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We investigate the spatial decay and temporal localization properties of quasimodes (i.e., scat-
tering resonances) of two-dimensional Vogel spirals, composed of deterministic, aperiodic arrays of
electric dipoles. By determining the structural entropy and localization maps of Vogel spirals using
the Green’s matrix method, we show that three distinctive decay types of quasimodes coexist in
Vogel spirals: exponential, power-law, and Gaussian. While the exponential and the power-law de-
cays typically occur in disordered media and multifractal systems, respectively, the Gaussian decay
is demonstrated to characterize, on average, the most localized quasimodes of Vogel spirals, both
spatially (smallest participation ratios) and temporarily (longest lifetimes). These decay forms are
demonstrated by a no-fitting analysis of the localization maps, independently corroborated by cal-
culating the electric field in real space, which also provides a direct evidence of the algebraic spatial
decay of critical quasimodes. Altogether our findings unveil a rich spectrum of both long-lived and
spatially localized quasimodes that coexist in Vogel spirals and can be of direct relevance to novel
optical functionalities for applications to light sources and sensing devices.

I. INTRODUCTION

The successful design of photonic nanostructures cru-
cially depends on the efficient characterization of the elec-
tromagnetic modes they can support. On one hand, or-
dered optical metamaterials with periodically arranged
units of sub-wavelength dimensions have been demon-
strated to exhibit unusual optical functionalities, with
many applications [1]. On the other hand, disordered op-
tical media exhibit fascinating analogies between quan-
tum and classical transport wave phenomena, such as
Anderson localization [2, 3], with applications such as
random lasers [4]. However, disordered optical structures
lack the reproducible and predictable behavior that is
necessary for designing many advanced optical devices.

Deterministic aperiodic systems, artificial optical me-
dia with a tunable degree of aperiodic structural or-
der generated by deterministic mathematical rules, have
emerged as an alternative material platform for designing
photonic devices [5–15]. Indeed, these structures present
unique optical properties that do not occur in either pe-
riodic or disordered systems, such as fractal transmis-
sion spectra and anomalous transport properties, which
include multifractality of light [13], subdiffusive trans-
port [14], and light localization [16]. As a result of their
unique functionalities, deterministic aperiodic systems
have been employed in many applications such as las-
ing [17], optical sensing [5, 6, 18], photo-detection [19],
and optical imaging [20].

Among several candidates of deterministic aperiodic
optical systems, the robust platforms of Vogel spiral
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arrays stands out for its versatility and the possibil-
ity to tailor its structural order between short-range
correlated amorphous systems and uncorrelated random
ones [19, 21–25]. Vogel spirals are deterministic struc-
tures with Fourier spectra characterized by diffuse circu-
lar rings and do not have well-defined Bragg peaks, in
contrast to photonic crystals and quasicrystals [12]. The
positions of particles in Vogel spiral arrays are generated
in polar coordinates according to rn = a0

√
n, θn = nα,

where n = 1, 2, . . . is an integer, a0 is the scaling factor
determining particle separation, and α is the divergence
angle [10, 16, 21, 22, 26]. This angle specifies the con-
stant aperture between successive point scatterers in the
array. Since α is irrational, Vogel spiral point patterns
lack both translational and rotational symmetry. Any
irrational number (ξ) can be used to produce the diver-
gence angle (α◦, in degrees) according to the relationship
α◦ = 360◦−frac(ξ) ·360◦ where frac(ξ) denotes the frac-
tional part of ξ. The value of ξ defines the four types
of structures considered here, which exhibit different de-
grees of structural order: ξ = (1 +

√
5)/2 (golden mean),

ξ = (2 +
√

8)/2, ξ = π, and ξ = (5 +
√

29)/2, for the GA
(Golden Angle)-, τ -, π- and µ-spirals respectively [12].
Vogel spirals support distinctive optical resonances, with
a broad range of lifetimes and spatial profiles, such as
critical modes, which are expected to show algebraic,
power-law envelope decay and multi-fractal field inten-
sity oscillations [7, 27–30]. Localized quasimodes also
occur in Vogel spirals, leading to a light localization tran-
sition [16].

