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We develop a theory for the dynamics of an Andreev bound state (ABS) hosted by a weak link of
finite length for which charging effects are important. Assuming that the charging energy associated
with an electron in the ABS is small compared to the superconducting order parameter in the leads,
we derive the linear response of both the current through the link and charge accumulated in it with
respect to the phase and gate voltage biases. The resulting matrix encapsulates the spectroscopic
properties of a weak link embedded in a microwave resonator. In the low-frequency limit, we obtain
the response functions analytically using an effective low-energy Hamiltonian, which we derive. This
Hamiltonian minimally accounts for Coulomb interaction and is suitable for a phenomenological
description of a weak link having a finite length.

I. INTRODUCTION

Andreev bound states (ABSs) constitute key elements
of the microscopic picture of the Josephson effect [1–3].
In a conventional superconducting tunnel junction it is
difficult to isolate a single ABS because the Josephson su-
percurrent is mediated by a large number of shallow ABSs.
The situation is different in superconducting weak links
based on atomic contacts or semiconducting nanowires,
which recently emerged as a versatile platform for explor-
ing different facets of mesoscopic superconductivity. In
these systems, in contrast to tunnel junctions, an appre-
ciable supercurrent may be carried by one or a few ABSs
stemming from a small number of highly transparent
transport channels [4–7].

The advent of circuit quantum electrodynamics (cQED)
brought new experimental capabilities for investigating
ABS physics. By coupling the weak link to a microwave
resonator, experiments finely resolved separate ABSs and
probed their spectrum in various limits [8–13]. Time-
resolved access to the system provided by cQED also
made it possible to use ABSs as qubits. In particular,
qubits composed of the occupation of an ABS by zero
or two Bogoliubov quasiparticles were implemented in
[8, 10]. The operation of such qubits was limited by
quasiparticle poisoning: the ABS occasionally trapped a
single unpaired quasiparticle, making the qubit leave the
computational manifold. Later experiments with semi-
conducting nanowires showed that the spin of a trapped
quasiparticle can also be used as a qubit basis [12, 14].

The manipulation and readout of Andreev qubits rely
on interaction with microwave-frequency modes and ra-
diation. A simplest model that describes the microwave
properties of an ABS is that of a short, highly transparent
junction with a single transport channel [15–18]. While
this model often works well for atomic contacts, it is in-
sufficient to adequately describe crucial features of ABSs
in nanowire devices. First, spectroscopic measurements
show that ABSs in nanowire weak links are often situated
well within the superconducting gap at any phase bias
applied to the junction [5, 11, 12]. This contrasts the ABS
behaviour in a short junction, where the ABS necessarily
merges with the edge of the quasiparticle continuum at

zero phase bias. Second, ABSs in the experiments [9–
11, 19] were sensitive to the gate voltage, pointing to a
finite length of the weak links. By the same token, proper-
ties of nanowire devices are sensitive to charging [20, 21].
Last but not least, a “poisoned” ABS hosting a single
quasiparticle might carry supercurrent through a weak
link of a finite length [22]. This aspect is also not present
within the short junction model [2].

All of the above simplifications of the short junction
model come from neglecting the dwell time of a quasiparti-
cle in the junction region. Usually, the finite dwell time is
accounted for by considering microscopic models in which
the length of the weak link is comparable to the super-
conducting coherence length. While such models add an
additional realistic aspect for describing the microwave
properties of the weak link [11, 13], they suffer from being
analytically intractable. This complexity often obscures
the salient physics of the system. Moreover, Coulomb
interaction in the weak link remains unaccounted for in
these models. Is it possible to construct an analytically
tractable model for describing the microwave properties
of a finite-length weak link that would take into account
both a finite dwell time and Coulomb interaction?

Here we answer this question affirmatively and calculate
the microwave response of a finite-length weak link in
a simple phenomenological model that accounts for the
dwell time and charging energy (the latter is assumed to
be small compared to superconducting order parameter
in the leads). To build up the model, we assume that
the level spacing in an isolated weak link region is large
compared to the superconducting order parameter in the
leads, δε� ∆. In that case, there is only a single ABS
in the system. The finite dwell time, tdw, introduces the
energy scale Γ ≡ ~/tdw which can be interpreted as a
normal-state linewidth of levels in the weak link. We
consider the case in which this scale may be comparable
to ∆. The electrodynamics of the ABS in this regime can
be captured by representing the weak link as a single-level
quantum dot coupled to two superconducting leads by
tunnel junctions [23, 24] (see Fig. 1). One may view such
a setting as a generalization [25] of the Anderson impurity
model [26] with two superconducting reservoirs. Due to
the proximity effect, the level in the dot turns into an ABS
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FIG. 1. Schematic for a minimal model of a finite-length weak
link between two superconductors. A single fermionic level is
tunnel coupled to two superconducting leads. The tunneling
rates are ΓL and ΓR for the left and right leads, respectively.
∆ is the superconducting order parameter in the leads, U is
the strength of the on-site Coulomb interaction. Adjacent
gate controls the energy of the level, εg(t). Phases of order
parameter in the leads are ϕL(t) and ϕR(t).

whose energy depends not only on the phase difference
across the weak link but also on the voltage applied to an
adjacent gate. Keeping in mind quasiparticle poisoning
[8, 10], we find the microwave response in states with
both even and odd fermion parity.

Summary of results

Below we summarize our main results. In Sec. III,
we find the many-body spectrum of ABS as a function
of its occupancy, gate voltage, and the phase bias ap-
plied to the leads. The main parameters that control
these dependencies are: the rates of tunneling between
the dot and the leads ΓL, ΓR, the superconducting or-
der parameter ∆, and the on-site Coulomb repulsion U .
We derive our results assuming that the repulsion is suffi-
ciently weak, ∆

∆+ΓU � ∆, while the ratio Γ/∆ is arbitrary

(Γ = ΓL + ΓR).
In an experimentally relevant limit Γ ∼ ∆ [27–29], the

continuum of occupied levels outside of the gap gives a
substantial contribution to the phase- and gate voltage-
dependencies of the energy [23]. In the odd states, the
energy is fully determined by the continuum contribution.
This contribution reaches its minimum at ϕ = π; thus,
the weak link is a π-junction when a single quasiparticle
occupies the ABS. While the latter fact is well-known
for strongly-interacting Anderson impurities (where the
odd state is the ground state), to our knowledge, the
π-junction behavior was not appreciated for a weakly-
interacting ABS poisoned by a quasiparticle. An example
of the phase and gate voltage dependencies of the discrete
energy levels is presented in Fig. 3.

