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Topological characterization of non-Hermitian band structures demands more than a straightfor-
ward generalization of the Hermitian cases. Even for one-dimensional tight binding models with
non-reciprocal hopping, the appearance of point gaps and the skin effect leads to the breakdown
of the usual bulk-boundary correspondence. Luckily, the correspondence can be resurrected by in-
troducing a winding number for the generalized Brillouin zone for systems with even number of
bands and chiral symmetry. Here, we analyze the topological phases of a non-reciprocal hopping
model on the stub lattice, where one of the three bands remains flat. Due to the lack of chiral
symmetry, the bi-orthogonal Zak phase is no longer quantized, invalidating the winding number as
a topological index. Instead, we show that a Z2 invariant can be defined from Majorana’s stellar
representation of the eigenstates on the Bloch sphere. The parity of the total azimuthal winding
of the entire Majorana constellation correctly predicts the appearance of edge states between the
bulk gaps. We further show that the system is not a square-root topological insulator, despite the
fact that its parent Hamiltonian can be block diagonalized and related to a sawtooth lattice model.
The analysis presented here may be generalized to understand other non-Hermitian systems with
multiple bands.

I. INTRODUCTION

Non-Hermitian (NH) Hamiltonians have long been
adopted to describe a wide range of open or non-
equilibrium quantum systems. The experimental real-
ization of PT -symmetric systems in quantum optics has
renewed the interest in NH lattice systems, especially
their topological properties [1]. From a theoretical point
of view, NH systems are interesting because they host a
number of unique phenomena such as exceptional points
in the spectrum [2–4] and the NH skin effect [5–16], where
an extensive number of eigenstates are accumulated at
the boundaries. These properties promise new techno-
logical applications including topological lasing [17–20]
and enhanced quantum sensing [21, 22].

Substantial theoretical progress has been made to
systematically classify and characterize the topological
band structures of NH Bloch Hamiltonians. The initial
schemes were based on gap dichotomy, i.e. by differen-
tiating point gaps from line gaps [23–28]. Later on the
more general cases of separable bands [29] were consid-
ered, leading to their homotopy classification using braid
groups [30, 31] and knots [32] in one dimension (1D). A
major obstacle in developing a full NH band theory is the
sensitivity of the spectrum to the boundary conditions.
Bulk topological invariants defined for real quasimomen-
tum k and periodic boundary condition are usually insuf-
ficient to describe the excitations at the open boundary
which may include the skin modes. This problem is well
recognized in one dimension. For example, for the NH
Su-Schrieffer-Heeger (SSH) model [5–7, 33, 34], the phase
diagram predicted by the winding number does not agree
with the appearance of edge states, signaling the break-
down of the usual bulk-edge correspondence.

One way to recover the correspondence is to generalize
the Bloch band theory to allow the quasimomentum k

to be complex and analytically continue the Hamiltonian
H(k) to H(β = eik). Then one can define the so-called
generalized Brillouin Zone (GBZ) Cβ , a closed curve on
the complex β plane. Taking the GBZ curve Cβ as the
base manifold, a winding number can be defined analo-
gous to the Hermitian SSH model, which correctly pre-
dicts the emergence of edge states [5–7, 34]. The defini-
tion of the winding number over Cβ requires the presence
of chiral symmetry, which is common for bipartite lattice
models with nearest neighbor hopping and an even num-
ber of bands. For 1D lattice models that lack the chiral
symmetry, it remains unclear whether it is viable, or how,
to construct a proper NH topological invariant.

To address this open question, in this paper we study a
1D NH tight binding model on the stub lattice with three
bands (see Fig. 1). It turns out that, perhaps counterin-
tuitively, the topological characterization of the NH stub
model is rather non-trivial. The Zak phase [35] accumu-
lated when transversing the curve Cβ is not quantized,
for the model lacks chiral symmetry. Nonetheless, it fea-
tures robust edge states in certain parameter regimes to
indicate a topologically nontrivial bulk. We present two
ways to characterize the bulk topology, the first via the
Majorana star representation and the second through the
decomposition of the squared Hamiltonian H2(β). Both
methods are capable of recovering the generalized (non-
Bloch) bulk-boundary correspondence, and their results
are consistent with each other.

