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It is well-known that operators of localized spins within a magnetic material satisfy neither
fermionic nor bosonic commutation relations. Thus, to construct diagrammatic many-body per-
turbation theory, requiring the Wick theorem, the spin operators are usually mapped to the bosonic
ones with Holstein-Primakoff (HP) transformation being the most widely used in magnonics and
spintronics literature. However, to make calculations tractable, the square root of operators in the
HP transformation is expanded into a Taylor series truncated to some low order. This poses a ques-
tion on the range of wvalidity of the truncated HP transformation when describing nonequilibrium
dynamics of localized spins interacting with each other or with conduction electron spins—a prob-
lem frequently encountered in numerous transport phenomena in magnonics and spintronics. Here
we apply exact diagonalization techniques to Hamiltonian of fermions (i.e., electrons) interacting
with HP bosons vs. Hamiltonian of fermions interacting with the original localized spin operators
in order to compare their many-body states and one-particle equilibrium and nonequilibrium Green
functions (GFs). We employ as a test bed a one-dimensional quantum Heisenberg ferromagnetic
spin-S XXX chain of N < 7 sites, where S = 1 or S = 5/2, and the ferromagnet can be made
metallic by allowing electrons to hop between the sites while interacting with the localized spins
via sd exchange interaction. For these two different versions of the Hamiltonian of this model,
we compare: the structure of their ground states; time evolution of excited states; spectral func-
tions computed from the retarded GF in equilibrium; and matrix elements of the lesser GF out of
equilibrium. Interestingly, magnonic spectral function can be substantially modified, by acquiring
additional peaks due to quasibound states of electrons and magnons, once the interaction between
these subsystems is turned on. The Hamiltonian of fermions interacting with HP bosons gives an
incorrect ground state and electronic spectral function, unless a large number of terms are retained
in the truncated HP transformation. Furthermore, tracking the nonequilibrium dynamics of local-
ized spins over longer time intervals requires progressively larger number of terms in truncated HP
transformation, even if a small magnon density is excited initially, but the required number of terms
is reduced when interaction with conduction electrons is turned on. Finally, we show that recently
proposed [M. Vogl et al., Phys. Rev. Research 2, 043243 (2020); J. Konig et al., SciPost Phys.
10, 007 (2021)] resummed HP transformation, where spin operators are expressed as polynomials
in bosonic operators, resolves the trouble with truncated HP transformation, while allowing us to
derive an exact quantum many-body (manifestly Hermitian) Hamiltonian consisting of finite and
fized number of boson-boson and electron-boson interacting terms.

I. INTRODUCTION

other subfields of condensed matter physics, terms “spin

The concept of spin waves was introduced by Bloch [1]
as a disturbance in the local magnetic ordering of ferro-
magnetic materials. In the spin wave, the expectation
value of localized spin operators precess around the easy
axis with the phase of precession of adjacent expectation
values varying harmonically in space over the wavelength
M. The quanta of energy of spin waves behave as quasi-
particles termed magnons each of which carries energy
hw and spin A.

As regards terminology, we note that in spintronics and
magnonics [2] literature it is common to use “spin wave”
for excitations described by the classical Landau-Lifshitz-
Gilbert (LLG) equation [3] within numerical micromag-
netics [4] or atomistic spin dynamics [5], while “magnon”
is used for quantized version of the same excitation. In
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waves” and “magnons” are sometimes used to distinguish
between long- and short-wavelength excitations, respec-
tively, or both names are used interchangeably [6].

The second-quantization description of magnons was
introduced by Holstein and Primakoff (HP) [7] by map-
ping the localized spin operator S, on site i of the lattice
to bosonic operators

Lo\ 1/2
S+g+maﬁwQ;Q b (1)

L\ 1/2
S-=8r—i8=vasal(1-2L) . (1b)
28
87 =8 —n,. (1c)
Here a! (a;) creates (annihilates) HP boson on site i and
satisfies the bosonic commutation relations

[&i,fl}] =14, (2)

where 1 is the unit operator in the infinite dimensional
Hilbert space of bosons. The HP boson number operator,
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Ny = dj&i whose eigenvalues and eigenstates are defined
by 7;|n) = nln), measures how much the localized spin
deviates away from the ground state [where the ferro-
magnetic ground state with the z-axis as the easy axis
is assumed in Eq. (1)]. Thus, the creation of one HP
boson is equivalent to removing of one unit of spin an-
gular momentum from the ground state [see Fig. 1(c) for
illustration and Sec. IIT for technical details].

The textbook literature [8, 9] is typically focused on
band structure of noninteracting magnons (which can
also be topologically nontrivial [10, 11]), so it discusses
only the lowest-order truncation

+ ~ V 25&“ (3&)
~ ~V25a], (3b)

of the original HP transformation in Eq. (1) while re-
taining the terms in the Hamiltonian that are up to the
quadratic order in the bosonic operators. This effectively
assumes low-density limit (7;)/2S < 1 achieved at, e.g.,
sufficiently low temperatures [12] and/or large S > 1
in which HP bosons can be treated as noninteracting.
Taking into account higher order terms in the Hamil-
tonian generated by Eq. (3), as well as in the Taylor
expansion of the square root in Eq. (1), produces higher-
than-quadratic terms in the bosonic operators which de-
scribe boson-boson interactions [6, 9, 11-15] leading to
renormalization of magnon energy, magnon decay (one
magnon decays into two) [6], coalescence (two magnons
coalesce into one), four-magnon interactions, decays into
four magnons and other higher order processes [16].
Since bosonic operators &j, a; act on an infinite-
dimensional Hilbert space, but the physical Hilbert space
corresponding to a single localized spin on site ¢ is
spanned by only 2541 states, the extra unphysical states
are decoupled from the physical ones by the square root
in Eq. (1). Such exact HP transformation in Eq. (1) splits
the infinite dimensional Hilbert space spanned by boson
number states {|n)},en into two sectors—physical states
{In)}n=0,... 25; and all the unphysical ones {|n)},>2s [see
also Eq. (36)] Those sectors cannot be connected by
S+ and S operators. However, when the square root
in Eq. (1 ) is expanded in power series and then trun-
cated (see Secs. IIE and IIF) to any finite order Nr,
the physical and unphysical subspaces become coupled.
In addition, canonical commutation relations for the spin
operators are then satisfied only approximately, resulting
in artificial breaking of rotational symmetries that may
be present in the original Hamiltonian [17, 18].
Retaining higher order terms in the Taylor series ex-
pansion of Eq. (1) is necessary to study, e.g., equilib-
rium properties at increasing temperature [16, 19, 20]
or nonequilibrium dynamics [13-15, 21]. For example,
Dyson [19] calculated how magnetization of the Heisen-
berg model of a three-dimensional ferromagnet decays
with temperature, M(T)/M(0) = 1 — coT3/? — ¢, T°/? —
coT7/? —c3T*4+O(T°/?), where T/ is the so-called Bloch
law for noninteracting magnons with parabolic energy-
momentum dispersion; second and third term also stem
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FIG. 1. (a) Schematic view of a finite-size 1D quantum many-
body system comprised of a chain of N = 4 sites hosting
spin-S' localized spins (S = 1 or S = g considered in this
study) which interact with each other via the nearest-neighbor
Heisenberg exchange interaction of strength Jg. At ¢ = 0,
nonequilibrium dynamics can be initiated by flipping the lo-
calized spin on site ¢ = 1. The 1D quantum many-body sys-
tem in (b) is the same as (a) but with smaller number of
N = 3 sites whose spin-S localized spins additionally inter-
act with conduction electron spins (blue arrows) via the sd
exchange interaction of strength Jsq. The conduction elec-
trons hop between the sites with the hopping parameter ~
where “half-filled” (i.e., Ne = 3) tight-binding chain is used.
Panel (c) illustrates the reduction of eigenvalues S7 of the
z-component gf of localized spin-g operator on site ¢ = 1
by Nmag units, which is equivalent to creating Nmag Holstein-
Primakoff bosons on site i = 1 once the localized spins are
mapped [7] to bosonic operators.

from noninteracting magnons but with nonparabolic dis-
persion on a discrete lattice; and magnon-magnon inter-
actions start manifesting at order T#. In addition, exotic
quantum matter like quantum spin liquids [22, 23] can-
not be studied by any order of Taylor series expansion
of Eq. (1) due to their highly-entangled ground state
and absence of long-range order. Calculations of this
type) [19, 23] require many-body perturbation theory
(MBPT) [23-25] which is most easily formulated in terms
of bosonic or fermionic operators. For such operators, the
Wick theorem [26] for their averages over the noninter-
acting system makes it possible to expand properties of
the interacting system into the Feynman diagrammatic
series of perturbation order O(g™) where g is the strength
of fermion-boson interaction.

The necessity for mapping of spin operators to bosonic
or fermionic ones stems from the fact that spin oper-
ators do not satisfy either fermionic nor bosonic com-
mutation relations. For example, the Pauli matrices for



S = 1/2 commute on different sites and anticommute
on the same site. The commutation relations for spins
are determined by SU(2) algebra, leading to the ab-
sence of a Wick theorem for the generators. To avoid
this difficulty and construct a diagrammatic MBPT or
path integrals [21] for quantum spin systems a variety
of approaches have been developed. Since higher order
terms in the power-series expansion of square root in the
HP transformation in Eq. (1), conjectured by Kubo [27]
to be only an asymptotic series, lead to cumbersome
MBPT [28, 29], a plethora of other mappings of original
localized spin operators to bosonic or fermionic operators
has been proposed, such as mappings to: Dyson-Maleev
bosons [19, 30]; Schwinger bosons [21]; fermions [31, 32];
Majorana fermions [33]; supersymmetric operators [34];
and exotic particles called semions [35].

However, all of them posses some drawbacks. While
the Dyson-Maleev transformation evades usage of the
square root of operators in Eq. (1), it generates Hamilto-
nian that is not manifestly Hermitian. The Schwinger
transformation require the introduction of auxiliary
fields. The Jordan-Wigner transformation [31] or map-
ping to Majorana fermions [33] are exact, but they work
only for S = 1/2 operators. While the mapping of lo-
calized spin operators to bosonic or fermionic operators
can be evaded altogether in the path integral formula-
tion by using spin coherent states, this approach leads
to topological terms associated with the Berry phase so
that even in path integral formalism mapping to bosonic
operators is preferred [21].

These drawbacks have prompted very recent reexam-
inations [17, 18] of HP transformation to find possible
nonperturbative replacements of the Taylor series of the
square root in Eq. (1) which can be written as a poly-
nomial in bosonic operators, while ensuring no coupling
between physical and unphysical subspaces as well as
manifestly Hermitian bosonic Hamiltonian. Although
such polynomial expressions do not reproduce exactly the
canonical commutation relations for the spin operators,
the extra terms generated turn out to be unimportant
because they do not couple physical and unphysical sub-
spaces of the bosonic Hilbert space, i.e., they act solely
on the unphysical subspace [17, 18].