In the even fermion parity sector the ABS forms an
Andreev pair qubit [16]. For small drive frequencies,
~ω � ∆, the dynamics of this qubit can be described with
the help of an effective low-energy Hamiltonian presented
in Sec. IV [see Eq. (29)]. Our Hamiltonian smoothly

interpolates between the Hamiltonian of a quantum dot
weakly coupled to the superconducting leads (Γ � ∆)
[30, 31] and the Hamiltonian of a short tunnel junction
(Γ� ∆) [15–17].

Next, in Sec. V we investigate the linear electrodynamic
response of a Josephson weak link containing an ABS. Due
to the finite length of the weak link a non-zero charge can
be accumulated in the junction region (in contrast to the
atomic point contact). Therefore, the response function
has a structure of a 2 × 2 matrix: current through the
weak link and charge on it respond to the phase and gate
biases. We compute this matrix for many-body states
with the different number of quasiparticles at the ABS. If
the drive frequency is small, the response matrix describes
the quasi-static characteristics of the weak link such as
the inverse inductance and quantum capacitance. At
higher frequencies the response exhibits a resonance, if
the occupancy of the ABS is even [see Fig. 4].

The response functions of the ABS are sensitive to the
presence of Coulomb interaction. The strength of the
interaction U can be deduced from the response functions
measured in states with different occupation of the ABS.
In Sec. VI we identify a particularly convenient quantity
which gives a direct access to the magnitude of interac-

tion, χasym = χ[0]+χ[2]
2 − χ[1] (where the arguments in

the square brackets correspond to the occupation of the
ABS with quasiparticles). This quantity is convenient be-
cause χasym vanishes in the absence of interaction, i.e. an

occupation rule χ[0]+χ[2]
2 = χ[1] is satisfied at U = 0.

The response functions can be measured experimentally
in a circuit quantum electrodynamics (cQED) architecture
by coupling the weak link to a microwave resonator and
measuring the dispersive shift of the latter. We demon-
strate how specific components of the matrix response
function χ may be singled out by tailoring the geometry
of the resonator [see Sec. VII].

Our theory thus provides a guide for analyzing measure-
ments of the microwave response of finite-length nanowire
weak links.

II. MODEL

We consider a weak-link between two superconducting
leads with a solitary ABS. We assume that the linewidth
for a quasiparticle in the weak link, Γ ≡ ~/tdw, might
be comparable to ∆ while the level spacing of the link
δε � ∆. It is possible to model such a weak link as
a quantum dot tunnel-coupled to two superconducting
leads (see Fig. 1 for the schematics). The Hamiltonian of
this system reads

H[εg(t), ϕi(t)] =
∑
i=L,R

[
Hi+HT,i[ϕi(t)]

]
+Hd[εg(t)]. (1)

The Hamiltonian of the lead i (i = L/R denotes the
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left/right lead, respectively) is:

Hi =

∫
dr
[∑
σ

ψ†σ,i(r)ξ̂ψσ,i(r)+∆(ψ↓,i(r)ψ↑,i(r)+h.c.)
]
.

(2)

Here ψσ,i(r) and ψ†σ,i(r) are the annihilation and creation
operators of an electron with spin σ = ↑ or ↓ in the lead

i, ξ̂ is the operator of kinetic energy with the respect to
the Fermi level, and ∆ is the s-wave superconducting gap,
identical in the two leads. We work in a gauge in which
the superconducting phases of the leads are attached to
the tunneling amplitudes, cf. Eq. (4). Thus we assume
∆ > 0.

The “quantum dot” is described by

Hd[εg(t)] =
∑
σ

εg(t)d
†
σdσ + U(d†↑d↑ − 1/2)(d†↓d↓ − 1/2),

(3)
where εg(t) is determined by the applied gate voltage,
εg(t) = −eVg(t) (e > 0). The latter can have both a
static and a dynamic part, Vg(t) = Vg + δVg(t), where Vg
controls the energy of the fermionic level at the dot and
δVg(t) describes the external driving. U > 0 is the energy
of Coulomb repulsion at the level. The reference point for
the gate voltage is chosen such that εg = 0 is the charge
neutrality point.

Throughout the manuscript we assume that the repul-
sion renormalized by tunneling is weak, ∆

∆+ΓU � ∆. The

bare repulsion U = e2/C depends on the self-capacitance
of the dot C. The latter scales linearly with the dot size,
but also is enhanced by the polarizability of the medium
hosting the dot, which includes nearby metallic gates
and leads. On the other hand, the level spacing δε is
determined solely by the electron confinement in the dot.
For a tight confinement, we may expect δε to substan-
tially exceed ∆

∆+ΓU , which makes the condition δε� ∆
compatible with the one for the repulsion weakness.

The remaining term in Eq. (1) describes the tunneling
between the dot and the lead i and is given by

HT,i[ϕi(t)] = ti
∑
σ

(e
i
2ϕi(t)d†σψσ,i(0) + h.c.), (4)

where ti is the tunneling amplitude. The superconduct-
ing phase ϕi(t) has static and dynamic parts, ϕi(t) =
ϕi + δϕi(t). The dynamic component of each phase is
related to the dynamic part of the voltage applied to
the respective lead, δVi(t), via the Josephson relation
φ0∂tδϕi(t) = δVi(t), where φ0 = ~/2e is the reduced flux
quantum. It is convenient to characterize the tunnel-
ing between the dot and the leads by the corresponding
tunneling rates Γi = πνt2i , where ν is the normal-state
density of states at the Fermi level in the leads (per spin
species). We also introduce the total tunneling rate Γ and
the difference of tunneling rates δΓ:

Γ = ΓL + ΓR, δΓ = ΓL − ΓR. (5)

Throughout our work we assume for simplicity that the
rates ΓL and ΓR do not depend on the applied gate
voltage.

In our model, we assume that the capacitance between
the dot and the gate is much larger than the capacitances
between the dot and the superconducting leads. This
assumption is justified if the gate is located sufficiently
close to the weak link. We also neglect the capacitance
between the dot and the ground. In this case, voltage Vg(t)
applied to the gate is equivalent to voltage −Vg(t) with
respect to the ground applied simultaneously to both leads,
as these two situations differ by an overall shift of energy.
Using this freedom we choose ϕL(t) = −ϕR(t) = ϕ(t)/2.
We discuss how our theory is modified at an arbitrary
ratio between the capacitances to the gate and to the
leads in Appendix E.

Finally, we introduce the operators of the charge at
the dot, Q̂ = −e∑σ d

†
σdσ, and of the current flowing

through the weak link, Î = − e2 d
dt (NR −NL), where Ni is

operator of the number of electrons in lead i. We note
that d

dt Q̂ = e ddt (NL +NR) due to charge conservation.