A secondary motivation to examine the NH stub lat-
tice is to elucidate the interplay of flat bands [36] and
the skin effect. It is well known that the stub lattice
features a completely flat band at zero energy [37]. An-
other well known lattice that possesses a flat band, the
Lieb lattice in 2D [38], can be viewed as the stub lattice
stacked together. The lack of dispersion means the ki-
netic energy is frustrated. In fact, the degenerate states
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within the flat band are compact-localized [39] in real
space, i.e. the corresponding Wannier functions have a
compact support and vanish beyond a finite cluster size.
Then it is natural to expect them to resist the NH skin
effect. Recall that in the simplest case of the NH skin ef-
fect, e.g. in the Hatano-Nelson model [40], all eigenstates
are localized to one edge due to non-reciprocal hopping.
Such a scenario seems improbable for the flat band. Since
compact localized states are potentially useful for opti-
cal applications, such as the diffraction-free propagation
of light [41–44] and enhanced light-matter interaction by
generating slow light [45–48], it is worthwhile to investi-
gate their NH skin effect.

This paper is organized as follows. In Sec. II, we in-
troduce the NH stub lattice model and discuss its bulk
spectra. We also analyze its band topology from the per-
spective of knot theory [32]. Then in Sec. III, we present
the edge spectrum and a systematic analysis of the NH
skin effect by comparing the localization properties of the
continuum bands measured by the inverse participation
ratio. Comparing the bulk and edge spectrum points to
the failure of the usual bulk-boundary correspondence.
To restore the correspondence, we introduce the notion
of the generalized Brillouin zone, continuum band and
bi-orthogonal Zak phase in Sec. IV. These setups enable
us to define in Sec. V a topological invariant based on
Majorana’s stellar representation [49–51]. We show the
invariant yields the correct prediction of the edge states.
Sec. VI is devoted to a simplified picture of the azimuthal
winding through the parent Hamiltonian [52, 53]. We
conclude in Sec. VII by discussing open questions and
possible experimental realizations of the stub model.

II. THE NON-HERMITIAN STUB MODEL

Our starting point is a Hermitian tight binding model
on the stub lattice, schematically shown in Fig. 1 with
κ = 0. Each unit cell contains three sites, a, b, and c.
The hopping amplitudes t1,2,3 are real. The bulk energy
spectrum has three bands, one of which is completely flat
at zero energy,

E(k) = 0,±
√
t21 + t22 + t23 + 2t1t2 cos k. (1)

Here k ∈ [−π, π] is the quasimomentum and we have
set the unit cell size to be one. The existence of the
flat band can be understood as follows. The whole lat-
tice can be partitioned into two sublattices: sublattice
A consisting of the a and c sites, and sublattice B of all
the b sites. Particles only hop between the sublattices,
so the Hamiltonian has a sublattice symmetry. Define
projector PA (PB) for the A (B) sublattice, then the op-
erator Γ = PA − PB anticommutes with H, ΓHΓ = −H
with Γ2 = 1. Then it is straightforward to show the
number of zero modes N0 = TrΓ [54]. The trace of Γ
has a simple interpretation in real space, it is the imbal-
ance of the number of sites within the two sublattices,

TrΓ = NA − NB . Thus, N0 = NA − NB which is a
general and well-known result. Applying it to the stub
lattice, we recover the result above that at each k, there
is exactly one zero mode. In other words, we have a flat
band at zero energy.

FIG. 1. Schematic of the non-Hermitian stub lattice. Each
unit cell consists of three sites labeled by a, b, and c respec-
tively. The hopping parameters t1,2,3 and κ are all real. For
finite κ, the horizontal intra-cell hopping between a and b
is non-reciprocal, so the tight binding Hamiltonian becomes
non-Hermitian. We take t2 = 1 as the energy unit.

We generalize the stub lattice model by allowing the
intra-cell hopping between the a and b sites to be non-
reciprocal. The hopping asymmetry is characterized by
a parameter κ as depicted in Fig. 1. The resultant tight-
binding Hamiltonian in second quantized form is

H =
∑
n

[
(t1 +

κ

2
)b†nan + (t1 −

κ

2
)a†nbn + t3b

†
ncn

+t3c
†
nbn + t2b

†
n+1an + t2a

†
nbn+1

]
. (2)

Here a†n creates a particle at the a site of the n-th unit
cell, and similarly for b†n and c†n. We assume t1,2,3 and
κ are real, and set t2 = 1 unless specified otherwise. In
momentum space, the Bloch Hamiltonian is a 3×3 matrix

H(k) =

 0 (t1 − κ
2 ) + t2e

ik 0
(t1 + κ

2 ) + t2e
−ik 0 t3

0 t3 0

 . (3)

This non-Hermitian model does not have PT symmetry,
so its eigenenergies are in general complex,

E(k) = 0,±
√
αk + it2κ sin k, (4)

αk = t21 + t22 + t23 − κ2/4 + 2t1t2 cos k. (5)

The bulk energy spectrum is illustrated in Fig. 2, where
the magnitude of E(k) is plotted against t1. There is a
flat band at zero energy, just as in the Hermitian case,
and the energy gap closes at two critical values, t1 = tL
and tH (it is sufficient to focus on t1 > 0). The values
of tL,H can be easily obtained by solving αk=π = 0, a
quadratic equation for t1 yielding two roots. For the
parameters given in Fig. 2, tL = 0.382 and tH = 1.62.

