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We analyze fermions after an interaction quantum quench in one spatial dimension and study
the growth of the steady state entanglement entropy density under either a spatial mode or particle
bipartition. For integrable lattice models, we find excellent agreement between the increase of spatial
and particle entanglement entropy, and for chaotic models, an examination of two further neighbor
interaction strengths suggests similar correspondence. This result highlights the applicability of a
statistical ensemble to compute expectation values of local observables after a quantum quench

I. INTRODUCTION

The time evolution of an initial quantum state after a
sudden change of interaction strength leads to an asymp-
totic steady state, whose local properties are governed by
the buildup of entanglement between spatial subregions
of the system [1–6]. This entanglement is believed to be
responsible for the generation of extensive entropy that
validates the use of statistical mechanics for local expec-
tation values, an idea which is supported by recent mea-
surements of the 2nd Rényi entropy [7, 8]. The ability
to experimentally investigate the unitary time evolution
of pure states in isolated systems on long time scales
in ultra-cold atoms [7, 9, 10] now provides an exciting
opportunity to test fundamental ideas on how quantum
statistical mechanics emerges from the many-body time
dependent Schrödinger equation.

As an alternative to the conventional spatial mode par-
titioning, a quantum system of N indistinguishable par-
ticles can be bipartitioned into two groups containing n
and N −n particles each [11–21] as shown in Fig. 1. The
n-particle reduced density matrix ρn can be computed
in practice by keeping n particle coordinates fixed while
tracing over the remaining N − n particle positions in
the appropriately symmetrized first-quantized wavefunc-
tion [22–24]. In this way, the partial trace is performed
while fully respecting the indistinguishably of quantum
particles. The elements of this reduced density matrix
are proportional to correlation functions, and are thus in
principle measurable in experiments, and the resulting
entanglement entropy has been shown to be sensitive to
both interactions and particle statistics at leading order
[13, 18, 20].

A general finite size scaling form has been conjectured
for the ground state particle entanglement (von Neumann
entropy of ρn) of interacting systems [13, 14, 20] that
behaves like n lnN (n � N), markedly different from
the area law `D−1 of spatial entanglement for subregion
size ` in dimension D for gapped quantum systems with
reduced density matrix ρ` with local interactions [25, 26].
While there has been renewed interest in entanglement
dynamics for non-spatial single-particle bipartitions [27,
28], little is known about the evolution of entanglement
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FIG. 1. Two types of reduced density matrices after a quan-
tum quench. A quantum system of interacting fermions in
one-dimension with periodic boundary conditions can be bi-
partitioned into a spatial partition of size ` (left) or a par-
ticle partition consisting of n fermions (right). The degrees
of freedom which are kept in the reduced density matrix are
indicated in blue, while the orange ones are traced out. Inter-
actions between the former and latter are pictured with green
lines.

between groups of particles after a quantum quench.

In this paper, we compare the growth of the steady-
state entanglement entropy after a quantum quench un-
der spatial and particle bipartations, for both integrable
and chaotic models of one-dimensional interacting lattice
fermions. By fully exploiting translational symmetries of
particle subgroups, we exactly determine large 6-particle
reduced density matrices for systems containing up to
L = 26 sites at half-filling, making a well-controlled ex-
trapolation to the thermodynamic limit possible. Having
access to the thermodynamic limit via finite size scaling,
we find convincing agreement between the asymptotic
increase of entropy densities computed from spatial and
particle bipartitions for an integrable model, and sugges-
tive equivalence for the chaotic model where finite size
effects are more prevalent. This equivalence with respect
to the specific partition of the quantum state supports
the notion that the properties of a steady state local
equilibrium are fundamental to a statistical mechanics
description of many particle systems.

The paper is organized as follows: after introducing
the details of our model and quantum quench protocol in
Section II, we discuss the definition of spatial and par-
ticle entanglement dynamics in Section III and the ap-
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proach to extracting the asymptotic entanglement den-
sity in Section IV. Our main results for both integrable
and non-integrable models are contained in Section V,
and we conclude by discussing implications our results in
Section VI.

II. QUANTUM QUENCH

We study a system of N spinless fermions on L lat-
tice sites in one spatial dimension (1D) with hopping
amplitude J and time-dependent nearest, V (t), and
next-nearest neighbor V ′(t) interactions described by the
Hamiltonian

H = −J
L∑
i=1

(
c†i ci+1 + c†i+1ci

)
+ V (t)

L∑
i=1

nini+1

+ V ′(t)

L∑
i=1

nini+2 (1)

where c†i (ci ) creates(annihilates) a fermion on site i,

{ci , c
†
j} = δij and ni = c†i ci is the occupancy of site i.

For V ′(t) = 0, Eq. (1) can be mapped onto the XXZ
spin- 12 chain at fixed total spin S which is exactly solv-
able via Bethe ansatz [29, 30]. In what follows we will
measure all energies in units of the hopping J .