III. ENERGY SPECTRUM

We initially assume that the phase bias ϕ and gate
voltage Vg are static and study the many-body energy
spectrum of model defined by Eqs. (1)-(4). For weak
Coulomb interaction there are four discrete energy levels
in the spectrum that are separated from the many-body
continuum. We refer to these states as |0〉, |1↑〉, |1↓〉, and
|2〉. The four states correspond to a different number
of Bogoliubov quasiparticles occupying the ABS: zero,
one (with spin up or down), or two, respectively [32].
We denote the energies of the states as E[0], E[1], E[2]
(states |1↑〉 and |1↓〉 are spin-degenerate). The energies of
the levels, E[n] ≡ E[n, εg, ϕ], depend on εg = −eVg and
phase bias ϕ.

A. Spectrum in the absence of Coulomb interaction

We start with a detailed description of the many-body
spectrum in the absence of Coulomb interaction. We then
take U 6= 0 into account perturbatively. At U = 0 the
energies of the discrete levels can be expressed as (see
Appendix A 2) [33]

E0[n] = Econt + (n− 1)EA,0, (6)

where the subscript 0 indicates that U = 0. Here, Econt is
the energy associated with the continuum states (see later
discussion). EA,0 > 0 is the energy of the ABS which can
be found by solving characteristic equation

detG−1
dd (ε) = 0 (7)

at 0 ≤ ε < ∆. Here Gdd(ε) is the Green’s function of the
dot at U = 0 (see Appendix A 1 for the derivation):

G−1
dd (ε) =

ε

Z(ε)
− εgτz−

∑
i=L,R

∆Γie
i
2 τzϕiτxe

− i
2 τzϕi

√
∆2 − ε2

. (8)
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Case (i) Case (ii)
Γ� ∆, Γ >∼ ∆,

|εg| � ∆, any ϕ |δΓ|, |εg| � ∆, |π − ϕ| � 1

TABLE I. Two cases in which the ABS energy lies deep within
the gap, EA � ∆. We obtain concise analytical results for
these two cases.

In this expression, τx,y,z are Pauli matrices in the Nambu
space,

1

Z(ε)
= 1 +

Γ√
∆2 − ε2

, (9)

and ϕL = −ϕR = ϕ/2.
Equation (7) for the ABS energy can be solved ana-

lytically in the limit EA,0 � ∆. The latter condition is
satisfied (i) at any phase bias, if the level at the dot is
located close to the Fermi energy, |εg| � ∆, and is weakly
coupled to the leads, Γ � ∆; (ii) when the coupling to
the leads is strong, Γ >∼ ∆, provided |δΓ|, |εg| � Γ and
|ϕ− π| � 1. For future reference we summarize cases (i)
and (ii) in Table I. In either of the cases we obtain

EA,0 =
∆

∆ + Γ

√
ε2g + |γ|2, γ = Γ cos

ϕ

2
+iδΓ sin

ϕ

2
. (10)

The prefactor ∆/(∆ + Γ) characterizes the extent to
which the wave-function of the ABS is localized at the
quantum dot. If the tunneling between the leads and the
dot is weak, Γ� ∆, the wave-function is predominantly
localized at the dot and ∆/(∆ + Γ) ≈ 1. In this regime,
Eq. (10) reproduces the known result for the ABS energy
EA,0 [34, 35]. For stronger tunneling, Γ >∼ ∆, prefactor
∆/(∆ + Γ) < 1 due to the spreading of the wave-function
from the dot into the leads. If Γ� ∆ the support of the
wave-function is mostly in the leads. In this case, the
system is essentially equivalent to a short junction. In
particular, after approximating the prefactor in Eq. (10)
as ∆/(∆ + Γ) ≈ ∆/Γ and neglecting εg under the square
root, Eq. (10) reproduces the energy spectrum of a short
junction [1] with the reflection amplitude r = δΓ/Γ.

Note that, regardless of the ratio between Γ and ∆, the
approximate functional form of the dependence of EA,0

on ϕ in Eq. (10) is similar to that for a short junction,

EA,0 = δ

√
1− τ sin2(ϕ/2). (11)

There is, however, an important difference: in our model
the level is generally detached from the superconducting
gap at all phase biases, δ < ∆, whereas for the short
junction δ = ∆ and EA,0 therefore reaches ∆ at ϕ = 0.

In Eq. (6), Econt is the energy associated with the
continuum [23] of filled single-particle states at ε < −∆,

Econt =

∫ −∆

−∞

dε

2πi
ln det

[
GAdd(ε)

[
GRdd(ε)

]−1
]
, (12)

where G
R/A
dd (ε) = Gdd(ε± i0) [36]. This energy depends

on the gate voltage and phase due to the coupling between

the leads and the dot, Econt ≡ Econt(εg, ϕ). The integral
in Eq. (12) is divergent at the lower limit. However, this
divergence does not influence the observables. Indeed,
the integral for the difference Econt(εg, ϕ) − Econt(0, 0)
converges at |ε| ∼ ∆ whereas the divergent contribution
Econt(0, 0) does not depend on εg and ϕ. Energy Econt

can be found analytically in the limit of weak coupling,
Γ, |εg| � ∆ [case (i) of Table I]. We find

Econt(εg, ϕ)− Econt(0, 0) = − 2

π
Γ
ε2g
∆2

− 4ΓRΓL
∆

sin2(ϕ/2)− 4ΓRΓL
∆

ε2g
∆2

sin2(ϕ/2). (13)

By extrapolating Eq. (13) to Γ ∼ ∆ we observe that in
this regime Econt(εg, ϕ)− Econt(0, 0) is of the same order
as EA,0 [cf. Eq. (10) and Eq. (13)]. Thus, Econt may
strongly contribute to the observable properties of the
system, such as the linear response functions [see Sec. V
for discussion of this].

We note that in the absence of Coulomb interaction the
phase-dependence of the energy of the odd states, E0[1],
is determined solely by Econt [see Eq. (6)]. Equation (13)
thus demonstrates that the system realizes a π-junction
in states |10,↑〉, |10,↓〉, i.e., E0[1] is minimal at ϕ = π.

To conclude the discussion of the non-interacting case,
we note that at U = 0 the ground state of the system
always has even fermion number parity as follows directly
from Eq. (6).