The MBPT calculations of equilibrium magnon prop-
erties based on Dyson-Maleev vs. truncated HP trans-
formation have been carefully compared in the litera-
ture over many decades [28, 29]. On the other hand,
much less is know about the range of validity [36, 37] of
truncated HP transformation when describing nonequi-
librium dynamics of localized spins, including situations
where additional interactions with conduction electrons
are present. The electron—localized-spin interactions are
frequently encountered in quantum transport phenomena
in spintronics. The nonequilibrium MBPT [24, 25] for
such problems is virtually always conducted using trun-
cated HP transformation, as exemplified by theoretical
and computational modeling of inelastic electron tun-
neling spectroscopy in magnetic tunnel junctions [38];

spin-transfer [39-42] and spin-orbit torques [43]; ultra-
fast demagnetization [44]; and conversion of magnonic
spin currents into electronic spin current (or vice versa)
at magnetic-insulator/normal-metal interfaces [45-47].
Similarly, truncated HP transformation is typically cho-
sen for problems in quantum magnonics, such as for
nonequilibrium dynamics of localized spins within mag-
netic insulators [13-15, 48]; their interaction with elec-
tromagnetic fields [12, 49]; and analysis of coherence of
magnon quantum states [14, 50]. Obviously, one can ex-
pect that truncated HP transformation will break down
at sufficiently long times (as confirmed Figs. 4, 5, 6
and 11) when higher-order terms in the expansion of
the square root in HP transformation become important,
but details of such breakdown—i.e., how many terms
are needed to ensure exact time evolution over experi-
mentally relevant time interval [see Fig. 5]—remain un-
explored. Such breakdown precludes [39, 42] accurate
tracking of nonequilibrium dynamics of localized spins,
which can be driven far from their initial direction (along
the easy axis) and eventually reversed by, e.g., spin-
transfer torque [51, 52].

Instead, current-driven magnetization reversal via
spin-transfer torque [51] is standardly modeled by the
LLG equation [53], which is combined in a multiscale
fashion with some type of steady-state [54] or time-
dependent quantum transport calculations [55-61] con-
sidering single-particle quantum Hamiltonians for elec-
trons. Thus, such hybrid quantum-classical theories are
justified only in the classical limit A — 0 and for large
localized spins S — oo (while AS — 1) [3, 60, 62, 63],
as well as in the absence of entanglement [3, 52, 63, 64]
between quantum states of localized spins. For example,
in the emerging concept of quantum spin torque [52, 64—
67], describing transfer of angular momentum between
spins of flowing electrons and localized spins in situa-
tions [68] where the latter must be described by quantum-
mechanical operators, the whole system of electrons and
localized spins can only be modeled by a quantum many-
body Hamiltonian [as exemplified by Egs. (4) and (72)].

In this study, we apply exact diagonalization tech-
niques [69] to quantum many-body Hamiltonians de-
fined on a one-dimensional (1D) chain of N sites hosting
fermionic (for electrons) and localized spin operators, or
fermionic and bosonic (obtained by mapping the original
localized spin operators) operators. By comparing their
many-body quantum states and GFs, both in equilibrium
and in nonequilibrium, makes it possible to precisely de-
lineate the range of validity of truncated HP transforma-
tion. We consider 1D quantum Heisenberg ferromagnetic
spin-S XXX chain hosting localized spins which interact
via the nearest-neighbor exchange interaction of strength
Ju, as illustrated in Fig. 1(a), where both spin S =1 (as
the “ultraquantum” limit) and S = 5/2 (as in, e.g., Fe3"
valence state with five 3d electrons coupled by Hund’s
rule into the high spin state forming a localized S = 5/2
moment) are employed. Naively, the eigenvalue of Sf be-
ing S?(1 + 1/85) suggests that quantum effects become



progressively less important for S > 1, but they exist for
all S < oo vanishing as 1/2S5 in the classical limit [70].
The nonzero electron hopping v between the sites, where
N = 3 sites are chosen when electrons are present as il-
lustrated in Fig. 1(b), means that such 1D chain models
a ferromagnetic metal (FM). Its N, conduction electrons
[we consider half filled lattice, so N, = 3 for systems in
Fig. 1(b)] interact with localized spins via sd exchange in-
teraction [71] usually considered in spintronics. From the
viewpoint of the physics of strongly correlated electrons,
the model illustrated in Fig. 1(b) can also be interpreted
as the Kondo-Heisenberg chain [72].

For technical reasons (i.e., exponential increase of the
size of matrix representation of Hamiltonian), we con-
sider 1D chains of N < 7 sites while concentrating on
generic features which are not bound to one dimension
or small number of electrons and localized spins consid-
ered. In fact, artificial atomic chains which realize our
model have been fabricated in experiments by using ferro-
magnetically [73] or antiferromagnetically [74] coupled Fe
atoms on a substrate, where magnons along the chain are
excited and detected via atom-resolved inelastic tunnel-
ing spectroscopy in a scanning tunneling microscope [73].

It is also worth recalling that small clusters (com-
posed of, e.g., 2-8 lattice sites) in 1, 2, and 3 spa-
tial dimensions—hosting electrons interacting with each
other via the on-site or nearest-neighbor Coulomb in-
teraction [75-78] (as described by “pure” and extended
Hubbard models [75], respectively); or electrons inter-
acting with bosons [79-81]—play an important role in
testing approximation schemes for quantum many-body
problem against numerically exact benchmarks in differ-
ent subfields of condensed matter and atomic-molecular-
optical physics. Furthermore, the advent of numerically
exact algorithms and supercomputers has led to recent
re-examination of many physically motivated simplifi-
cations and approximations developed earlier in quan-
tum many-body theory for condensed matter systems
(such as Migdal-Eliashberg theory for electron-phonon
systems [82]; partial summation of classes in Feynman
diagrams in MBPT [83]; and existence of Luttinger-Ward
functional of dressed one-particle Green function [84]) in
order to draw boundaries of parameters for which their
complete breakdown ensues.

Our study proceeds in the same spirit, where we ez-
plicitly delineate “breakdown” times—in Figs. 4, 5 and
11 for localized spins alone and in Figs. 6 and 11 for
localized spins interacting with conduction electrons—at
which widely used in spintronics and magnonics trun-
cated versions of the HP transformation in Eq. (1) in-
evitably break down by generating quantum time evolu-
tion which starts to substantially deviate from the exact
one obtained by using the original localized spin opera-
tors.

The paper is organized as follows. In Sec. II we intro-
duce different versions of quantum many-body Hamilto-
nian describing systems in Fig. 1 and their matrix rep-
resentations, as well as a procedure to obtain the exact

one-particle double-time-dependent retarded and lesser
Green functions (GFs). In particular, subsection ITE in-
troduces an infinite power series expansion of the HP
transformation from Eq. (1) and its truncation, while
subsection ITF provides a brief summary of recently pro-
posed [17, 18] resummation of truncated HP transforma-
tion. The time evolution of quantum many-body states
of a spin chain with no electrons (N, = 0) is employed in
Sec. IITA to examine the range of validity of truncated
HP transformation when tracking time evolution of local-
ized spins in the presence of magnon-magnon interaction
and different number of initially excited magnons Npag.
Then in Sec. IIT B we introduce electrons into 1D chain to
examine the range of validity of truncated HP transfor-
mation when tracking time evolution of localized spins
in the presence of both magnon-magnon and electron-
magnon interactions. In the same Sec. III B, we addi-
tionally employ resummation [17, 18] of truncated HP
transformation to derive quantum many-body Hamilto-
nian [Eq. (72)] for electron-magnon systems in terms of
fermionic and bosonic operators whose usage reproduces
numerically exact result from calculations based on the
original localized spin operators. In Secs. III C and 111D
we compare ground state and electronic spectral function
(or “interacting density of states” [85, 86]) of quantum
many-body Hamiltonian in terms of the original local-
ized spin operators vs. Hamiltonian using bosonic oper-
ators generated by truncated HP transformation. The
magnonic spectral function and related excited eigen-
states are studied in Sec. IITE. Since both ground and
excited states of electron-magnon interacting system are
many-body entangled [87], we compute their entangle-
ment entropy in Sec. IIIF which makes it possible to
quantify how far they are from the eigenstates of a sys-
tem where the interaction between electrons and local-
ized spins is turned off. Finally, Sec. III G studies time
evolution of diagonal and off-diagonal elements of time-
dependent lesser electronic and magnonic GFs, while
using both exact and truncated HP transformation, to
clarify that computationally often employed “local self-
energy approximation” [88-91] (i.e., neglecting the off-
diagonal elements) for electron-boson interacting systems
is generally not justified. We conclude in Sec. IV.

II. MODELS AND METHODS

A. Quantum many-body Hamiltonian of electrons
interacting with localized spins

The quantum many-body Hamiltonian of 1D chain
composed of N sites (with open boundary conditions as-
sumed), each of which hosts spin-S localized spins inter-
acting with spins of conduction electrons [as illustrated
in Fig. 1(b)], is given by [38, 92]

H = ﬁe + ﬁlspins + I;[eflspin& (4)



It acts in the total space F. ® Hispins Which is a ten-
sor product of the Fock space of electrons, F., and the
Hilbert space of all localized spins

Hlspins:H1®"'®HN- (5)

The Fock space of electrons [25]

Fo=CoOH.PAMH OH) ®AHe @ He @ He) @ - - -,

(6)
is induced by one-electron Hilbert space H. as the com-
pletion (indicated by overline) of the direct sum of anti-
symmetrized n-fold tensor products of H.. The operator
A antisymmetrizes tensors for fermionic particles. In the
sector of F. ® Hispins With N. = 0 electrons, we have a
chain hosting only spin-S localized spins [as illustrated
in Fig. 1(a)], which is described solely by

ﬁlspins = *JH ZS'L : gj» (7)

chosen as the quantum Heisenberg Hamiltonian with the
nearest-neighbor (NN) exchange interaction (as signified
by (ij) notation) of strength Jg = 1 €V. When electrons
are present, they are described by

H, = 7721#;[7!]]" (8)
(i5)

chosen as the tight-binding Hamiltonian with the NN
hopping v =1 eV between orbitals centered on each
site ¢ that are orthogonal to each other. The Hamil-
tonian describing sd exchange interaction of strength
Jsa = 0.2 eV [71] between conduction electron spin and
localized spins is given by

Heflspins = -

N
Jsd Z pled; - S (9)

=1

The row vector operator 1@1 = (1/1%, ’(/JL) consists of opera-

tors zﬁja which create an electron with spin ¢ =7, | on site
1 z[AJl is a column vector operator that contains the cor-
responding annihilation operators; and & = (6%,46Y,6%)
is the vector of the 2 x 2 Pauli spin matrices as matrix
representation of spin—% operator of electronic spin.