These gap-closing points mark the transition between
two topologically distinct phases. To see this, it is best
to plot the eigenenergy string in the space spanned by
(ReE, ImE, k) as shown in Fig. 3. For t1 ∈ [0, tL) and
t1 > tH , e.g. t1 = 0.3 in the upper panel, there is no
braiding between the two non-flat bands (in blue and red
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FIG. 2. Bulk energy spectrum of the NH stub model with
parameters t2 = 1, t3 = 0.25, κ = 4/3. The magnitude of
E(k) plotted for varying t1 shows a flat band at zero energy,
and two gap closing points at tL=0.382 and tH = 1.62.

respectively). Projecting the spectrum on the complex
energy plane (grey curves in Fig. 3), we see that each
non-flat band forms a closed curve. There is no linking
between the two curves, so we call it the unlink phase.
Note that for a reference energy Ep inside either of the
closed curves, the system has a point gap. In comparison,
for t1 ∈ (tL, tH) such as t1 = 1.0 in the lower panel,
the two energy strings braid once. Since the Brillouin
zone is periodic, during the evolution of k from −π to
π, the ending point (k = π) of the blue band becomes
the starting point (k = −π) of the red band. When
projected on the complex energy plane, the two bands
join each other to form a single curve, i.e. a trivial knot or
unknot. Note that the unknot phase also has a point gap.
The unlink and unknot phase are topologically distinct.
It is impossible to continuously vary one into the other
while keeping the bands separated. In Ref. [32], two
of us showed that phase transitions between two phases
characterized by distinct knots/links occur at exceptional
points. This can be verified numerically at tL and tH .

III. EDGE STATES AND SKIN EFFECT

Next we show that these phase transition points for
the bulk band structure do not coincide with where the
edge states change qualitatively. Consider a finite chain
of L unit cells terminating at the edge as depicted in
Fig. 1. An example of its energy spectrum is given in
Fig. 4 for L = 30. Here the vertical axis shows the
real part of the energy ReE, while |ImE| is indicated
by color. In particular, all the points in blue represent
real energy eigenvalues. Comparing to the bulk spectrum
with the same parameters shown in Fig. 2, we see that
the flat band at zero energy persists in the finite lattice.
Moreover, edge states appear inside the bulk gap at

Eedge = ±t3 (6)

FIG. 3. Two bulk phases identified from the braiding pattern
of the eigenenergy strings: the unlink phase (upper panel, for
t1 = 0.3) and the unknot phase (lower panel, for t1 = 1.0).
Parameters t2, t3, and κ are the same as Fig. 2.

for |t1| < tc. Note that the critical value tc, in this case
tc = 1.2, differs from tL or tH above. The discrepancy
indicates the breakdown of bulk-edge correspondence,
which is is well recognized in NH systems.

The edge states at energy ±t3 do not hinge on the
model being non-Hermitian. It is also present in the Her-
mitian limit κ = 0. Its robustness is attested by its inde-
pendence on t1 (as long as t1 < tc). Such independence
also suggests that the origin of the edge state can be re-
vealed by considering the limit t1 = κ = 0, i.e. when the
chain is broken up into disjoint pieces. Each piece is an
elbow-shaped “molecule” consisting of sites cn, bn and
an−1 coupled by t3 and t2, see Fig. 1. Then the eigenen-
ergies of the whole chain are easy to enumerate. At the
right edge n = L, site aL is dangling and not coupled
to anything else to give eigenenergy 0. At the left edge
n = 1, sites b1 and c1 are only coupled to each other by
t3, which yields eigenenergy ±t3. For all the molecules in
the middle, we have eigenenergy 0, ±

√
t22 + t23. Thus, the



4

edge states at ±t3 can be traced to the molecular states
isolated at the edge in the limit of vanishing t1 and κ.
The physical picture here is very analogous to the SSH
model in the dimer limit. The difference is that for the
stub lattice, Eedge is not at zero energy. Rather, it is
repelled from the zero-energy flat bands to reside inside
the band gap.

FIG. 4. The energy spectrum of a finite chain of the non-
reciprocal stub model with parameters t2 = 1, t3 = 0.25, κ =
4/3, L = 30. The imaginary part of the energy eigenvalues is
indicated by color, with real energy shown in blue. The edge
states living inside the bulk gap are at Eedge = ±t3 and they
persist up to t1 = tc = 1.2.

