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Spin relaxation and decoherence is at the heart of spintronics and spin-based quantum infor-
mation science. Currently, theoretical approaches that can accurately predict spin relaxation of
general solids including necessary scattering pathways and capable for ns to ms simulation time are
urgently needed. We present a first-principles real-time density-matrix approach based on Lind-
blad dynamics to simulate ultrafast spin dynamics for general solid-state systems. Through the
complete first-principles descriptions of pump, probe and scattering processes including electron-
phonon, electron-impurity and electron-electron scatterings with self-consistent electronic spin-orbit
couplings, our method can directly simulate the ultrafast pump-probe measurements for coupled spin
and electron dynamics over ns at any temperatures and doping levels. We first apply this method
to a prototypical system GaAs and obtain excellent agreement with experiments. We found that
the relative contributions of different scattering mechanisms and phonon modes differ considerably
between spin and carrier relaxation processes. In sharp contrast to previous work based on model
Hamiltonians, we point out that the electron-electron scattering is negligible at room temperature
but becomes dominant at low temperatures for spin relaxation in n-type GaAs. We further examine
ultrafast dynamics in novel spin-valleytronic materials - monolayer and bilayer WSe2 with realistic
defects. We find that spin relaxation is highly sensitive to local symmetry and chemical bonds
around defects. For the bilayer WSe2, we identify the scattering pathways in ultrafast dynamics
and determine relevant dynamical properties, essential to its utilization of unique spin-valley-layer
locking effects. Our work provides a predictive computational platform for spin dynamics in solids,
which has unprecedented potentials for designing new materials ideal for spintronics and quantum
information technology.

I. INTRODUCTION

Spin is a fundamental quantum mechanical property of
electrons and other particles. The spin states can be used
as the basis of quantum bits in quantum information sci-
ence (QIS)1, in addition to being used in spintronics anal-
ogous to electrical charge in conventional electronics2.
The key property for spintronics and spin-based QIS
is the lifetime of spin states. Stable manipulations of
spin states in practical applications require lifetimes on
the order of hundreds of nanoseconds or even millisec-
onds. Determining the underlying mechanisms and con-
trolling spin relaxation are vital to reach long spin life-
times at room temperature. Experimentally spin relax-
ation can be studied through ultrafast magneto-optical
pump-probe3,4 and spin transport measurements5, allow-
ing the direct observations of dynamical processes and
quantitative determination of spin relaxation time, τs.

Despite significant experimental progresses and sev-
eral proposed systems in the past decades2,6, materials
with properties required for practical QIS and spintron-
ics applications such as long τs at room temperature re-
main to be found1,5,7. Theoretical predictions of mate-
rials properties have been mostly focused on electronic
excitations8–10 and electron-hole recombinations11–13 of
potential spin defects for QIS applications. Reliable pre-
diction of spin lifetime and dominant relaxation mecha-
nism will allow rational design of materials in order to

accelerate the identification of ideal materials for quan-
tum technologies, while forgoing the need of experimental
search over a large number of materials.

Until recently, most state-of-the-art theoretical meth-
ods to study spin dynamics of solid-state materials are
limited to simplified and system-specific models that re-
quire prior input parameters2,14–16. These methods laid
important theoretical foundation for spin dynamics, such
as the spin-Bloch kinetic equations developed from Non-
equilibrium Green’s Function theory (NEGFT)17. Ref.
18 derived a closed equation of motion for the electronic
single-particle density matrix, including different scatter-
ing matrices, which may be applicable to spin dynamics.
However, because of the simplified electronic structure
and electron-phonon coupling matrices, quantitative pre-
diction of spin relaxation remains out of reach. Occasion-
ally, even trends in τs predicted by such models may be
incorrect as shown recently for graphene.19 Furthermore,
these models are unable to provide predictive values for
new materials where prior inputs are not available.

Prior to our work, the existing first-principles method-
ology for spin lifetime has been mostly based on spin-flip
matrix elements in a specialized Fermi’s Golden rule20–22,
which is only applicable to systems with Kramers’ degen-
eracy or spatial inversion symmetry, not suitable to lots
of materials promising for quantum computing and spin-
tronics applications2,5. Other first-principles techniques
like real-time Time-Dependent Density Functional The-
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ory (TDDFT)23 are challenging for crystalline systems
due to high computational cost for describing phonon re-
laxations that require large supercells. More importantly,
long simulation time over nanoseconds often required by
spin relaxation is a major difficulty for TDDFT, which
is only practical for tens to a few hundred femtoseconds.
While spin dynamics based on TDDFT has been recently
performed for ultrafast demagnetization of magnetic sys-
tems within tens of fs24–26, the intrinsic time scale and
supercell limitations mentioned above remain.

We recently derived a generalized rate equation27

based on first-principles density matrix (DM) Lindblad
dynamics framework, which provides accurate spin re-
laxation time due to spin-orbit and electron-phonon cou-
plings for a broad range of materials, with arbitrary sym-
metry. However, our previous work requires the system
is already at a quasi-equilibrium state when the dynam-
ics can be described by a single-exponential decay, which
can not describe coupled spin and carrier dynamics at
an out-of-equilibrium state in ultrafast pump-probe ex-
periments. In this work, we develop a real-time ab initio
DM dynamics method based on this theoretical frame-
work, with complete descriptions of scattering processes
including electron-phonon (e-ph), electron-impurity (e-i),
and electron-electron (e-e), being adequate for over ns to
ms simulation time. Specifically, compared to the gener-
alized rate equation in our previous work, DM dynamics
with explicit real-time evolutions allow coupled carrier
and spin relaxation away from quasi-equilibrium with all
decoherence pathways simultaneously. This will facili-
tate direct prediction of experimental signatures in ul-
trafast magneto-optical spectroscopy to unambiguously
interpret experimental probes of spin and electron dy-
namics.

We will demonstrate the generality of our approach
by considering two prototypical and disparate systems -
GaAs and few-layer WSe2, which have very different spin
relaxation mechanisms.

We will first apply our DM dynamics methodology
to investigate ultrafast spin dynamics of GaAs, which
has broad interest in spintronics over past decades2,28–31

and more recently32–34, partly due to its long spin life-
time especially in the n-doped material at relatively low
temperature28. Despite various experimental28,29,35–37

and theoretical2,30,31,38–40 (mostly using parameterized
model Hamiltonian) studies previously, the dominant
spin relaxation mechanism of bulk GaAs under various
temperatures and doping levels remains unclear. For ex-
ample, Refs. 30 and 39 claimed e-i and e-ph scatterings
dominate spin relaxation at low and room temperatures,
respectively; however, Refs. 31 and 40 conclude that e-e
may be more important at room temperature and even
more at lower temperatures. Moreover, electron-phonon
scattering matrices which can be accurately obtained
from first-principles, are very difficult to be precisely de-
scribed in parameterized models used previously. Most
importantly, the applicability of empirical D’yakonov-
Perel’ (DP) relation, which is widely used for describing

inversion-asymmetric systems including GaAs, needs to
be carefully examined. Throughout this work, we pro-
vide complete and unambiguous insights on the underly-
ing mechanism of spin relaxation and applicability of the
DP relation for GaAs from first-principles DM dynamics.

Due to broken inversion symmetry and strong SOC,
monolayer transition metal dichalcogenides (TMDs) ex-
hibit exciting physical properties including valley-specific
optical excitation and spin-valley locking effects. In Ref.
41,42, it has been shown that by introducing doping in
monolayer TMDs, ultraslow decays of Kerr rotations,
which correspond to ultralong spin/valley lifetimes of res-
ident carriers especially resident holes can be observed
at low temperatures. Those features make monolayer
TMDs advantageous for spin-valleytronics and (quan-
tum) information processing.

Besides monolayers, bilayer TMDs recovering inversion
symmetry have also attracted significant interests be-
cause of the new “layer” degree of freedom or layer pseu-
dospin in addition to spin and valley pseudospin43–45.
Previous studies already concluded that electronic states
at K/K ′ valleys of a bilayer TMD are approximately a
superposition of those of two monolayers. This allows
us to tune which layer carriers/spins are localized by a
perpendicular electric field Ez, and make use of the spin-
valley-layer locking effects for spin-valleytronic applica-
tions.