B. Spectrum in the presence of weak Coulomb
repulsion

Next, we apply the first order perturbation theory in U
to approximately find the energies of the discrete states
in the presence of Coulomb interaction. We start with
the states in the even fermion parity sector, |0〉 and |2〉.
At U 6= 0 it is convenient to parametrize their energies as

E[0] = Eeven − EA, E[2] = Eeven + EA. (14)

To determine EA and Eeven, we project the interaction

Hamiltonian, Hint = U(d†↑d↑− 1/2)(d†↓d↓− 1/2), onto the

subspace formed by the unperturbed states |00〉 and |20〉,
thus constructing a characteristic equation. The projec-
tion is carried out conveniently is the basis of particle and
hole states that can be obtained from |00〉 and |20〉 by a
proper rotation. We find the following equation for EA

(see Appendix B for details of the derivation):

det

[
ε−H− Uα

(
App−Ahh

2 Aph
A?ph −App−Ahh

2

)]
= 0, (15)

where H is related to the non-interacting Green’s func-
tion, H = EA,0 − Z(EA,0)G−1

dd (EA,0) [see Eqs. (8), (9)].
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Explicitly,

H =
1

1 + Γ√
∆2−E2

A,0

 εg
∆√

∆2−E2
A,0

γ

∆√
∆2−E2

A,0

γ? −εg

 (16)

with γ ≡ γ[ϕ] = Γ cos(ϕ/2) + iδΓ sin(ϕ/2). Functions
Aij ≡ Aij [εg, ϕ] are defined as

Aij = −
∫ −∆

−∞

dε

2πi

[
GRdd(ε)−GAdd(ε)

]
ij
, (17)

where i, j = p/h are the Nambu indices that correspond
to particles and holes, respectively. The parameter α ≡
α[εg, ϕ] in Eq. (15) is related to the matrix A via

α = 1− trA. (18)

It can be explicitly expressed through the bound state
energy EA,0:

1

α
− 1 =

∆2

∆2 − E2
A,0

Γ + 4ΓRΓL sin2(ϕ/2)√
∆2−E2

A,0

Γ +
√

∆2 − E2
A,0

. (19)

At arbitrary Γ, εg, ϕ equations (15)-(17) for EA can be
analyzed numerically. An explicit approximate solution
can be obtained when EA,0 � ∆ (see Table I for relevant
parameter regimes). In this case, we find

EA =
∆

∆ + Γ

√
ε̃2g + |γ̃[ϕ]|2, (20)

where

ε̃g =

[
1 +

U

∆
f

]
εg, γ̃[ϕ] =

[
1 +

U

∆
g

]
γ[ϕ]. (21)

Here, functions f ≡ f(Γ/∆) and g ≡ g(Γ/∆) depend only
on the total tunneling rate Γ and contain no dependence
on ϕ and εg with the considered precision. These functions
describe the renormalization of εg and γ[ϕ] in the expres-
sion for EA by the Coulomb interaction [cf. Eqs. (10) and
(20)]. Explicit expressions for f and g are cumbersome
and so are presented in Appendix B 1. The dependence
of f and g on the ratio Γ/∆ in demonstrated in Fig. 2.

We proceed by calculating energy Eeven in Eq. (14).
At U = 0, Eeven ≡ E0[1] = Econt, cf. Eq. (6). The
first order correction to this expression due to the weak
Coulomb interaction is given by TrHint/2, where the trace
is computed over the unperturbed discrete states in the
even sector, |00〉 and |20〉. Practically, it is again more
convenient to perform the calculation in the particle-hole
basis (see Appendix B). By finding the trace we obtain

Eeven = E0[1]− U det

(
A− 1

2

)
+
U

2
α2. (22)

At arbitrary Γ, εg, and ϕ, the energy Eeven can be com-
puted numerically using Eqs. (12), (17), (19). An explicit

0 3 6

Γ/∆

−0.1

0.0

0.1

0.2

0.3

f
(Γ
/∆

),
g
(Γ
/∆

)

f(Γ/∆) g(Γ/∆)

5 10 15 20
−0.06

−0.03

0.00

FIG. 2. Functions f(Γ/∆) and g(Γ/∆) that determine how the
energy of the ABS, EA, is renormalized due to a weak Coulomb
interaction [see Eq. (21)]. As it follows from Eqs. (B14) and
(B15), at Γ � ∆ we may approximate f = − 2

π
Γ
∆

and g =
1
π
− Γ

∆
. In the opposite limit, Γ� ∆, we find f = − 1

π
∆
Γ

and

g = − 1
π

(
∆
Γ

)2
ln

(
2Γ
e2∆

)
.

analytic expression for Eeven can be obtained if EA,0 � ∆
(see Table I). In this case, we may approximate

App ≈ Ahh ≈
1− α

2
, α ≈ ∆

∆ + Γ
, (23)

and neglect |Aph| � App, Ahh. When the tunneling be-
tween the dot and the leads is strong, Γ/∆� 1, the ABS
spreads from the dot into the leads, and α � 1. This
dilutes the effects of interaction. Indeed, using Eq. (23)
in Eq. (22) we estimate Eeven − E0[1] = U∆2/4Γ2 � U .
In the opposite limit, Γ � ∆, the ABS is localized at
the dot: α ≈ 1 and Eeven − E0[1] = U/4. We note that
in the leading approximation in EA,0/∆ parameters α
and Aij are independent of ϕ and εg [see Eq. (23)]. How-
ever, this is only an approximation. These dependencies
may be explicitly quantified in the weak coupling limit
Γ, |εg| � ∆ (i.e., case (i) of Table I). However, the results
are cumbersome, we present them in Appendix B 2 [see
Eq. (B17)].

Finally, we calculate the energy of the odd states, E[1].
To this end, we note that spin conservation prevents the
Coulomb interaction from coupling the unperturbed states
|10,↑〉 and |10,↓〉. Thus, non-degenerate perturbation the-
ory can be used to find the corrections to their energies,
E[1] ≈ E0[1] + 〈10,σ|Hint|10,σ〉 (note that 〈10,σ|Hint|10,σ〉
does not depend on σ). By computing the matrix element
(see Appendix B) we obtain

E[1] = E0[1]− U det

(
A− 1

2

)
. (24)

When the ABS energy lies deep within the gap, EA,0 � ∆,
and the coupling to the leads is strong, Γ/∆ � 1, we
obtain E[1]−E0[1] ≈ −U∆2/4Γ2 � U . This again points



6

to the dilution of the on-site repulsion by strong tunneling.
For weak coupling Γ/∆ � 1 we find E[1] − E0[1] ≈
−U/4. The dependence of E[1] − E0[1] on ϕ and εg in
the weak coupling limit (case (i) of Table I), is presented
in Appendix B 2 [see Eq. (B16)].

An example of phase and gate-voltage dependence of
energies E[n] obtained numerically with Eqs. (14)-(17),
(22), (24) is demonstrated in Fig. 3.