Going away from the molecule limit by increasing t1
while maintaining κ = 0, the energy bands acquire
the dispersion given in Eq. (1). We can determine
when the edge states merge into the bulk bands as fol-
lows. The bottom of the upper band is E(k = π) =√

(t1 − t2)2 + t23. Equating it to Eedge = t3, we find that
the merge occurs when t1 = t2, which is consistent with
the numerics. Applying the same reasoning to the NH
stub model, one might expect that the edge state would
cease to exist when the bulk band bottom αk=π = t3, i.e.
when t1 = (t2 − κ/2). However, this prediction based on
the bulk spectrum is incorrect and does not agree with
Fig. 4. As we will show in Sec. IV below, the correct
critical value for the NH model is

tc =

√
t22 +

(κ
2

)2
for

κ

2
< t1, (7)

tc =

√
−t22 +

(κ
2

)2
for

κ

2
> t1. (8)

The failure of the naive prediction for tc is another man-
ifestation of the nontrivial bulk-edge correspondence in
NH systems.

The presence of open boundaries drastically changes
the wave functions of the three continuum bands. For a

given eigenenergy E, let ψs(x) be its wave function (more
precisely the right eigenvector of H) at unit cell x ∈ [1, L]
and site s ∈ {a, b, c}, and define the probability density
ρs(x) = |ψs(x)|2. For example, one finds that all ψs(x)
at energies with finite ReE localize at the left boundary
for κ > 0. The upper panel of Fig. 5 illustrates the total
probability ρs of all states with ReE < 0 (excluding the
edge state at −t3). They decay exponentially into the
bulk to exhibit NH skin effect. The flat band states at
zero energy also gravitate toward the left edge, but the
localization is far from complete and the decay is not
exponential. The lower panel of Fig. 5 shows the total
probability of all zero energy states as function of the
unite cell index x. Note that zero energy states only
live on the a and c sites. The resistance to skin effect
observed here is in accordance to the intuition based on
the real space picture of flat band states summarized in
the introduction.
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FIG. 5. Non-Hermitian skin effect. Shown are the total prob-
ability densities ρs(x), s = a, b, c, for the bulk band with
ReE < 0 (upper panel) and the zero energy states (lower
panel, with ρb=0). t2 = 1, t3 = 0.25, κ = 4/3, L = 30.

A more quantitative measure of the localization is
provided by the Inverse Participate Ratio, IPR =∑
s,x |ψs(x)|4 defined for a given energy. The value of

IPR approaches 1 for a state perfectly localized on one
site, and order 1/L2 for a uniformly delocalized state.
For degenerate states such as those at zero energy, the
IPR is averaged within the degenerate subspace. Fig. 6
summarizes and compares the IPR for all the eigenener-
gies of a finite chain. It is clear that the edge states at
±t3 are the most localized with the highest IPR. Next
are the continuum of states with finite ReE that show
the skin effect. The least localized are the zero energy
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FIG. 6. The Inverse Participation Ratio (IPR) of the eigen-
states of a finite chain. The grey points are the eigenenergies
of the bulk. t2 = 1, t3 = 0.25, κ = 4/3, L = 30.

states. For reference, the energies of the bulk (with peri-
odic boundary conditions) are shown in grey. They form
a closed ring to enclose all the open spectra on the com-
plex energy plane. The change from the grey to blue
is an example of the sensitivity of the spectrum to the
boundary conditions in NH systems.

IV. GENERALIZED BRILLOUIN ZONE

The continuum of states for finite chains with open
boundary conditions as shown in Figs. 4 and 6 are not
Bloch waves with real wave number k. In order to de-
scribe them and account for the NH skin effect, an estab-
lished procedure [5, 9] is to analytically continue H(k) to
H(β) where β = eik can take complex values away from
the unit circle,

H (β) =

 0
(
t1 − κ

2

)
+ t2β 0(

t1 + κ
2

)
+ t2β

−1 0 t3
0 t3 0

 . (9)

Then, an eigenstate ψ(x) ∼ βx can describe states local-
ized at the boundaries. The value of β is not arbitrary
and must be chose properly such that the energy spec-
trum of H(β) given by

det [H(β)− E] = 0 (10)

matches that of a long chain in the limit L → ∞. To
this end, the boundary conditions at x = 1, L must be
met, and the spectrum of H(β) must approach a union
of continuum manifolds, known as continuum bands, in
the limit of L→∞. It was shown in Ref. [9] that these
requirements are met when the “continuum condition” is
satisfied, |βM | = |βM+1|, where βi with i = 1, 2, ..., 2M
are the solutions to Eq. (10), which is an algebraic equa-
tion for β for given E, with their magnitudes sorted
in ascending order, |β1| ≤ |β2|... ≤ |β2M |. Solving
|βM | = |βM+1|, one finds that β traces out a closed loop
Cβ on the complex plan referred to as the generalized
Brillouin zone. Applying this result to our non-reciprocal
stub model with M = 1, Eq. (10) is a quadratic equa-
tion for β and has two solutions β1,2. The continuum

condition requires |β1| = |β2| and leads to

|β1,2| = r =

∣∣∣∣ t1 − κ
2

t1 + κ
2

∣∣∣∣ 12 . (11)

Thus, the generalized Brillouin zone is a circle with radius
r. In the Hermitian limit κ = 0, Cβ reduces to the unit
circle. One can check that for β ∈ Cβ , the eigenvalues of
Hβ indeed form continuum bands that match the open
chain spectrum such as the one shown in Fig. 4 (except
for the edge states at ±t3).