The system is prepared at times t < 0 in an initial
state of non-interacting spinless fermions with

|Ψ(0)〉 =
∏
k≤kF

c†k |0〉 (2)

where |0〉 is the vacuum state. We employ periodic
boundary conditions for odd N and anti-periodic for even
N to avoid complications arising from a possibly degen-
erate ground state such that the lattice Fourier transform
picks up a phase in the anti-periodic case:

ck =
1√
L

L∑
j=1

cje
−ıkj

{
1 N odd

eıπj/L N even
. (3)

The quasi-momenta are

k ∈

{
−π(N − 1)/L, . . . , π(N − 1)/L N odd

−πN/L+ 2π/L, . . . , πN/L N even
(4)

such that the Fermi momentum is kF = πNL −π
1−(−1)N

2L .
At time t = 0, interactions of strength V and V ′ are

turned on (V (t) = VΘ(t), V ′(t) = V ′Θ(t) with Θ the
Heaviside step function). The state of the system at time
t after the quench is given by unitary time evolution of
|Ψ(0)〉 under H:

|Ψ(t)〉 = e−ıHt |Ψ(0)〉 =
∑
α

e−ıEαt 〈Ψα|Ψ(0)〉 |Ψα〉 (5)

where we have set ~ = 1 and Eα and |Ψα〉 are the energy
eigenvalues and eigenstates of the post-quench Hamilto-
nian, H |Ψα〉 = Eα |Ψα〉, obtained from full exact di-
agonalization exploiting the translational, inversion, and
particle-hole symmetry of Eq. (1). All software, data,
and scripts needed to reproduce the results in this paper
are available online [31].

III. ENTANGLEMENT DYNAMICS

Tracing out spatial degrees of freedom outside of a con-
tiguous region of ` sites from the time-dependent density
matrix ρ(t) = |Ψ(t)〉〈Ψ(t)| yields the spatially reduced
ρ`(t) = TrL−` ρ(t). For a particle bipartition, the reduced
density matrix ρn(t) can be computed by fixing n coordi-
nates in the properly symmetrized many-particle wave-
function Ψ(i1, . . . , iN ; t) = 〈i1, . . . , iN |Ψ(t)〉 and tracing
over the remaining N − n positions:

ρi1,...,in;j1,...,jnn (t) =
∑

in+1,...,iN

Ψ∗(i1, . . . , in, in+1, . . . , iN ; t)

×Ψ(j1, . . . , jn, in+1, . . . , iN ; t) (6)

where the particle coordinates i1 . . . , iN can take any po-
sition on the lattice. A graphical comparison of their
entanglement structure in real space is depicted in Fig. 1.

The von Neumann entanglement entropy at each time
t is computed from the spatial (`) or particle (n) reduced
density matrix

S(t;n|`) = −Tr
[
ρn|`(t) ln ρn|`(t)

]
. (7)

In gapless 1D quantum systems after a global quantum
quench, the entanglement entropy under a spatial bipar-
tition of length ` grows linearly with time t: S ∝ t
up to t = `/(2v), and then saturates to a value that
is extensively large in the sub-region size: S ∝ `/(2v)
[3, 32, 33] were v is a velocity. This can be understood
in terms of the stimulated emission of highly entangled
quasi-particles inside the sub-region that propagate out-
wards with v. Saturation of the entanglement thus occurs
after quasiparticles generated in the subsystem have tra-
versed an extensive spatial subregion. Many of these re-
sults have been tested against numerical calculations on
lattice models starting from unentangled product states
[6, 34–36] highlighting the regime of applicability of con-
formal field theory.

For particle entanglement, the reduced density matrix
ρn has L2n elements (see Eq. (6)), but due to the in-
distinguishability of particles, the effective linear size of
the matrix size is only

(
L
n

)
[20]. Even with this reduc-

tion, for N = 13 and n = 6 at half-filling (L = 26),
the determination of its dynamics requires the full di-
agonalization of a matrix with over 5 × 1010 elements
at each time step. This would make an exact analysis
of the steady state particle entanglement in the thermo-
dynamic limit computationally intractable. Only when
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reducing the number of matrix elements additional fac-
tor of ∼ L2 by exploiting translational invariance within
particle subgroups (see Appendix A), does the numerical
diagonalization becomes feasible. Our software level im-
plementation of this approach for the n-particle reduced
density matrices considered here is included in an online
repository [31].

Due to aforementioned exact mapping between the
XXZ model and the spinless fermions considered here,
it is interesting to contemplate particle entanglement in
the spin system. When constructing the density matrix
from the full XXZ wavefunction, there is a spin coor-
dinate per lattice site and these degrees of freedom are
localized and distinguishable. Thus, choosing a subset
of contiguous spins [37] is equivalent to a spatial bipar-
tition and there is no meaningful definition of particle
entanglement.

IV. ENTANGLEMENT DENSITY

As we are interested in the initial growth, and final
asymptotic steady state value of entanglement entropy,
we study the difference between its value at an obser-
vation time t after the quench, and that of the initial
pre-quench non-interacting fermionic state:

∆S(t;n|`) ≡ S(t;n|`)− S(0;n|`). (8)

This removes the t = 0 contribution of the free fermion
state described by a single Slater determinant [38–41]:

S(0; `) =
1

3
ln

2`

π
+ 0.495 . . .

S(0;n) = ln

(
N

n

)
.

(9)

It is useful to point out the different scaling properties
of these two quantities in equilibrium. While the spa-
tial mode entanglement behaves as S(0; `) ∼ ln `, for
n� N , S(0;n) ∼ n lnN , and moreover, while the former
is insensitive to particle statistics, the particle entangle-
ment arises purely from the anti-symmetrization of the
wavefunction in first quantization (it is exactly zero for
non-interacting bosons [14, 42]). Due to this qualitative
difference in the system size dependence of the initial
state entanglement entropy, it is important to compare
the difference between the asymptotic and initial state
entanglement entropies with regards to spatial and par-
ticle bipartitions after the quench.