Although spin/valley relaxation of resident carri-
ers in monolayer TMDs, which is most relevant to
spin-valleytronic applications, have been extensively
examined27,41,42,46, the underlying dynamics especially
the effects of different types of impurities have not
been investigated through predictive ab initio simula-
tions. Furthermore, for bilayer TMDs, the study on
spin/valley dynamics is still in infancy with few ultra-
fast measurements which however do not exhibit long
spin relaxation time and are lack of spin-valley-layer
locking property47–49. There is a lack of knowledge of
the role of scattering processes and the scattering path-
ways for spin/valley dynamics of free carriers in bilay-
ers, which prevents researchers to realize and manipu-
late spin-valley-layer locking effects for designing spin-
valleytronic devices.

In this work, we will answer the above questions by
performing ab initio real-time dynamics simulations with
a circularly polarized pump pulse and relevant scattering
mechanisms. We focus on WSe2 due to its larger valence
band SOC splitting and focus on dynamics of holes since
τs of holes seem longer than electrons.

In the following, we first introduce our theoretical for-
malism of real-time density-matrix approach with var-
ious scattering processes and pump-probe spectroscopy.
In particular, we focus on spin-orbit mediated spin relax-
ation and decoherence processes under the existences of
electron scatterings, which are rather common in semi-
conductors and metals2,17. We use this method to sim-
ulate pump-probe Kerr rotation and real-time spin dy-
namics, by using GaAs as a prototypical example and



3

comparing with experiments. Next, we study spin life-
time dependence on the temperature and doping level,
where the dominant mechanisms can vary significantly.
We then discuss the roles of different scattering mecha-
nisms and phonon modes in carrier and spin relaxations,
respectively, in order to resolve related long-standing con-
troversies. We further simulate ultrafast dynamics in
monolayer and bilayer WSe2 and extract useful dynami-
cal properties. Our work provides predictive theory and
computational platform for open quantum dynamics, and
offers new and critical insights for spin relaxation and de-
coherence in general solid-state systems.

II. THEORY

A. Real-time density-matrix dynamics and spin
relaxation time

To provide a general formulation of quantum dynamics
in solid-state materials, we start from the Liouville-von
Neumann equation in the interaction picture,

dρ (t)

dt
= −i[H ′ (t) , ρ (t)], (1)

H ′ (t) = H (t)−H0 (t) , (2)

where H, H0 and H ′ are total, unperturbed and per-
turbed Hamiltonian, respectively. In this work, the total
Hamiltonian is

H =H0 +Hpump +He−i +He−ph +He−e, (3)

H0 =He,0 +Hefield +Hz +Hph, (4)

where He,0 is electronic Hamiltonian under zero exter-
nal field. In this work, Hefield is Hamiltonian induced
by a perpendicular electric field Ez along the vacuum
direction. Hz is the Zeeman Hamiltonian correspond-
ing to an external magnetic field B, Hz = gsµBB · s,
where s = (sx, sy, sz) and si is spin matrix in Bloch ba-
sis under zero field. gs is g factor and µB is the Bohr
magneton. Hpump is the Hamiltonian of the pump pulse
and will be described below. Hph is the phonon Hamilto-
nian, while He−i, He−ph and He−e describe the electron-
impurity, electron-phonon and electron-electron interac-
tions respectively. The detailed forms of the interaction
Hamiltonians are given in Appendix A.

In practice, the many-body density matrix master
equation in Eq. 1 is reduced to a single-particle one and
the environmental degrees of freedom are traced out50.
The total rate of change of the density matrix is separated
into terms related to different parts of Hamiltonian,

dρ

dt
=
dρ

dt
|coh +

dρ

dt
|scatt, (5)

where ρ is the density matrix of electrons. Above, dρdt |coh

describes the coherent dynamics of electrons under po-
tentials or fields, e.g. the applied pump pulse, while

dρ
dt |scatt captures the scattering between electrons and
other particles.

To obtain Eq. 5 which involves only the dynamics of
electrons or the electronic subsystem, we have assumed
the environmental subsystem is not perturbed by the
change of the electronic subsystem, which in this work
means there is no dynamics of phonons. This assump-
tion is valid when the system is not far from equilibrium,
e.g., when excitation is weak. In most spin dynamics ex-
periments, it is desirable to work in the low excitation
density limit to avoid additional complexities and focus
on the physics of spin dynamics. Indeed in many exper-
iments, e.g., in Refs. 28 and 51, pump fluence and exci-
tation density are controlled to be low, e.g., excitation
density 2×1014 cm−2 for GaAs. Therefore, phonon dy-
namics can be safely excluded in the current stage. The
inclusion of phonon degrees of freedom in the density-
matrix dynamics has been discussed in detail in Refs.
50,52 with model Hamiltonian, which can be our future
work to implement from first-principles.

To define spin lifetime, we follow the time evolution of
the observable

Si = Tr (siρ) , (6)

where si is the spin operator (i = x, y, z). This time
evolution must start at an initial state (at t = t0) with
a net spin i.e. δρ(t0) = ρ(t0) − ρeq 6= 0 such that
δSi(t0) = Si (t0) − Seq

i 6= 0, where “eq” corresponds to
the final equilibrium state. We evolve the density matrix
through Eq. 5 using an adaptive Runge-Kutta fourth-
order method for a long enough simulation time, typi-
cally from tens of ps to several ns, until the evolution of
Si (t) can be reliably fitted by

Si (t)− Seq
i = [Si (t0)− Seq

i ] exp

[
− t− t0

τs,i

]
× cos [ωB (t− t0) + φ] . (7)

to extract the relaxation time, τs,i. Above, ωB is oscilla-
tion frequency due to energy splitting in general, which
under an applied magnetic field B would include a con-

tribution ≈ 0.5gsµB

(
B× Ŝi

)
.

In order to examine whether the spin relaxation time
depends on how the spin imbalance is generated, we im-
plement two general ways to initialize δρ(t0). First, for
simulating pump-probe experiments, we choose δρ(t0)
corresponding to interaction with a pump pulse. Sec-
ond, we use the technique proposed previously in Ref. 27
by applying a test magnetic field at t = −∞, allowing the
system to equilibrate with a net spin and then turning it
off suddenly at t0.
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B. Scattering terms

The scattering part of the master equation can be sepa-
rated into contributions from several scattering channels,

dρ

dt
|scatt =

∑
c

dρ

dt
|c, (8)

where c labels a scattering channel. Under Born-Markov
approximation, in general we have18

dρ12

dt
|c =

1

2

∑
345

 (I − ρ)13 P
c
32,45ρ45

− (I − ρ)45 P
c,∗
45,13ρ32

+H.C., (9)

where P c is the generalized scattering-rate matrix and
H.C. is Hermitian conjugate. The subindex, e.g., “1”, is
the combined index of k-point and band. The weights
of k points must be considered when doing sum over k
points. Note that P c in the interaction picture is related
to its value PS,c in the Schrodinger picture as

P c1234 (t) =PS,c1234exp [i (ε1 − ε2 − ε3 + ε4) t] , (10)

where εi are single-particle eigenvalues of H0. Be-
low, we consider three separate scattering mechanisms
- electron-impurity (e-i), electron-phonon (e-ph) and
electron-electron (e-e), and describe the matrix elements
for each.

For electron-phonon scattering, the scattering matrix
is given by18

P S,e-ph
1234 =

∑
qλ±

Aqλ±13 Aqλ±,∗24 , (11)

Aqλ±13 =

√
2π

~
gqλ±12

√
δGσ (ε1 − ε2 ± ωqλ)

√
n±qλ, (12)

where q and λ are phonon wavevector and mode, gqλ±

is the electron-phonon matrix element, resulting from
the absorption (−) or emission (+) of a phonon, com-
puted with self-consistent spin-orbit coupling from first-
principles,53 n±qλ = nqλ + 0.5 ± 0.5 in terms of phonon

Bose factors nqλ, and δGσ represents an energy conserv-
ing δ-function broadened to a Gaussian of width σ.

Next, for electron-impurity scattering, the scattering
matrix is given by

P S,e-i
1234 =Ai13A

i,∗
24 , (13)

Ai13 =

√
2π

~
gi13

√
δGσ (ε1 − ε3)

√
niVcell, (14)

gi13 = 〈1|V i |3〉 , (15)

where ni and Vcell are impurity density and unit cell vol-
ume, respectively, and V i is the impurity potential. In
this work, we deal with ionized and neutral impurities
differently. For ionized impurities, V i is proportional
to screened Coulomb potential54; for neutral impurities,

we compute impurity potentials with supercell methods
from DFT. (See Appendix A for further details).