A notable feature demonstrated by Fig. 3 is the asymme-
try between the level spacings E[2]−E[1] and E[1]−E[0].
To characterize this asymmetry we introduce the differ-
ence

Easym =
E[2] + E[0]

2
− E[1]. (25)

In the absence of Coulomb interaction Easym = 0, as fol-
lows directly from Eq. (6). Thus, the level-spacing asym-
metry (Easym 6= 0) is a direct consequence of Coulomb
repulsion at the ABS. This can be illustrated by consid-
ering a simple case in which the tunneling between the
dot and the leads is turned off (Γ = 0). Then we find
E[1]− E[0] = εg − U/2 and E[2]− E[1] = εg + U/2 and
thus Easym = U/2. In the presence of tunneling, we use
Eqs. (14), (22), and (24) and obtain

Easym =
U

2
α2 (26)

with α given by Eq. (19). To highlight the asymmetry in
Fig. 3, in addition to E[1] (solid orange curve) we present
(E[0] + E[2])/2 (dashed gray curve). The mismatch be-
tween the two curves is determined by Easym, see Eq. (25).
We note that when EA,0 � ∆ equation (26) for Easym

can be simplified. Then, using Eq. (23) we obtain an
approximate expression for the asymmetry,

Easym =
U

2

(
∆

∆ + Γ

)2

. (27)

Notably, Easym > 0 (since U > 0). This means that
Coulomb interaction pushes the energy of the odd state
down with respect to the energies of states in the even sec-
tor. This tendency leads to the switch of the ground state
parity from even to odd for sufficiently strong Coulomb
repulsion [24]. The energy separation between the even
states is minimal at ϕ = π and εg = 0. In the vicinity of
this point, even a weak interaction can render the odd
state to be the ground state of the system [see Fig. 3].
Combining Eqs. (20) and (27) for U � Γ+∆ and EA � ∆
we reproduce the known result for the boundary between
the phases with even and odd ground states [37–39].

Finally, we note that the asymmetry between the
level-spacings can be probed in the tunneling spectroscopy
of the junction [40, 41] or in its microwave response, see
Sec. VI for the discussion of the latter approach. Measure-
ment of Easym can be used to experimentally assess the
strength of the on-site Coulomb repulsion in the weak link.

IV. LOW-ENERGY THEORY

If the ABS is located well below the gap, EA � ∆, the
dynamical properties of the junction at small frequencies,
~ω � ∆, can be described with a help of a low-energy
theory. Here we present such a theory. The requirement
EA � ∆ is fulfilled in the two cases summarized in Table I.

The fermion number parity is conserved within our
model. Thus, the dynamics of the system can be studied
separately for states with odd and even fermion parity.
In the odd parity sector, states |1↑〉 and |1↓〉 are not
coupled by the applied phase or gate voltage drives due
to spin conservation. Thus, in the odd states the system
adiabatically follows the change in εg and ϕ induced by
the drives as long as the drive frequency is small, ~ω � ∆.

The dynamics is more intricate in the even parity sec-
tor. If the frequency of the drives is comparable to
E[2] − E[0] = 2EA, the transitions between states |0〉
and |2〉 have to be accounted for. This dynamics can be
captured by a low-energy Hamiltonian. The latter can
be obtained from the full Hamiltonian by applying a two-
level adiabatic approximation. In the particle-hole basis,
the low-energy Hamiltonian is given by (see Appendix C
for the detailed derivation)

H(le)
even = Eeven +

∆

∆ + Γ

(
ε̃(t) γ̃[ϕ(t)]

γ̃?[ϕ(t)] −ε̃(t)

)
, (28)

where ε̃(t) = ε̃g(t)− δΓ
2∆eV (t) [with V (t) = φ0∂tϕ(t) and

δΓ = ΓL − ΓR]; ε̃g and γ̃[ϕ] are defined in Eq. (21). The
c-number contribution Eeven is given by Eq. (22). In the
static case, the energy spectrum of Hamiltonian (28) is
given by Eq. (14) with EA of Eq. (20).

Hamiltonian (28) has several notable features. First,
particles and holes are coupled via the off-diagonal ma-
trix element ∝ γ̃. These pairing correlations originate
due to the proximity effect arising from the supercon-
ducting leads. Second, ε̃g is attenuated by the factor
of ∆/(∆ + Γ) < 1 which describes the probability of
finding a quasiparticle at the dot (as opposed to the
leads), see discussion after Eq. (10). Finally, there is a
peculiar correction − δΓ

2∆eV (t) to the potential energy of
the dot. It describes the average potential felt by the
quasiparticle during its virtual excursions to the leads.
Notably, this correction vanishes for ΓR = ΓL since we
assume VR(t) = −VL(t) = V (t)/2. Formally, such a cor-
rection to the Hamiltonian stems from Berry connection,
− i~2 〈p|ṗ〉 + i~

2 〈h|ḣ〉 ≈ − δΓ
2∆eV (t), where |p〉 and |h〉 are

the particle and hole states respectively (see Appendix C
for details).

It is convenient to perform a time-dependent gauge
transformation that removes V (t) from the diagonal com-

ponents of Eq. (28). This leads to H
(le)
even → H

′(le)
even with

H ′(le)
even = Eeven +

∆

∆ + Γ

(
ε̃g(t) z[ϕ(t)]

z?[ϕ(t)] −ε̃g(t)

)
, (29)
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FIG. 3. Energies E[n] of states with n quasiparticles at the Andreev bound state as functions of ϕ [panel (a)] and εg = −eVg
[panel (b)]; the energies are calculated with respect to E[0] evaluated at ϕ = 0 and εg = 0. The plots are produced using
Eqs. (14)-(17), (22), (24) with ΓL = 0.3∆, ΓR = 0.35∆, U = 0.35∆. The phase dependence in panel (a) is plotted for εg = 0.
The gate voltage dependence in panel (b) is plotted for ϕ = π; note that εg is computed with respect to the charge-degeneracy
point εg = 0. Dashed line shows the half-sum between energies E[0] and E[2]. The fact that the dashed line does not coincide
with E[1] is due to the presence of Coulomb interaction at the resonant level; the difference between (E[0] +E[2])/2 and E[1] is
given by Easym, see Eq. (26). Note that close to ϕ = π and εg = 0 even a weak Coulomb interaction can render the ground state
of the system odd in the electron number.

where

z[ϕ] = exp

(
−iϕ

2

δΓ

∆ + Γ

)
γ̃[ϕ]. (30)

One can check that in this gauge the low-energy charge
and current operators can be obtained as the derivatives

of the low-energy Hamiltonian: Q̂(le) = −e∂εgH ′(le)
even and

Î(le) = φ−1
0 ∂ϕH

′(le)
even, respectively. This property is useful

for studying the electromagnetic response of the system
and therefore we always work with the gauge-transformed
version of the low-energy Hamiltonian. Thus in what

follows we omit the prime in H
′(le)
even.