The introduction of generalized Brillouin zone enables
us to derive the correct topological phase transition point
where the edge states appear/vanish. In the generalized
band theory based on H(β), the transition at t1 = tc cor-
responds to the point where the continuum band touches
the edge state energy. Setting E = t3 in Eq. (10), we
find

β1 = − t2
t1 + κ

2

, β2 = −
t1 − κ

2

t2
. (12)

Requiring |β1| = |β2| yields

t1 = ±
√
t22 +

(κ
2

)2
for

κ

2
< t1, (13)

t1 = ±
√
−t22 +

(κ
2

)2
for

κ

2
> t1. (14)

which prove Eqs. (7) and (8) earlier. Note that tc here
does not coincide with any band gap closing as in the SSH
model. Closing of the band gap is not a prerequisite for
topological transitions, even in Hermitian systems [55].
As we will show below in Sec V and VI, at the transition
point tc the topological invariant undergoes a jump and
becomes ill-defined, illustrating the topological original
of the edges states.

In Refs. [5, 9], the bulk-boundary correspondence is
reestablished by introducing a quantized winding number
w along Cβ . This is not possible in the present case due
to the lack of chiral symmetry. To see this, we define the
Zak phase [35] for the m-th band as follows,

γm = i

∮
Cβ

dβ〈λm(β)|∂β |ψm(β)〉, (15)

where |ψm(β)〉 and 〈λm(β)| are the right and left eigen-
vector of H(β) corresponding to the m-th eigenenergy
{Em(β)}. Note that a non-Hermitian Hamiltonian has
both left and right eigenstates defined as H† |λm〉 =
E∗m |λm〉 and H |ψm〉 = E |ψm〉. Compared to the Her-
mitian case, the set of eigenstates {|ψn〉} are not nec-
essarily orthogonal but are linearly independent [56].
We follow the convention of biorthogonal normalization,
〈λi|ψj〉 = δi,j . In the limit of t3 = 0, the stub model
reduces to the non-reciprocal SSH model, the Zak phase
for the two bands with finite ReE is then quantized to
multiples of π: π for |t1| <

√
t22 + (κ/2)2 and zero oth-

erwise. For finite t3, they are no longer multiples of π.
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This can be illustrated for example by considering the
limit t1 = 0 and κ = 0, the Zak phase for the positive
energy band is −πt22/(t22 + t23). Thus γm cannot serve as
the topological invariants for the stub model.

V. INVARIANT FROM MAJORANA STARS

A convenient way to visualize the eigenstates of a
multiband Bloch Hamiltonian is to represent them as a
set of stars on the Bloch sphere through Majorana’s stel-
lar representation [49–51, 57–59]. More specifically, the
eigenvectors of H(β) with (2j + 1) bands can be viewed
as β-dependent spinors of spin-j,

|ψm (β)〉 =
[
C

(m)
j , C

(m)
j−1, . . . , C

(m)
−j
]T
, (16)

where m is the band index. Recall that any spin-j state
|Φ〉 can be constructed using two bosonic creation opera-

tors a†↑,↓ following Schwinger’s bosonic representation of

angular momentum eigenstates [60],

|Φ〉 =
1

Nj

2j∏
`=1

[
cos

θ`
2
a†↑ + sin

θ`
2
eiφ`a†↓

]
|0〉 , (17)

where Nj is the normalization factor and |0〉 is the vac-
uum state. The parameterization in Eq. (17) makes it
clear that the spin-j state is represented by 2j points liv-
ing on the Bloch sphere, labelled by index ` with polar
angle θ` and azimuthal angle φ` respectively. Each point
on the Bloch sphere can be viewed as a spin-1/2 state gen-

erated by acting
[

cos θ`2 a
†
↑+sin θ`

2 e
iφ`a†↓

]
on the vacuum.

We will refer to these points as Majorana stars. Together
they form a “quantum constellation,” which encodes the
band topologies.