Finally, for electron-electron scattering, the scattering
matrix is given by18

P S,e-e
12,34 =2

∑
56,78

(I − ρ)65 A15,37A
∗

26,48ρ78, (16)

A1234 =
1

2
(A1234 −A1243) , (17)

A1234 =
1

2

√
2π

~

[
ge−e1234(δGσ,1234)1/2 + ge−e2143(δGσ,2143)1/2

]
,

(18)

ge-e
1234 = 〈1 (r)| 〈2 (r′)|V (r − r′) |3 (r)〉 |4 (r′)〉 , (19)

where V (r − r′) is the screened Coulomb potential and
δGσ,1234 = δGσ (ε1 + ε2 − ε3 − ε4) is a Gaussian-broadened
energy conservation function. The screening is described
by Random-Phase-Approximation (RPA) dielectric func-
tion (details in Appendix A). Although the above equa-
tions describe all possible scattering processes between
electrons and holes, we only consider those between
conduction electrons here, which are appropriate for n-
type Group III-V semiconductors30,39. The electron-
hole scattering can be important for intrinsic and p-type
material.30,39 We note that unlike the e-ph and e-i chan-
nels, P S,e-e (as well as the dielectric screening in V ) is a
function of ρ and needs to be updated during time evolu-
tion of ρ. This is a clear consequence of the two-particle
nature of e-e scattering. P S,e-e can be written as the
difference between a direct term and an exchange term,

P S,e-e =P S,e-e,d − P S,e-e,x, (20)

P S,e-e,d =
∑
56,78

(I − ρ)65A15,37A
∗
26,48ρ78, (21)

P S,e-e,x =
∑
56,78

(I − ρ)65A15,37A
∗
26,84ρ78. (22)

According to Ref. 50, the direct term is expected to dom-
inate the dynamical scattering processes between con-
duction or valence electrons, allowing us to neglect the
exchange term here.

C. Pump-probe simulation

In nonrelativistic limit, the light-matter interaction

Hamiltonian operator (Ĥe−p) reads55

Ĥe−p =
e

me
A (t) · p̂

+
e

2me
A (t) ·A (t) + geµB ŝ · (5×A (t)) ,

where A (t) is the vector potential and A (t) =
A0 (t) e−iωt + A∗0 (t) eiωt with A0 (t) being the complex
amplitude and ω being photon frequency. p̂ is mo-
mentum operator. ge ≈ 2.0023192 is anomalous gy-
romagnetic ratio. The second quadratic term plays a
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role only when pump fluence is higher by several orders
of magnitude than that in usual spin dynamics experi-
ments and can be safely neglected. Since 5 × A (t) =
−iqphoton×A (t)55 and the photon wavevector qphoton is
quite small (the photon wavelength is much longer than
the scale of unit cells), the third term is also negligible.
Therefore, we will only keep the first A (t) · p̂ term.

The interaction with a pump pulse of frequency ωpump

in the interaction picture is given by

Hpump,k,mn (ωpump, t) =
e

me
A0 (t) · pk,mneit(εm−εn−ωpump)

+H.C., (23)

where m,n represent the band indices and k represents
the k point sampling in the first Brillouin zone. For a
Gaussian pulse centered at time tcenter with width τpump,

A0 (t) = A0
1√√
πτpump

exp
[
− (t− tcenter)

2
/
(
2τ2

pump

)]
.

(24)

Note that the corresponding pump fluence is Ipump =
ω2

pump|A0|2/ (8πα), where α is fine structure constant.
As a part of the coherent portion of the time evolution,
the dynamics due to this term are captured directly in
the Liouville form,56,57

dρ

dt
|pump =− i[Hpump, ρ]. (25)

The probe pulse interacts with the material similarly
to the pump pulse, and could be described in exactly
the same way in principle. However, this would require
repeating the simulation for several values of the pump-
probe delay. Instead, since the probe is typically chosen
to be of sufficiently low intensity, we use second-order
time-dependent perturbation theory to capture its inter-
action with the system,

∆ρprobe =
1

2

∑
345

 [I − ρ (t)]13 P
probe
32,45 ρ (t)45

− [I − ρ (t)]45 P
probe,∗
45,13 ρ (t)32

+H.C.,

(26)

where P probe is the generalized scattering-rate matrix for
the probe in the interaction picture. Its corresponding
Schrodinger-picture quantity is

P S,probe
1234 =

∑
±
Aprobe,±

13 Aprobe,±,∗
24 , (27)

Aprobe,±
13 =

√
2π

~
e

me

(
Aprobe

0 · p
)√

δGσ (ε1 − ε3 ± ωprobe).

(28)

The dielectric function change ∆ε between the excited
state and ground state absorption detected by the probe
is then

Im∆ε =
2π

(ωprobe)
3 |Aprobe

0 |2
Tr
(
H0∆ρprobe

)
. (29)

Note that ∆ρprobe contains |Aprobe
0 |2 so that Im∆ε is in-

dependent of Aprobe
0 . The above Im∆ε is a functional

of the density matrix according to Eq. 26 and is an ex-
tension of the usual independent-particle Imε depending
on just occupation numbers.58 After computing Im∆ε
above, the real part Re∆ε can be obtained from the
Krames-Kronig relation.

By summing up the dielectric function change ∆ε com-
puted above with the dielectric function for ground state
absorption, we can obtain the excited-state ε as inputs
for Kerr and Faraday rotation calculations.59 These cor-
respond to the rotations of the polarization plane of a
linearly polarized light, reflected by (Kerr) and trans-
mitted through (Faraday) the material, after a pump ex-
citation with a circularly-polarized light. Time-Resolved
Kerr/Faraday Rotation (TRKR/TRFR) has been widely
used to study spin dynamics of materials28,36. In a
TRKR experiment, a circularly-polarized pump pulse is
used to excite valence electrons of the sample to conduc-
tion bands. The transitions approximately satisfy the
selection rule of ∆mj = ±1 for left and right circularly-
polarized pulses, respectively, where mj is secondary to-
tal angular momentum. TRKR works by measuring the
changes of polarization of reflected light, which qualita-
tively is proportional to the small population imbalance
of electronic states with different mj .

Specifically, the Kerr rotation angle θK is computed
with dielectric functions by

θK =Im

√
ε+ −

√
ε−

1−√ε+
√
ε−
, (30)

where ± denotes the left and right circular polarization,
respectively.

III. COMPUTATIONAL DETAILS

The ground-state electronic structure, phonon, and e-
ph matrix element calculations of GaAs and few-layer
WSe2 are first calculated using Density Functional The-
ory (DFT) with relatively coarse k and q meshes in
the JDFTx plane-wave DFT code.60 For GaAs, we use
the experimental lattice constant of 5.653 ,61 and se-
lect the SCAN exchange-correlation functional62 for an
accurate description of the electron effective mass (see
section II in Supplemental Materials63 (see, also, Refs.
64–66 therein)). We also apply a scissor operator to
the DFT values to reach experimental band gap 1.43
eV67. For WSe2, we used PBE exchange correlation
functional along with the DFT-D2 pair potential dis-
persion corrections68. The resulting lattice constant is
3.32 and distance between two W-atom planes is 6.419
close to experimental values of bulk WSe2, 3.297 and
6.491 69. The phonon calculations of GaAs and WSe2

employ a 4 × 4 × 4 and 6 × 6 supercell, respectively.
We use Optimized Norm-Conserving Vanderbilt (ONCV)
pseudopotentials70 with self-consistent spin-orbit cou-
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pling throughout, which we find converged at a plane-
wave kinetic energy cutoff of 34 and 62 Ry for GaAs and
WSe2, respectively. With these computational parame-
ters, we find the effective mass of conduction electrons
of GaAs to be 0.054me, close to the experimental value
of 0.067me

67. (More convergence tests can be found in
Supporting Information (SI)63).

We then transform all quantities from plane wave ba-
sis to maximally localized Wannier function basis71, and
interpolate them53,72–76 to substantially finer k and q
meshes. The Wannier interpolation approach fully ac-
counts for polar terms in the e-ph matrix elements and
phonon dispersion relations, using the approach devel-
oped by Verdi and Giustino77 for 3D and using the meth-
ods in Ref. 78 and Ref. 79 for 2D systems. The Born
effective charges and dielectric constants are calculated
from open-source code QuantumESPRESSO80.

