, we
observe that the modes that were ZCSs with g = 0 now
get hybridized with the bulk continuum due to broken
chiral symmetry. A detailed analysis on how this hy-
bridization occurs as a result of chiral symmetry break-
ing is provided in Ref. [47]. Figure 7(c)-(f) shows that
the wavefunction amplitude of these hybridized modes
remains finite in the bulk unlike the true ZCS wavefunc-
tion which decays exponentially from the corner. This
observation verifies that the presence of the chiral sym-
metry with respect to zero energy plays a pivotal role in
the existence of a ZCS, in agreement both with Ref [47]
and our BBC established above.

V. C4-SYMMETRIC TCI WITH
EMBEDDED-BOUNDARIES

As we discussed earlier, there have been several works
that studied the corner states in C4 TCI at an embed-
ded corner interfaced with a surrounding trivial domain
[35–43], where these corner states emerge in the bandgap
between the first and the second bands instead at zero
energy. These studies labeled such corner state to be
second-order topological simply because the nonzero bulk
polarization co-appears with the corner states, or con-
flated the origin of their corner state with that of the
topological ZCS studied in this work without enough jus-
tification [35]. Here, however, we provide a detailed ex-
planation on why the embedded corner states reported in
Ref. [35–43] are trivial defect states, sharing no common-
ality in their formation mechanism with the ZCS studied
in the previous section and in Ref. [47, 48].

Figure 8(a) depicts the geometry of the topological do-
main (|t| = 0.25 < |λ| = 1) interfacing with the triv-
ial domain (|t| = 1 > |λ| = 0.25) around an embed-
ded corner. Naturally, the coupling strength of the hop-
ping across the domains, λemb, would be given as a free
parameter, which is determined by the microscopic de-
tails of the system and not by any topological effects. In
the ring-resonator-based [13] or circuit-based [14] waveg-
uide flatforms, the system can be designed for any ar-
bitrary strength of inter-domain coupling λemb. In the
photonic crystal structures with subwavelength periodic-
ities [35, 36], we can reasonably expect that the strength
of λemb would fall in the range between two λ values in
the trivial domain and the topological domain.

In Fig. 8(b), we computed the spectral flow of the
embedded structure with a finite size, as λemb is var-
ied between −1 (λ in the topological domain) and −0.25
(λ in the trivial domain). The red curves correspond to
the embedded corner state predicted and observed in Ref
[35–43]. In a certain range (|λemb| < 0.4 in this example),

FIG. 8. (a) An embedded corner between a topological
domain and a trivial domain; λemb refers to the coupling
strength of the hopping across the domains. (b) Spectral flow,
with varying λemb, of the embedded structure with a finite
size (10 by 10 unit cells of the topological domain surrounded
by the trivial domain of 5 unit-cell-long thickness); the green
areas refer to bulk modes, the blue lines are edge(domain
wall)-localized modes, and the dark red lines denote the cor-
ner localized states. (c) Similar to Fig. 6(f), a uniform on-site
loss of δ is introduced except around the embedded corner. (d)
Resulting complex eigenvalues with λemb = −0.64. (e) Com-
plex eigenvalues with λemb = −0.31. (f) Field profile of the
embedded corner state (marked as a red diamond in (d)). (g)-
(h) Field profile of ZCSs delocalized toward the outer trivial
domain (marked as dark red dots in (d)-(e)).

these embedded corner states are completely lost, even
though C4v symmetries of each bulk domain, the bulk
polarization of each domain, and the chiral symmetry of
the entire system are not changing. Figure 8(d)-(e) also
depict that these states (red diamond) are not topologi-
cally protected in their spectral positions, get drifted and
disappear as λemb varies. Note that we didn’t even resort
to any extreme or artificial choice in the value of λemb in
order to demonstrate the fragility of this embedded cor-
ner state; as stated above, we only considered the range
of λemb to fall between two λ values in the trivial do-
main and the topological domain. Therefore, these states
are trivial defect states, not protected by any crystalline
symmetries nor by the bulk polarization. In fact, the field
profile of this embedded-corner state calculated from our
tight-binding model, see Fig. 8(f), is nearly identical to
the field profiles reported in the above-mentioned works
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[35–43]. Figure 8(f)-(g) then shows the field profile of
the zero-energy states that correspond to the ZCSs in
the open-boundary system. These states reduce back to
the ZCSs in Fig. 6(h) in the limit of λemb → 0. Because
the outer domain is also gapless around the zero energy,
the ZCS of the inner domain appears as delocalized to-
ward the outer trivial domain, even though it remains
exponentially localized toward the inner topological do-
main.