To find the positions of the stars for a given state such
as |ψm (β)〉, it is sufficient to solve for the roots of the
so-called star equation, a polynomial equation of degree
2j for complex variable z [57],

2j∑
k=0

(−1)
k
C

(m)
j−k√

(2j − k)!k!
z2j−k = 0. (18)

Once the 2j roots {z(m)
` } are obtained, the angular posi-

tions of the stars can be determined by

z
(m)
` = tan

θ
(m)
` (β)

2
eiφ

(m)
` (β), ` = 1, 2, ...2j, (19)

where we have restored the β dependence of the angles.
Our non-reciprocal stub model has three bands and

corresponds to a spin-1 system, j = 1. Thus, each band
is represented by two Majorana stars on the Bloch sphere.
As β is varied throughout the generalized Brillouin zone
Cβ , the pair of stars for a given band trace out closed
curves on the Bloch sphere as shown in Fig. 7(a) to 7(c).
Here for the sake of clarity, the star trajectories are also

(a)

(b)

(c)

(d)

FIG. 7. Majorana stars (left panel) and their projections on
the xy plane (right panel) for (a) t1 = 1.1 inside the topologi-
cally nontrivial phase; (b) t1 = tc at the transition point; and
(c) t1 = 1.3 inside the trivial phase. The red and orange (blue
and green) curves are the trajectories of Majorana stars for
the band with ReE > 0 (ReE < 0). The brown and purple
curves correspond to the band at zero energy. The stars are
constructed from the right eigenvectors of H(β) for β within
the generalized Brillouin zone. (d) Majorana stars obtained
from the left eigenvectors of H(β) for t1 = 1.1 (left) and 1.3
(right). Parameters used are t2 = 1, t3 = 0.25, and κ = 4/3.

projected onto the xy plane and depicted in panels on
the right. In Hermitian systems, the solid angles sub-
tended by the closed trajectories of the Majorana stars
are related to the Zak phase [49, 61]. Here for the stub
model, the Zak phase is not quantized and the solid an-
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gles of the closed star trajectories vary smoothly with
parameters such as t1. Yet, the azimuthal winding num-
ber of the star trajectories is always an integer. We find
that the azimuthal winding contains enough information
to distinguish the topological nontrivial phase (with edge
states) from the trivial phase.

More specifically, the azimuthal winding number for
the m-th band is defined as

νm = − 1

2π

2j∑
`=1

∮
Cβ

dβ∂βφ
(m)
` . (20)

The winding is easy to count by visual inspection. For
example, for the band with ReE > 0, the red (orange)
curve in Fig. 7(a) winds around the z-axis one (zero)
time, so the total winding is 1. Similarly, for the ReE <
0 band, the green (blue) curve winds one (zero) time.
And finally, for the band at zero energy, the brown and
purple curve together contribute to winding number 1.
To summarize, in this case of t1=1.1, all three bands
have νm = 1. In comparison, for the case of t1 = 1.3
shown in Fig. 7(c), none of the curves wind around the
z-axis, νm = 0, as is evident from their projection on the
xy plane.

The winding number νm defined in Eq. (20) depends
on the choice of gauge or basis. For example, in a new
basis where the site order is switched from (b, a, c) to
(a, b, c), only the zero-energy band has winding number 1.
This example also shows that the total winding νtotal =∑
m νm is gauge-dependent, but νtotal = 3 and νtotal = 1

are equivalent. In fact, the parity of the total winding
number is gauge invariant,

P = (−1)
∑
m νm . (21)

Then we are naturally led to the following definition:
phases with P = −1 (P = 1), i.e. with νtotal odd (even),
are topologically non-trivial (trivial). The topological in-
variant P introduced here based on Majorana stars cor-
rectly predicts the phase diagram and the phase tran-
sition point. For example, Fig. 7(a) has P = −1 and
depicts a topologically nontrivial phase, while P = 1 in
Fig. 7(c). At the transition point t1 = tc depicted in in
Fig. 7(b), the red and green curve pass through the north
pole, while the brown and purple line pass through the
south pole, at which point the corresponding azimuthal
winding number is ill-defined.

In summary, by analytically continuing H(k) to H(β)
and introducing the topological invariant P based on
the Majorana star representation, we have re-established
the bulk-boundary correspondence for the non-reciprocal
stub model. This is confirmed by comparing the phase
diagram predicted from the numerical evaluation of in-
variant P , shown in Fig. 8, with the edge state spectra
of open chains. The red region with P = −1 features
edge states, while the blue region with P = 1 does not.
The numerical phase diagram also confirms the analyt-
ical phase boundaries given by Eq. (13) and Eq. (14)

FIG. 8. The phase diagram for the non-reciprocal stub model
with parameters t2 = 1 and t3 = 0.25. The topological in-
variant P defined in Eq. (21) is computed numerically. The
topological non-trivial (trivial) region is shown in red (blue)
and has a value P = −1 (P = 1). The upper left phase
boundary is given by Eq. (14) while the lower right phase
boundary is given by Eq. (13).

shown in solid lines. Other parameters of t2 and t3 can
be discussed in a similar fashion.