For GaAs, the fine k and q meshes are 288× 288× 288
for simulations at 300 K and are finer at lower tempera-
ture, e.g., 792× 792× 792 for simulations at 30 K. This
is necessary to sample enough electronic states around
band edges and for spin lifetime convergence within 20%.
The k and q convergence are easier for WSe2 due to
much larger effective masses and we used 168× 168 and
600×600 meshes at 50 and 10 K, respectively. The com-
putation of e-i and e-e matrix elements and the real-time
dynamics simulations are done with a new custom code
interfaced to JDFTx. The energy-conservation smearing
parameter σ is chosen to be comparable or smaller than
kBT for each calculation. Detailed convergence tests of
number of k points and energy window for electronic
states at various smearing parameters can be found in
Supplemental Materials63.

IV. RESULTS AND DISCUSSIONS

A. Applications to n-doped GaAs

1. Spin dynamics and its relation to TRKR

In general, time evolution of Kerr rotation angle θK
(see Eq. 30) is not equivalent to that of spin along the
direction of reflected light, and in fact, they can be quite
different in some cases41. There are few first-principles
studies of TRKR considering scattering processes in a
form of semiclassical Boltzmann equation58. A full quan-
tum description of scatterings with non-diagonal density
matrix in TRKR has not been presented in previous first-
principles studies, to the best of our knowledge. And the
relation between dynamics of θK and spin observable for
general systems including GaAs has not yet been well
examined.

Using our density-matrix approach, we are able to di-
rectly simulate the nonequilibrium ultrafast dynamics of
optically excited systems during which the dynamics of
different electronic quantities such as spin and carriers
can be strongly coupled. We include all scattering terms

FIG. 1. The energy-resolved dynamics of carriers (a)
∆n (ε, t) = n (ε, t) − n (ε, 0) and (b) spins Sz (ε, t) of con-
duction electrons with a circularly polarized pump pulse cen-
tered at 0.5 ps. The insets on the top right of both panels
show ∆n (ε, t) and Sz (ε, t) at ε=1.45 eV. The pump energy
ωpump=1.47 eV is chosen to be higher than band gap 1.43
eV67. The width of the pump pulse τpump is 100 fs. The
pump fluence Ipump is low at 0.01 µJ cm−2. The dynamics
can be approximately divided into three regions - Region I,
II and III labeled in this figure. In Region I, the system is
excited by a pump pulse. In Region II, pump processes are
already finished, then both carriers and spins relax simulta-
neously. In Region III, carrier distribution stays unchanged
while spins keep decaying.

in a full quantum description as shown in the theory sec-
tion II.B and Appendix A. We perform the real-time dy-
namics simulations of n-type GaAs for tens of ps at room
temperature and several ns at low temperature until the
fitted spin lifetime does not change any more. Having
temporal density matrix, we can further analyze the dy-
namics of various observables, including occupation, spin
and Kerr rotation angle easily. We then examine the re-
lation between θK and spin in the dynamics.
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FIG. 2. (a) Compare the dynamics of Kerr rotation angle θK
at different probe energies ωprobe excited by a circularly po-
larized pump pulse in first few ps. Fast oscillations in first 2
ps are due to the pump pulse and coupled spin and carrier re-
laxation. (b) Compare relaxation of different observables - θK
with different ωprobe (denoted by black and red lines) and Sz

with initial spin imbalance generated by a pump pule (Pump)
or a test magnetic field along z direction λs,z ∼ 0.001 − 0.1
Tesla (blue and green lines). ωpump=1.47 eV. The pump pulse
is centered at 0.5 ps. The longer time-scale dynamics (over 10
ps) for θK and Sz has similar relaxation time independent on
the generation method of spin imbalance and specific probe
energies.

Figure 1 shows the energy-resolved dynamics of car-
riers ∆n (ε, t) = n (ε, t) − n (ε, 0) and spins Sz (ε, t).
The energy-resolved observable O (ε) is defined as

Re
[∑

k,mn ok,mnρk,nmδ (ε− εkm)
]
, where o is operator

matrix. We can see that during the first ps (region I in
Fig. 1), both observables vary quickly due to the exis-
tence of the pump processes and both have their maxi-
mum at an energy slightly lower than the pump energy,
1.47 eV (slightly larger than the band gap 1.43 eV), at
a time shortly after the time center of the pump pulse -
0.5 ps. Interestingly, after pump being not active or af-
ter 0.8-1 ps, carriers and spins simultaneously relax until
2-3 ps (region II in Fig. 1a and 1b). Afterward (region
III in Fig. 1a and 1b), carriers stay unchanged but spins
Sz (ε, t) decay exponentially as shown in the insets of Fig.
1a and 1b.

We have further analyzed the dynamics of Kerr ro-
tation angle θK and compared it with spin dynamics.
From Fig. 2a, we can see that during pump processes and
shortly after them (from 0 to 2 ps), θK (t) has strong os-
cillations and sensitive to the probe energy ωprobe. The
ωprobe-sensitivity may be partly attributed to the energy
dependence of carrier and spin dynamics. From Fig. 2a
and 2b, it can be seen that after 3 ps (or in time region
III defined in Fig. 1), θK with different ωprobe decay ex-
actly the same. We can also find that with a pump pulse,
relaxation time of the Kerr rotation is the same as that of
Sz, i.e. τs,z. Moreover, it turns out that τs,z does not de-
pend on how spin imbalance is generated - by a circularly
polarized pump pulse or by turning off a test magnetic
field along z direction (see Sec. II A). This may indicate

FIG. 3. Theoretical spin lifetime with (black solid square) and
without (black empty square) the electron-electron scattering
compared with experimental data. Exp. A, B, C and D are
experimental data from Refs. 36,37,81 and 28, respectively.

that if the system is not extremely far from equilibrium,
spin relaxation along direction i is not sensitive to the
way of generating spin imbalance, as long as the degrees
of freedom other than Si are not relevant or disappear
in a short time. According to these observations, here-
inafter, we will do real-time dynamics starting from a δρ
generated by turning off a test magnetic field and fit τs,z
from time evolution of Sz.

We have also studied the effects of ωpump and pump
fluence Ipump on spin relaxation of n-GaAs at 300 K. We
find that ωpump has very weak effects on spin relaxation
but τs,z decreases with pump fluence. See more details
in Appendix C.

2. Temperature-dependence of spin lifetime and its
dominant relaxation mechanism

As discussed earlier, long-standing controversies re-
main for the dominant spin relaxation mechanism of
GaAs at different temperature and doping level30,31,39,40,
which will be resolved in the following sections. We start
from study τs,z of n-GaAs as a function of temperature
at a moderate doping level (2 × 1016 cm−3). For sim-
plicity, we assume all impurities are fully ionized, so that
the impurity density ni is equal to the free carrier den-
sity nfree. We first compared our calculated spin lifetime
with experimental results in Fig. 3. Our results of τs,z
of n-GaAs give good agreement with experiments at var-
ious temperatures28,36,37,81. Different experiments have
slight variations between each other due to sample prepa-
ration conditions and specific measurement techniques.
The spin lifetime increases from tens of ps at room tem-
perature to tens of ns at low temperature. Note that e-e
scattering plays an essential role at low temperatures,
i.e. by comparing with (black solid square) and without
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FIG. 4. Spin and carrier lifetimes of n-GaAs with ni =
2 × 1016 cm−3 with different scattering mechanisms and dif-
ferent phonon modes. In (a) and (b), “All” represents all the
e-ph, e-i and e-e scattering mechanisms being considered. TA,
LA and LO represent transverse acoustic, longitudinal acous-
tic and longitudinal optical modes, respectively. The carrier
lifetimes τp present are the inverse of averaged carrier scatter-
ing rates

〈
τ−1
p

〉
. The method of carrier lifetime calculations is

given in Appendix B. 〈〉 means taking average around chem-
ical potential µ. For a state-resolved quantity Akn, its aver-
age is defined as 〈A〉 =

∑
knAkn [feq]′ (εkn) /

∑
kn [feq]′ (εkn),

where [feq]′ is the derivative of Fermi-Dirac function.

(black empty square) in Fig. 3. The correct temperature
dependence of τs,z can be reproduced only if e-e scatter-
ing is included.