We note that the limit Γ� ∆ reduces the Hamiltonian
(29) to that of a short junction with a reflection amplitude
r = δΓ/Γ [16]. Importantly, in this regime quasiparticles
occupying the Andreev bound state predominantly stay
within the leads (and not at the dot). Therefore, the drive
applied to the gate cannot induce transitions within the
even parity sector and all charging effects are suppressed.

Finally, we remind that Hamiltonian (28) was derived
under the assumption that capacitance between the dot
and the gate is much larger than the capacitance between
the dot and the leads. If the capacitances to the leads
and to the gate are comparable, εg(t) [and thus ε̃g(t)]
in Eq. (29) starts to depend on voltages in the leads
in addition to Vg(t). We present this dependence in
Appendix E.

V. LINEAR RESPONSE

In this section, we study the linear electromagnetic re-
sponse of the ABS to weak externally applied drives δVg(t)

and δφ(t) = φ0δϕ(t) [note that we use the flux variable φ
to characterize the differential phase drive; φ0 = ~/2e is
the reduced flux quantum]. As follows from linearizing
Hamiltonian (1), time-dependent perturbations describ-

ing these drives are given by δHQ(t) = Q̂δVg(t) and

δHI(t) = Îδφ(t), respectively. The linear response func-
tion χ[ω, n] ≡ χ[ω, εg, ϕ, n] depends on the state in which
the system resides before the application of the pertur-
bations. n = 0 and n = 2 correspond to states |0〉 and
|2〉, respectively. n = 1 corresponds to either |1↑〉 or |1↓〉
(the response function in our model does not depend on
spin and we do not specify it in the definition of χ). We
define the response function as a matrix(

δQ(ω)
δI(ω)

)
= χ[ω, n]

(
δVg(ω)
δφ(ω)

)
, χ =

(
χQQ χQI
χIQ χII

)
.

(31)

Here, δQ and δI are the deviations of the average
charge and current from their stationary values. As
usual, the Hermitian (anti-Hermitian) part of χ describes
the non-dissipative (dissipative) response of the system.
The response function matrix satisfies a general rela-
tion that guarantees that physical quantities are real,
χ[ω] = χ?[−ω].

Prior to computing χ, we discuss symmetry proper-
ties of this matrix. From time-reversal and particle-hole
symmetries we obtain

χ[ω, ϕ, εg] =Mχ[−ω,−ϕ, εg]M, (32)

χ[ω, ϕ, εg] =χ[ω,−ϕ,−εg], (33)

respectively (for brevity we omitted the state argument n).
Here matrix M = diag{1,−1}. From inversion symmetry
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we get [42]

χ[ω, ϕ, εg,ΓL,ΓR] = Mχ[ω,−ϕ, εg,ΓR,ΓL]M. (34)

In this expression we introduced ΓL and ΓR as arguments.
Note that in the right side of Eq. (34) these arguments
are exchanged. The symmetry relations have a set of
important consequences for the off-diagonal component of
the response function χIQ (similar conclusions are true for
χQI). From Eq. (32) we see that ReχIQ vanishes at time-
reversal symmetric points ϕ = 0, π. As a consequence of
particle-hole symmetry, ReχIQ also vanishes at εg = 0.
Finally, from Eqs. (32) and (34) we see that ImχIQ = 0
for an inversion-symmetric weak link, ΓR = ΓL, at any ϕ
and εg.

Now we proceed to the calculation of the response func-
tions in the considered discrete states. The components
of matrix χ can be expressed as (see Appendix D 1)

χAB [ω, n] = ∂a∂bE[n] + δχAB [ω, n]. (35)

Here, indices A and B stand for Q or I while a and b are
the respective drive variables, Vg or φ. The second term in
Eq. (35) vanishes at zero frequency [see Eq. (36)]. The first
term in Eq. (35) is, in contrast, non-zero at ω = 0. It de-
scribes the frequency-independent adiabatic part of the re-
sponse function (naturally, this contribution is purely non-
dissipative). Its diagonal components are the inverse in-
ductance of the junction, 1/L[n] = ∂2

φE[n] = φ−2
0 ∂2

ϕE[n],

and the quantum capacitance, C[n] = ∂2
Vg
E[n] = ∂Vg

Q[n],

where Q describes the average charge at the dot. The off-
diagonal component, ∂φ∂VgE[n] = ∂φQ[n] ≡ φ−1

0 ∂ϕQ[n],
describes how the charge at the dot changes with phase
ϕ. It is also related to the change of the Josephson cur-
rent with gate voltage, ∂φ∂VgE[n] = ∂VgI[n], such that
Maxwell’s relation holds, ∂φQ = ∂VgI. Due to time-
reversal symmetry, ∂φ∂VgE[n] vanishes at ϕ = 0 and
ϕ = π. ∂φ∂VgE[n] also vanishes at εg = 0 due to the
presence of the particle-hole symmetry.

The second term in Eq. (35) describes the dynamic
part of the response function,

δχAB [ω, n] = χK
AB [ω, n]− χK

AB [0, n], (36)

where χK
AB[ω] is given by the Kubo formula, χK

AB[ω] =

−i
∫∞

0
dteiωt〈[Â(t), B̂]〉. Here the average is computed

over the unperturbed stationary state of the system which
we assume to be either |0〉, |1↑〉, |1↓〉, or |2〉. The sub-
traction of the zero-frequency contribution is required to
ensure that δχAB [0, n] = 0 and that the overall response
function χAB is related to derivatives of energy at zero
frequency (see Appendix D 1 for detailed discussion). As
follows directly from the Kubo formula, δχAB can be
expressed as a sum over many-body states of the system,

δχAB [ω, n] = −
∑′

k

~ω
Ekn

AnkBkn
Ekn − ~ω − i0 + c.c.(−ω).

(37)
Here, k labels the many-body states, Ekn = E[k]− E[n],
prime designates that k 6= n, and Ank and Bkn are the

matrix elements of operators Â and B̂. Notice that the
sum in Eq. (37) runs over the states that belong to both
discrete and continuous parts of the many-body spectrum.
If the system is initially in an even state, |0〉 or |2〉, the
sum involves one discrete state (|2〉 or |0〉, respectively)
in addition to the states of continuum. If the system is
in an odd state, |1↑〉 or |1↓〉, the sum includes only the
states of the continuum; there are no matrix elements
between |1↑〉 and |1↓〉 due to spin conservation.