In the formulation above we have exclusively relied on
the right eigenstates. Alternatively, we can introduce
Majorana stars and the winding numbers based on the
left eigenstates of H(β). Two examples are shown in Fig.
7(d). Compared to their respective counterpart obtained
from the right eigenstates in Fig. 7(a) and (c), the star
trajectories appear very different, but the winding num-
ber νm retains the same magnitude with the sign flipped.

VI. PARENT HAMILTONIAN

To gain further insight about the band topology, we
now view the stub model from another angle by analyz-
ing it’s parent Hamiltonian which is considerably simpler.
This perspective is inspired by one-dimensional square-
root topological insulators (

√
TI). A

√
TI described by a

Hamiltonian H is an insulator whose topological proper-
ties are inherited from its parent HamiltonianH2 [52, 53].
While H does not fit into the standard description of
topological insulators, H2 does. The first clue that the
stub model is potentially a square-root topological insu-
lator is the existence of in-gap edge states away from zero
energy, a common feature of

√
TIs. The second indica-

tion is that a similar, but different, three-band model, the
Hermitian diamond lattice threaded with φ flux, has been
recently identified as a

√
TI [62]. The diamond lattice
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model shares a few common features with the stub model
here including the presence of zero energy flat band and
non-quantized Zak phase. In what follows, we show that
the non-reciprocal stub model is not a

√
TI as defined in

recent works. Its parent HamiltonianH2 does not possess
chiral symmetry or quantized Zak phase, and therefore is
not in the same league of the SSH model. Despite this,
the parent Hamiltonian helps elucidate what happens to
the azimuthal winding across the phase transition point
t1 = tc.

The parent Hamiltonian for the non-reciprocal stub
model is a function of β

H2(β) =

 m0(β)− t23 0 m− + t2t3β
0 m0(β) 0

m+ + t2t3β
−1 0 t23

 (22)

where m0(β) = (t1 + t2β − κ
2 )(t1 + t2β

−1 + κ
2 ) + t23 and

m± =
(
t1 ± κ

2

)
t3. Recall the child Hamiltonian H has

three bands, E(β) = 0,±√m0(β). The eigenvalues of
the parent Hamiltonian H2 consist of only two bands,
E(β) = 0 and m0(β), since the two original bands of H
with opposite ReE become degenerate after the square.

The form of H2 in Eq. (22) is not very convenient.
We can transform it into block diagonal form, which is
always possible because the original stub model lives on
a bipartite lattice [63]. This is simply achieved by a re-
ordering of the basis to

H2 = Hres ⊕Hsaw. (23)

Now the parent Hamiltonian is reduced to the direct sum
of a residual Hamiltonian

Hres(β) = m0(β) (24)

which describes hopping along a chain, and a 2×2 Hamil-
tonian

Hsaw(β) =

[
m0(β)− t23 m− + t2t3β

m+ + t2t3β
−1 t23

]
(25)

which can be interpreted as a tight-binding model with
nearest neighbor hopping on the sawtooth lattice. The
generalized Brillouin zone for Hsaw coincides with that of
H, and the two bands are 0 and m0(β). Note that most
hopping models on the sawtooth lattice do not feature a
flat band except for certain special ratios of the hopping
amplitudes. The reason why Hsaw hosts a zero-energy
flat band is because there are also onsite potential terms
m0 − t23 and t23.

As a two band model, the right eigenvectors of
Hsaw(β) can be brought into the standard form |ψ(β)〉 =
cos θ2 |0〉 + sin θ

2e
iφ |1〉 to live on the Bloch sphere. We

stress that Hsaw contains all three Pauli components,
Hsaw = E0 + d · σ, so its eigenvectors in general do not
span a great circle. As β is varied throughout the gen-
eralized Brillouin zone Cβ , the eigenvector of each band
traces out a closed curve on the Bloch sphere. Fig. 9
shows the trajectory of the zero (in red) and m0 band

(a) (b) (c)

FIG. 9. The right eigenvectors ofHsaw(β) on the Bloch sphere
as β is varied across the generalized Brillouin zone. The red
(blue) curve corresponds to the band at zero (m0). The values
for t1 are (a) t1 = 1.1; (b) t1 = tc = 1.2; and t1 = 1.3 with
t2 = 1, t3 = 0.25, and κ = 4/3.

