
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Onset of anharmonicity and thermal conductivity in SnSe
Michael Y. Hu, Xue Yong, Niall J. English, and John S. Tse

Phys. Rev. B 104, 184303 — Published 18 November 2021
DOI: 10.1103/PhysRevB.104.184303

https://dx.doi.org/10.1103/PhysRevB.104.184303


Onset of anharmonicity and thermal conductivity in SnSe

Michael Y. Hu,1, ∗ Xue Yong,2 Niall J. English,3 and John S. Tse2, †

1Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
2Department of Physics and Engineering Physics,

University of Saskatchewan, Saskatoon S7N 5E2, Canada
3School of Chemical and Bioprocess Engineering, University College Dublin, Ireland

(Dated: October 10, 2021)

The anharmonicity in SnSe is investigated through the analysis of moments of 119Sn Nuclear
Resonant Inelastic X-ray Scattering and ab initio Molecular Dynamics calculations. Experimental
evidences show that the anharmonic behaviour started around 300 K, substantially lowered than
the usually suggested structural transition at 800 K. Both theory and experiments reveal substantial
lifetime broadening and frequency renormalization of the optical phonons. Thermal conductivities
calculated from the temporal energy moment using Einstein diffusion equation are in good agreement
with previous experiments. The abrupt increase of the thermal power near the 800 K is driven by
an electronic factor and not by the enhanced anharmonicity due to structural change.

Pure crystalline tin-selenium (SnSe) is a small band
gap (0.86 eV) semiconductor [1] with a fairly high elec-
trical resistivity of 20 Ω cm at room temperature [2]. It
has been reported that SnSe has a very low thermal con-
ductivity and a high thermal power [3]. The remark-
able properties make it a potential high efficiency ther-
moelectric material converting heat into electrical power.
Since then, the electronic structure and thermal trans-
port mechanism have been studied extensively employing
a variety of experimental and theoretical techniques [4].
The ambient crystal structure of SnSe is orthorhombic
Pnma, formed from stacking of corrugated SnSe layers
along the crystallographic a-axis [5–7]. Thus, thermal
transport is expected to be inhibited along that direc-
tion. Near 800 K, the crystal transforms into an entrop-
ically stable orthorhombic Cmcm structure, which leads
to changes in the immediate bonding environment for Sn.

Most theoretical studies have focussed on the lattice
instability at high temperatures close to the structural
transition. State-of-the-art lattice dynamics calculations
incorporating anharmonic corrections [8] and renormal-
ization of the phonon frequencies [9] support this descrip-
tion and have provided estimates on the thermal conduc-
tivity along the three principal crystal axes which are in
reasonable accord with experiments. The notion that the
intrinsic anharmonicity in SnSe is due to lattice instabil-
ity enhanced by the structural transformation is incon-
sistent with the observed thermal conductivity, which is
relatively flat at high temperatures and shows no abrupt
decrease around the phase transition. It is noteworthy
that the structural transformation is also associated with
two orders of magnitude increase of electrical conductiv-
ity, a drop in Seebeck coefficient, which when combined
with the already low thermal conductivity lead to a very
high thermoelectric figure of merit (ZT). Lattice anhar-
monicity of SnSe has been studied with single crystal
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neutron inelastic scattering to show phonon mode soft-
ening and linewidth broadening [10].

We have introduced a direct local probe of the poten-
tial experienced by selected atoms in condensed phases
using the technique of nuclear resonant inelastic x-ray
scattering (NRIXS). Moments of the NRIXS energy spec-
tra provide unique information on local atomic poten-
tial [11]. It is revealed that the anharmonic effects in
SnSe are already set in around 300 K affecting the low
and high energy optical vibrations. This observation
is supported by explicit calculations of the Sn partial
phonon DOS (Density of States) using ab initio Molecu-
lar Dynamics (AIMD) [12] and the results of the thermal
conductivity computed using a new direct method via the
evaluation of the diffusion of the energy moment [13–15].