Despite the relevance and applicability of Vogel spi-
rals in optics of aperiodic media, the full characteriza-
tion of temporal localization and spatial decay of their
electromagnetic modes has never been achieved so far.
In the present work we address this important issue us-
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ing an alternative approach to probe the spatial decay
of the quasimodes (i.e., scattering resonances), based on
the so-called localization maps [31]. Localization maps
are based on the relation between the structural entropy
and the participation ratio of modes, which allows for
a general (independent of the system size and geome-
try) and no-fitting method to characterize the spatial de-
cay of eigenstates of an arbitrary lattice, regardless of
its dimensionality [31]. This method has been success-
fully applied to characterize localization in quantum sys-
tems [32], metal-insulator transitions [33, 34], and elec-
tronic wave functions in quasiperiodic lattices [35]. By
means of localization maps of quasimodes of Vogel spi-
rals in two dimensions, which have been calculated using
the Green’s matrix method [12, 36–41], we identify three
distinctive forms of spatial decay: Gaussian, power-law,
and exponential, which so far has been usually associ-
ated with disordered, Anderson localized systems. These
types of decays are confirmed by independent calcula-
tions of the electric field in real space. By correlating the
spatial decay of the quasimodes with their spectral over-
lap, which is measured by computing the ratio between
its decay rate to the mean level spacing, we conclude that
in Vogel spirals the most localized quasimodes, both tem-
porarily (i.e., modes with longest lifetimes) and spatially
(i.e., modes with smallest participation ratios), exhibit
Gaussian decay on average.

II. METHODOLOGY

Planar Vogel spiral arrays in which light scattering and
propagation are confined to two dimensions may be actu-
ally realized in a number of systems such as arrays of di-
electric nanocylinders [42], planar arrangements of scat-
terers in microwave cavities (e.g., [43]), photonic crys-
tals (e.g., [44]), and laser-cooled atoms in optical cav-
ities [41]. In Sec. II A we present the Green’s matrix
method in two-dimensions, which is a general approach
that is used to model electromagnetic propagation prob-
lems. In Sec. II B we specifically consider light propa-
gation in deterministic Vogel spiral arrays composed of
dielectric cylinders within the framework of the gener-
alized Mie theory, i.e., 2D-GMT [45]. Using these two
approaches, Green’s matrix method and 2D-GMT, one
can independently determine the electromagnetic quasi-
modes of the system under study. Then, one can in-
vestigate their spatial decay using the localization map
method, which will be presented in Sec. II C. Localiza-
tion maps analysis using both methods will be presented,
discussed, and compared in Sec. III.

A. Green’s matrix method in 2D arrays

The Green’s matrix method allows one to determine
the scattering resonances of an arbitrary system of N
point scatterers [36, 37, 40, 46, 47]. Within this model,

information about the scattering resonances of the sys-
tem can be extracted from the spectrum of the Greens
matrix. Multiple scattering is treated exactly and the
only approximation is to consider the scatterers as elec-
tric point dipoles. In two-dimensions the Green’s matrix
reads [41, 46]

Gij = iδij + i(1− δij)H0(k0|ri − rj |), (1)

where its off-diagonal elements describe wave propaga-
tion in free space between two point dipoles. In equa-
tion (1), the symbol δij is the Kronecker delta function,
H0(k0|ri − rj |) is the zero-order Hankel function of the
first kind, k0 the wavevector of light, and ri the posi-
tion of the ith-scatterer in the array. The Green’s matrix
model in two-dimensions describes the electromagnetic
propagation and scattering properties of infinite arrays of
dielectric cylinders when excited by TM-polarized waves
[41, 46, 48]. Even though the 2D model defined by the
matrix (1) does not take into account the vector nature
of light [14, 16, 24, 47], it still provides useful information
on light localization in 2D disordered media [46], trans-
parency in high-density hyperuniform materials [48], cor-
rectly describes the coupling between one or several two-
level atoms in a structured reservoir [49, 50], and allows
the design of aperiodic arrays for the efficient generation
of multi-frequency two-photon processes [15].

To investigate the temporal localization and spatial de-
cay of the electromagnetic quasimodes of Vogel spirals,
we have numerically diagonalized the N×N Green’s ma-
trix, Eq. (1). The real and imaginary part of its complex
eigenvalues Λn (n ∈ 1, 2, · · · , N) correspond to the rel-
ative frequencies (ω0 − ωn)/Γ0 and widths Γn/Γ0 of the
scattering resonances, respectively [46, 51]. Here, Γ0 and
ω0 are the resonant width and the resonant frequency of
a single electric dipole. The eigenvectors ψn are their
scattering resonances.