Using notation {O1, 05} for the anticommutator and
[01, OQ] for the commutator of two operators O, and 02,
fermionic operators of electrons satisfy

i 0,0} =

where 1 is the unit operator in the Fock space F.. The
localized spin operators S (o = x,y, z) on site i satisfy
the angular momentum algebra

16050, (10)

N

(97, 8Y] = 1576y, (11a)
[SY,57] = iS4y, (11b)
197, 82] = iSY0;;. (11c)

The square of the localized spin operator, 52 = (57)% +
(5¥)% 4 (57)2, commutes with each component
142,89 = 0. (12)

For computational convenience in calculations of elec-
tronic GFs, we change [93] the basis of one-particle elec-
tronic states from site basis to eigenenergy basis to obtain

ﬁe = Qéjél, (13)
where ¢l = (CIT,CL) is a row vector consisting of ¢l
operators which create an electron with spin ¢ =1, in
one-particle electronic eigenstate |¢;) with the discrete
eigenenergy €;, so that H, |¢;) = €; |¢;). These eigenener-

gies and eigenstates are evaluated by diagonalizing the
one-particle tight-binding Hamiltonian

H, = Z — i) (il (14)

where |i) denotes an orbital [whose coordinate represen-
tation is (r|i) = ¢(r — R;)] of an electron centered on site
i such that (i|j) = 0;;. Using change of basis transforma-
tion rules for operators in second-quantization formalism

N

’@[Ajicr = Z <7’|EJ> éjcfa (15)

j=1
and substituting this into Eq. (9) we get

N N N

Sdzzz (ej]2) (ilej) ¢

i=1 j=1j'=1

He—lspins = a'é] - S;.

(16)
Since each éj or ¢; operator is represented by 4 x 4
matrix (see Sec. IIC), and each S, operator is repre-
sented by a (25 + 1) x (25 + 1) matrix, the quantum
many-body Hamiltonian in Eq. (4) for the chain of N
sites in Fig. 1(b) is represented by a matrix of size
[4N x (28 + 1)N] x [4Y x (25 + 1)V]. Although systems
containing larger than our choice N = 3 (when electrons
are present) or N < 7 (when electrons are absent) sites
could be diagonalized with state-of-the-art numerical al-
gorithms [69], we restrict our analysis to such smaller
number of sites in order to make the analysis transpar-
ent and pedagogical—for example, Figs. 7 and 9 provide
easy-to-follow visualization of ground and excited quan-
tum many-body states depicting population of a small
number of energy levels ¢;, respectively.

B. Symmetries of quantum many-body
Hamiltonian

The exact diagonalization of quantum many-body
Hamiltonian in Eq. (4)

H\|0;) = By [Ty), (17)
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FIG. 2. Visualization of the absolute value of matrix elements of Hamiltonian H [Eq. (4)] for 1D quantum many-body system

of N. conduction electrons interacting with localized spins S = 1 illustrated in Fig. 1(b).

The matrix representation of H is

given: (a) in site basis; (b) in basis composed of eigenstates of electron number operator N, [Eq. (18)], so that each block
consists of states with fixed number of electrons N, (N. = 2, 3,4 is marked explicitly); and (c) in basis composed of eigenstates

of both N. [Eq. (18)] and total z-spin operator Sz, [Eq. (19)].

yields its many-body eigenenergies E} and many-body

eigenstates |¥y). The total electron number operator is
given by
N
Ne = (chei +ef en). (18)
i=1
The operator of total spin in the z-direction
1 N
=g > (Chew —clen) + 355 (19)
i=1 i=1

is the sum of electronic spin operators (first term) and
localized spin operators (second term) along the z-axis at
each site . The many-body Hamiltonian in Eq. (4) has
two symmetries encoded by the commutation relations

[H,N.] =0, (20)

which is due to conservation of the number of electrons
N.; and

[H, Si) =0, (21)
which is due to conservation of total z-spin (electronic +
localized spin) Sg,,. Therefore, N, and S, as eigenval-
ues of V. and 57, respectively, serve as “good quantum
numbers” for labeling quantum many-body eigenstates

|\Ijk> = |EkﬂNev tzot>7 (22)
together with many-body eigenenergy Ej.

The effect of two symmetries in Eq. (20) and Eq. (21)
can also be visualized in the matrix representation (see
Secs. IIC and II D) of quantum many-body Hamiltonian
H [Eq. (4)J
ments of H in the original site basis are visually scat-
tered throughout the whole matrix. However, when H

For example, in Fig. 2(a) the matrix ele-

is represented in the basis of eigenstates of N., Fig. 2(b)
shows that its matrix becomes block-diagonal where each
block contains the nonzero matrix elements associated
with states with fixed number of electrons N,.. Finally,
in Fig. 2(c) H is represented in the basis composed of
eigenstates of N, and Afot simultaneously, which isolates
additional submatrices with fixed SZ,, within blocks as-
sociated to fixed IN,.

(o}

C. Matrix representation of electronic creation and
annihilation operators

A fermionic operator creating or annihilating electrons
on a single site operate within the natural basis of kets
[0}, |1), [4) and |[1]) which denote the empty state; state
with one spin-1 electron; state with one spin-| electron;
and the state with one spin-1 and one spin-| electron.
Thus, these basis states are represented by column vec-
tors

|O> = ) N> = ) |/Nr> =

O = O O

0 0
1 0
0 1

OO O

(23)
In the same basis, creation and annihilation oper-
ators that act in the Il-site or 2-particle subspace

=1 = A(H. ® H.) of the Fock space F. are repre-
sented by 4 x 4 matrices

0000 0 0 00
+ [tooo)] o (o0 00| o air
1%— 0000 7/(/)¢_ 1 0 00 71%—[1/110],
0010 0-100
(24)

which satisfy the fermionic commutation relations in
Eq. (10). If we consider two sites, then elec-



tronic creation (annihilation) operators, 1&{ (1&1) and
1[)5 (1/32), act in the 2-site or 4-particle subspace
Ao = A(He @ He ® He @ M) of the Fock space F,
and are represented by matrices of size 42 x 4%. For ex-

ample, the action of 1&10 in A y—o is given by

('J]L;)WN:2 = 1[)3; ® 1, (25)
where 1 is 4 x 4 unit matrix. However, the action of
(1/};0)%1\]:2

('(/);g)ifjvzz = P ® "/A}j; (26)

requires [93] the permutation
ﬁ:diag(l,—l,—l,l), instead of naively using only
the unit matrix 1, in order to preserve the correct
anticommutation relations of fermionic operators at
different sites in Eq. (10). The next step is to construct
the matrix representation of electronic creation and
annihilation operators for three sites, which is done in a
similar fashion [93] to furnish

matrix

(1) rney = VS @101, (27a)
(’l/;;a)ﬁsze. = ]3’ & 1[)3; ® 1, (27b)
(QZ};)U)-%”N:?, = p ® p ® 12}3;7 (27C)

where each operator on the left hand side (LHS) is
a 43 x 4% matrix. Equations (27) also make it clear
how to construct inductively matrix representations of
electronic creation and annihilation operators for ar-
bitrary number of sites N, where these operators act

A

in Ny = A(He @ He -+ - He ® H) subspace of the Fock

2N times
space F.. Note that the matrix representation in Eq. (27)

can be directly linked to the states of 2N qubits by the
Jordan-Wigner transformation [94] which is prevalent in
simulating the Fermi-Hubbard model on quantum com-
puters [95].

D. Localized spin operators

_ The matrix representation of localized spin operator
S = (5%,5Y,5%) is given by

(m + 1| 8% |m) = %\/S(S +1)—m(m=*1), (28a)

(m + 1) 8Y |m) = %\/S(sw 1) —m(m =+ 1), (28b)

(m| 8% |m) = m, (28c¢)

where |m) is an eigenstate of $%; m € {-S5, —S +
1,---,8 —1,5}; and 8% is a (25 + 1) x (25 4 1) ma-
trix acting in the single-site subspace H; of Higpins. For
the chain in Fig. 1(a) composed of N sites hosting spin-S
localized spins, their operators act in the total space of
all localized spins Hispins [Eq. (5)] as

S0 =191---191 8°®11---101,  (29)
—_— —_—

i—1 times N —1i times

where 1 is now used to denote (25 + 1) x (25 + 1) unit
matrix.

E. Truncated Holstein-Primakoff transformation

The HP transformation shown in Eq. (1) expresses
localized spin operators in terms of bosonic operators.
However, to make MBPT for such bosonic operators
tractable [28, 29], one typically expands the square root
of Eq. (1) in a power series in x = 7;/2S5

(1 )1/2 B i 2n! 0o iT: 2n! "
YT A el T A a1 2nn2

(30)
which is further truncated [9, 11-15] to a finite number
of terms Np. Inserting this result in Eq. (1), and using
thus obtained S¢ in Eq. (7), we can re-write

ﬁlspins = FIO + I:Iinta (31)
as the sum of two terms. Here

N
ﬁo = —JH(N—1)52+2JHS Z ni—JgS Z(d;raj—i—aia;),
i=1 (i)
(32)
is one-particle Hamiltonian of noninteracting HP bosons
covered in textbook literature [8, 9], whereas

Aoata tTa A A oA AT
A a;Q ;7 a:n:;a; n;a;a;
Hin — —J fl’f}, _ J e R e/ NN J
¢ HZ [ TS 48 48
(i5)
athig:  maatns  at e a
_a;nia; 1t 105 @; 150 T
45 1652 1652 ’

(33)

is composed of many-particle interacting terms that we
write explicitly for truncation number Ny = 1 to empha-
size how nontrivial multi-boson interactions arise even in
this lowest order truncated HP transformation.

The bosonic operator &' is represented by an infinite
matrix

0 0 O 0 -

VI 0 0 0 -

0 v2 0 ---0 ---
At ) )

0O 0 O

N

for a single site, so that matrix representation of d;r in
the case of N sites is given by
il =101---1olealelel- 101,  (35)
—_——— —_———
i—1 times

N —i times

where 1 is the unit matrix of the same size as af. The
matrix representation of operator a; is the Hermitian con-
jugate of dz.



F. Resummed Holstein-Primakoff transformation

In numerical calculations, &' or @ are first truncated to
a finite Ng X Np matrices, so that the matrix represen-
tation of localized spin operators

. (552 A
555 = <thy Gtz ) (36)

unphys

is then composed of matrix blocks associated with
physical states {|n)},_, . ,¢ and unphysical states
{Im)}—os41... ny- Here Ac is the matrix block which
couples physical and unphysical states. The numerically
exact computation of the square root of an operator in
Eq. (1) ensures A, = 0, but Taylor series expansion of
square root in Eq. (30) leads to A, # 0. This feature sig-
nals the trouble with the truncated HP transformation.

Alternatively, Refs. [17, 18] have recently proposed a
resummed HP transformation that furnishes a polyno-
mial expansion for the square root in Eq. (1)

[ix Qn az ‘| aiv (37)

where the iterative relation for coefficients @),,
/2 n-1
1 n Qm
n=—1-=— — —_— 38
@ n!( 25) mZ:O(nfm)! (38)

was derived in Ref. [17] by using flow-equations, whereas
an equivalent closed-form expression

n

. 1 B\ /2
Qn=> (-1) km (1 - ZS) ;o (39)

k=0

was derived in Ref. [18] by using Newton-series expan-
sion. Equatlon (37) ensures that for Npa., = 25 the
matrix-block Sphy associated with the physical states is
exact, whereas coupling between the physical and un-
physmal states is A, = 0, which makes nonzero subma-

trix Smﬂphyb irrelevant for all practical purposes.