We now describe how the response function can be
computed in the limit of weak Coulomb interaction,
U � ∆ + Γ, and small frequencies, ~ω � ∆ [43]. The
weakness of interaction implies that the adiabatic part
of the response function can be found using the pertur-
bative expressions for the energies of the discrete states
[see Eqs. (14), (15), (22), (24)]. The condition ~ω � ∆
implies that the terms in Eq. (37) in which k belongs
to the many-body continuum are suppressed by a small
parameter ~ω/∆. This allows us to disregard δχ in com-
parison with the adiabatic part of the response function,
∂a∂bE, if the system is initially in one of the odd states,
|1↓〉 or |1↑〉. The situation is different if the initial state is
|0〉 or |2〉. Then, the sum in Eq. (37) includes one discrete
state in addition to the continuum. The corresponding
term may compete with the adiabatic part of the response
function even at small frequencies ~ω � ∆, as long as
~ω ∼ 2EA. Thus, we approximate the dynamic part of
the response function in state |0〉 as

δχAB [ω, 0] = − ~ω
2EA

A02B20

2EA − ~ω − i0 + c.c.(−ω). (38)

Notice that the response function has a resonant be-
havior at the transition frequency, ~ω = 2EA. Such a
resonance corresponds to a process in which a drive pho-
ton is absorbed to change the occupation of the Andreev
bound state. Away from the resonance, the low-frequency
response is purely non-dissipative. The dynamic compo-
nent of the response function in state |2〉 is approximately
related to that in state |0〉 via

δχAB [ω, 2] = −δχAB [ω, 0], (39)

as follows directly from Eq. (37) when neglecting terms
with k in the many-body continuum.

Next, recall that according to Eq. (38) energy EA

should be comparable to ~ω for δχAB[ω, 0] to produce
an appreciable contribution to the response function
χAB[ω, 0]. Since we assume ~ω � ∆, in such case EA is
also small and thus δχAB [ω, 0] can be approximately com-
puted with the help of the low-energy theory of Sec. IV.
Correspondingly, the charge and current operators in
Eq. (38) can be exchanged for their low-energy versions.
Then, for the charge-charge component of the response
function we find

δχQQ[ω, 0] = −e2 ~2ω2

4E2
A − (~ω + i0)2

∂2
εgEA. (40)

Note that for ~ω � EA, the response function scales as
δχQQ[ω, 0] ∝ ω2. Similarly to δχQQ, the components
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FIG. 4. The response functions χII and χQQ of the ABS in states |0〉, |1σ〉, |2〉 with different number of quasiparticles at the
ABS. χII is plotted as a function of ϕ in panel (a) [for εg = 0] and as a function of εg in panel (b) [for ϕ = π]. χQQ is plotted as
a function of ϕ in panel (c) [for εg = 0] and as a function of εg in panel (d) [for ϕ = π]. Plots are produced using Eqs. (35),
(39), (40), and (42), for parameters ΓL = 0.3∆, ΓR = 0.35∆, U = 0.35∆ (same as in Fig. 3), and ~ω = 0.21∆. The response
functions in states |0〉 and |2〉 diverge when the frequency is in resonance with the transition between |0〉 and |2〉, i.e., when
~ω = 2EA (vertical dashed lines in the plots). In the odd states and away from the resonances in the even states the response is
adiabatic: χII ≈ ∂2

φE describes the inverse inductance of the weak link and χQQ ≈ ∂2
Vg
E describes its quantum capacitance.

The dissipative (imaginary) part of the response functions — which is present at resonances only — is not shown in the plot.

δχQI , δχIQ, and δχII can be found with the help of the
low-energy Hamiltonian (29). However, in general the
resultant expressions are cumbersome and we relegate
them to Appendix D 3. Here, we invoke an additional
approximation to illustrate the qualitative features of the
results. Namely, we disregard the phase factor in Eq. (30)
since it gives only the subleading corrections of order
EA/∆ � 1 to the response functions. Neglecting such
corrections, we find for δχIQ

δχIQ[ω, 0] = eφ−1
0

1

4E2
A − (~ω + i0)2

[
~2ω2∂εg∂ϕEA+

+

(
∆

∆ + Γ

)3
i~ω
EA

ΓδΓ

(
1 + f

U

∆

)(
1 + g

U

∆

)2
]
. (41)

Notice that there exists a well-defined limit
δχIQ[ω, n]/(−iω)|ω→0 = Cp which describes the
capacitive response of the polarization charge between
the leads to the applied gate voltage. The capacitance Cp
vanishes for symmetric contacts, δΓ = 0. This is because
in that case the system is symmetric under a combination
of a time-reversal and inversion symmetries (see Eq. (32)
and Eq. (34), respectively). The response function

δχQI can be obtained from Eq. (41) by conjugating the
expression in the bracket. Finally, for δχII within the
adopted approximations we obtain

δχII [ω, 0] = −φ
−2
0

EA

~2ω2

4E2
A − (~ω + i0)2

1

|γ̃|2

[
ε̃2g(∂ϕEA)2+

+
1

4

(
∆

∆ + Γ

)2

Γ2δΓ2

(
1 + g

U

∆

)4
]
. (42)

Capacitance δχII [ω, n]/(−iω)2|ω→0 describes the re-
sponse of the polarization charge to the voltage bias
between the leads. It is instructive to consider the limit
Γ� ∆, |δΓ|, |εg|, U in which our setup is equivalent to a
short junction with high transparency. Then, equation
(42) reduces to

δχII [ω, 0] = −φ
−2
0

EA

~2ω2

4E2
A − (~ω + i0)2

1
4∆2δΓ2

Γ2 − 4ΓRΓL sin2 ϕ
2

.

(43)
It reproduces the known result for the response function
of the short junction near ϕ = π [18].

We demonstrate the behavior of the low-frequency
response functions χQQ[ω, n] and χII [ω, n] for a par-
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ticular choice of model parameters in Fig. 4 [plots for
χIQ and χQI are presented in Appendix D 2]. The pa-
rameters are chosen to demonstrate resonant behavior,
~ω = 2EA, at specific values of ϕ and εg. The response
functions χAB[ω, 0] and χAB[ω, 2] diverge at the reso-
nances and change sign across them. The response func-
tions in the odd states |1σ〉 are approximately adiabatic,
χAB[ω, 1] ≈ ∂a∂bE[1], since ~ω is small compared to ∆.
For weak Coulomb interaction, they are primarily deter-
mined by Econt, i.e., the contribution of the occupied
continuum states [see Eqs. (6), (12), (24)]. Notice that
at Γ ∼ ∆ the phase dependence of χII [ω, 1] — which is
mainly determined by the continuum contribution — is
comparable in magnitude to that of χII [ω, 0] and χII [ω, 2]
[see Fig. 4(a)]. At the same time, χII [ω, 1] is almost inde-
pendent of the gate voltage up to |εg| ∼ ∆ [see Fig. 4(b)].
χQQ[ω, 1] weakly depends on both ϕ and |εg| <∼ ∆ even
though Γ ∼ ∆ [see Fig. 4(c) and Fig. 4(d)].