B. Calculation of electromagnetic quasimodes in
real space

To evaluate the electromagnetic quasimodes supported
by the Vogel spirals, we used an efficient algorithm based
on the rigorous solution of the 2D scattering problem in
the framework of the generalized Mie theory, i.e., 2D-
GMT [45]. Within this approach, the electromagnetic
field is expanded in terms of Bessel-Fourier multipolar
basis functions in the coordinate system centered at the
origin of each individual cylinders. Using the Graf’s ad-
dition theorem for Bessel functions and imposing the field
continuity conditions at the boundary of each cylinder,
we can obtain the polarization-dependent Mie coefficients
by solving the linear system [52]:

Tb = a0 (2)

with a0 = an`/J`(k0Rn) and b = bn`/J`(k0Rn), where
an` and bn` are the source and scattering Mie coefficients
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of the nth-cylinder. Moreover, k0 is the plane wave inci-
dent wavenumber and Rn denotes the radius of the nth-
cylinder. The function J`(xn) is the cylindrical Bessel
function of the first kind of order ` and xn = k0Rn de-
notes the size parameter of the nth-cylinder. The matrix
T describes the material and the geometrical properties
of the scattering medium and it is defined as [53]:

T``′

nn′ = δnn′δ``′ − (1− δnn′)ei(`
′−`)φnn′H`−`′(k0rnn′)

sn`
J`′(k0Rn′)

J`(k0Rn)
,

(3)

where H`−`′(k0rnn′) is the Hankel function of the first
kind of order ` − `′, rnn′ is the center-to-center dis-
tance between the cylinders identified by the indexes
n and n′, the function φnn′ is the angular position of
the n′ cylinder in the reference frame of the cylinder
n, and the parameter sn` is equal to −[J ′`(k0Rn) −
Γn`J`(koRn)]/[H ′`(k0Rn) − Γn`H`(k0Rn)]. Here, the
prime superscript indicates differentiation with respect to
the argument, Γn` = [ξnknJ

′
`(knRn)]/k0J`(knRn), while

kn indicates the wavenumber inside the nth-nanocylinder
and ξn is a parameter that depends on the polariza-
tion of the incident light. Specifically, in the transverse
magnetic case ξn = µ0/µn, while ξn = ε0/εn when a
transverse electric incident filed is considered. The sym-
bols µ0 and µn (ε0 and εn) are, respectively, the vac-
uum and the nanocylinders permeability (permittivity).
The computational effort required to solve the matrix
equation (2) is proportional to the number of cylinders,
their separation distances, and the maximum multipolar
order at which the infinite series were truncated. The
T-matrix expression reported in (3) ensures numerical
stability, even when a large number of multipolar orders
is required. In the present work, the T-matrix was cal-
culated by truncating the multipolar expansion order to
`max = 1 (i.e., the field summation runs from −`max to
`max yielding 2`max + 1 = 3 multipolar orders). This
truncation ensures the validity of the dipole approxima-
tions as further discussed in Sec. III. Notice that Eq. (3)
is a matrix composed of N × N blocks, where N is the
total number of scattering elements. Each block has a
dimension of (2lmax + 1) × (2lmax + 1). More mathe-
matical details on the utilized method can be found in
Refs. [45, 52, 54], while information regarding its appli-
cations to nanophotonics can be found, for example, in
Refs. [5–11, 18, 53, 55–57].

Calculating the resonant electromagnetic quasimodes
requires solving the homogeneous equation Tb = 0
[15, 45, 52, 55, 56]. Specifically, we have to find the

complex k̃ values for which the relation det
[
T(k̃)

]
= 0

is satisfied [52]. The complex eigenvalue k̃ has a direct
physical interpretation, namely its real part is related to
the wavenumber of the mode, while its imaginary part

is proportional to its spectral width Γ = 2c
∣∣∣Im[k̃]

∣∣∣ (c is

the speed of light). Modes with imaginary parts closer
to zero are the ones with the longest lifetimes and hence
correspond to the highest quality factors, which is defined

as Q = Re[k̃]/2
∣∣∣Im[k̃]

∣∣∣ [52, 58].

C. Structural entropy and localization maps

Localization maps have been introduced in Ref. [31] to
probe the spatial decay and extent of eigenfunctions in
disordered media. The latter property is quantified by
the Mode Spatial Extent (MSE), also known as partici-
pation ratio [59, 60]. The MSE of the nth-(normalized)
quasimode ψn is defined as

MSEn =

[∑N
i=1 |ψn(i)|2

]2
∑N
i=1 |ψn(i)|4

, (4)

where N is the total number of sites of the system. The
filling factor qn = MSEn/N defines a quantity indepen-
dent of the system size.