G. Relationship between localized spin operators
and their mapping to Holstein-Primakoff bosons

For physically transparent understanding of the rela-
tionship between localized spin operators and their map-
ping to HP bosons, let us consider an example of 1D
chain of N = 5 sites hosting Spin—% localized spins. We
use arrows of different length

LLLLL] (40)

to denote eigenvalues S7 of localized spin operator ,§‘f
[Eq. (28¢)] with m = —5/2, —3/2, —1/2, 1/2, 3/2, 5/2,

respectively, as illustrated in Fig. 1(c). The ferromag-

netic ground state of this system

M= o

is identical to HP bosonic vacuum state |0) with zero HP
bosons on each site n; = 0 and, therefore, total number
of HP bosons

Nuag = Y _ ni, (42)

also being zero, Nyae = 0. Inside the ket vector on the
left hand side (LHS) of Eq. (41), we indicate eigenstate
with eigenvalue m = 5/2 of the localized spin operator
S’f for all sites i = 1 to ¢ = 5. Equation (41) is proved by
noting that |0) on the right hand side (RHS) of Eq. (41)
and ket on the LHS of Eq. (41) are both eigenstates of
the same operator S’f with eigenvalue m = 5/2 i.e.,

TTTD =3l TTTT). o

(5/2 =) [0) = 5/210), (43b)

S#

7

S710) =

so they must be identical. Thus, creatingn; = 1 orn; = 2
HP bosons on site ¢ = 1, which we depict by

T
aprm =+ [ T]]): (45)

respectively, corresponds to reducing the size of localized
spin on site ¢ = 1 by 1 or 2 units h, i.e., m = 5/2 +— 3/2
in Eq. (44) and m = 5/2 +— 1/2 in Eq. (45). Similarly,
the state with a total of Ny, = 2 HP bosons created on
different sites i = 1 and i = 3 is depicted by

=[] 1] ) (16)

Thus, creating a total of Nyag € 0,1,2,... [Eq. (42)] HP
bosons is interpreted physically as the reduction of the
total localized z-spin by Npag units. Since in quantum
state (dg)"|0> the expectation value of the z-component
of localized spin operator is (S‘f ) =S —n, the constraint
0<n<28 (i.e., at a given site ¢ one cannot create more
than 2S5 HP bosons) must be obeyed in order to remain
in the subspace of physical states [Eq. (36)].

H. Numerically exact time evolution of quantum
many-body states

The solution of time-dependent Schrédinger equation

for quantum many-body state |¥(¢))

@)
R (OI 108 (47)



is formally given by

. t+ot
Dt + 68)) = T exp _3/

,f{t/
| drH)

[w(t)), (48)

t

where 7T is the time-ordering operator. While many nu-
merical algorithms are available to propagate Eq. (48),
including direct computation of matrix exponential when
H is time independent, in general by using sufficiently
small 0t and by considering H(t) to be constant over
such 6t the Crank-Nicolson algorithm

10t 4 10t -
(1 + 2hH(t)) [T (t+0t)) = <1 2hH(t)> [T (1)),
(49)
we employ offers propagation scheme that is unitary, ac-
curate to second order in dt, and unconditionally sta-
ble [96]. In our simulations 6t = 0.01 fs has been used.
Using thus obtained |¥(¢)), the time evolution of the
expectation value of the a-component of localized spin
operator on site 4 is given by

(S)(8) = {w(6)] S5 [w(t)). (50)

When localized spin operators are represented directly
by finite size matrices in Eqgs. (28) and (29), the corre-
sponding expectation values (S¥) are numerically exact
and, therefore, serve as a benchmark for alternative com-
putation of the same expectation value when S¢* are rep-
resented by polynomial expressions in bosonic operators
introduced in Secs. IIE and IIF.

I. From Holstein-Primakoff bosons to one- or
two-magnon Fock states

In contrast to HP bosons created on a given site, d: |0},
which are not the eigenstates of Hy in Eq. (32), one-
magnon states are linear combinations of &ZT|O> which di-

agonalize Hamiltonian H, (but with periodic boundary
conditions included)

Holq) = [Eo + hw(q)]|q)- (51)

Thus, magnon can be visualized as a bosonic quasi-
particle that is completely “delocalized” over all sites
while it carries momentum fg (assuming 1D chains
we use in examples) and angular momentum /. Here
Ey = —2Jy 52N is the ground state energy of a ferro-
magnetic spin chain.

To find explicit expression for excited eigenstate |g),
we consider 1D chain [Fig. 1(a)] composed of N sites
each of which is hosting spin-1 localized spin and with
periodic boundary conditions so that its first and last
site are coupled by Jy in Hy in Eq. (32). For the clarity
of notation, we use |, ®, and 1, to denote eigenstates
of localized spin operator S7 with eigenvalues [Eq. (28¢)]

-1 0
q(m/ag)

Site No.

FIG. 3. (a) Spatio-temporal profile of the expectation
value (S7) (t) across 1D spin chain in Fig. 1(a) composed of
N = 7 sites hosting spin-1 localized spins where at Nmag = 1
HP boson is created at initial time ¢ = 0 on site ¢ = 1,
[P (t =0)) = | MM1). (b) The corresponding probability,
ng(t) = |(g|¥1(2)) |, of finding quantum many-body state
|W1i(t)) at later times t > 0 in one-magnon Fock state |q)
of momentum ¢ as HP boson propagates from the left to
the right edge of the chain [“white traces” in (a)], thereby
switching from ¢ > 0 to ¢ < 0 when reflection occurs near
the boundary on site ¢ = 7 and t > 2.5 fs (indicated by
dashed horizontal lines). Panel (c) is counterpart of panel
(a) when Nuyae = 2 HP bosons are created at ¢ = 0 on site
1 =1, |Ua(t =0)) = [JTTMT), with panel (d) showing the
corresponding probability, n, . (t) = | {q,q'|¥2(t)) |?, of find-
ing quantum many-body state |U2(t)) at later times t > 0
in two-magnon Fock state |q,q’). Dashed horizontal lines in
panel (d) mark times ¢ = 1 fs and ¢ = 4 fs. In all panels we set
Ju =1 eV. For aesthetic purposes, in (a) and (c) we perform
a cubic interpolation of the discrete data at N =1,2,---7 on
the z-axis that furnishes a continuous plot.

m = —1, m = 0, and m = 1, respectively. The one-

magnon state is then given by

— 1 = 1qT
lg) = N;f Tt Tt ), (52)

n times N—n—1 times

B

where x,, = nag is the real-space position of the localized
spin on site n + 1 and ag is the lattice spacing. The
corresponding magnon energy-momentum dispersion is
hw(q) = 2JS[1 — cos(qap)]-

The expectation value of the total z-spin operator of
localized spins in state |¢) is given by

N
(ql Y Silg)=NS -1, (53)
=1

which indicates that creation of magnon with wavevector
q removes one unit of total z-spin from the ferromagnetic



ground state. Because of this feature, presence of one HP
boson or one HP magnon is labeled by the same Npag = 1
throughout the paper. In addition, the expectation value
of the localized z-spin operator at arbitrary site i

N 1

(al 5 1a) =~ 1. (54)
shows that excitation of one HP magnon reduces the z-
component of each localized spin by 1/N. This rigorous
quantum-mechanical result justifies the LLG picture [4]
of spin wave in which classical vectors of localized spins
precess with frequency w and with some small cone angle
around the z-axis, while the phase of the precession of
adjacent vectors varies harmonically in space over the
wavelength .

In the second-quantization description produced by
HP transformation, |¢) = b}; |0) is one-magnon Fock
state [97] where the creation operator of HP magnon is
given by

b= —=> " e*al . (55)

Note that such one-magnon Fock state has been realized
experimentally only very recently in a millimeter-sized
ferrimagnetic crystal and detected by superconducting
qubit as quantum sensor [97], thereby representing a
counterpart in quantum magnonics of a single-photon de-
tection from quantum optics.

It is worth mentioning that in spintronics and magnon-

ics literature [48] one also finds @!|0) denoted as “one

magnon created in real space at position ¢” while ZA)};\O)
is “one magnon created in the reciprocal space with mo-
mentum hq”. However, the former is not an eigenstate of
Hamiltonian in Eq. (51), while the later is, so we differen-
tiate between them by using “HP boson” for the former
and “HP magnon” for the latter. As already highlighted,
for both situations we use label Ny,as = 1 for simplicity of
notation because in both cases one unit of total z-spin is
removed from the ferromagnetic ground state [Eq. (53)].

Nevertheless, we illustrate the distinction between HP
boson and HP magnon by initializing N = 7 site chain
[Fig. 1(a)] in quantum state |¥;(t=0))= | M1
in Figs. 3(a) and  3(b); or in quantum state
|[Wo(t =0)) = M) in Figs. 3(c) and 3(d). This
means that Ny., = 1 HP boson is created on site i = 1
at t = 0 in the former case; while “full spin flip” of lo-
calized spin on site ¢ = 1 in the latter case means that
Nmag = 2 HP bosons are created on site ¢ = 1. Be-
sides pedagogical value, these initial states and the en-
suing one or two magnon propagation including magnon
bound states, can be directly probed in experiments us-
ing ultracold atoms in an optical lattice where tracking
of the localized spin expectation values is possible with
single-spin and single-site resolution [98].

Since |¥;(t =0)) is not an eigenstate, it evolves in
time to produce spatio-temporal profile of the expecta-
tion value (S7)(t) [Fig. 3(a)] in quantum state |¥q(¢)).
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For quantum time evolution we use the scheme explained
in Sec. Il H where interacting Hamiltonian ﬁlspins from
Eq. (5) is plugged in, but since only one HP boson
is excited this is equivalent to using noninteracting H,
in Eq. (32). The “white trace” in Fig. 3(a) visualizes
how HP boson moves from the left to the right edge
of the chain while undergoing reflection on site i = 7
at t = 2.5 fs, as indicated by horizontal dashed line, fol-
lowed by multiple back-and-forth reflections. Note that
since 1D chain in Fig. 1(a) has open boundary condi-
tions, its low-energy excited eigenstates differ [99] from
textbook [8, 9] HP magnons |¢) in Eq. (52) as eigen-
states of interacting localized spin systems with trans-
lational invariance. Figure 3(b) visualizes the overlap,
ng(t) = | (g|¥1(t)) |?, between many-body quantum state
| W, (t)) with one HP boson and one-magnon Fock state
|g). Large values of n,(t) are observed in the region where
qg > 0 and t < 2.5 fs, coinciding with left-to-right mo-
tion of HP boson in Fig. 3(a), which signifies excitation
of Niyag = 1 magnon with positive momentum. On the
other hand, after reflection of the HP boson at the bound-
ary (i.e., site ¢ = 7) and ¢ ~ 2.5 fs, a rapid rise of ny(t)
in the ¢ < 0 region is observed which indicates excitation
of Npag = 1 magnon with negative momentum. This
is consistent with the intuitive picture of HP boson re-
flecting back-and-forth between the hard walls of our 1D
chain with open boundary conditions.