NRIXS is an X-ray spectroscopy method to study
atomic vibrations and dynamics [16], currently done with
synchrotron radiation at third generation high energy X-
ray facilities. It finds a wide range of applications in
condensed matter physics, materials science, chemistry,
biophysics, geosciences, and high-pressure research. In
an NRIXS experiment, one measures the number of nu-
clear resonant absorption events as a function of energy
transfer from an incident x-ray beam to the sample under
study. Besides the resonant enhancement so that minute
sample can be studied, a unique aspect of using reso-
nant isotopes is its isotopic and atomic selectivity. This
means that vibrations can be probed locally in systems
that have resonant isotopes in specific places, e.g., bio-
molecules, catalysts, thin films, and materials under ex-
tremely high pressures. Many atomic dynamics and lat-
tice thermodynamics information can be extracted from
NRIXS measurements [11]. Phonon DOS, which char-
acterizes lattice dynamics of a material, can be derived
under the quasi-harmonic approximation [17, 18].

In an NRIXS experiment, the count rates observed are
proportional to a phonon excitation probability density
function S(E,k) [19–21], where E is the energy differ-
ence between incident X-ray and the nuclear resonance
energy, and ~k is the incident photon momentum and a
constant for all practical purposes here. The measured
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spectrum is proportional to the sum of the cross sec-
tions from all resonant nuclei, whose number is Ñ , which
may be smaller than N , the number of all atoms in the
sample. S(E,k) is a dynamical function related to the
particle autocorrelation function,

S(E,k) =
1

2π~

∫
ei(kr−

E
~ t)GA(r, t) dr dt , (1)
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where rν is the position of the ν-th resonant nucleus. The
statistical average at a given temperature T is indicated
by 〈· · · 〉T . It should be emphasized here that Eq. (2)
is an auto-correlation function. As a result, S(E,k) ob-
tained from NRIXS is a function of energy transfer and
incident X-ray momentum, in contrast to the dynamic
structure factor, S(q, ω), a function of energy and mo-
mentum transfers. It can be interpreted as the phonon
excitation probability density function. In the weak scat-
tering limit, it is a sum over all nuclei the transition ma-
trix elements due to a sudden momentum transfer [22],
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(3)
where gi is the statistical distribution of initial lattice
state |i〉 at a finite temperature.

Sum rules of the moments of S(E,k) are related to
dynamical properties of the resonant nuclei in a sam-
ple [11, 22]. Its central moments with respect to the
nuclear recoil energy ER = (~k)2/2m̃ have more straight-
forward interpretations and are defined in Ref. [11] as,

Rl(k) ≡
∫ +∞

−∞
(E − ER)l S(E,k) dE . (4)

Substituting Eq.(3) in the above definition, we have,

Rl(k) =
1

Ñ
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where lattice Hamiltonian is,

H =

N∑
µ

p2
µ

2mµ
+ V (r1, r2, ..., rN ) (6)

and V is the many-body lattice potential.
Here we focus on the 3rd moment, as it is related to

the atomic potentials experienced by the nuclear resonant
isotopes [22],

R3 =
~2ER
m̃

〈
∂2V

∂z2

〉
, (7)

where z is the coordinate along incident photon direction

k̂ = k/k. Taking the expansion of V up to the quartic
term [11], we have

∂2V

∂z2
= Kk̂ +Ak̂δk̂ +

Bk̂

2
δ2
k̂

(8)

with the atomic displacement δk̂ along k̂, directional

force constant Kk̂ = ∂2V
∂z2 , and the 3rd- and 4th-order

coupling parameters Ak̂ = ∂3V
∂z3 , Bk̂ = ∂4V

∂z4 . They are all
evaluated at the equilibrium atomic positions. At equi-
librium, the mean displacement in any direction is zero.
This leaves two terms on the right hand side of Eq. (7),
which now reads,

R3 =
~2ER
m̃

[
Kk̂ +

Bk̂

2
〈δ2

k̂
〉
]
, (9)

where 〈δ2
k̂
〉 is the atomic mean square displacement in k̂-

direction. It can be derived from a NRIXS spectrum as
well, through the following relationship with directional
Lamb-Mössbauer factor,

f(k) = e−k
2〈δ2

k̂
〉 (10)

At different temperatures or pressures, the atomic po-
tentials are different in principle. Thus, one will have dif-
ferent K’s and B’s in Eq. (9). However, if the variations
of the parameters and in the shape of potential are small
between two nearby measurements, one can then approx-
imate them to be constants, and solve for the quadratic
and quartic terms of the atomic potential experienced by
the resonant isotopes.