The other parameter needed for characterizing the spa-
tial decay of the nth-quasimode is the structural entropy
entropy Sstrn , which is defined as [31]

Sstrn = −
N∑
i=1

|ψn(i)|2 ln |ψn(i)|2 − lnMSEn. (5)

Graphs of Sstrn as a function of qn, the so-called local-
ization maps, allow one to predict the existence of modes
with arbitrary types of spatial decay. There exists a non-
trivial relation between these two quantities for a pre-
scribed envelope function f(r) that describes the decay
of the quasimode, with r being the distance to the max-
imum of intensity [31]. In the localization map, modes
with the same type of spatial decay should lie around the
same reference curve, which can be analytically or numer-
ically calculated. Therefore, this constitutes a systematic
method of probing the average decay of quasimodes that
do not rely on fitting the spatial profile of the electric
field of every single mode.

In order to access information on temporal localization
of each quasimode one should determine gn, defined in
[61] as

gn =
Γn

∆ω
=

Im Λn

Re Λn − Re Λn−1
, (6)

where · · · denotes a band average in the vicinity of ωn and
the eigenvalues are ordered such that Re Λn > Re Λn−1.
gn is essentially the inverse lifetime of the quasimode nor-
malized by the mean level spacing.

III. RESULTS AND DISCUSSIONS

In Fig. 1 the localization maps for four types of Vo-
gel spirals (Golden Angle, τ , µ, and π) are shown, where
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the structural entropy Sstr [Eq. (5)] is calculated as a
function of the filling factor q [Eq. (4)] for optical den-
sity ρλ2 = 0.1, with ρ the number density of dipoles and
λ the wavelength. We have verified that all localization
maps are within the allowed domain of values 0 < q ≤ 1
and 0 ≤ Sstr ≤ −ln(q) [31]. The color code indicates
the value of gn of each quasimode, Eq. (6). Figure 1 re-
veals that the quasimodes’ lifetimes are sufficiently low
so that gn > 1 for all investigated Vogel spirals. In dis-
ordered systems, gn is the Thouless conductance of each
quasimode, and for gn > 1 quasimodes strongly overlap
spectrally and Anderson localization does not occur [61].
The fact that gn > 1 for the quasimodes of determin-
istic Vogel spirals suggests that localization within the
array plane does not occur for this low optical density
ρλ2 = 0.1, so that waves rapidly leak through the system
boundaries. From the localization maps it is not possible
to identify a clear spatial decay of quasimodes, which are
mostly extended and strongly overlapping in space.

This scenario is completely modified when one in-
creases the optical density, as shown in Fig. 2 where
the localization maps for Vogel spirals are calculated for
ρλ2 = 30. In this case, the localization maps for the
four Vogel spirals indicate the coexistence of three dif-
ferent types of spatially decaying quasimodes: Gaussian,
power-law, and exponential. Indeed, localization maps
in Fig. 2 show that there exist many quasimodes that
are well-described by the no-fitted, reference curves for
Gaussian f(r) = exp

(
−r2

)
, exponential f(r) = exp(−r),

and power-law: f(r) = (1 + r)−β , where β = 2, 3, 4, 5.
These functions characterize the decay shape of the en-
velope of the quasimodes [31]. In this work, we show that
exponentially localized modes may also exist in determin-
istic Vogel spirals, in much the same way they occur in
disordered systems. However, in contrast to the uncor-
related case, these modes do not typically correspond to
the ones with longest lifetimes, i.e., the most temporally
localized. Rather we find that, for Vogel spirals, on aver-
age, quasimodes that exhibit Gaussian decay are not only
the most temporally localized (for which gn < 1) but also
the most spatially localized, corresponding to the small-
est values of q (smallest MSEs). Localization maps also
demonstrate that quasimodes with power-law decay do
exist in Vogel spirals, with different degrees of spatial ex-
tent, i.e., corresponding to a broad range of values of q.
These modes, also known as critical modes, are long-lived
and extended modes that exhibit local fluctuations and
spatial oscillations over multiple length scales [13, 27–29].
The existence of power-law decaying quasimodes are ex-
pected to occur in aperiodic photonic media [12, 62], but
a direct evidence of their existence in Vogel spirals has
not been demonstrated so far. Altogether, the analysis
of localization maps reveals that Vogel spirals exhibit a
rich variety of localized quasimodes, with distinct spatial
decays and different degrees of temporal localization.