The Fock states of Ny = 2 magnons carrying mo-
mentum fg and fig" are defined by [100]

0.d) =Y fon(a.d)| 11 ©1 10 11 ),

——

nem m—1 times N—n times
(56)
where
/ 1 iqx iq'x iq' xy iqT
fmn(%Q):N eld%m ol Tn 4 oW Tn otqTm | (57)

Here N is the normalization constant, and fmnn(q,q')
is symmetric under exchange g < ¢ ensuring
lg,q") = |¢’, ¢) in order to satisfy the symmetrization pos-
tulate of quantum mechanics for bosonic particles—as
manifestly encoded by second-quantization formalism,
la.4') = i}, 0) = b}, b} 10) = |4’ ).
Figure 3(c) plots spatio-temporal
(82)(t) in quantum state |WUy(t)) starting from
|[To(t =0)) = M), For quantum time evolu-
tion we use the scheme explained in Sec. ITH where
interacting Hamiltonian fflspins from Eq. (5) is plugged
in, so that two HP bosons are correlated by: (%) bosonic
statistics; (é¢) interactions in Hin [Eq. (33)] where
Np — oo. The two HP bosons propagate immediately
from the left to the right for ¢ > 0, as shown by
“white traces” in Fig. 3(c). The corresponding overlap,
ngq(t) = [{aq'|P2(t)) |?, in Fig. 3(d) is ngq(t) = 0
for t < 1 fs which is explained by Eq. (56) where
two-magnon Fock state is composed of terms containing
two HP bosons on different sites m # n. Since at t = 0

profile  of



the two HP bosons are on the same site ¢ = 1, we find
ngq(t = 0) = 0. However, this holds until ¢ < 1 fs
(indicated by horizontal dashed line), after which the
two HP bosons are physically separated in real space, as
confirmed by the emergence of nonzero values of ng, 4 (%)
thereafter. We also note that for 1 <t < 4 fs (indicated
by horizontal dashed line) the region near ¢ = 0.5 7/ag
shows large values of ng 4 (t), and since ¢’ = 0.5 7/aq is
fixed for all values of ¢ in Fig. 3(d), we can conclude
that two HP bosons posses nearly the same velocity.
Beyond ¢ ~ 4 fs, nonzero values of ng 4 (t) in the region
with ¢ < 0 and ¢ > 0 coexist, which indicates that one
HP boson moves toward the right while the other moves
toward the left edge of the chain.

J. Retarded and lesser one-particle Green
functions

The fundamental quantities of nonequilibrium GF for-
malism [24, 25] for fermions are the one-particle retarded
GF

r T . At
Gl jor (1) = =il 1Ot — 1) ({210 (1), ), ()}) , (58)

and the one-particle lesser GF
G< t) =ih (@l (t)éio (1)) (59)

io,jo’ (t’

which describe the density of available quantum states
and how electrons occupy those states, respectively. Here
O(t—t') is the Heaviside-function; ¢, (¢) indicates Heisen-
berg picture time evolution of é&,,; and (---) = Tr(p---)
is the quantum statistical average, where p is the density
operator of the system at ¢ = 0. Analogously, the bosonic
one-particle retarded GF is defined by

r _ L3 —1 A~ At
Dij(t,t)) = =ik O(t — t') ([a:(t), a;(t)]) . (60)
and the lesser GF is defined by

D5 (t,t") = —ih ™" (a ()az(t)). (61)

In equilibrium or in steady-state nonequilibrium, these

GFs depend solely on 7 = t —t' and can be Fourier trans-
formed to energy domain [38], such as

“+oo
< < iET/h
G5 B) = [ drGS, (ne™ T (62)
—0o0
for electrons; and
—+oo
DyE(E) = [ drDpE e (o

for bosons. We emphasize that the very definition of
GFs for the localized spin subsystem, i.e., magnons,
in Egs. (60) and (61) requires to use bosonic opera-
tors. Therefore, when exactly evaluating these GFs in
Secs. IIIE and II1 G, we numerically exactly compute
the square root of the bosonic operators in Eq. (1).
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K. Spectral function for electrons and magnons

The electronic spectral function A(E), or the “inter-
acting density of states” [85, 86|, is computed using the
retarded GF in Eq. (62) as

:_22 > Img(Gy, ,, (B)]

i=1 o="1,]
=Y WO(E - M) + W 6(E + Ay), (64)
k

where A = (Ex — Ep) and Ej are the eigenenergies

of quantum many-body Hamiltonian H [Eq. (4)]. The
prefactors of d-function in A(E)

N
Z Z | \I/k|cz(r‘\110>| ) (658,)
=10
N

Wi =2 > (e |%o) I (65b)
i=1o=",]

define the “weight” of the many-body eigenstate |Uy)
within A(E). Since the ground state |¥y) is an eigen-
state of the electron number operator N, [Eq. (18)], it
has a well-defined number of electrons N,. Thus, the ac-
tion of é;ro and &, on |¥g) in Eq. (65) reveals that the
d-function peaks at £ = £Aj can only be contributed
by those quantum many-body eigenstates |¥) which de-
scribe systems containing N, £ 1 electrons.

Similarly, the bosonic spectral function D(FE) is evalu-
ated using the bosonic retarded GF in Eq. (63)

N
E) = ~2" Img|D}(E)

= Qf0(E—Ay) — Q. (E+Ay), (66)
k

where

Qi =D [(wilal [wo) I, (67a)

Q= Z | (W] @ [Wo) |2 (67b)

define the “weight” of many-body eigenstate |¥y) within
D(E). The d-function peaks in Eq. (66) at E = £A;
come from many-body eigenstates |¥;). However, unlike
the electronic case, they do not have a well-defined total
magnon number Ny, as they are not eigenstates of the

total magnon number operator Nmag = Zfil 7n;. This
is illustrated by Fig. 9(e) with the structure of one se-
lected many-body eigenstate |¥y) which is a linear com-
bination of many-body states with total magnon number
Nmag = 0, Nimag = 1 and Nygae = 2.



Both A(E) and D(E) must satisfy the sum rule

+oo

/ %A(E):QN, (68a)
oo
/ %D(E):N. (68b)

This feature allows for physical interpretation where
A(E)dE/2N or D(E)dE/N can be viewed as probabil-
ities to find fermion or boson within energy window dFE
around F in a general quantum many-body system where
fermions interact with other fermions and bosons inter-
act with other bosons, as well as with each other. Note
that our fermion-boson interacting system, as illustrated
in Fig. 1(b) and described by Hamiltonian in Eq. (4),
includes HP bosons interacting [Eq (33)] with other HP
bosons when Ny, > 1 and electrons interacting with HP
bosons while electron-electron interactions are excluded.
Since the sum rule is an exact result, in practical GF
calculations it can be employed to test the quality of a
variety of analytical and numerical approximations [3§].

III. RESULTS AND DISCUSSION

A. Range of validity of truncated HP
transformation for nonequilibrium interacting
system of magnons

Figure 4 compares (5%)(t) for 1D chain [Fig. 1(a)],
hosting S = 5/2 or S = 1 localized spins in the ab-
sence of electrons (i.e., N. = 0), computed using the
original localized spin operators vs. their mapping to
bosonic operators via the truncated HP transformation.
In the ferromagnetic ground state |¥q), the expecta-
tion value (S7)(t = 0) = (¥o|SZ|Wy) = 5/2 for all
sites ¢ at ¢ = 0 in Fig. 4(a)—(c). To initiate nonequi-
librium dynamics for times ¢ > 0, we choose an initial
state |¥(0)) such that the expectation value of the lo-
calized spin on site ¢ = 1 is reduced by Ny, units,
(S21)(0 = 0) = (WO [W(0)) = (5/2 ~ Ninag), while
on other sites it remains S7,,(t = 0) = 5/2. This is
equivalent to introducing Ny,, HP bosons on site i = 1
at t = 0, so that the initial quantum many-body state of
HP bosons is given by

|9(0)) = (a})™==10) . (69)

When Np.e = 1, Fig. 4(a) shows that (S)(t), evalu-
ated by truncated HP transformation (green dashed line)
solely containing single-particle Hamiltonian Hy of non-
interacting HP bosons in Eq. (32), accurately tracks the
exact time dependence (black lines) of S (t) evaluated us-
ing the localized spin operators. This feature is trivially
expected because there is only one HP boson in the sys-
tem and magnon-magnon interaction terms active within
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Hing part of the Hamiltonian [Eq. (33)] cannot influence
the dynamics of localized spins.

To understand the significance of magnon-magnon in-
teraction terms within ﬁim on the dynamics of localized
spins, we next introduce Npae = 2 HP bosons on site
i = 1. The time dependence of (S7)(t) in Fig. 4(b), eval-
uated via the truncated HP transformation with trun-
cation number Ny = 1 (Sec. ITE), matches the exact
time evolution obtained using the original localized spin
operators only for short enough times (0 < ¢ < 10 fs).
At longer times (30 < ¢ < 35 fs), discrepancy emerges
due to missing effects from Np > 1 magnon-magnon
interaction terms within ﬁint. Thus, to recover the
agreement between two types of calculations at longer
times requires increasing N, such as by using Ny = 3
(orange dashed lines) in Fig. 4(b). However, progres-
sively larger Ny must be employed (Fig. 5) to increase
the “breakdown-time” fpreax [marked in Figs. 4(d) and
4(e)] at which disagreement between two types of cal-
culations emerges. We define tpreax as the time when
the deviation A = (S7)()|mp — (S7)(t)]exact, between
(S2)(t)|up (evaluated from truncated HP transformation
with a truncation number N7) and the exact (S7)(£)]exact
becomes larger than the chosen tolerance |A| > 1074,

As demonstrated by Figs. 4(d), 4(e) and Fig. 5,
tpreax sensitively depends on the density of HP bosons,
Niag/N, whose increase makes magnon-magnon interac-

tion terms within ﬁint more relevant, thereby requiring
larger Nt in Fig. 5. Figures 4(d) and 4(e) corroborate
this conclusion by showing the effect of reduced density of
HP bosons on the range of validity of truncated HP trans-
formation, where we employ spin-1 localized spins allow-
ing us to exactly diagonalize larger chains [than those
composed of N = 4 sites in Fig. 4(a)—(c) with spin-2
on each site]. In Fig. 4(d), at ¢ = 0 we flip the local-
ized spins on sites i = 1 and ¢ = 2 [see inset in Fig. 4(d)],
thereby introducing two HP bosons on each of these sites.
Thus, the total number of HP bosons within the system
in Fig. 4(d) is Nmag = 4, whereas the HP boson den-
sity iS Npag/N = 1. For such parameters, tpreak ~ 11 fs
(JA] = 0.05 is chosen solely for visualization of tpyeax
at fs time scales). On the other hand, in Fig. 4(e),
where HP boson density is reduced to Npag/N = 0.57
by making 1D chain longer from N = 4 sites to N =7
sites, we find that tppeax for truncated HP transforma-
tion increases to tpreak ~ 23 fs. This observation is eas-
ily explained since in longer 1D chains the probability
for magnon-magnon scattering events is reduced, which
makes inclusion of high-order magnon-magnon interac-
tion terms less important and thus the breakdown-time
for truncated HP transformation increases.