We further examine the contributions of different scat-
tering mechanisms to carrier and spin lifetime respec-
tively, as a function of temperature. Different from
spin lifetime obtained from real-time DM dynamics in-
cluding all scattering processes simultaneously, the car-
rier lifetime (τp) is defined through the inverse of the
averaged carrier scattering rate(τ−1

p ): τp = 1/
〈
τ−1
p

〉
.

Various scattering processes (e-e, e-i and e-ph) con-
tribute to the total carrier scattering rates through
τ−1
p = (τ e−e

p )−1 + (τ e−i
p )−1 + (τ e−ph

p )−1. 〈〉 means tak-
ing average around chemical potential µ. For a state-
resolved quantity Akn, its average is defined as 〈A〉 =∑
knAkn [f eq]

′
(εkn) /

∑
kn [f eq]

′
(εkn), where [f eq]

′
is the

derivative of Fermi-Dirac function. For both carrier and
spin lifetime, the lifetime due to the most dominant scat-
tering channel is the closest to the one including all pro-
cesses (black squares in both Fig. 4a and b). For spin
relaxation in Fig. 4a, at low temperature below 50 K,
e-e scattering is the most dominant process as discussed
above. However, the e-ph process becomes more domi-
nant above 100K. On the other hand, for carrier relax-
ation in Fig. 4b, the e-i process is dominant over a wide
temperature range from low to right below room tem-
perature. At room temperature, for both spin and car-
rier lifetimes, the e-ph scattering is the most important

process (closest to the total lifetime with all scattering
processes).

Our observations differ from those in Refs. 31 and 40,
where the authors also found that e-e scattering domi-
nates spin relaxation at lower temperatures, e.g. 77 K,
but their results showed that at room temperature e-
e scattering can be more important than other scatter-
ings and enhances τs,z of n-GaAs by about 100% with
moderate doping concentrations. The overestimate of
the effects of e-e scattering at room temperature is most
likely a limitation of the semiclassical method employed
therein.

Similarly, we also find that different phonon modes
can play different roles in carrier and spin relaxations as
shown in Fig. 4c and 4d. For example, at room temper-
ature, LO (longitudinal optical) mode is most important
for carrier relaxation but seems less important than TA
(transverse acoustic) modes for spin relaxation. The sit-
uation is the opposite at 100 K where TA/LO is most
important for carrier/spin relaxation. Our finding that
TA modes are slightly more important than LO mode
in spin relaxation at room temperature is different from
what have been believed in previous model studies30,40,
where they declared that the electron-LO-phonon scat-
tering dominates spin relaxation at high temperatures
especially at room temperature. This disparity is most
likely due to differences in the e-ph matrix elements and
electronic quantities, where we used fully first-principles
approaches instead of parameterized models in previous
work.

In addition, we find the total spin lifetime is the longest
when considering all scattering processes in Fig. 4a; in
contrast, the carrier lifetime is the shortest including all
scattering mechanism in Fig. 4b. This follows the inverse
relation between spin and carrier lifetime in the empir-
ical D’yakonov–Perel’ (DP) mechanism2,14 for systems
without inversion symmetry, as will be discussed in more
details in next section.

3. Doping-level-dependence of spin lifetime and its
dominant relaxation mechanism

Figure 5 shows the carrier and spin lifetimes with dif-
ferent doping density ni at 30 K with individual and
total scattering pathways, respectively. Similar to tem-
perature dependence and phonon contributions, it is also
found that the roles of different scattering mechanism dif-
fer considerably between spin and carrier relaxation pro-
cesses. Specifically, for the carrier relaxation in Fig. 5b,
except when ni is very low (e.g. at 1014 cm−3), the
electron-impurity scattering (e-i) dominates, similar to
the case of carrier lifetime over a large range of temper-
ature at a moderate doping in Fig. 4b. On the other
hand, for the spin relaxation in Fig. 5a, the e-e scatter-
ing dominates except at very high concentration (above
1017 cm−3), while e-i scattering is only important in the
very high doping region (close to or above 1017 cm−3).
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FIG. 5. (a) Spin and (b) carrier lifetimes of n-GaAs with different doping concentrations at 30 K with different scattering
mechanisms. “All” represents all the e-ph, e-i and e-e scattering mechanisms being considered. (c)

〈
Ω2
〉
−
〈
Ω2

i

〉
as a function

of carrier density, where Ω is the Larmor frequency due to the “internal” magnetic field computed from first-principles, which
describes the SOC term induced by inversion asymmetry.

Figure 5 shows the calculated τs has a maximum at
ni = 1-2 × 1016 cm−3, and τs decreases fast with ni
going away from its peak position. This is in good agree-
ment with the experimental finding in Ref. 28, which
also reported τs at ni = 1016 cm−3 is longer than τs
at other lower and higher ni at a low temperature (a
few Kelvin). The ni dependence of τs may be qualita-
tively interpreted from the commonly used empirical DP
relation2 for inversion-asymmetric systems, τs,i ∼ τDP

s,i =

1/
[
τp ·

(〈
Ω2
〉
−
〈
Ω2
i

〉)]
, where τp is the carrier lifetime,

and Ω is the Larmor frequency due to the “internal”
magnetic field, which describes the SOC term induced
by inversion asymmetry. For spin 1/2 systems, the inter-
nal magnetic field at k (Ωk) will induce an energy split-
ting ∆k and polarize the spin along the direction of Ωk.
Previously, Ωk was mostly obtained with model Hamilto-
nian with Dresselhaus SOC field82, which is rather qual-
itative. Instead, we obtained k-dependent internal mag-
netic field Ωk from first-principles calculations, by using
Ωk,i = 2∆k · sexp

k,i /~, where sexp
k,i is the spin expectation

value.

From Fig. 5, we find that with ni from 1014 cm−3

to 5 × 1015 cm−3, carrier lifetime τp decreases rapidly
(black curve in Fig. 5b) and

〈
Ω2
〉
−
〈
Ω2
i

〉
remains flat

in Fig. 5c, which may explain why spin lifetime (τs) in-
creases in Fig. 5a based on the DP relation; however,
when ni > 1016 cm−3, τp decreases with a similar speed
but

〈
Ω2
〉
−
〈
Ω2
i

〉
experiences a sharp increase, which may

explain why spin lifetime decreases in Fig. 5b and owns
a maximum at 1016 cm−3.

Note that although the above empirical DP relation is
intuitive to understand the cause of doping-level depen-
dence of spin lifetime, it may break down when we eval-
uate individual scattering processes. For example, when
ni increases from 1014 cm−3 to 1015 cm−3, both carrier
lifetime τp and spin lifetime τs,z due to e-i scattering
decrease while the internal magnetic field remains un-
changed. Moreover, the simple empirical relation cannot
possibly explain our first-principles results that the e-e
and e-i scatterings have largely different contributions in

carrier and spin relaxation. First-principles calculations
are critical to provide unbiased mechanistic insights to
spin and carrier relaxation of general systems.

B. Applications to few-layer WSe2

1. Spin/valley relaxation of resident holes of monolayer
WSe2

For holes of monolayer WSe2, spin/valley relaxation
is mostly determined by intervalley spin-flip scattering
processes between K and K ′ valleys because of the spin-
valley locking. Previously, we reported spin/valley life-
times of resident holes of monolayer TMDs at T≥50 K
with e-ph scattering27. At very low temperatures, e.g., 10
K, intervalley e-ph scattering is however not activated as
the corresponding phonon occupation is negligible; there-
fore, other scattering mechanisms are necessary to be in-
cluded. Note that e-e scattering should not play an im-
portant role in spin relaxation of holes of TMDs. The rea-
son is: The e-e scattering is a two-particle process where
a transition is accompanied by another transition with
energy and momentum being conserved. Considering the
fact that only the highest occupied band is involved (see
band structure in Fig. S5) in dynamics of TMD holes,
for an e-e process, a K→K ′ (K ′→K) spin-flip transition
must be accompanied by an opposite K ′→K (K→K ′)
spin-flip transition. Overall, e-e scattering processes have
negligible contributions to spin relaxation of TMD semi-
conductors. As a result, we will include only e-ph and
e-i scatterings for WSe2. We use the supercell method
to compute e-i scattering matrix elements for neutral de-
fects with self-consistent SOC and more details can be
found in Appendix A.