To establish a direct link with our previous results
based on the Green’s matrix method, we have selected
the nanocylinder size, material, and averaged interparti-

cle separation by evaluating the Purcell factor P (rp;ω) =
ρ(rp;ω)/ρ0(ω) with two complementary methods. Here,
ρ(rp;ω) and ρ0(ω) = ω/2πc2 are the local density of
optical states (LDOS) and the free-space local density
of states, respectively. We have compared the P (rp;ω)
of 500 dielectric identical nanocylinders of relative per-
mittivity ε = 10.5 embedded in air [15] to the Pur-
cell enhancement of an assembly of 500 point electric
dipoles characterized by the electric polarizability α(ω) =
−4Γ0c

2/[ω0(ω2−ω2
0 + iΓ0ω

2/ω0)] [48]. While in the 2D-
GMT the LDOS calculation requires solving the linear
system (2) with the input coefficients a0 describing a line
source and then evaluating the total field at the position
of the excitation rp [15], in the Green’s matrix method
the LDOS can be computed by solving the self-consistent
equation:

Ei = µ0ω
2G(ri, rp;ω)p+

ω2

c2
α(ω)

∑
i6=j

G(ri, rj ;ω)Ej (7)

where ri is the position of the scatterer i and G(r, rp;ω)
is the Green function (1) [49]. Equation (7) allows one
to evaluate the scattered field at rp when the system is
illuminated by a source dipole p = 1/µ0ω

2 located at
rp and oriented along the ẑ-direction. Once the exciting
field at rp is known, the Purcell spectrum P (rp;ω) in the
dipole approximation (DA) can be evaluated through the
formula 4(1/4+Im[E(rp, ω)])/ω2µ0p, where Im[E(rp, ω)]
is the imaginary part of the scattered field at the position
of the excitation [15, 45].

In Fig. 3(a) we show the Purcell spectra of a golden
angle Vogel spiral obtained by using both the 2D-GMT
method [red dots] and by solving Eq. (7) [blue line]. In
particular, our findings show that ω0 = 3.67 × 1015 s−1

and Γ0 = 9 × 1015 s−1 correspond to arrays of dielec-
tric nanocylinder (ε = 10.5) of almost 30 nm radius
with an averaged interparticle separation d1 equals to
200 nm. This choice of material, particle size, and av-
eraged interparticle separation guarantees the validity
of the electric DA within the 2D-GMT framework. By
employing the method of Sec. II B, we have evaluated
the resonant modes corresponding to the different Pur-
cell enhancement peaks of Fig. 3(a). Specifically, we
have evaluated the TM-polarized (i.e., the ẑ component
of the electric field) resonant modes by generating two-

dimensional maps of det
[
T(k̃)

]
with a very large spec-

tral resolution around the narrow Purcell factor peaks,
shown in Fig. 3(a). We have used a resolution of ∆ Re(k̃)
equal to 1.3 × 10−3µm−1 and a spacing in log-space
of ∆[log10 Im(k̃)] equal to 0.06. The resulting electro-
magnetic quasimodes agree very well with what have
been previously reported based on both 2D finite ele-
ment method simulations [23, 62] and Green’s matrix
method [16]. In order to evaluate the structural entropy
and therefore the localization maps in the present case,
we have used a suitable generalization of Eqs. (4) and (5)
to a continuous distribution [63]. Figure 3(b) displays
the result of this analysis performed on a total of 65 dif-
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ferent resonant modes. Differently from the results of
Fig. 2, which considered all the scattering resonances of
the system, Fig. 3(b) shows the structural entropy Sstr
as a function of q for the resonant modes that can be
excited when the material and geometrical parameters
of the cylinders are explicitly taken into account. Inter-
estingly, Fig. 3(b) displays the same behavior of Fig. 2,
demonstrating that optical modes with different types
of spatial decay can actually be excited in Vogel spirals.
The qualitative agreement between the localization maps
obtained via the Green’s matrix method and the more
general 2D-GMT shows that the former captures the es-
sential spectral properties associated with the aperiodic
geometry of the structures, regardless of their specific
material parameters. Additionally, the latter analysis
confirms that we can subdivide the modes of a golden
angle Vogel spiral into three broad categories, depend-
ing on the nature of their spatial decay. In particular,
we have identified optical modes with exponential, Gaus-
sian, and power-law decay. Representative examples of
each mode category are reported in panels (c-e) of Fig. 3,
respectively, along with the corresponding spatial decay
curves. Therefore our results demonstrate that the lo-
calization map analysis can correctly predict the type of
spatial decay of the optical modes of Vogel spiral arrays.