NRIXS has been applied to single crystal SnSe at room
temperature to check for directional phonon DOS both
in-plane and along a axis [23]. Here we study powder
SnSe at various temperatures to investigate lattice an-
harmonicity.

Polycrystalline tin selenide (SnSe) was ordered
from Sigma-Aldrich (Lot# MKBP1594V, PCode:
1001573597). The product specification declared a
purity of 99.995% based on trace metals analysis. This
SnSe powder was mixed with GE varnish and attached
to the end of a copper post connected to the cold finger
of a Displex cryostat. NRIXS measurements were then
conducted at temperatures from 160 to 390 K, at the
Advanced Photon Source (APS) beamline 30ID. Energy
scans covering phonon spectral range and around 119Sn
nuclear resonant energy of 23.88 keV were conducted
using a tunable high resolution monochromator with an
energy bandwidth of 1 meV [24]. Data was processed
using both SciPhon [25] and PHOENIX [26].

The results are shown in Fig. 1 for Sn partial phonon
DOS. Temperature dependence of f -factor and the third
moment R3, and R3 vs. mean square displacement 〈δ2

k̂
〉

are plotted in Fig. 2. Lamb-Mössbauer factors f drop
with increasing temperatures, which is expected, how-
ever are almost flat at high temperatures. R3 are flat
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to slightly decreasing in the range studied and are sub-
stantially higher around 300 K. This indicates that the
lattice being harmonic at low temperatures, while ex-
hibiting highly anharmonic behaviour at around 300 K.
Two regions stand out above the almost flat force con-
stants in Fig. 2(b). One at around 〈δ2

k̂
〉 = 0.012, with

corresponding temperatures from 255 to 298 K, where
the quartic term of the potential (slope of the points) is
positive. The other for 〈δ2

k̂
〉 > 0.014, with 340 to 390 K,

where the slope is sharply negative. Both cases indicate
highly anharmonic potentials, while a negative quartic
term might cause lattice instability.

FIG. 1. Sn partial phonon DOS derived from NRIXS mea-
surements. DOS are normalized to 1.

As seen in Fig. 2(a) the Lamb-Mössbauer factors f
drop with increasing temperatures. This fact makes
it difficult for reliable data reduction at high tempera-
tures, due to dominating multi-phonon contributions in
the measured spectra. Thus going above 400 K is very
challenging.

AIMD calculations were performed at selected tem-
peratures between 200 and 800 K using the VASP code
with ultrasoft pseudopotentials [27, 28] for the Sn and
Se atoms with a plane wave energy cutoff of 155 eV.
Model cells and the atom positions were sampled at the

FIG. 2. Temperature dependence of f -factor and the third
moment R3 (a), and R3 vs. 〈δ2

k̂
〉 (b) as derived from NRIXS

measurements. In plot (a), f-factors are represented by small
dots with scale on the left axis, while R3 with squares and
scale on the right.

respective temperature using isobaric-isothermal ensem-
ble (NPT) [29]. Once the average unit cell parameters at
each temperature have been determined, canonical en-
semble (NVT) MD [29] were performed to examine the
equilibrium dynamic and transport properties. Langevin
thermostat and barostat were used in NVT and NPT
molecular dynamics calculations. NPT and NVT cal-
culations at 200 K were performed with a time step of
1.0 fs. A larger time step of 1.5 fs was used at higher tem-
peratures. At each temperature, the NPT equilibration
often achieved after 5000 time steps. The trajectory for
an additional 10000 steps were collected and the atomic
velocity autocorrelation functions over time were com-
puted from the trajectory. The total and Sn, Se partial
vibration density of states were then obtained from the
Fourier transform of the velocity correlation functions.
Due to slow convergence in the calculation of transport
properties, NVT simulation of 60-80 ps were required.