(in blue) for t1 values before, at, and after the transition
point t1 = tc. The azimuthal winding of these curves is
reminiscent of the Majorana stars, only to show up more
clearly thanks to the reduction in the number of bands.
Define the winding of azimuthal angles for each band as

ν = − 1

2π

∮
dβ∂βφ. (26)

Note that the two bands have the same winding number
so it is sufficient to focus on one of them, say the m0

band. This can be seen for example in the Hermitian
limit, where Hsaw can be shifted, flattened, and cast into
the form n̂(k)·σ. Then the two eigenvectors are antipodal
points on the Bloch sphere and wind around the z axis in
the same way. We find that for t ∈ [0, tc), ν = 1 for the
m0 bands, the red and blue curves both enclose the z-
axis as shown in Fig. 9(a). In contrast, for t > tc, ν = 0,
neither the red nor the blue trajectory winds around the
z-axis, see Fig. 9(c). Right at the transition point t = tc
[Fig. 9(b)], the red curve crosses the north pole while
the blue curve crosses the south pole, at which points φ
becomes ill defined. The winding number is quantized
and jumps by one at the transition. The transition is
topological in the sense that it is impossible to smoothly
vary the blue curve in Fig. 9(a) to that in Fig. 9(c)
without going thought one of the poles.

VII. CONCLUSION

The non-reciprocal stub lattice model appears deceiv-
ingly simple. Yet understanding its bulk-edge correspon-
dence is not a straightforward matter and requires con-
cepts and techniques developed only recently. Its bulk
spectrum has a flat band and two exceptional points sepa-
rate phases characterized by distinct knots of the eigenen-
ergy strings. The bulk phase transition points however
do not coincide with the emergence of edge states in fi-
nite systems with open boundaries. This failure of the
traditional (Hermitian) bulk-boundary correspondence is
accompanied by the NH skin effect. For finite chains with
open boundaries, the continuum bands away from zero
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energy all congregate to one edge, but the flat band re-
sists the skin effect and has the lowest degree of localiza-
tion as measured by the IPR. A NH bulk-boundary cor-
respondence is established by analytically continuing the
Hamiltonian H(k) to H(β) with the complex β confined
within the generalized Brillouin zone Cβ . The resultant
continuum band structure gives correct prediction of the
critical point tc where the edge states onset.

The three-band model H(β) differs from the NH SSH
model or its generalization in one important aspect, it
does not possess a chiral symmetry so the Zak phase is
not quantized to 0 or π (or fractions of π such as π/2).

It also differs from known examples of
√

TIs, because its
parent Hamiltonian, or more precisely its subblock Hsaw,
does not feature a quantized Zak phase and cannot be
identified as a known topological insulator. Despite those
differences, H2(β) can still be utilized to accurately char-
acterize the NH band topology. This suggests that parent
Hamiltonian is useful beyond traditional

√
TIs. By rep-

resenting the eigenvectors of H(β) using Majorana stars,
we find that at the transition, the Majorana star trajec-
tories pass through the north or south pole, triggering a
jump in the azimuthal winding number. We propose that
the parity P of the total azimuthal winding can serve as
the gauge-independent invariant to characterize different
gapped phases. Phases with odd parity have edge states.
And it is impossible to go from an odd parity phase to
an even parity phase without having the star trajectory
crossing the poles. Using the invariant P , one can reli-
ably predict the existence/absence of edge state from the
bulk information of H(β). Note that the parity does not
give the total number of isolated edge states.

A challenging open question is to formulate a rigorous
proof of the bulk-edge relationship based on the Majo-
rana stellar representation. Previous studies for Hermi-

tian systems [49, 58] have shown that the geometrical
phases of MSs are closely related to the Zak phases of
the system and the existence of edge states is associ-
ated with the nontrivial winding of MSs [64]. General-
izing the proof to non-Hermitian systems, including es-
tablishing the exact correspondence between P and the
appearance of topological edge states found here, is an
open challenge left for future work. We speculate that
for generic multiband NH systems, the Zak phases of the
individual bands only provide partial topological data,
while the Majorana stars contain the full information.
Future work is required to fully understand the topolog-
ical information contained in the quantum constellation
and their experimental signatures in edge spectrum and
quantum dynamics. We hope the analysis presented here
can be extended to the topological characterizations of
other multi-band models.

The non-reciprocal stub lattice can be realized exper-
imentally using electric circuits [65, 66] or optical ring
resonators [67]. For example, electric circuits consist-
ing of LC resonators with negative impedance converters
can achieve non-reciprocal hopping, and admittance mea-
surement can probe the complex band structures of NH
lattice modes [13]. Similarly, ring resonators can realize
the non-reciprocal lattice by using anti-resonant coupling
rings to produce asymmetric hopping [67]. The presence
of edge states can then be demonstrated by measuring
transmittance and imaging the propagation of light [68].
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