Experimentally several types of impurities/defects ex-
ist in TMD samples. Here we pick four types of impu-
rities with different symmetries and chemical bonds (see
Fig. 6(a)) - Se vacancy (VSe), two neighboring Se vacan-
cies (V2Se−N), W vacancy (VW) and two Se vacancies
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FIG. 6. (a) The schematics of four types of impurities in
WSe2. (b) Spin lifetimes of holes of monolayer WSe2 with
a relatively low hole density 1011 cm−2 with impurities com-
pared with experimental data. Exp. A, B, C and D are exper-
imental data from Refs. 42, 83, 46 and 84, respectively. The
choices of impurity concentration ni of different impurities are
given in the main text.

with the same in-plane position (V2Se−S). As most point
defects are relatively deep with large ionization energies
in semiconducting TMDs85, we mostly consider neutral
defects here. According to Refs. 86–88, the impurity con-
centration ni ranges from 8×1010 to 1014 cm−2 depend-
ing on samples. Considering that VSe is often regarded
as the most abundant impurity, we choose a reasonable
impurity density ni of VSe - 7×1011 cm−2, within the
experimental range and for better comparison with ex-
perimental τs at T≥20 K shown in Fig. 6(b). ni of
V2Se−N is chosen as 8×109 cm−2, two order of magnitude
lower than VSe because of its larger formation energy88

and better comparison with experimental τs. ni of VW

and V2Se−S are chosen arbitrarily as we find they have
rather weak effects on spin relaxation and are 7×1011 and
3.5×1011 cm−2, respectively.

From Fig. 6, we first find that at T>20 K, spin relax-
ation is almost driven by e-ph scattering and impurities
can only affect spin relaxation at T≤20 K. For the ef-
fects of different impurities on spin relaxation, we have
V2Se−N � VSe � VW ∼ V2Se−S. Such differences are
directly related to the large differences among various
impurities in electron-impurity matrix elements for the
intervalley processes (scattering between K and K ′ val-

FIG. 7. (a) Schematic diagram of scattering pathways of ex-
cited holes in 1% compressed bilayer WSe2 with a low equi-
librium hole density and 1.4×1012 cm−2 VSe (double of the
monolayer value in Fig. 6) under finite Ez during and after
a circularly polarized pump, which initially excite holes (la-
belled as half circles) at both K and K′ valleys and two top
valence bands (“A⇓” atK′ and “B⇓” atK). The lower-energy
excited holes will decay to the band edge (most to “A⇓” at K′

and fewer to “A⇑” at K) through different scattering path-
ways. A state being labeled by “A”(“B”) means the wave-
function of this state is mostly localized in layer A(B) of the
bilayer. ⇑ and ⇓ represent spin-up and spin-down, respec-
tively. The color of electronic state represents spin polariza-
tion - red and blue mean spin-up and spin-down, respectively.
(b) Time evolutions of valley- and band-resolved (excited or
excess) hole densities at 50 K under two Ez with a circularly
polarized pump. The pump energy is selected to excite elec-
trons at two top valence bands. The pump center is at 0.5
ps. nV represents excess hole density at valley V . The insets
of panel (b) are the schematics of energies of two top valence
bands at K, K′ and Γ valleys under two Ez (see calculated
band structures in SI Fig. S7).

ley), i.e. much larger matrix elements |gi| for interval-
ley scattering at V2Se−N and VSe compared to the ones
at VW and V2Se−S as shown in SI Fig. S9. Moreover,
the temperature dependence of τs with V2Se−N is much
weaker and in better agreement with experiments than
that with VSe. Therefore, the observed weak tempera-
ture dependence in some experiments is probably related
to the existence of larger size impurities with lower sym-
metries (e.g. V2Se−N). Our observations suggest that
the local symmetry and chemical bonds surrounding an
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impurity have large impact on spin relaxation.
Additionally, we have simulated spin lifetimes of mono-

layer WSe2 at 15 K with different hole densities and find
a strong hole density dependence. The related results are
shown in SI Fig. S12.

2. Ultrafast dynamics of holes of bilayer WSe2

Understanding detailed dynamical processes and re-
lated scattering mechanism can help develop strategy
of controlling and manipulating spin/valley relaxation
through tuning external fields, materials composition,
and strain. In the following, we will first identify the
scattering pathways of excited holes and spins in bilayer
WSe2 (AB stacking as shown in Fig. 7a). Next through
real-time simulations, we determine dynamical quanti-
ties like spin lifetimes and valley polarization at different
external fields and strain. Finally, we show the carrier
occupation on each layer is fully spin polarized and can
be switched by an external electric field.

According to previous studies89,90 and our calcula-
tions, for valence bands of unstrained bilayer WSe2, Γ
valley is slightly higher than K/K ′ valley, which is usu-
ally undesirable. The K/K ′ valley can be pushed higher
than Γ valley by applying slight in-plane compressive
strain (corresponding band structures can be found in
SI Fig. S6). Moreover, under zero Ez, the bilayer WSe2

has inversion symmetry, leading to carriers being equally
populated at K and K ′ valleys and at two layers, with
spin up and down degeneracy. A finite Ez can break in-
version symmetry (thus break Kramers degeneracy) and
induce non-zero layer polarization or layer population dif-
ference. For example, two top valence bands from layer
A with ⇑ (up spin) and layer B with ⇓ (down spin) are
degenerate at K without electric field but split under
electric field. Thus each band is associated with a partic-
ular spin channel, valley and layer, i.e. spin-valley-layer
locking effect. Also by tuning the sign and magnitude of
Ez, we are able to control various physical quantities like
layer pseudospin, band splitting energy, etc. Therefore,
to ensure spin-valley-layer locking effects being observed,
we will study slightly compressed inversion-symmetric bi-
layer WSe2 under finite Ez.

Figure 7(a) shows the scattering pathway schematics
for hole bands (half circles) during the first few ps of
slightly compressed (1%) bilayer WSe2 excited by a cir-
cularly polarized pump pulse under finite Ez at 50 K,
before exciton recombination processes happen typically
at tens of ps timescale at this temperature.91,92 Similar
to the GaAs case (see Sec. IV A 1), the hole spins will un-
dergo the following processes: optical generation, decay
to band edges and at the end slow relaxation. Initially,
holes with the same spin polarization are excited at both
K and K ′ valleys and two layers equally (e.g. down spin
holes generated at K valley and layer B and K ′ valley
and layer A as shown in Fig. 7(a)). During and after
the excitations, lower-energy holes at K (K ′) valley will

FIG. 8. Spin lifetime and maximum valley polarization
PV = |nK −nK′ |/ntot of bilayer WSe2 at 50 K, where nK(K′)

is excess hole density at K (K′) valley and ntot is total ex-
cess hole density. Negative strain means compressive strain.
PV will be 90% of its maximum shortly after the pump and
reach the maximum at a time from 1 to 20 ps depending on
Ez and the strain. After reaching its maximum, since most
carriers/spins have already decayed to the band edge, PV can
relax only very slowly through intervalley spin-flip scattering.
This implies that having a high maximum of PV is important
to ensure a high PV during a long time.

decay to the band edge through two possible scattering
pathways: (i) Direct pathway through interlayer spin-
conserving scattering (solid blue line); (ii) Indirect path-
way through Γ-valley-related scattering (dashed lines for
both spin conserving and flip processes). After all holes
decay to the band edge, most of their carried spins are
“locked” at a certain layer and valley (e.g., “A⇓” at K ′ in
Fig. 7) due to weak intervalley spin-flip scattering (green
arrow in Fig. 7(a)), which is the so-called “spin-valley-
layer locking”.

In Fig. 7(b), we show time evolutions of valley- and
band-resolved (excited or excess) hole densities under two
Ez. It can be seen that under a low Ez (0.5 V/nm, Fig.
7(b) left panel), the main scattering pathway is the direct
one mentioned above, i.e. the spin down holes scattered
from B⇓ at K in dashed blue line with decreasing pop-
ulation to A ⇓ at K ′ in solid blue line with increasing
population. Under a higher Ez (2 V/nm, Fig. 7(b) right
panel), although the direct scattering pathway still exists,
the indirect one through the Γ valley also becomes impor-
tant because the band energy at Γ is pushed higher than
the second valence band at K and K ′ under this electric
field (see inset of Fig. 7(b) right panel). Here occupation
at B ⇓ at K in dashed blue line rapidly decreased while
occupation at Γ with both up and down spins in solid
black temporarily increased through indirect scattering,
and most importantly the A ⇑ at K in solid red also in-
creased due to the scattering through Γ valley. Increased
population at A ⇑ at K represents weakening the spin-
valley-locking effect. Therefore, the indirect scattering
pathway will lead to the reduction of spin density and
valley polarization.