A model system was constructed from a 2x5x5 repli-
cation of the unit cell of the Pnma unit cell [6, 7] con-
sisting of 200 SnSe units. The average cell parameters
were computed from the equilibrated trajectories (Ta-
ble I). Both the trend and absolute values are in agree-
ment with experimental results [30, 31]. Calculated c and
b lattice parameters are very close to those derived from
XRD measurements. In particular, the observed differ-
ences between c and b axes in Pnma phase are correctly
predicted. The calculated a parameters are consistently
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higher than measured values, from about 1% at 300 K
to 7% at 800 K. The spontaneous second-order structure
transformation from Pnma to Cmcm is reproduced by
the calculation at 800 K.

TABLE I. Lattice constants computed from AIMD simula-
tions.

T(K) a (Å) b (Å) c (Å)

200 11.330 4.204 4.524

300 11.656 4.184 4.494

410 11.791 4.233 4.505

600 11.745 4.234 4.444

800 12.588 4.331 4.356

The theoretical anisotropic atomic displacement pa-
rameters (ADPs) for Sn and Se along the three principal
crystal axes are listed in Table II, and found to be in
good agreement with the values determined from struc-
tural refinements. As observed, a rapid increase in the
ADPs was found above 600 K. The increase is associated
with the structural transformation and not related to the
already low thermal conductivity. The calculated ADPs
are close but larger than the mean square displacements
derived from NRIXS measurements at similar temper-
atures seen in Fig. 2. This is related to the fact that
the AIMD calculated DOS have modes at slightly lower
energies compared to NRIXS results.

TABLE II. Anisotropic atomic displacement parameters com-
puted from AIMD simulations. All in unit of Å2.

Sn Se

T (K) U11 U22 U33 U iso U11 U22 U33 U iso

200 0.012 0.011 0.013 0.012 0.010 0.009 0.010 0.010

300 0.018 0.016 0.019 0.018 0.015 0.013 0.014 0.014

410 0.041 0.029 0.028 0.033 0.037 0.023 0.023 0.027

600 0.040 0.038 0.046 0.041 0.033 0.028 0.030 0.030

800 0.066 0.051 0.053 0.057 0.040 0.044 0.050 0.045

Phonon DOS was computed from the Fourier trans-
form of the atomic velocity autocorrelation function.
The resulting Sn partial phonon DOS are plotted in
Fig. 3. The results compare well with NRIXS measure-
ments (Fig. 1) at corresponding temperatures, particu-
larly 200 K and 300 K. The spectral features are cor-
rectly reproduced by AIMD calculation. In addition to
the polycrystalline average comparison here, the direc-
tional phonon DOS can be calculated and show good
agreement with those determined experimentally from a
single crystal at room temperature [23]. At low tem-
peratures the DOS feature two separated regions of op-
tical modes, at below 10 meV and around 17 meV. At
high temperatures, the gap between optical modes of low
and high energies is filled. This can be seen in Fig. 1,
and was observed also in an inelastic neutron scattering

FIG. 3. Sn partial phonon DOS derived from AIMD simula-
tions.

study [10]. AIMD simulation shows the same behaviour
from 410 to 800 K.

In Fig. 4, Sn and Se partial DOS from AIMD simula-
tions at 300 K and 600 K are compared to the NRIXS
measured Sn partial DOS at 298 K and the phonon dis-
persions from athermal lattice dynamics (LD) calcula-
tions using the same 2x5x5 supercell. At 300 K, the
agreement between the calculated and observed Sn par-
tial DOS is remarkable. The Sn and Se DOS computed
from MD at 300 K also agree well with the LD results,
both on the positions of the peaks and the widths of the
distribution. The observation suggests there is little an-
harmonic effect from 0 to 300 K. This is also supported
by the almost flat R3 moments in Fig. 2. The optical
modes are separated by a gap at around 12.5 meV in the
LD calculation, and can be seen in MD simulations and
NRIXS results as well. Going from 300 to 600 K, changes
of the lower optical modes and acoustic modes appear to
be minor but subtle. Changes in the upper optical modes
are more striking. The zone center optical modes of Sn at
17.5 meV is lowered to 16.0 meV and become much more
broad. The optical mode maximum of Se changes from
16.0 to 14.5 meV. The results clearly indicate softening
of the optical vibrations for both Sn and Se. Besides,
the bandwidth of the upper optical branch has increased
substantially, which indicates the shortening of phonon
lifetimes of these optical modes. This is particularly true
for the Sn optical modes.