In Fig. 2, the time dependence of ∆S(t) for both spa-
tial and particle bipartitions is shown for a system with
N = 13 particles on L = 26 sites (half-filling), for maxi-
mal bipartition sizes of n = 6 particles and ` = 13 sites
with V ′ = 0. Even/odd parity effects in the particle
entanglement entropy can be mitigated by replacing

S(t;n)→ 1

2

[
S(t;n) +

n

N − n
S(t;N − n)

]
(10)
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FIG. 2. Exact diagonalization results for entanglement.
Time-dependence of the increase in particle and spatial entan-
glement entropy after an interaction of strength V = 0.25J is
turned on (V ′ = 0). The spatial entanglement entropy (red
curve) for ` = L/2 = 13 sites grows linearly up to a time
tJ ∼ `/4, whereas the particle entanglement entropy (purple
curve) for n = bN/2c = 6 particles rapidly increases on a
scale tJ ∼ 1/2. The dashed lines show the asymptotic t→∞
values extracted from the full time dependence (data included
in Ref. [31]).

when n = bN/2c, where b. . . c denotes the integer part.
We observe that the particle entanglement entropy rises
to a value larger than the asymptotic one (indicated by
the dashed line) within a microscopic time scale tJ ∼ 1/2,
whereas spatial entanglement entropy rises over a longer
time tJ ∼ `/4. The finite size value of the entangle-
ment entropy is larger for particle than for spatial en-
tanglement, and the amplitude of oscillations around the
asymptotic average (dashed line) is larger for particle en-
tanglement as well.

An estimate for the asymptotic t → ∞ steady state
entanglement entropy was obtained via time averaging:

∆S(t→∞;n|`) ' 1

tf − ti

∫ tf

ti

dt [S(t;n|`)− S(0;n|`)] .

(11)
The average is started from tiJ = N/2, to correspond to
the first recurrence time (see Fig. 2), and the maximal
time tfJ = 100 was chosen such that the statistical un-
certainty in ∆S obtained by a binning analysis (allowing
us to estimate error bars) was less than 3.5%.

Results in the thermodynamic limit (n, ` → ∞ such
that n/N, `/L→ const.) can be obtained by fitting finite
size exact diagonalization data for the maximal biparti-
tion (` = L/2, n = bN/2c) to the scaling ansatz:

1

n
∆S(t→∞) = s + C lnN

N
(12)

where s is the desired entropy density, n is the num-
ber of particles in the sub-region, and C is a constant.
This choice is motivated for the spatial entanglement by
recognizing that for a ground state of free fermions, the
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entanglement scales logarthimcally with sub-system size
(Eq. (9)) and thus the dominant finite size correction to
the asymptotic extensive part will have a similar scaling.
For particle entanglement, an expansion of the equilib-
rium free fermion value in Eq. (9) for n = bN/2c in the
limit of large N yields:

2

N
ln

(
N

N/2

)
' 2 ln 2− 1

N
lnN + O

(
1

N

)
, (13)

further demonstrating the importance of subtracting
off an extensive contribution originating from the pre-
quench ground state. While finite size scaling is per-
formed for the maximal spatial or particle bipartition,
equivalent results would be obtained (albeit with en-
hanced finite size effects) for any subsystem scaling with
L or N .

V. EQUIVALENCE OF ASYMPTOTIC
ENTANGLEMENT GROWTH

We begin by analyzing the quench of Eq. (1) for the
integrable case with V ′ = 0. We use Eq. (12) to fit ex-
act diagonalization data for both repulsive and attrac-
tive nearest neighbor interactions V , and thus obtain
s. The uncertainty in s is composed of two parts: the
propagated error bars in the linear fit to the largest four
system sizes (N = 10, 11, 12, 13), and a possible system-
atic error due to the neglect of higher order terms in
Eq. (12). The latter was estimated by computing the dif-
ference between the N → ∞ extrapolated value for this
fit, and two additional fits including N = 11, 12, 13, or
N = 9, 10, 11, 12, 13 and averaging the resulting squared
deviations. The results of this combined finite size scal-
ing and fitting procedure are shown in Fig. 3, where s
corresponds to the line intercepts as N → ∞. We find
agreement within error bars between particle and spa-
tial bipartitions in the thermodynamic limit. Thus, we
conclude that for the integrable case with V ′ = 0, the
asymptotic entanglement entropy per particle after an
interaction quantum quench is equivalent under both a
spatial and a particle bipartition in the thermodynamic
limit.