Figure 5 demonstrates how for a given breakdown-
time t = tpreak, the horizontal distance between consecu-
tive curves from left to right increases nonlinearly. This
means that Ny needed to accurately track (S7)(t) via
the truncated HP transformation increases nonlinearly
with the number of HP bosons Nyae excited in the sys-
tem. On the other hand, if we consider the roughly
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FIG. 4. Comparison of the ezact time-dependence (S7) (t)
(black lines) obtained by using localized spin operators vs.
approximative time-dependence obtained by using truncated
HP transformation [Sec. I E], with a truncation number Nr,
for 1D quantum spin chain in Fig. 1(a). The chain is com-
posed of N = 4 sites hosting spin-3 [panels (a)—(c)] or spin-1
[panels (d)—(e)] localized spins. At t = 0, Nmag HP bosons
are created on site ¢ = 1 or both sites ¢ = 1 and ¢ = 2, as
illustrated by the reduced size of arrows or their full reversal
in the inset at the lower left corner within each panel (see
Sec. II G for proper association of quantum states to illustra-
tion in the insets). In panel (a), Nmag = 1 so that (S7) (t)
evaluated (green dotted line) from noninteracting HP boson
Hamiltonian [Eq. (32)] is identical to the exact (S7)(t). In
panel (b), Nmag = 2 and (S7) (t) evaluated from truncated
HP transformation with Ny = 1 (blue line) disagrees with
the exact (S7) (t), but increasing to Ny = 3 (orange dot-
ted line) matches the exact result. Nevertheless, in panel (c)
creation of Npyae = 10 HP magnons, by full reversal of two
localized spins, while keeping Ny = 3 leads to disagreement
between truncated HP transformation (orange line) and exact
(black line) results for (57) (t). In panels (d) and (e), we use
chains of N = 4 and 7 sites, respectively, where orange lines
indicate (S7) (t) computed from truncated HP transformation
with N7y = 2. The vertical dot-dash lines in panels (d) and
(e) explicitly mark breakdown-time ¢ = threak [see also Fig. 5]
at which truncated HP transformation starts to deviate from
the exact result for (S7) (t). In all panels we set Jy = 1 eV.
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FIG. 5. Breakdown-time tpreak, as the time at which trun-
cated HP transformation starts to deviate [see Figs. 4(d) and
4(e)] from the exact result for (S7)(t), as function of trun-
cation number N7. The inset near each line indicates the
number of HP bosons Nmag created at ¢ = 0 within 1D quan-
tum spin chain [Fig. 1(a)] composed of N = 4 sites host-
ing spin-g localized spins interacting via Heisenberg exchange
Jg =1¢eV.

constant slope ‘p’ of each curve in Fig. 5 (for the part
before a sudden jump), and note the logarithmic scale
for the ordinate axis of Fig. 5, we can conclude that
threak X €xp(pN7). At first sight, the exponential de-
pendence of ty..ax on N appears to be favorable i.e., by
using larger values of Ny (and hence including more and
more multi-magnon terms), we can increase fpreak €Xpo-
nentially and yield accurate dynamics for longer times.
However, to obtain a practically tractable MBPT for
electron-boson interacting systems [101] a small N is re-
quired but Fig. 5 shows that using small N7 = 1-5 allows
one to track dynamics of localized spins only up to time
threak &2 1.5/ Jg =~ 15.0 fs (for Jy = 0.1 €V). This is in-
sufficient to model even ultrafast optical manipulation of
magnetism requiring simulation times ~ 10 fs [102], and
it is much further away from current-driven magnetiza-
tion dynamics via spin torque which occurs on ~ 1 ns
time scales [51, 53].

B. Range of validity of truncated HP
transformation for nonequilibrium interacting
system of electrons and magnons

In this Section, we repeat the same analysis as in
Sec. IIT A—but with electron—localized-spin or, equiva-
lently electron-magnon—interaction turned on within 1D
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FIG. 6. (a) Comparison of the ezact time-dependence (S7) () (black line) evaluated using localized spin operators vs. time-
dependence computed from truncated HP transformation [Sec. IIE], with a truncation number Np (orange line), for 1D
quantum many-body system [Fig. 1(b)] comprised of N = 3 sites hosting spin-g localized spins which interact with conduction
electrons. The electron—localized-spin sd exchange interaction is turned off (Jsa =0 €eV) in (a) for reference, and turned on
in (b) using Jsa =1 €V. The insets in both panels depict the state of localized spins at ¢ = 0, where the localized spin on
site ¢ = 1 is completely reversed [i.e., Nmag = 5 HP bosons are created on site ¢ = 1 via Eq. (70)] to initiate nonequilibrium
dynamics. When sd interaction is turned on, the disagreement between two types of calculations is actually alleviated when
moving from panel (a) to panel (b), which is explained by panel (c) as being due to a rapid loss of total number of magnons,
Niag(t) = Zf\;l (W(t)| 7; |[¥(¢)), from the localized spin subsystem to the electronic subsystem. Panels (d) and (e) are

counterparts of panels (a) and (b), respectively, for (S57) (t) evaluated using the resummed HP transformation in Eq. (37),

which is approrimate for Nmax = 3 but it becomes ezxact for Npax = 25 = 5.

quantum many-body system composed of N = 3 sites
[Fig. 1(b)]. These sites host spin-2 localized spins inter-
acting with half-filled (N, = 3) tight-binding electrons
via the sd exchange interaction [71] of strength Jyq as
encoded by Eq. (9).

At t = 0, we fully flip the localized spin—% on site i =1
to initiate nonequilibrium dynamics. From the viewpoint
of HP transformation, this is equivalent to introducing
Nmag = 5 HP bosons on site ¢ = 1, and thus, the initial

quantum many-body state is given by
[¥(0)) = (@])°e};elsel, 10). (70)

in the notation of second-quantization formalism. Here
|0) is the vacuum state of electrons and HP bosons
combined. Figure 6(a) with Jyq = 0 serves as a refer-
ence. When electron-magnon interaction is turned on
(Jsa =1 eV) in Fig. 6(b), (S7)(t) computed by truncated
HP transformation follows the exact result for longer
times ¢ < 15 fs than in Fig. 6(a). This is explained by
Fig. 6(c) which shows that the total number of magnons
as a function of time, Nuyag(t) = S0, (U(8)] 7 [ (1)),
is reduced in the course of quantum time evolution.
Therefore, this leads to fewer magnon-magnon scatter-
ing events which facilitates accurate tracking over longer
time intervals of nonequilibrium dynamics of localized
spins by truncated HP transformation, in accord with
Fig. 5. The lost magnons in Fig. 6(c) are absorbed by the
electronic subsystem and mediate transfer of spin angu-

lar momentum between the subsystems of electrons and
localized spins, while the total z-spin remains conserved
[Eq. (21)].

Furthermore, Figs. 6(d) and 6(e), as the counterpart
of Figs. 6(a) and 6(b), respectively, demonstrate that
electron-boson interacting Hamiltonian can track exact
time evolution if truncated HP transformation is replaced
by resummed HP transformation in Eq. (37). That is,
when Npax = 3 is used in Eq. (37), there is disagree-
ment between the two calculations of (S7)(t)—compare
resummed HP transformation (magenta solid line) vs.
the exact one (black solid line). But increasing Nyax = 5
[which produces green dotted line in Fig. 6(e)] in Eq. (37)
ensures that both calculations match perfectly.

Thus, Figs. 6(d) and 6(e) with properly chosen Nyax
motivate us to derive the following electron-boson Hamil-
tonian

IA{ = E[E —|— ﬁmag + ﬁmag_mag + ge—mag (71)

as the exact mapping of the original electron—localized-
spin Hamiltonian in Eq. (4). The former is required for
equilibrium or nonequilibrium MBPT [24, 25] which can
handle [38] systems in two- or three-dimensions composed
of large number of sites N > 1. These are the prob-
lems where exact diagonalization [69], suitable for small
number of sites N, or (time-dependent) density matrix
renormalization group [103-106], suitable for N > 1 but
only in quasi-1D [107], are inapplicable. Here the terms
in Eq. (71) are given by
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Their physical meaning is transparent: H, is the tight-
binding Hamiltonian of noninteracting electrons; Ffmag is
the Hamiltonian of noninteracting HP bosons; ﬁmag,mag
describes various interactions between two (first term in
ﬁmag_mag) or more HP bosons; and ﬁe_mag describes
electron-boson interactions, such as absorption or emis-
sion of HP bosons accompanied by electron spin flip as
the spin angular momentum is transferred. We note that
Eq. (72) is much more complex than what is typically
used in spintronics literature [38, 41, 44-46, 48]. Most
importantly, it shows that accurate MBPT or diagram-
matic Monte Carlo calculations [108, 109] in the future
for interacting electron-magnon system will have to deal
with nonlinear [101] electron-boson interactions.

C. Ground state of interacting system of electrons
and magnons

The exact ground state GS is obtained in three steps:
(7) H is represented as a matrix in the basis of eigenstates
of N, and S £« torender a block-diagonal matrix as shown
in Fig. 2(c); (i¢) to ensure half-filling for electrons, the
matrix block corresponding to N. = 3 electrons is iso-
lated; and (#i) this matrix block is diagonalized and the
eigenstate with the lowest eigenenergy Ej is identified as
the GS. Obviously, if in step (%) H is expressed directly
in terms of localized spin operators [Eq. (28)], then step
(éi1) yields the numerically exact GS, |[¥o). On the other
hand, if H is expressed using the truncated HP trans-
formation with a truncation number Nr [Eq. (31)], then

thus obtained GS \\I’0>I:/i is not guaranteed to be the
same as |Ug). In this Section, we examine the structure
of |¥g) and identify the value of Nr required to ensure
that |¥o) = [Wo).

Figure 7(a) depicts the numerically exact GS |¥¢) as
a linear combination [93] of many-body kets where red
arrows denote quantum state of localized spins (using
the same notation as introduced in Sec. II1 for spin-
1 localized spins) while blue arrows denote spin-1 or

= Gnodmo) [(a])"a} ! (@)™ Hag + (al)"ar @) ey,

He—mag = fSJst Z Qn ZTZZM( )n+1 > +1/) 1/)11‘( )naZH_l}.
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spin-| electrons filling three single-particle energy levels
c0=—v26eV, ¢ = 0, and € = V2 eV of noninteract-
ing tight-binding Hamiltonian H, [Eq (8)]. In contrast,
we find in Fig. 7(b) that GS |\Ilo> .—¢ €valuated using
truncated HP transformation with NT = 6 is entirely
different from |¥y) shown in Fig. 7(a). Only when the
truncation number is increased to Ny = 20 in Fig. 7(c)
we find [Wo) iy o = |Wo).

It is worth examining further the structure of the
exact GS |¥() in Fig. 7(a). Its many-body eigenen-
ergy is Eg = —3.33 €V while the other quantum numbers
[Eq. (22)] are N, = 3 and S, = 3.5. The largest contri-
bution (greater than 99%) to |¥o) comes from the first
term on the RHS in Fig. 7(a) where N, = 3 electrons
fill up the single-particle energy levels €, €1, and ez of
noninteracting Hamiltonian H,. [Eq. (8)] in accord with
the Pauli exclusion principle while the localized spins are
in the ferromagnetic configuration. In the absence of
electron—localized-spin interaction, the first term on the
RHS would be the only nonzero one. Thus, interactions
give rise to three states [indicated by horizontal overline
in Fig. 7(a)] where Npa, = 1 HP boson is created on
one of the three sites. This HP boson is actually emitted
when the spin-| electron in eigenenergy level ¢y under-
goes a spin-flip process and emerges as a spin-1 electron
in eigenenergy level e5. This process respects conserva-
tion of total z-spin encoded by Eq. (21). The remaining
four kets on the RHS of Fig. 7(a) are purely electronic
excitations where electrons are excited among eigenen-
ergy levels €g, €1, and €5 but are not accompanied by any
spin-flips of localized spins.