SnSe exhibits an extraordinarily low thermal conduc-
tivity even at ambient temperature. Several theoretical
calculations have been performed to predict and explain
the low values [8, 9]. Most studies employ the Boltzmann
transport equation (BTE) in the single relaxation time



5

FIG. 4. Comparison of phonon DOS measured using NRIXS
and calculated with AIMD to phonon dispersions from ather-
mal LD calculation.

approximation [32] in which the phonon lifetimes were
computed from the third order force constants using fi-
nite displacement methods employing the harmonic fre-
quencies, group velocities and mode heat capacities ob-
tained from lattice dynamic method. These approaches
may not be suitable at high temperatures due to very
large anharmonicity and structural transition to the en-
tropically stabilized high temperature Cmcm phase. In
this case, the force constant based method requires cor-
rections to the third order force constants and the renor-
malization of the harmonic frequencies as were done in
a recent study [9]. As shown above, there are significant
changes in the phonon frequencies and lifetimes even in
the low temperature Pnma phase.

A direct MD based method is more appropriate due to
implicit inclusion of the anharmonicity of the interaction
potentials and the temperature effect on the dynamics
and unit cell expansion. The method has been shown
to be accurate for ordered and disordered solids close to
and above Debye temperature [13–15]. The thermal con-
ductivity was calculated employing the Einstein diffusion
equation [33, 34] without resorting to the computation
of the heat flux correlation function as in the common
Green-Kubo approach. In this method heat conduction
is expressed in an energy moment vector [15],

R =
∑
i

εiri , (11)

where εi is the energy of the i-th atom. The heat flux
vector J is the rate of change of this energy moment,
J = dR/dt. In a solid, the atoms are not diffusive and
the convection contribution is negligible. As a result,
the potential portion of R can be ignored and only the
kinetic part remains [15],

Rk =
∑
i

ri

∫
Fi · vi dt . (12)

This expression has been shown to be valid for N-body
potentials. The instantaneous position ri , velocity vi

and Fi are readily available in an ab initio MD calcula-
tion.

Instead of computing from the integration of the heat
flux autocorrelation, the thermal conductivity κ can be
computed using an equivalent Einstein relationship from
the mean square difference (MSD) of the energy moment
diffusion,

κ =
1

V kBT 2
lim
t→∞

1

2t
〈[R(t)−R(0)]2〉 , (13)

where V is the volume and kB is the Boltzmann constant.
The procedure is illustrated in Fig. 5 for the simulation
on the thermal conductivity SnSe at 300K. Typically, a
MD trajectory over 0.60 ns is needed.

FIG. 5. The x, y and z components of energy momenta Rk are
found to propagate with increasing time (left) . The slopes of
the MSD of Rk (Eq.(13)) give the thermal conductivity along
the three directions. The corresponding thermal conductivi-
ties as a function of time are shown on the right. In each case,
the function reaches a steady state appears as a plateau which
gives the limiting thermal conductivity. The statistical errors
were estimated from the averages over multiple time origins
by subdividing equal segments of the long MD trajectory.

Results of the calculations on the thermal conductivity
along the three principal crystallographic axes of SnSe in
the Pnma phase below and at 600 K and in the Cmcm
phase at 800 K are summarized in Table III, where and
hereafter in the text all thermal conductivities are re-
ported in the unit of Wm−1K−1, which will be omitted
to save space.

The temperature dependent thermal conductivities
(κ), particularly the observed trend (κc ≈ κb > κa)
above 300 K are reproduced. The order is to be ex-
pected as the unit cell lengths a � b ≈ c. The absolute
magnitudes are also consistent with previous BTE calcu-
lations. Direct comparison to measured values needs to
be cautious [35]. The experimental thermal conductiv-
ity of SnSe is strongly dependent on the quality of the
samples in terms of, e.g., density, purity, crystallinity,
stoichiometry, intrinsic and extrinsic defects, etc. In the
initial report [3], the thermal conductivity along the a-
axis, κa, decreased from 0.46 at 300 K to 0.25 at 600 K,
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TABLE III. Thermal conductivities along the three princi-
pal crystallographic axes of SnSe in the Pnma and Cmcm
phases computed from AIMD simulations. All in the unit of
Wm−1K−1. The errors were estimated from analysis of the
results calculated from several segments of the trajectory with
different lengths and at different time origins.