Interestingly, we find that finite size corrections are
much smaller for particle entanglement than for spatial
entanglement [43]. To explore this effect further, we keep
N fixed and study how particle entanglement entropy
changes with n. The results are shown in Fig. 4 where
1
n∆S(t→∞;n) monotonically decreases with increasing
n [41]. This effect can be explained by considering the
growing number of constraints as correlations of up to
n particles are taken into account, with fewer states re-
alizing the same reduced density matrix. Moreover, the
existence of an non-monotonic entanglement shape func-
tion arising from ρn = ρN−n implies a sub-linear growth
of ∆S(n) for n ≈ N/2, and thus a decrease of ∆S(n)/n.
The result is that the n-particle entanglement entropy
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FIG. 3. Asymptotic entanglement. Finite size scaling of the
t → ∞ entanglement entropy per particle in the maximal
subregion corresponding to n = bN/2c particles or ` = L/2
sites for different nearest neighbor interactions V and V ′ = 0.
Symbols correspond to exact diagonalization data and lines
are fits to the finite size scaling form of Eq. (12). Within
the statistical uncertainty (size of shaded region) for N →∞,
particle and spatial entanglement entropy density extrapolate
to the same interaction dependent value s in the thermody-
namic limit.

density can be estimated from knowledge of only the few
lowest order density matrices.

To better understand the general applicability of
the observed agreement between entanglement entropy
growth under different bipartitions, we now lift the in-
tegrability constraint on the time-evolution of the ini-
tial state due to the existence of an infinite number of
conservation laws. This is accomplished by including a
next-nearest neighbor interaction V ′ that is quenched si-
multaneously with V at t = 0.

The equilibrium phase diagram of the V -V ′ model
is known to be extremely complex [44], and we have
chosen to fix V = 0.25J while investigating two next
nearest neighbor interaction strengths V ′ = 0.025J and
V ′ = 0.355J to ensure we remain inside the quantum liq-
uid phase and do not quench across a phase boundary.
Performing an analysis identical to the integrable case
above, we obtain the asymptotic post-quench finite size
scaling results shown in Fig. 5. For weak V ′/V = 0.1
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FIG. 4. n-dependence of the particle entanglement entropy.
Bipartition size (n) dependence of the particle entanglement
for N = 12 particles on L = 24 sites for various nearest
neighbor interaction strengths V with V ′ = 0. The n-particle
entanglement entropy density is only weakly dependent on
the order of the reduced density matrix. Lines on the right
hand side of the figure show the thermodynamic limit value of
s (n,N → ∞ with n/N = 1/2) extracted from the fit shown
in Fig. 3. Dashed lines are guides to the eye.
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FIG. 5. Effects of integrability breaking. Finite size scal-
ing of the spatial and particle entanglement entropy density
for t → ∞ for a fixed nearest neighbor interaction strength
V = 0.25J with V ′ = 0.1V (left) and V ′ = 1.42V (right).
Symbols correspond to exact diagonalization and lines are fits
to Eq. (12).

we find clear convergence to a common value of s in
the thermodynamic limit, while for extremely strong
V ′/V = 1.42 equivalence is suggestive, but falls outside
the 1-σ error bars. For both values of V ′, we find fi-
nite size effects to be more pronounced as compared to
the integrable case (as expected due to the inclusion of a
longer range interaction) and larger system sizes are re-
quired to enter the pure logN/N scaling regime. Going
to larger system sizes would be desirable, and while this
is possible via the density matrix renormalization group
[45, 46] for the spatial entanglement, at present, exact
diagonalization remains the only viable route to obtain
the spectra of ρn for n > 3 [47].

Combining the extrapolated t → ∞ and N → ∞ re-
sults of Figs. 3 and 5 we can directly compare the pref-
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FIG. 6. Equivalence of spatial mode and particle entangle-
ment. A comparison of the t→∞ and N →∞ entanglement
density s defined in Eq. (12) (extrapolated values in Figs. 3
and 5) as a function of quenched nearest-neighbor interaction
strength V . V ′ 6= 0 points with V = 0.25J (square and dia-
mond) have been horizontally shifted to better discern their
error bars. Here the colors of individual symbols denote the
interaction strength (see legend of Fig. 4).

actor s of the extensive term in the asymptotic entangle-
ment entropy under a spatial mode (sspatial) and parti-
cle (sparticle) bipartition with the results shown in Fig. 6.
We observe agreement across a wide range of interactions
spanning the entire quantum liquid regime including both
attractive (V < 0 and repulsive V > 0) interactions, even
in the presence of integrability breaking V ′ 6= 0. We
conclude that sspatial ' sparticle is consistent with the re-
ported ≈ 5% errorbars. For the non-integrable case with
an extremely strong V ′ > V , agreement is within 10%.
For this case, finite size effects are pronounced and exact
diagonalization data may not yet be in the scaling regime
causing an under reporting of uncertainty.

VI. DISCUSSION

We have presented numerical results for an interac-
tion quantum quench for both an integrable and non-
integrable (chaotic) model of spinless fermions in one di-
mension, starting from a gapless and highly entangled
non-interacting ground state. Complementary to the of-
ten studied spatial entanglement entropy, we have exam-
ined a bipartition in terms of groups of particles, where
the resulting entanglement can be obtained from the n-
particle reduced density matrix. At short times (as in
equilibrium), the growth of entanglement behaves very
differently under these two bipartitions. In contrast, in
the asymptotic long-time regime after subtracting the
residual ground state value, we find an extensive entan-
glement entropy density that appears to be insensitive to
the decomposition of the Hilbert space in terms of spa-
tial or particle degrees of freedom. The equivalence for
the chaotic model is on the order of 5− 10% and further
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investigations for quenches within the rich V − V ′ phase
diagram are warranted.