D. Electronic spectral function in interacting
system of electrons and magnons

For the same system considered in Sec. IIT C, Fig. 8(a)—
(¢) compares the electronic spectral function A(F)
[Eq. (64)] evaluated from truncated HP transformation
vs. the exact one evaluated using localized spin oper-
ators. To set a reference point, in Fig. 8(a) we first
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FIG. 7. (a) Composition of the ezact GS |¥o) of 1D quantum many-body system, illustrated in Fig. 1(b) and composed of
N = 3 sites hosting spin-1 localized spins, which is computed by exact diagonalization of Hamiltonian in Eq. (4) expressed in
terms of localized spin operators. In every ket in the sum, red arrows depict localized spins, whereas blue arrows indicate spin
states of N, = 3 electrons distributed among eigenenergy levels e = —v/2 €V, €1 = 0 eV, and €3 = v/2 eV of noninteracting
single-particle electronic Hamiltonian in Eq. (13). (b) The composition of approzimate GS evaluated by exact diagonalization of
Hamiltonian in Eq. (4) whose localized spins are mapped to bosonic operators via the truncated HP transformation (Sec. ITE)
with truncation number Ny = 6. Panel (c) shows that in order to match the composition of the exact GS from panel (a)
requires to increase Ny = 20 in truncated HP transformation. Numbers on the top of each ket are coefficients in their linear
superpositions comprising the respective GS. In all panels we set Jg = Jsqa = 0.2 V. Note that the first ket in panels (a) and

(c) is noninteracting GS for a system where electrons and localized spins are decoupled by using Jsq = 0.

consider the noninteracting electronic spectral function
(black line) when electron—localized-spin interaction is
turned off (Jyq = 0). For such a case, the available
single-particle states are simply the eigenstates of the
noninteracting tight-binding Hamiltonian H, [Eq. (8)]
with single-particle energy levels €, €1, and €s, so that
A(E) consists of sharp peaks centered at €y, €, and
€2. Upon turning on electron—localized-spin interaction
(Jsa = 0.2 eV), the exact A(E) (red line) evaluated us-
ing localized spin operators is modified to exhibit peak
splitting [with respect to black line reference result when
Jsa = 0] at energies €, €1, and e3. Also, few addi-
tional peaks around single-particle energy levels ¢, and
€2 emerge.

In Fig. 8(b), we compute A(E) using truncated HP
transformation with a truncation number Ny = 6. Al-
though it reproduces the peak-splitting near €y, €; and
€9, it exhibits several additional peaks that are absent in
the exact result in Fig. 8(a). This discrepancy can be
understood as follows. The function A(E) depends on
the exact GS |¥g) through Eqs. (64) and (65). However,
for Np = 6 Fig. 7(b) demonstrates |‘I’o>g1;:6 £ |Wo).
At first sight, it appears that the same argument should
produce exact A(F) in Fig. 8(c) using Nr = 20 because
|\IIO>%};:20 = |¥y) in Fig. 7(c). However, the discrepancy

between exact A(E) (red line) in Fig. 8(a) and blue line in
Fig. 8(c) is explained by Egs. (64) and (65) where A(FE)
depends both on GS |¥g) and excited many-body states
|¥) [Eq. (65)] for which truncation number Ny = 20
appears to be insufficient. The repeated analysis from
Fig. 8(a)—(c) for spin-1 localized spins, but by using spin-
2 localized spins in Fig. 8(d)—(f), shows that requirement
of large Np = 20 cannot be bypassed by increasing the
value of localized spins to make them more “classical-
like” [3, 60, 62].

E. Magnonic spectral function in interacting
system of electrons and magnons

The ezact HP transformation in Eq. (1) makes it possi-
ble to define magnonic spectral function D(E) in Eq. (66)
and compute it without any approximations by numeri-
cally evaluating square root of matrices in Eq. (1). Us-
ing the same systems of spin-1 or spin—% localized spins
that are studied in Fig. 8, we first establish a refer-
ence magnonic spectral function by computing D(E) in
Figs. 9(a) and 9(b) with electron-localized-spin interac-
tion turned off (Jsq = 0). Such reference D(E) [Fig. 9(a)]
exhibits three peaks at energies £ =0¢eV, E=0.2 eV,
and E = 0.6 eV which correspond to available states in
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FIG. 8. (a) The ezact electronic spectral function A(FE) (red
lines) in Eq. (64) for 1D quantum many-body system, illus-
trated in Fig. 1(b) and comprised of N = 3 sites hosting spin-1
localized spins, is evaluated using localized spin operators in
Hamiltonian in Eq. (4). This is compared to approzimate
A(E) in panels (b) and (c) evaluated by mapping localized
spin operators to bosonic operators via truncated HP trans-
formation (Sec. IIE) with truncation numbers Ny = 6 and
Nr = 20, respectively. Panels (d)—(f) show counterpart infor-
mation to panels (a)—(c), but for spin-g localized spins on each
of N = 3 sites. In all panels we set Jg = Jsqg = 0.2 €V, except
for black curves in panels (a) and (d) for which electron—
localized-spin interaction is turned off i.e., Jsqg = 0.

the presence of solely localized-spin—localized-spin (or
equivalently magnon-magnon) interactions. Conversely,
when we turn on Jsq = 0.2 €V in Figs. 9(c) and 9(d), we
find that the original noninteracting peaks remain largely
intact, except for the one near £ = 0.2 eV which under-
goes a tiny splitting; and far away the original peaks,
D(E) exhibits new additional peaks (marked by dotted
circles) near energies £ = 1.6 ¢V and E = 2.1 ¢V. Anal-
ogous features are observed for Spin—g localized spins
when switching from Jgq = 0 in Fig. 9(b) to Js # 0 in
Fig. 9(d).

We note that similar additional peaks in magnonic
spectral function, generated by turning on electron-
magnon interaction, were previously observed in MBPT
calculations [38] despite being based on resummation of
an infinite class of selected diagrams—in contrast, calcu-
lations in Figs. 9(c) and 9(d) are nonperturbative and,
therefore, correspond to all diagrams being summed to
infinite order. These additional peaks in D(E) computed
by MBPT were interpreted in Feynmann diagrammatic
language as quasibound states of magnons dressed by the
cloud of electron-hole pair excitations. Also, MBPT cal-
culations of Refs. [38, 92] find much smaller modification
of electronic A(F) upon tuning on electron-magnon in-
teraction. This is explained by magnons being in the
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strongly interacting regime vs. electrons being in the
weakly interacting regime due to [38] Jsq divided by the
bandwidth of noninteracting magnons being much larger
than Jgq divided by the bandwidth of noninteracting elec-
trons.

To clarify the origin of these peaks further in the
context of our exact nonperturbative calculations in
Figs. 9(c) and 9(d), we focus on the peak near
E =1.6¢V in Fig. 9(c). This peak is due to many-
body excited state |¥;) whose composition is given ex-
plicitly in Fig. 9(e). This state has a nonzero “weight”
Q7 = 0.006 in Eq. (67). Although, the value of Q ap-
pears to be small, it contributes about 2% in the sum
rule in Eq. (68b) and thus it cannot be ignored. Interest-
ingly, Fig. 9(e) reveals that this specific |Uy) is a linear
superposition of states with Ny,ae = 0, 1, or 2 HP bosons.

F. Entanglement entropy of ground and excited
states of interacting system of electrons and
magnons

All three different version of the GS |¥y) in Fig. 7,
as well as selected excited state |¥y) shown in Fig. 9(e),
are examples of pure but entangled quantum many-body
states [87]. In particular, these states encodes entangle-
ment between electronic and localized-spins subsystems.
The von Neumann entanglement entropy [87] for elec-
tronic or localized-spins subsystems of the total bipartite
system are identical, S¢ = Sispins, and can be computed
from the reduced density matrix pj,

Se = =Tr[pe In pe], (73)

where the (improper) mixed quantum state of the elec-
tronic subsystem is described by reduced density matrix

ﬁe = ’I‘rlspins|\ll><‘ll‘7 (74)

obtained by partial trace of the pure state density ma-
trix, |¥)(¥|, over the basis of states in Higpins. For ex-
ample, SY = 5.6 x 1072 for the exact GS in Fig. 7(a),
which means that this many-body entangled state is quite
close to separable (characterized by Se = 0) noninteract-
ing (i.e., for Jsg = 0) GS as the first term depicted in
Fig. 7(a). On the other hand, 8% = 0.604 for the GS
in Fig. 7(b) which is incorrect [unlike the correct GS in
Fig. 7(c) which matches the exact GS in Fig. 7(a)] due to
too small Ny employed in truncated HP transformation
[Sec. ITE]. Note that selected excited many-body entan-
gled state |¥y) analyzed in Fig. 9(e) has much larger
Sk =0.467.

G. Diagonal and off-diagonal elements of
time-dependent electronic and magnonic lesser
Green functions

The time-dependent electronic lesser GF Gy ;. (t,t')
in Eq. (59) generally depends [24, 25] on two time argu-
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FIG. 9. (a)—(d) The ezact magnonic spectral function D(FE) in Eq. (66) evaluated by mapping localized spin operators to HP
bosons in a numerically exact fashion via Eq. (1) for 1D quantum many-body system illustrated in Fig. 1(b) comprised of N = 3
sites hosting (a),(c) spin-1 or (b),(d) spin-2 localized spins. The electron-localized-spin interaction is turned off (Jsa = 0 €V) in
panels (a) and (b), or turned on (Jsq = 0.2 €V) in panels (c) and (d), while keeping Jg = 0.2 €V in all panels. In panels (c) and
(d), dotted circle mark additional peaks in D(F) originating from excited states |¥), as encoded by Eq. (66). (¢) Composition
of specific excited quantum many-body state |¥) for spin-1 case which is responsible for peak in D(E) near F = 1.6 €V in
panel (c)—this state is a superposition of kets with zero magnons (Nmag = 0) and solely electronic excitations; followed by kets
with one magnon excitation (Nmag = 1); and then states with two magnons excitations (Nmag = 2). Numbers on the top of
each ket are coefficients in their linear superposition leading to |¥g).

ments, ¢ and ¢'. At equal times ¢’ = ¢, it yields electronic
one-particle nonequilibrium density matrix [24, 55, 110,
111]

p(t) = —ihG=<(t,t")

o (75)
Its diagonal elements in, e.g., coordinate (or site for dis-
crete lattice) representation contain information about
the time-dependent electronic charge and spin den-
sity [55], whereas the off-diagonal elements encode
quantum-mechanical interference effects [111] and mea-
sure the degree of quantum coherence [112]. To illustrate
their time evolution, we use the same 1D quantum many-
body system employed in Fig. 6 where localized spin—%
on site 4 = 1 is completely flipped [i.e., Nmag = 5 HP
bosons are introduced on site ¢ = 1 via Eq. (70)] to initi-
ate nonequilibrium dynamics.