T(K) κa κb κc

200 1.38 ± 0.29 2.33 ± 0.34 1.92 ± 0.31

300 1.27 ± 0.18 1.51 ± 0.23 1.53 ± 0.24

410 0.98 ± 0.15 1.18 ± 0.18 1.15 ± 0.21

600 0.56 ± 0.08 0.74 ± 0.10 0.76 ± 0.11

800 0.45 ± 0.05 0.57 ± 0.07 0.56 ± 0.08

and remained fairly constant and low at higher temper-
atures. A re-evaluation of the literature values [36] sug-
gests that the earlier reported values are likely underes-
timated. The appropriate values close to pure crystalline
SnSe at 300 K should be about 0.7, 0.9 W/m/K in the
parallel and 1.1 1.2 W/m/K in the perpendicular direc-
tion, and at 750K, 0.3 0.5 W/m/K in the parallel and
0.5 0.7 W/m/K perpendicular direction. The thermal
conductivities at 300 K from the single-crystal measure-
ments of Ibrahim [37] are 1.2, 2.3 and 1.7 W/m/K in the
a, b and c directions. The thermal conductivity decreases
with rising temperature and becomes almost identical to
about 1 W/m/K at 750 K. On the other hand, a recent
study at 300 K [38] has found a different trend where
κc(1.5) > κb(0.8) > κa(0.5). It is noteworthy that at
200 K a large difference between κc and κb is calculated
with the predicted sequence κb > κc > κa agreeing with
the low temperature data of Ref. [38]. This can be at-
tributed to the significant difference between the lattice
parameters b and c at low temperatures (vide supra).
With the estimated statistical errors, the theoretical pre-
dicted thermal conductivities are within the range of sev-
eral studies. The exact cause for the discrepancies among
the experimental results is difficult to assess. It is likely
due to the differences in quality, purity, and stoichiome-
try of the samples.

The MD method has a distinct advantage over the
BTE with LD on layered materials. In the latter method,
a spherical cutoff radius has to be defined to include the
calculations of third-order interactions on an atom. A
spherical cutoff is not efficient for layered structures as
the interlayer separation can be much larger than the
nearest neighbour distances in the plane. A balanced
description of the interactions on an atom may require
a very large cutoff radius, hence, involve the laborious
enumeration of a very large number of third-order force
constants.

An important result which seems to have been over-
looked in previous studies is that the computed thermal

conductivities show no discernible discontinuity at 800 K
and remain fairly constant above 600 K even though there
are changes in the lattice stability and significant increase
in the anharmonic atomic motions that require renormal-
ization of the phonon frequencies and corrections to the
third-order force constants to properly reproduce the ob-
served thermal conductivities. This indicates that intrin-
sic anharmonic potential responsible for the low thermal
conductivity in SnSe is already presented at low tempera-
ture, as revealed from the analysis of the NRIXS phonon
spectra.

In this paper, new experimental results were presented
on the temperature dependence of phonon DOS from
119Sn NRIXS measurements. Analysis of moments of
NRIXS spectra indicates that Sn atomic motions deviate
from harmonic approximation and become highly anhar-
monic at around 300 K affecting predominantly optical
vibrations. This conclusion agrees with an earlier report
on a large temperature effect on the average Grüneisen
parameter [38]. It has also been shown that the posi-
tions of Sn and Se atoms start to deviate from the low
temperature trend at 425 K [30].

AIMD calculations provide additional insight. Direc-
tional thermal conductivities of a SnSe crystal were cal-
culated using a recently developed MD method. The
results are in substantial agreement with previous exper-
iments highlighting the usefulness of this new approach
to study heat transport in highly anisotropic solids.

Observed and calculated Sn partial phonon DOS re-
veal significant changes in the frequencies and linewidths
of the optical phonon modes. This provides evidence
that attributes the low thermal conductivity to phonon
scattering in the optical branch. The substantial phonon
frequency renormalization due to lattice instability ac-
companying the phase transition has only a minor effect.
What changes significantly near the structural transition
is the electrical conductivity. Therefore, the sudden surge
in the power factor and the performance index ZT is
mainly of electronic origin.
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