This equivalence can be understood via the univer-
sal concept of coarse graining [48] – a description of a
quantum system in terms of only a subset of the degrees
of freedom – a necessary ingredient to obtain effectively
classical density matrices that are described by a gener-
alized statistical ensemble for integrable systems. While
the computation of particle entanglement entropies after
a quantum quench discussed in this study is not standard,
in other contexts the connection between particle reduced
density matrices and entropy is well established. For ex-
ample, in equilibrium, the thermodynamic potential, and
hence the entropy, can be computed from the one-particle
density matrix when considering an adiabatic change of
the coupling constant [49]. For classical non-equilibriums
systems, according to Green [50] and Kirkwood [51] the
distribution function can be factorized in an infinite hi-
erarchy, enabling an expansion of the entropy in terms
of irreducible correlation functions with increasing order.
For classical liquids, it has been shown that even a ter-
mination of this entropy expansion at the pair level (ρ2)
is accurate to within 2% [52], and for simulations of a
system of soft disks this termination was shown to yield
consistent results in non-equilibrium situations [53].
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Appendix A: Translational Symmetry Resolved
n-body Reduced Density Matrices

In this appendix, we describe a specific example of how
translational symmetry within particle subgroups can be
exploited for N = 3 fermions on a ring of L = 6 sites and
compute the spectrum of the resulting 1-particle reduced
density matrix.

We begin by describing the decomposition of the oc-
cupation basis in terms of translational symmetry then
discuss the Schmidt decomposition of a candidate ground
state of Eq. (1) with V = V ′ = 0 and finish with the
explicit construction and resulting diagonalization of the
reduced density matrix, comparing to its brute-force con-
struction when no symmetries are taken into account.

1. Translational Symmetry

The translation operator T acts as:

Tc†iT
† = c†i+1, (A1)

where, c†L+i = c†i , as we choose periodic boundary con-
ditions for odd N = 3. Acting with T , L times will give
back the same operator and thus TL is the identity. This
immediately yields the eigenvalues of the unitary opera-
tor T as e−ı2πq/L, where q = 0, 1, . . . , L− 1.

Now, consider the action of T on the L = 6, N = 3
fermionic site-occupation basis {|111000〉 , |011100〉 , . . . }
consisting of

(
L
N

)
= 20 states. Depending on how the

indistinguishable particles are situated, the states can be
grouped into NT = 4 different types of translational cy-
cles, each containing Mν states for ν = 1 . . . NT . The
first 3 cycles all have M1 = M2 = M3 = 6:

|ψ1,1〉 = T 0 |ψ1,1〉 = |111000〉 |ψ2,1〉 = T 0 |ψ2,1〉 = |110100〉 |ψ3,1〉 = T 0 |ψ3,1〉 = |110010〉
|ψ1,2〉 = T 1 |ψ1,1〉 = |011100〉 |ψ2,2〉 = T 1 |ψ2,1〉 = |011010〉 |ψ3,2〉 = T 1 |ψ3,1〉 = |011001〉
|ψ1,3〉 = T 2 |ψ1,1〉 = |001110〉 |ψ2,3〉 = T 2 |ψ2,1〉 = |001101〉 |ψ3,3〉 = T 2 |ψ3,1〉 = |101100〉
|ψ1,4〉 = T 3 |ψ1,1〉 = |000111〉 |ψ2,4〉 = T 3 |ψ2,1〉 = |100110〉 |ψ3,4〉 = T 3 |ψ3,1〉 = |010110〉
|ψ1,5〉 = T 4 |ψ1,1〉 = |100011〉 |ψ2,5〉 = T 4 |ψ2,1〉 = |010011〉 |ψ3,5〉 = T 4 |ψ3,1〉 = |001011〉
|ψ1,6〉 = T 5 |ψ1,1〉 = |110001〉 |ψ2,6〉 = T 5 |ψ2,1〉 = |101001〉 |ψ3,6〉 = T 5 |ψ3,1〉 = |100101〉 (A2)

while the last one has M4 = 2:

|ψ4,1〉 = T 0 |ψ4,1〉 = T 2 |ψ4,1〉 = T 4 |ψ4,1〉 = |101010〉
|ψ4,2〉 = T 1 |ψ4,1〉 = T 3 |ψ4,1〉 = T 5 |ψ4,1〉 = |010101〉

(A3)

where we have introduced new states |ψν,m〉 with ν =
1 . . . NT and m = 1 . . .Mν . The eigenstates of T can

then be written as

|φν,q〉 =
1√
Mν

Mν∑
m=1

eı
2πq
Mν

(m−1) |ψν,m〉 , (A4)

where the corresponding eigenvalues are e−ı2πq/Mν with
q = 0, 1, . . . ,Mν − 1.
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2. Free fermion ground state

Consider Eq. (1) at t ≤ 0 which corresponds to free
lattice fermions (V = V ′ = 0). The Hamiltonian pos-
sesses translational symmetry ([T,H] = 0) and thus
the non-degenerate ground state |Ψ0〉 must also be an
eigenstate of the operator T . Using the occupation
basis states |ψν,m〉 introduced above, all matrix ele-
ments 〈ψν′,m′ |H|ψν,m〉 of H are real, and thus any non-
degenerate eigenstate of H must have real coefficients
(up to an overall phase factor). This is only possible if
the ground state is an eigenstate of T with a real eigen-
value, i.e., T |Ψ0〉 = ± |Ψ0〉. For free fermions, |Ψ0〉 has
zero total quasi momentum and thus T |Ψ0〉 = + |Ψ0〉.
Therefore, we can write

|Ψ0〉 =

NT∑
ν=1

aν |φν,0〉 (A5)

where
∑
ν a

2
ν = 1. To evaluate the coefficients aν for free

fermions, we consider the action of H with V = V ′ = 0
on the states |φν,0〉:

H|φ1,0〉 = −J (|φ2,0〉+ |φ3,0〉)

H|φ2,0〉 = −J
(
|φ1,0〉+ 2|φ3,0〉+

√
3|φ4,0〉

)
H|φ3,0〉 = −J

(
|φ1,0〉+ 2|φ2,0〉+

√
3|φ4,0〉

)
H|φ4,0〉 = −

√
3J (|φ2,0〉+ |φ3,0〉) .

Diagonalizing H in this basis we find the ground state:

|Ψ0〉 =

√
3

6
|φ1,0〉+

√
3

3
(|φ2,0〉+ |φ2,0〉) +

1

2
|φ4,0〉 (A6)

and thus identify a1 =
√
3
6 , a2 = a3 =

√
3
3 and a4 = 1

2 . As
the introduction of the interaction terms in the Hamilto-
nian post-quench does not break translational symmetry,
we are guaranteed to remain in the q = 0 sector and thus
the general state |Ψ(t)〉 can always be decomposed as in
Eq. (A5), however the time-dependent coefficients may
now be complex in general.

3. Schmidt decomposition of the ground state

In order to perform a particle bipartition, we first need
to artificially distinguish the identical fermions from each
other, i.e., we write the ground state in first quantization
by adding a new label to the states. Thus

|ψν,m〉 =
1√
N !

∑
i

ηi |ψν,m,i〉 (A7)

where the new index i runs over the N ! different orien-
tations of the particle labels and ηi = ±1 is the corre-

sponding phase factor,

|ψ2,1〉 ≡ |110100〉

=
1√
6

(|111201300〉+ |131101200〉+ |121301100〉

−|121101300〉 − |131201100〉 − |111301200〉)

where the subscripts are particles labels and we use the
usual sign convention based on their permutations.

Now we can partition the particles into two sets, con-
taining n = 1 particle, say the particle with the label
1, and the remaining N − n = 2 particles with labels
2 and 3. Any N = 3 particle state can be written
as a tensor product from the two subsets. For exam-
ple, |111201300〉 = |1100000〉 ⊗ |01201300〉. Perform-
ing this decomposition entails finding the coefficients
bν,ν′,m,m′,i,i′ , such that the state can be expanded as

|Ψ0〉 =
∑
ν,ν′

∑
m,m′

∑
i,i′

bν,ν′,m,m′,i,i′

∣∣∣ψ(n)
ν,m,i

〉 ∣∣∣ψ(N−n)
ν′,m′,i′

〉
,

where
∣∣∣ψ(n)
ν,m,i

〉
and

∣∣∣ψ(N−n)
ν′,m′,i′

〉
represent the first quan-

tization basis states for the two groups of particles, re-
spectively. The resulting Schmidt decomposition matrix
of the state |Ψ0〉 is given by

G(n) =
∑
ν,ν′

∑
m,m′

∑
i,i′

bν,ν′,m,m′,i,i′

∣∣∣ψ(n)
ν,m,i

〉〈
ψ
(N−n)
ν′,m′,i′

∣∣∣ .
(A8)

In a previous work [20], we have shown that the spec-
trum of a n-body reduced density matrix ρn can be ob-
tained by considering a smaller matrix G̃(n) that contains
only 1

n!(N−n)! of the number of elements in G(n). The ma-

trix G̃(n) is obtained by choosing a specific orientation of
the particles labels in any of the subsets (i.e. increasing
order) and keeping track of the overall phase (signs) of a
N particle configuration by considering the relative ori-
entation of the particles from the two sets.

4. Application of translational symmetry to the
occupation subsets

We now consider the effect of translational symmetry
on the particle sub-group occupation states. The number
of possible cycles depends on the number of particles in
the group and we can suppress the explicit particle labels
(e.g. 11, 12, 13) by fixing the orientation such that they
are always in increasing order when written from left to
right in a subgroup. We then use a primed notation to
distinguish states in the group with n = 1 where there is
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only one translational cycle with six elements:

|ψ(n)
1,1 〉 = T 0 |ψ(n)

1,1 〉 = |1′00000〉

|ψ(n)
1,2 〉 = T 1 |ψ(n)

1,1 〉 = |01′0000〉

|ψ(n)
1,3 〉 = T 2 |ψ(n)

1,1 〉 = |001′000〉

|ψ(n)
1,4 〉 = T 3 |ψ(n)

1,1 〉 = |0001′00〉

|ψ(n)
1,5 〉 = T 4 |ψ(n)

1,1 〉 = |00001′0〉

|ψ(n)
1,6 〉 = T 5 |ψ(n)

1,1 〉 = |000001′〉 (A9)

from the
(

L
N−n

)
=
(
6
2

)
= 15 occupation states in the

N − n = 2 group. The latter can be decomposed into
three translational cycles as follows:

|ψ(N−n)
1,1 〉 = T 0 |ψ(N−n)