Figure 10(a)—(d) shows the ensuing time evolution for
the diagonal elements, —ihG, ;,(t,t), as well as for the
off-diagonal elements, —ihG7, ;. (t,t). In order to es-
tablish a reference result, we turn electron—localized-spin
interaction off (Jsg = 0) in Figs. 10(a) and 10(b), which
trivially leads to all elements being time-independent be-
cause for Jyq = 0 the quantum state of the electronic
subsystem is an eigenstate of the electronic Hamiltonian

He [Eq. (8)].

Conversely, Figs. 10(c) and 10(d) use Jsqg = 1 €V which
leads to nontrivial time dependence of both diagonal and
off-diagonal elements of —ihG<(t,t). Interestingly, the
diagonal elements, —ihG; ;,(t,t) in Fig. 10(c) satisfy

—ih[G5 1 () +G (8, 1)] = Qi with Q; being the total

electronic density on site 4, are time-independent. This
means that no charge currents flows between sites ¢ and
j. Instead, population of electrons with spin ¢ =1, ] on
site ¢ exchanges solely between spin o =7, | states at that
site. This is also accompanied by time evolution of the
off-diagonal elements —ihG, ;. (t,t) in Fig. 10(d).

The off-diagonal elements of the lesser GF are
also required to calculate many-body lesser self-energy
3<(t1,t2) [24, 25], which is connected to lesser GF in a
self-consistent fashion via the Keldysh equation

+oo +o0
G<(t,t) = / /dtldtQG’“(t,t1)2<(t1,t2)G“(t2,t’).

— 00 — OO

(76)

Equation (76) encapsulates time evolution of quantum
many-body systems in terms of solely one-particle quan-
tities. Here G(t,t') = [G"(¢',t)]" is the advanced GF. A
self-consistent solution to Eq. (76) can yield exact many-
body lesser self-energy. Alternatively, one can system-
atically approximate it [38] using the so-called “conserv-
ing approximations” [113] in MBPT. One such “conserv-
ing approximation” for the lesser self-energy of electron-
boson interacting systems is the so-called self-consistent
Born approximation (SCBA) [38, 113-115]. The SCBA
ensures charge conservation in nonequilibrium [93], and
in steady-state nonequilibrium one can Fourier transform
¥5(t1 — t2) to energy domain and operate with X5 (E).
To reduce computational complexity [114] in calcula-
tions of ¥35(E) and enable simulations of devices con-
taining large number of atoms, the “local self-energy”
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FIG. 10. Time evolution of (a) diagonal and (b) magnitude of complex off-diagonal elements of the electronic lesser GF

G<

io',jd’(

t,t) [Eq. (59)] in the site basis for the system depicted in Fig. 1(b) composed of N = 3 sites hosting spin-2 localized

spins and with electron-magnon interaction turned-off (Jsa = 0). Panels (c) and (d) are their counterparts when the electron-
magnon interaction is turned on (Jsa = 1 €V). Panels (e)—(h) show the same information as panels (a)—(d), but for magnonic
lesser GF Dj5(t,t) [Eq. (61)] in the site basis. Note that some of the off-diagonal elements are not explicitly shown because
they are either zero or identical to the ones plotted in panels (b),(d) or panels (f),(h).

approximation is often employed [88-91] when modeling
inelastic scattering of electrons and bosons. In this ap-
proximation, one assumes |%5(E)| > [55(E)|, i.e., the
off-diagonal elements of self-energy are minuscule when
compared to the diagonal ones, and thus, one can set
them to zero. This is done in conjunction with discard-
ing the off-diagonal elements of the electronic lesser GF
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Using our numerically exact electronic lesser GF in
Fig. 10(c),(d), we can examine if the “local self-energy”
approximation [88-91] is warranted for electron-magnon
realization of electron-boson quantum many-body sys-
tem. The off-diagonal elements of the lesser GF in
Fig. 10(d) are not minuscule, but are instead approxi-
mately one-fifth of the diagonal elements in Fig. 10(c).
Therefore, the “local self-energy” approximation in the
case of many-body electron-magnon interacting systems
may only be justified for a qualitative understanding and
not for a quantitative one. The same general conclusion
about the need to carefully handle off-diagonal elements
(of self-energies and GFs) has been emphasized for a vari-
ety of many-body electron-electron systems and hosting
materials [78].

Figure 10(e)—(h) shows the counterpart of Fig. 10(a)—
(d) but for the lesser GF of HP bosons. Here the off-
diagonal elements of the bosonic lesser GF, D<(¢,t) in
Eq. (61), at equal times (i.e., of bosonic one-particle
nonequilibrium density matrix) are always comparable to
the diagonal ones independently of whether the electron—
localized-spin interaction Jgq is turned off [Figs. 10(e) and
10(f)] or turned on [Figs. 10(g) and 10(h)].

Finally, we use the exact time-dependence of the off-
diagonal element D35(¢,t) of the lesser GF of HP bosons
in Figs. 10(f), where Jyq = 0, and compare it to cal-
culations employing either truncated [Fig. 11(a)] or re-
summed [Fig. 11(b)] HP transformation. In the former
case, Fig. 11(a) shows that truncated HP transformation
with N7 = 3 begins to deviate from the exact result on
a very short time scale. On the other hand, if we use the
latter with Npax = 3 [magenta solid line in Fig. 11(b)],
the deviations are suppressed. Furthermore, if we choose
Npax = 25 = 5, then the computed time-dependence
perfectly tracks the exact result [dotted green line in
Fig. 11(b)]. The same conclusion remains valid when
electron-magnon interaction is turned on (Jyg # 0) in
Figs. 11(c) and 11(d) as the counterparts of Figs. 11(a)
and 11(b), respectively. Akin to Fig. 6(b) computed in
terms of many-body wavefunctions, in the presence of
conduction electrons it takes longer time [Fig. 11(c)] to
observe deviation between magnonic GF computed us-
ing truncated HP transformation and the same GF com-
puted numerically exactly by evaluating the square root
of bosonic operators in Eq. (1). Once ressummed HP
transformation is employed, the off-diagonal elements of
the magnonic GFs in the presence of conduction elec-
trons can be obtained exactly [Fig. 11(d)] while bypass-
ing numerical computation of the square root of bosonic
operators in Eq. (1).
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FIG. 11. Comparison of time-dependence of the magnitude of
the ezact (black solid lines) off-diagonal elements of magnonic
lesser GF element, | —ihD5(t, )], from Figs. 10(f) and 10(h)
with those computed using truncated (orange solid lines for
Nr = 3) and resummed (solid magenta and green dotted lines)
HP transformation for: (a),(b) electron-magnon interaction
turned-off (Jsa = 0); and (c),(d) electron-magnon interaction
turned-on (Jsa = 1 eV).

IV. CONCLUSIONS

By applying numerically exact diagonalization tech-
niques to two versions of the Hamiltonian of quantum
many-body system of conduction electrons interacting
with localized spins that are widely used in spintronics
and magnonics, we compare predictions from these two
Hamiltonians for: GS and spectral functions extracted
from the retarded GF in equilibrium; and time evolu-
tion of the expectation values of localized spin operators
and lesser GF in nonequilibrium. The two Hamiltoni-
ans, describing systems illustrated in Fig. 1 chosen as 1D
and small in order to make calculations tractable, dif-
fer in their treatment of localized quantum spins—they
are described by either finite-size matrices of the original
spin operators or infinite matrices of bosonic operators
after the original localized spin operators are mapped
to bosonic ones using the popular HP transformation.
The truncation [Sec. ITE] of HP transformation is always
done to make diagrammatic MBPT [24, 38] or Monte
Carlo [108, 109] calculations possible, but mapping of fi-
nite size to infinite matrices necessarily requires some ap-
proximations which can lead to spurious effects in equi-
librium (Fig. 8) or incorrect time evolution (Figs. 4-6)
out of equilibrium. Our conclusions are summarized as
follows:

1. For quantum many-body systems composed of lo-
calized spins alone, Fig. 4 shows that as more in-
teracting HP bosons are introduced into the sys-
tem, progressively larger number of terms Nrp
is required in truncated HP transformation to
incorporate multi-magnon interactions and accu-
rately track the nonequilibrium dynamics of local-
ized spins. Figure 5 shows that the breakdown-
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time tpreax for truncated HP transformation fol-
lows tpreax o exp(pNp). Although, the exponen-
tial dependence of tpeax On the truncation number
Nr is favorable, the reasonable value of Ny = 1—
5 typically used in practical calculations does not
allow one to track dynamics beyond ~ 15 fs time
scale which is insufficient for ultrafast [102] or spin
torque applications [51, 53].

. When electrons are introduced and electron—

localized-spin interaction is turned on, Fig. 6(a)-
(c) shows that Np required to accurately track
nonequilibrium dynamics of localized spins is ac-
tually reduced due to the transfer of spin angu-
lar momentum between the two subsystems, which
effectively reduces the total number of interacting
magnons within the localized spin subsystem. Fur-
thermore, Figs. 6(d) and 6(e) show that the re-
cently introduced [17] resummed HP transforma-
tion [Sec. II F] makes it possible to completely evade
artifacts of the usual truncated HP transforma-
tion. However, the electron-magnon Hamiltonian
furnished by it in Eq. (72) is much more complex
for MBPT and diagrammatic Monte Carlo calcula-
tions than previously used electron-magnon Hamil-
tonians [38] based on low-order truncated HP trans-
formation.

. Figure 7 reveals how truncated HP transformation

with a small truncation number [such as Ny = 6
in Fig. 7(b)] produces an incorrect GS of the inter-
acting electron-magnon system. Only when trun-
cation number is increased [such as to Ny = 20 in
Fig. 7(c)], exact diagonalization of electron-boson
Hamiltonian reproduces the exact GS obtained by
diagonalizing the original electron—localized-spin-
operators Hamiltonian [Fig. 7(a)]. However, even
large truncation number [such as Ny = 20 in
Fig. 8(c),(f)] does not ensure that correct electronic
spectral function can be obtained from electron-
boson Hamiltonian due to the fact that spectral
functions depends [Eq. (64)] on both the GS and
excited quantum many-body states.

. The magnonic spectral function can be substan-

tially modified [Fig. 9(c),(d)] upon introduction of
conduction electrons and their interaction with lo-
calized spins, even when such interaction appears
small for electrons, due to much smaller band-
width of magnons. That is, magnons are effectively
pushed into strongly interacting regime, and the
new peaks in their spectral function (or “interacting
density of states” [85, 86]) can be directly related
to specific excited quantum many-body states. The
structure of excited states [Fig. 9(a)] reveals su-
perpositions of many-body states in which holes
in electronic single particle levels are formed and
accompanied by flips of localized spins or, equiva-
lently, creation of one or more virtual HP bosons.



5. The time evolution of the matrix elements of
the lesser GF (electronic or magnonic) at equal
times in real-space representation, which yields the
one-particle nonequilibrium density matrix in real-
space representation, shows that the magnitude
of the off-diagonal elements is always comparable
to the magnitude of the diagonal ones (Fig. 10).
Thus, “local self-energy” approximation neglecting
the off-diagonal elements, as often employed [88-91]
to enable MBPT modeling of electron-boson sys-
tems with large number of atoms, is not warranted.
Lastly, by using the exact time time-evolution of an
off-diagonal magnonic lesser GF element, in Fig. 11,
we show that these off-diagonal elements can be ac-
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curately described by the resummed HP transfor-
mation but not by the truncated HP transforma-
tion.
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