VI. CONCLUSION

In conclusion, we addressed that a topological corre-
spondence between a corner state and a nontrivial bulk
invariant should be claimed by a physical argument (e.g.
a half charge with chiral symmetry), but not by co-
incidence of their existence conditions in terms of the
Hamiltonian parameters. We revealed that the corner
states claimed to be second-order topological in the above-
mentioned works regarding the breathing Kagome lattice
[21–34] or regarding the two-dimensional SSH model [35–
43] turn out to have no connection to any bulk topology
despite the shared phase boundaries in the Hamiltonian
parameter spaces with the bulk polarization. There-
fore, our examples in these two-dimensional C3- and
C4-symmetric crystalline insulators clearly demonstrated
that the bulk polarization, which has a well-established
causal relationship with the fractional corner charge
anomaly, cannot be attributed to the emergence of the
corner states at zero energy in general. In addition, we
refined the bulk-corner correspondences for the corner
states in these examples by identifying other topological
invariants that are truly responsible for the corner state
formation.
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Appendix

1. Exact mapping of the edge-localized band in
Figure 3(f) onto a chiral-symmetric SSH chain

Here we show how the edge-localized band of a 1D-
periodic nanoribbon structure out of a breathing Kagome
lattice can be exactly mapped onto a chiral-symmetric
1D SSH model. We also explain why the chiral-partner
band doesn’t appear in the same band structure.

The 1D SSH model is described by the following Hamil-
tonian:

HSSH =
∑
n∈Z

(
tĉ†A,nR1

ĉB,nR1 + λĉ†A,nR1
ĉB,(n−1)R1

+ c.c.
)
,

(A1)
where R1 is the primitive lattice vector, and ĉA/B,R and

ĉ†A/B,R is the annihilation and creation operators for the

sublattice A/B in the unit cell located at R. By in-
troducing the momentum space operators, ĉA/B,k1d =
1√
L

∑
n∈Z e

−ink1d ĉA/B,nR1
(L: the total length of SSH

chain, k1d = k ·R1 where k is the Bloch momentum), we
can obtain the momentum space Hamiltonian H(k1d):

HSSH =
∑

k1d∈[−π,π)

[
ĉ†A,k1d ĉ†B,k1d

]
H(k1d)

[
ĉA,k1d
ĉB,k1d

]
,

(A2a)

H(k1d) =

[
0 t+ λe−ik1d

t+ λeik1d 0

]
. (A2b)

This Hamiltonian in Eq. (A2b) is solved H(k1d)~v± =
E±~v± as below:

E±(k1d) = ±sign(t)
√
t2 + λ2 + 2tλ cos(k1d), (A3a)

~v±(k1d) =
1√
2

[
α±(k1d) 1

]†
, (A3b)

α±(k1d) = ±
√
|t|+ |λ|eik1d√
|t|+ |λ|e−ik1d

. (A3c)

Therefore, we get the following eigenbasis of HSSH:
HSSH |k1d;±〉 = E±(k1d) |k1d;±〉, where

|k1d;±〉 =
1√
2

[
α±(k1d)ĉ

†
A,k1d

+ ĉ†B,k1d

]
|vac〉 (A4)

Now, let us turn to the breathing Kagome lattice
shown in Fig. 2(a). Consider edge-localized modes along
an edge terminated by the side parallel to R1 drawn in
Fig. 3(a). Let’s label the two sublattices along the ter-
minated edge as A and B, and the other third sublattice
as C. Then, the Hamiltonian for this edge-terminated
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Kagome lattice is given as:

HEdge =
∑

n∈Z,m≥0
(tĉ†A,nR1+mR2

ĉB,nR1+mR2+

tĉ†B,nR1+mR2
ĉC,nR1+mR2+

tĉ†C,nR1+mR2
ĉA,nR1+mR2

+

λĉ†A,nR1+mR2
ĉB,(n−1)R1+mR2

+

λĉ†B,nR1+(m+1)R2
ĉC,(n+1)R1+mR2

+

λĉ†C,nR1+mR2
ĉA,nR1+(m+1)R2

+ c.c.),

(A5)
where R2 is the other primitive lattice vector that is not
parallel to the terminated edge, see Fig. 3(a). In order
to map these edge-localized modes to 1D SSH eigenstates
in Eq. (A4), let’s take the following ansatz:

|k1d;±〉 =
[
α±(k1d)ĉ

†
A,k1d;± + ĉ†B,k1d;±

]
|vac〉 , (A6a)

ĉA/B,k1d;± =
∑

n∈Z,m≥0
[β±(k1d)]

m
e−ink1d ĉA/B,nR1+mR2

.

(A6b)

Here, α±(k1d) takes the same expression to Eq. (A3c),
and β±(k1d) signifies the edge localization. A proper
normalization factor is not considered in Eqs. (A6) for
now, but this doesn’t affect any of the following discus-
sions. As we enforce HEdge |k1d;±〉 = E±(k1d) |k1d;±〉,
the wavefunction amplitudes on every sublattice C are
required to vanish and we obtain the following expres-
sion for the edge localization factor:

β±(k1d) =
t

λ

1 + α±(k1d)

1 + α±(k1d)e−ik1d
. (A7)

In order for the modes in Eq. (A6a) to be truly edge-
localized, the norm of β should be less than 1. In fact, if
we have λ < t < 0 (|t| < |λ|) as in the main text, we get
|β+(k1d)| < 1 ≤ |β−(k1d)|, see Fig. A1(a).

Therefore, the ansatz |k1d; +〉 is a valid eigenstate for
HEdge with proper edge-localization, and this is the ex-
act solution that describes the edge-localized band in

FIG. A1. β±(k1d) in Eq. (A7) calculated (a) with t = −0.25
and λ = −1 and (b) with t = −1 and λ = −0.25. (c) Edge dis-
persion with t = −1 and λ = −0.25 of nano-ribbon structure
with an edge termination like one of the edges in Fig. 3(a);
the edge localized band is colored red along with its inversion
eigenvalues at high symmetry points.

Fig. 3(f) with dispersion relation of E+(k1d) from Eq.
(A3a). The chiral partner band E−(k1d) doesn’t appear
in the edge band dispersion, since |k1d;−〉 states vio-
late the edge localization condition |β−(k1d)| ≥ 1. The
same analysis can be repeated for more generic cases as
depicted in Fig. 5(a), where all the hopping strengths
t/λ1,2,3 are different, and the edge localized band with a
proper mapping onto 1D SSH chain can be found as long
as |ti| < |λi| is met for each i = 1, 2. t3 and λ3 don’t
play any role in determining the existence of a ZCS at
the corner made by edges along R1 and R2.

Lastly, we note that the breathing Kagome lattice with
|t| > |λ| (no bulk polarization) still supports an edge-
localized band. Figure A1(b) shows the edge localization
factors for this trivial case |t| > |λ|; |β−(k1d)| ≤ 1 <
|β+(k1d)|. Thus, in the same way, the ansatz |k1d;−〉 is a
valid eigenstate for HEdge with proper edge-localization,
and this is the exact solution that describes the edge-
localized band in Fig. A1(c) with dispersion relation of
E−(k1d) from Eq. (A3a). This edge-mapped SSH chain
features a trivial (vanishing) Zak phase, as the inversion
eigenvalues at k1d = 0, π are equally −1.
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