1,1 〉 = |110000〉

|ψ(N−n)
1,2 〉 = T 1 |ψ(N−n)

1,1 〉 = |011000〉

|ψ(N−n)
1,3 〉 = T 2 |ψ(N−n)

1,1 〉 = |001100〉

|ψ(N−n)
1,4 〉 = T 3 |ψ(N−n)

1,1 〉 = |000110〉

|ψ(N−n)
1,5 〉 = T 4 |ψ(N−n)

1,1 〉 = |000011〉

|ψ(N−n)
1,6 〉 = T 5 |ψ(N−n)

1,1 〉 = |100001〉

|ψ(N−n)
2,1 〉 = T 0 |ψ(N−n)

2,1 〉 = |101000〉

|ψ(N−n)
2,2 〉 = T 1 |ψ(N−n)

2,1 〉 = |010100〉

|ψ(N−n)
2,3 〉 = T 2 |ψ(N−n)

2,1 〉 = |001010〉

|ψ(N−n)
2,4 〉 = T 3 |ψ(N−n)

2,1 〉 = |000101〉

|ψ(N−n)
2,5 〉 = T 4 |ψ(N−n)

2,1 〉 = |100010〉

|ψ(N−n)
2,6 〉 = T 5 |ψ(N−n)

2,1 〉 = |010001〉

|ψ(N−n)
3,1 〉 = T 0 |ψ(N−n)

3,1 〉 = T 3 |ψ(N−n)
3,1 〉 = |100100〉

|ψ(N−n)
3,2 〉 = T 1 |ψ(N−n)

3,1 〉 = T 4 |ψ(N−n)
3,1 〉 = |010010〉

|ψ(N−n)
3,3 〉 = T 2 |ψ(N−n)

3,1 〉 = T 5 |ψ(N−n)
3,1 〉 = |001001〉 .

(A10)

We have now exposed enough structure to express the
Schmidt decomposition matrix G̃(n) as being composed
of three sub-matrices

G̃(n) =
[
A1,1 A1,2 A1,3

]
, (A11)

where Aν′,ν =
∑
m′,m cν′,ν,m′,m |ψ(n)

ν′,m′〉 〈ψ(N−n)
ν,m | and the

coefficients cν′,ν,m′,m can be read off from Eq. (A6) com-
bined with Eq. (A7) to yield

A1,1 =


0 ā1 ā3 ā2 ā1 0
0 0 ā1 ā3 ā2 −ā1
ā1 0 0 ā1 ā3 −ā2
ā2 ā1 0 0 ā1 −ā3
ā3 ā2 ā1 0 0 −ā1
ā1 ā3 ā2 ā1 0 0

 , (A12)

A1,2 =


0 ā2 ā4 ā3 0 ā1
−ā1 0 ā2 ā4 −ā3 0

0 −ā1 0 ā2 −ā4 −ā3
ā3 0 −ā1 0 −ā2 −ā4
ā4 ā3 0 −ā1 0 −ā2
ā2 ā4 ā3 0 ā1 0

 , (A13)

A1,3 =


0 ā3 ā2
−ā2 0 ā3
−ā3 −ā2 0

0 −ā3 −ā2
ā2 0 −ā3
ā3 ā2 0

 , (A14)

with ā1 = a1/6, ā2 = a2/6, ā3 = a3/6 and ā4 =

a4/
√

12. To understand how these are actually obtained
it is useful to consider a specific example for the ele-
ment [A1,2]1,3 which is the coefficient corresponding to

|ψ(n)
1,1 〉 〈ψ

(N−n)
2,3 | = |1′00000〉 〈001010|, which comes from

the decomposition of the N -particle state |1′01010〉. Re-
introducing the particle labels |110120130〉, we note the
orientation has a positive phase and it appears in the
ground state only through |ψ4,1〉 with a factor of 1/

√
6

and the latter has a unique contribution through |φ4,0〉
and thus the targeted coefficient is ā4 = a4/(

√
2
√

6).
Similarly, starting from this position and moving one
step in the diagonal direction results in shifting all the
particles one site to the right, and thus we get [A1,2]2,4
as the coefficient of |011012013〉 which is also ā4 due to
the translational symmetry of the ground state. How-
ever, if we proceed along the same diagonal and evaluate
the coefficient [A1,2]3,5 we get −ā4 as it corresponds to
|120110130〉 which has a negative phase as particle 2 in
group 2 has wrapped around the boundary. The appear-
ance of this minus sign is somewhat spurious, and arises
from the chosen first-quantized labelling scheme of par-
ticles in the subgroups in increasing order. This can be
understood by considering Eq. (A10) where the transla-
tional symmetry such that T 6 = 1 is arising from true
indistinguishability of the particles. Such signs are al-
ways attached to either a full row or column and we note
that if we were to multiply columns 5 and 6 of the matrix
A1,2 by −1 then the resulting matrix is periodic. Simi-
larly, multiplying the sixth column of A1,1 by −1 results
in a periodic matrix. Also, the matrix A1,3 is periodic in
the vertical direction (rows), while its antiperiodic in the
horizontal direction (columns).