We then show two key dynamical quantities - spin life-
time τs in Fig. 8(a) and maximum valley polarization
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FIG. 9. Time evolution of top layer hole occupation f top
h and

spin stopz (see their definitions in Appendix D) normalized by
corresponding total quantities of compressed bilayer WSe2 at
50 K after the sign of Ez is switched at t = 0. At t = −10 ps,
a pump pulse centered at t = −9.5 ps with τpump = 100 fs is
started to be applied and real-time density matrix dynamics
is run under Ez = 0.5 V/nm until t = 0 to allow holes/spins
to decay to the band edge where states are localized in bottom
layer. When the sign of Ez is suddenly switched, holes/spins
are still localized in the same bottom layer but the new eigen-
states around the band edge are localized in top layer, thus
holes/spins will transfer from bottom to top layer.

of bilayer WSe2 in Fig. 8(b) as a function of Ez with
different percentages of strain. Valley polarization is de-
fined as PV = |nK − nK′ |/ntot, where nK(K′) is excess
hole density at K (K ′) valley and ntot is total excess
hole density. A high maximum of PV is necessary to
ensure a high PV for extended time. This is because:
when PV reaches its maximum, since most carriers/spins
have already decayed to the band edge at the same time,
PV will decay very slowly through intervalley spin-flip
scattering. Obviously, unstrained system is not suitable
to utilize spin-valley-layer locking considering its short
spin lifetimes and low maximum PV under a relatively
low electric field. As we discussed above, a slight strain
is helpful to ensure K/K ′ valleys are sufficiently higher
than Γ valley. Moreover, from Fig. 8, an optimized range
of Ez is from ∼0.2 to ∼2 V/nm, where the system shows
long τs and high maximum PV , consistent with the fact
mentioned above: indirect scattering pathway, which be-
comes important under high Ez, will cause loss of spin
and valley polarization.

Finally, in a bilayer, the percentage of carriers/spins
localized in top/bottom layer at equilibrium can be con-
trolled by a static Ez. For device applications, it may
be desirable to dynamically and spatially tune the loca-
tions of holes/spins by controlling Ez. For this purpose,
a knowledge of the speed of carriers/spins transferring
between two layers can be useful.

To extract the time scale of such transfer, we first

generate holes/spins by applying a circularly polarized
pump pulse centered at −9.5 ps and let the system
evolves until t = 0 under Ez = 0.5 V/nm to ensure
almost all holes/spins being localized in bottom layer,
then by switching Ez suddenly to −0.5 V/nm at t = 0,
holes/spins will start to transfer to top layer.

In Fig. 9, we show time evolution of top layer hole
occupation f top

h and spin stop
z (see their definitions in

Appendix D) normalized by corresponding total quan-
tities of 2% compressed bilayer after the sign of Ez is
switched. From Fig. 9, at 50 K, 90% switching of f top

h
and stop

z takes ∼6 ps. This time constant is much short
than τs, which means such tuning is fast enough to use
an electric field as a ”switch” in spintronic devices.

V. CONCLUSIONS

In this article, we present a first-principles real-time
density-matrix approach to simulate ultrafast spin-orbit-
mediated spin dynamics in solids with arbitrary crystal
symmetry. The complete ab initio descriptions of pump,
probe and three scattering processes - the electron-
phonon, electron-impurity and electron-electron scatter-
ing in the density-matrix master equation, allows us to di-
rectly simulate the nonequilibrium ultrafast pump-probe
measurements and makes our method applicable to any
temperatures and doping levels. This method has been
applied to simulate spin relaxation of n-GaAs. We con-
firm that relaxation time of Kerr rotation and that of spin
observables are almost identical and find that relaxation
time of spin polarization is relatively robust, i.e. insen-
sitive to how spin imbalance is initialized. Furthermore,
we have studied the temperature and doping-level depen-
dencies of spin lifetime and examined the roles of various
scattering mechanisms. Overall our theoretical results
are in good agreement with experiments. Importantly,
our first-principles simulations provide rich mechanistic
insights of spin relaxation of n-GaAs: we point out that
although at low temperatures and moderate doping con-
centrations e-i scattering dominates carrier relaxation,
e-e scattering is the most dominant process in spin re-
laxation. The relative contributions of phonon modes
also vary considerably between spin and carrier relax-
ation. We have further examined ultrafast dynamics in
few-layer WSe2 with realistic impurities. We find that
spin relaxation can highly depend on local symmetry and
chemical bonds surrounding impurities. For the bilayer,
we identify the scattering pathways of holes in ultrafast
dynamics and determine relevant dynamical properties,
including τs, maximum valley polarization and layer pop-
ulation/spin switch time, which are essential to utilize
its unique spin-valley-layer locking effects. Our method
opens up the pathway to predict spin relaxation and de-
coherence for general materials and provide unbiased in-
sights and guidelines to experimental materials design,
which have the potential to revolutionize the field of spin-
tronics and quantum information technologies.
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APPENDIX A: INTERACTION HAMILTONIAN
TERMS AND MATRIX ELEMENTS

Three interaction Hamiltonian terms in Eq. 3 read

He-ph =
∑
12qλ

c†1c2

(
gqλ−12 bqλ + gqλ+

12 b†qλ

)
, (31)

He-i =niVcell

∑
12

c†1c2g
i
12, (32)

He-e =
∑
1234

c†1c
†
2c3c4g

e-e
1234. (33)

The e-ph matrix gqλ± are computed with self-
consistent spin-orbit coupling and Wannier interpolation
by the supercell method.

Here we assume impurity density is sufficiently low and
the average distance between neighboring impurities is
sufficiently long so that the interactions between impuri-
ties are negligible. The e-i matrix gi is

gi13 = 〈1|∆V i |3〉 , (34)

∆V i =V i − V 0, (35)

where V i is the potential of the impurity system and V 0

is the potential of the pristine system. In this work, gi for
neutral and ionized impurities are computed differently
as follows.

For neutral impurities, V i is computed using a large
supercell including an impurity with self-consistent SOC
at DFT. This is important for including the detailed po-
tential profile and chemical bonding environment for dif-
ferent impurities. To speed up the supercell convergence,

we used the potential alignment method developed in
Ref. 94. We checked the supercell size convergence of
gi for neutral VSe in monolayer WSe2 and found that
the corresponding spin lifetime with 6×6 and 8×8 super-
cells differs by only a few percent. Thus 6×6 supercell is
enough for gi of neutral impurities in monolayer WSe2.

For ionized impurities, we use approximate impurity
potentials as detailed below. In general, ∆V i may
be separated into two terms ∆V i = ∆V ins + ∆V isoc,
where ∆V ins is the spin-independent part and ∆V isoc =[
~/
(
4m2c2

)]
∇
(
∆V ins

)
×p ·σ is the SOC correction. For

ionized impurities, we approximate ∆V ins as the poten-
tial of point charge and is simply the product of the im-
purity charge Z and the screened Coulomb potential54,
i.e., ∆V ins = ZV scr. Such approximate describes the
long-range part of spin-independent differential impurity
potential ∆V ins accurately, which is often the most im-
portant contribution from ionized impurities. Consider-
ing that ∆V isoc is commonly neglected in previous theo-
retical studies on spin relaxation30,95 whenever screened
Coulomb potential V scr is used, we will not include ∆V isoc

for ionized impurities either. Note that such potential for
ionized impurities still relaxes spin through spin-mixing
and spin-precession. The e-e matrix ge-e is

ge-e
1234 = 〈1 (r)| 〈2 (r′)|V (r − r′) |3 (r)〉 |4 (r′)〉 , (36)

where V (r − r′) is the screened electron-electron inter-
action. The SOC corrections on V (r − r′)96,97 will not
be included similar to the ionized impurity case. Thus,
V (r − r′) is simply the screened Coulomb potential V scr.
Therefore, in both calculations of gi and ge-e, the compu-
tation of the screened Coulomb potential V scr is of key
importance.