Moreover, Fig. 3 shows the usefulness and applicabil-
ity of the localization maps in the investigation of the
average spatial decay of quasimodes supported by Vogel
spirals. Indeed, without using localization maps, if one
wanted to determine the spatial decay of optical quasi-
modes, it would be necessary to analyze the behaviour of
every single quasimode supported by the structure, most
likely by fitting the spatial profile of each mode, as it has
been done in Fig. 3(c-e), right panel. In typical photonic
structures, such as the ones investigated in this paper
that supports thousands of electromagnetic modes, this
is clearly not feasible and, more importantly, this would
not capture the global trend that characterise the spatial
decay profile of the quasimodes. As a result, the local-
ization map analysis not only allows one to investigate

the overall spatial decay of quasimodes of Vogel spirals,
which has never been studied so far, but also provides a
unique theoretical tool without which this goal would be
very difficult to achieve.

IV. CONCLUSIONS

In conclusion, we have studied the spatial decay of
quasimodes of several Vogel spiral arrays of electric
dipoles in two-dimensions using the concepts of struc-
tural entropy and localization maps. The quasimodes
are determined via the Green’s matrix method as well as
the more general 2D-GMT in the dipole limit, enabling to
understand the connection between the spatial decay and
the lifetime of the quasimodes. By means of this analysis
we find that three types of spatially decaying quasimodes
coexist in Vogel spirals, namely exponential, power-law,
and Gaussian, which have been independently demon-
strated by calculating the electric field in real space. Our
analysis shows that the most localized modes in Vogel
spirals, both spatially (smallest participation ratios) and
temporarily (largest lifetimes), are on average the ones
with Gaussian decay. We also provide a direct demon-
stration of critical modes in Vogel spirals, which are the
modes that exhibit power-law decay. Our findings unveil
the rich spectrum of optical resonances supported by Vo-
gel spirals structures, with a broad range of coexisting
quasimodes that exhibit different types of spatial decay.
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FIG. 1. Structural entropy Sstr as a function of the filling
factor q for all the eigenvectors of the Green’s matrix (1)
for Vogel spiral arrays with 5000 point electric dipoles and
optical density ρλ2 = 0.1. Panels (a)-(d) refer to the GA
spiral, τ spiral, µ spiral, and π spiral, respectively, which are
depicted in the insets. The localization maps are color-coded
according to the log10 values of gn. The black lines correspond
to the reference curves: Gaussian f(r) = exp

(
−r2

)
(solid

line), exponential f(r) = exp(−r) (dashed line), and power-
law f(r) = (1 + r)−3 (dotted line) in two dimensions.

FIG. 2. Structural entropy Sstr as a function of the filling
factor q for all the eigenvectors of the Green’s matrix (1) for
Vogel spiral arrays with 5000 point electric dipoles and opti-
cal density ρλ2 = 30. Panels (a)-(d) refer to the GA spiral,
τ spiral, µ spiral, and π spiral, respectively. The localiza-
tion maps are color-coded according to the log10 values of gn.
The black lines correspond to the reference curves: Gaussian
f(r) = exp

(
−r2

)
(solid line), exponential f(r) = exp(−r)

(long-dashed line), and power-law [f(r) = (1 + r)−2 (dot-
ted line), f(r) = (1 + r)−3 (dashed line), f(r) = (1 + r)−4

(short-dashed line), f(r) = (1 + r)−5 (dash-dotted line)] in
two dimensions.
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FIG. 3. Panel (a) shows the Purcell spectrum of a Golden
angle vogel spiral as a function of the averaged interparticle
separation d1 normalized to the incident wavelength λ cal-
culated with the 2D-GMT [red dots] and by solving Eq. (7)
[blue line]. Panel (b) displays the structural entropy Sstr

as a function of the filling factor q for all the optical modes
corresponding to the different Purcell enhancement peaks of
panel (a). Three representative mode profiles (exponential,
Gaussian, and power-law) are reported in the left panels of
(c), (d), and (e), respectively. The right panels show instead
how these modes decay in space by performing an azimuthal
average operation. Here, r is equal to

√
x2 + y2.