In general, if we account for the negative signs that
are attached to columns and/or rows, the resulting A-
matrices are either periodic, antiperiodic or mixed, de-
pending on the relationship between the number of par-
ticles in each subgroup and the number of elements in
the symmetry cycles involved. The spatial symmetries
can be determined by computing the parity of the prod-

uct n(N−n)M
(n)
ν′ /L for rows and n(N−n)M

(N−n)
ν /L for

columns with even/odd corresponding to periodic/anti-

periodic and M
(n)
ν′ is the number of elements in the trans-

lational cycle ν′ corresponding to the n-particle group.
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Based on this analysis, we can build unitary transfor-
mations to simplify the matrix G̃(n). We begin by defin-
ing unitary operators that diagonalize the matrices Aν′,ν .
Starting with A1,1, we first account for the row/column
spurious signs which can be dealt with via the unitary
operator P1, with [P1]m′,m = 0 for m′ 6= m, [P1]6,6 = −1

and [P1]m,m = 1 for m ≤ 6. The matrix A1,1P
†
1, is then

fully periodic and can be diagonalized with the periodic
square Fourier transform matrix Fν as

D1,1 = F1A1,1P
†
1F
†
1, (A15)

where

[Fν ]m′,m =
1√
Mν

e−ı2π(m
′−1)(m−1)/Mν . (A16)

In the same fashion, we can diagonalize A1,2 as

D1,2 = F1A1,2P
†
2F
†
2, (A17)

where we have accounted for the extra signs via P2 which
has [P2]m′,m = 0 for m′ 6= m, [P2]5,5 = [P1]6,6 = −1
and [P2]m,m = 1 for m ≤ 4. Finally, the rectangular
matrix with mixed periodicity/anti-periodicity A1,3 can
be diagonalized as

D1,3 = F1A1,3F̃
†
3, (A18)

where the anti-periodic Fourier matrix is

[F̃ν ]m′,m =
1√
Mν

e−ı2π(m−1)(m
′−1/2)/Mν (A19)

with M3 = 3 corresponding to the number of states in the
3rd cycle for the N−n group of particles (see Eq. (A10)).
The matrix

D =
[
D1,1 D1,2 D1,3

]
, (A20)

can be obtained directly from G̃(n) via D = UG̃(n)V†,
where

U = F1, (A21)

and

V† =

P†1F†1 0 0

0 P†2F
†
2 0

0 0 F̃†3

 . (A22)

We now arrive at the explicit form of the D matrix

D =


[D1,1]1 0 0 0 0 0 [D1,2]1 0 0 0 0 0 0 0 0

0 [D1,1]2 0 0 0 0 0 [D1,2]2 0 0 0 0 [D1,3]1 0 0
0 0 [D1,1]3 0 0 0 0 0 [D1,2]3 0 0 0 0 0 0
0 0 0 [D1,1]4 0 0 0 0 0 [D1,2]4 0 0 0 [D1,3]2 0
0 0 0 0 [D1,1]5 0 0 0 0 0 [D1,2]5 0 0 0 0
0 0 0 0 0 [D1,1]6 0 0 0 0 0 [D1,2]6 0 0 [D1,3]3


(A23)

which can be put in a block diagonal form by a rearrangement of the columns and rows (in this example, we only
rearrange the columns) via a final unitary transformation that exchanges the basis of D. This leads to

D̃ =


[D1,1]1 [D1,2]1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 [D1,1]2 [D1,2]2 [D1,3]1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 [D1,1]3 [D1,2]3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 [D1,1]4 [D1,2]4 [D1,3]2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 [D1,1]5 [D1,2]5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 [D1,1]6 [D1,2]6 [D1,3]3

 .
(A24)

A singular value decomposition of D can be performed
by obtaining the singular values of each of the six blocks.
In this example we find: d1 = 1/

√
6, d2 = 1/

√
6, d3 = 0,

d4 = 0, d5 = 0 and d6 = 1/
√

6. The resulting eigenvalues
of the n-body reduced density matrix ρn are [20]:

λk = n!(N − n)!d2k , (A25)

thus:

λ1 =
1

3
λ2 =

1

3
λ3 = 0 λ4 = 0 λ5 = 0 λ6 =

1

3
.

(A26)

This efficient approach can be compared with the
brute-force construction of the n-particle reduced density
matrix for this case using no particle subgroup symme-



10

tries which yields

ρn =


α1 α2 0 α3 0 α2

α2 α1 α2 0 α3 0
0 α2 α1 α2 0 α3

α3 0 α2 α1 α2 0
0 α3 0 α2 α1 α2

α2 0 α3 0 α2 α1

 (A27)

where

α1 =
1

6

(
a21 + a22 + a23 + a24

)
α2 =

1

18

[
a1(a2 + a3) + 2a2a3 +

√
3a2a4 +

√
3a3a4

]
α3 =

1

18

(
2a21 − 2

√
3a1a4 − a22 − a23

)
. (A28)

The eigenvalues can be easily confirmed to yield λk
but here we must diagonalize one

(
L
n

)
×
(
L
n

)
matrix

as opposed to L considerably smaller matrices whose
maximal linear dimension can be reduced by a factor up
to max[n!, (N − n)!]L.

The full implementation of these particle subgroup
translational symmetries (with details in the released
code [31]) has allowed us to compute the post-quench
dynamics of particle entanglement entropies for reduced
density matrices with n = bN/2c = 6 for systems up to
L = 26 sites and N = 13 fermions at half filling for long
times tJ = 100.
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