Currently, we use the static RPA (Random Phase Ap-
proximation) dielectric function for the screening and
neglect local-field effects. We then show the e-e self-
energy (ImΣ) obtained with such dielectric function well
reproduces the one obtained with dynamically screened
Coulomb interaction with full RPA dielectric matrix in
the relevant energy range as shown in Fig. 10. The di-
electric function has the form

ε (q) =εsε
intra (q) , (37)

where εs is the static background dielectric constant
and can be calculated by Density Functional Perturba-
tion Theory (DFPT)98. εintra (q) is the intraband contri-
bution which involves only states with free carriers and is
critical for doped semiconductors. It is computed using
Random Phase Approximation (RPA),

εintra (q) =1− V bare (q)
∑
kmn

 fk−q,m−fkn

εk−q,m−εk,n
×

| 〈uk−q,m|ukn〉 |2

 ,

(38)

where the sum runs over only states having free car-
riers, e.g., for a n-doped semiconductor, m and n are
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conduction band indices. In the above formula, f is
time-dependent non-equilibrium occupation instead of
the equilibrium one f eq. Therefore, if pump is activated
or optical field A0 (t) of the pump pulse is not negligible,
εintra (q) will be updated in every time step, as f will dif-
fer from f eq and the magnitude of difference depends on
the excitation density. V bare (q) = e2/

(
Vcellε0|q|2

)
is the

bare Coulomb potential with Vcell the unit cell volume
and ε0 vacuum permittivity. ukn is the periodic part of
the Bloch wave function.

We then have the matrix elements in reciprocal space,

gi13 =ZV scr (q13) 〈u1|u3〉 , (39)

ge-e
1234 =V scr (q13) δk1+k2,k3+k4

〈u1|u3〉 〈u2|u4〉 ,
(40)

V scr (q13) =V bare (q13) /ε (q13) , (41)

where V scr (q) is the screened Coulomb potential and
q13 = k1 − k3. δk1+k2,k3+k4 is Kronecker delta function
and means k1 + k2 = k3 + k4. 〈u1|u3〉 is the overlap
matrix element between two periodic parts of the Bloch
wave functions.

APPENDIX B: CARRIER SCATTERING RATE
AND IMΣ FROM THE DENSITY-MATRIX

APPROACH

At the semiclassical limit, density matrix ρ is replaced
by (non-equilibrium) occupation f , then the scattering
term originally with a full quantum description in Eq. 9
required by DM dynamics becomes:

df1

dt
|c =

∑
26=1

[
(1− f1)P c11,22f2 − (1− f2)P c22,11f1

]
, (42)

using the facts that P11,22 is real and “2=1” term is
zero. “c” represent a scattering channel. Note that the
weights of k points must be considered when doing sum
over k points.

Suppose f is perturbed from its equilibrium value by
δf , i.e., f = f eq + δf , then insert f after perturbation
into Eq. 42 and linearize it,

df1

dt
|c =−

∑
26=1

[
P c11,22f

eq
2 + (1− f eq

2 )P c22,11

]
δf1, (43)

using the fact that δP11,22 is always zero, even for the
e-e scattering.

Define carrier relaxation time of state “1” τ cp,1 by
df1
dt |c = − δf1

τc
p,1

, we have

1

τ cp,1
=
∑
2 6=1

[
P c11,22f

eq
2 + (1− f eq

2 )P c22,11

]
. (44)

The linewidth or the imaginary part of the self-energy
for the scattering channel c is related to the carrier re-
laxation time by ImΣc1 = ~/

(
2τ cp,1

)
.

FIG. 10. ImΣ due to e-e scattering of valence electrons of p-
type silicon computed by Eq. 46 (Density-Matrix) compared
with those calculated by the finite-temperature GW method
(FT-GW)100. µ is set to 0.05 eV lower than Valence Band
Maximum (VBM). For simplicity, SOC is not considered in
this test.

Using Eq. 44, we have calculated the e-ph scattering
rates and they are in good agreement with previous the-
oretical results99. For e-ph scattering, Eq. 44 will repro-
duce the imaginary part of the well-known Fan-Migdal
self-energy53.

For e-i scattering, we have

1

τ e-i
p,1

=
2π

~
niVcell

∑
2

|gi12|2δGσ (ε1 − ε2) . (45)

The above equation (Eq. 45) is consistent with Ref. 54.
For e-e scattering, neglecting the exchange contribu-

tion, which is a commonly-used approximation50,100,

1

τ e-e
p,1

=
2π

~
∑

26=1,34

|A1324|2
 f eq

2 f eq
4 (1− f eq

3 ) +

(1− f eq
2 ) f eq

3 (1− f eq
4 )

 .
(46)

To verify our implementation of e-e scattering term,
we have calculated ImΣ due to e-e scattering of va-
lence electrons of p-type silicon based on the above
equation and compare it with those calculated by the
finite-temperature GW method from first-principles,100

as implemented in JDFTx.60 The JDFTx implementa-
tion, in turn, has been benchmarked to reproduce the
expected dependence with temperature and carrier en-
ergy, ImΣe-e ∝ (ε − εF )2 + (πkBT )2, as expected for
metals.76

From Fig. 10, we can see the results by two methods
agree well for the energy range close to the Fermi level
which is relevant to e-e scatterings due to energy conser-
vation. This verifies our implementation of e-e scattering
part.
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FIG. 11. Sz (t) of n-GaAs with ni = 2 × 1016 cm−3 at 300
K with different pump pulse energies (ωpump) varying with
several kBT .

FIG. 12. (a) The excitation density as a function of the
pump fluence (left panel) and (b) the spin lifetime as a func-
tion of the excitation density generated by a circularly polar-
ized pump pulse for n-GaAs with ni = 1014 cm−3 at 300 K.
ωpump=1.47 eV.

APPENDIX C: THE EFFECTS OF ωpump AND
PUMP FLUENCE ON SPIN RELAXATION OF

GAAS AT 300 K

In Fig. 11, we study the Sz relaxation dependence on
pump-pulse energy changes with several kBT . We can
see that variation of ωpump has very weak effects on spin
dynamics of n-GaAs at 300 K.

In Fig. 12a, we study the effects of the pump fluence
Ipump on spin relaxation. Firstly, we can see that in the
low pump fluence region or when Ipump < 1 µJ/cm−2, the
excitation density increases linearly with Ipump but when
Ipump > 1 µJ/cm−2, the excitation density increases
slower. This is because in high fluence cases, during the
excitation by a pump pulse, a significant amount of con-
duction states have been already filled, which reduce the

probability of the transitions from valence bands to con-
duction bands. From Fig. 12b, we find that spin lifetime
of n-GaAs decreases with the excitation density. This
dependence may be explained based on the empirical DP
relation2 τs,i ∼ τDPs,i = 1/

[
τp ·

(〈
Ω2
〉
−
〈
Ω2
i

〉)]
as we dis-

cussed in Sec. IV A 2. At 300 K, generally
〈
Ω2
〉
−
〈
Ω2
i

〉
will increase with increasing free carrier density (through
an increase of excitation density here), similar to what
we find at 30 K shown in Fig. 5c. On the other hand, τp
due to the electron-phonon scattering, which dominates
carrier relaxation at 300 K, is less sensitive to the varia-
tion of excitation density. Therefore, it is the increase of〈
Ω2
〉
−
〈
Ω2
i

〉
causing the decrease of spin lifetime when

increasing excitation density.

APPENDIX D: LAYER-RESOLVED QUANTITIES
OF BILAYER WSE2

For a bilayer with one layer above z = 0 and another

below, the operator l̂top projecting any local quantity
A(r) to the top layer can be defined through the relation

l̂topA(r) =H (z)A(r), (47)

where z is the third component of r and H (z) is Heav-
iside step function

H (z) ={
1, z > 0

0, z ≤ 0
. (48)

Therefore, top layer hole occupation f top
h is

f top
h =Tr

(
l̂top (1− f)

)
(49)

=
∑
kn

ltop
k,nn (1− fkn) , (50)

where f is occupation and ltop
k,mn = 〈km| l̂top |kn〉 =

〈km|H (z) |kn〉. Tr means taking trace. k is k-point
index. n and m are band indices.

Moreover, top layer spin stop
z can be defined using the

operator l̂topŝz,

stop
z =Tr

(
l̂topŝz ρ̂

)
(51)

=
∑
k,lmn

ltop
k,lmsz,k,mnρk,nl. (52)

Note that the commutator [ltop, sz] is found numeri-
cally close to zero for bilayer WSe2. This indicates that
we can safely define stop

z as an observable using the above
equations.
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