To conclude this section, we note that without the
interaction, U = 0, the dynamic part of the response
function can be calculated in our model exactly. The
resultant expressions are cumbersome, so we present them
in Appendix D 4.

VI. ASYMMETRY OF THE RESPONSE
FUNCTIONS

Results of Sections III–V indicate that the response
functions are sensitive to the on-site Coulomb repulsion.
Therefore, the measurement of these functions might be
used to estimate the strength of the Coulomb interaction.
A particularly convenient combination of the response
functions that explicitly characterizes the magnitude of
parameter U is

χasym
AB [ω] =

χAB [ω, 2] + χAB [ω, 0]

2
− χAB [ω, 1] (44)

which we call the response asymmetry. This quantity is
illustrative because it is non-zero only in the presence
of Coulomb interaction. The latter property can be eas-
ily seen in the limit ω → 0. Indeed, χasym

AB [ω → 0] =
∂a∂bE

asym and Easym = 0 for U = 0 as was shown in
Section III. We demonstrate in Appendix D 4 that the
response asymmetry also vanishes at ω 6= 0 when U = 0.

We calculate χasym
AB in the regime of perturbatively

weak Coulomb repulsion and low frequency, ~ω � ∆.
There, the asymmetry reduces to that of the adiabatic
components of the response functions. Indeed, in this
limit the dynamic components of the response functions
cancel in the combination χAB [ω, 0]+χAB [ω, 2], as can be
seen from Eq. (39). At the same time, δχAB [ω, 1] is small
compared to the adiabatic part of the response function
and can be disregarded [see the discussion after Eq. (37)].
Thus, χasym

AB can be directly found from the asymmetry
of the energies, see Eq. (25). In this way, we obtain the

3π/4 π 5π/4
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FIG. 5. Asymmetry of the response functions χII [ω, n].
χII [ω, n] is plotted as a function of phase in the vicinity of
ϕ = π for ΓL = 0.30∆, ΓR = 0.35∆, U = 0.5∆, ~ω = 0.21∆.
Vertical lines correspond to the resonances at ~ω = 2EA.
Dashed line shows the half-sum between χII [ω, 0] and χII [ω, 2].
Due to the presence of Coulomb interaction, the half-sum dif-
fers from χII [ω, 1] by χasym

II [ω] [see Eq. (45)].

approximate relation

χasym
AB [ω] =

U

2
∂a∂bα

2, (45)

where α is given by Eq. (19). Expression (45) can be
simplified in the limit of weak coupling between the level
and the leads, Γ, |εg| � ∆ (case (i) of Table I). To the
lowest non-vanishing order we obtain

χasym
QQ = −e2 3U

∆

Γ

∆2
, χasym

II = −φ−2
0

2U

∆

ΓRΓL cosϕ

∆
,

χasym
IQ = χasym

QI = eφ−1
0

8U

∆

ΓRΓLεg sinϕ

∆3
. (46)

For stronger coupling, Γ <∼ ∆, we demonstrate the asym-
metry of inductive response functions χII [ω, n] in Fig. 5.
The asymmetry of inductive responses was recently mea-
sured in our experiment [29], pointing to the importance
of Coulomb interaction for the microwave properties of
nanowire weak links.

VII. ABS IN CIRCUIT QED

Above we demonstrated that the microwave response of
a finite-length weak link is characterized by four response
functions, χQQ, χQI , χIQ, and χII . Experimentally, these
response functions can be studied using the toolbox of
circuit quantum electrodynamics (cQED). In cQED, the
weak link coupled to a microwave resonator shifts the
frequency of the latter. The magnitude of this dispersive
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FIG. 6. (a) A finite-length weak link with a state-dependent admittance Yij [ω] is galvanically connected to a microwave resonator
with admittance Y res

ij [ω] (indices i, j ∈ {L,R} denote the left or the right lead, respectively). An external flux tunes the phase
difference ϕ across the weak link. The gate voltage Vg also tunes the energy of the fermionic level in the weak link. The
presence of the weak link shifts the frequency of the mode of the resonator, ωres → ωres + δω. (b) Effective circuit representing a
microwave resonator which can be used to measure the response function χII of the weak link. Due to the symmetry of the
resonator with respect to the ground, its mode has opposite voltages on the left and at the right node. Then, using Eq. (51), we
find δω/ωres = LχII [ωres] as long as χII � L−1. (c) Effective circuit representing a microwave resonator which can be used to
probe the response function χQQ of the weak link. The mode of the resonator has the same voltages at the left and at the right
nodes which, according to Eq. (51), leads to δω/ωres = L2χQQ[ωres]/[2(L+ L′)2C] for χQQ � C.

shift may be related to a certain combination of the re-
sponse functions, specific for a particular resonator design.
In this section, we elucidate this relation and demonstrate
how different response functions can be measured by ap-
propriately tailoring the geometry of the resonator.

We assume that the weak link hosting ABS is attached
to a microwave resonator at two sites, L and R [see
Fig. 6 (a)]. External flux threads the loop between the
junction and the resonator thus controlling the phase bias
ϕ across the weak link [44]. The resonator is modelled as a
black box with a given matrix admittance, Y res

ij [ω], where
i, j ∈ {L,R}. The admittance determines the relation
between the currents flowing in the resonator and the
voltages at nodes L and R,

Ii(ω) =
∑
j=L,R

Y res
ij [ω]Vj(ω). (47)

We assume that the resonator is grounded (see Fig. 6)
and that VL and VR are evaluated relative to the ground.
Due to the presence of the ground, the currents explicitly
depend on both VL and VR (i.e., not only on the voltage
difference VL − VR). We assume that the photon loss
in the resonator can be neglected such that Y res

ij is an
anti-Hermitian matrix. The frequency of the modes of the
unloaded resonator (i.e., in the absence of the weak link)
can be found as solutions of the characteristic equation

detY res
ij [ω] = 0. (48)

Let ωres be the frequency of a given mode of the resonator
determined by Eq. (48). Then, the structure of the mode
can be found by solving

∑
j=L,R Y

res
ij [ωres]Vres,j = 0.

When the weak link is present in the circuit, the char-
acteristic equation changes to

det
(
Y res
ij [ω] + Yij [ω]

)
= 0. (49)

Here Yij [ω] is the admittance of the ABS. The admittance
matrix is related to the response functions computed in
Section V [see Eq. (35)] via

YLL =
χII
−iω +

iω

4
χQQ +

1

2
(χIQ − χQI) (50a)

YLR =
χII
iω

+
iω

4
χQQ −

1

2
(χIQ + χQI) , (50b)

YRL =
χII
iω

+
iω

4
χQQ +

1

2
(χIQ + χQI) , (50c)

YRR =
χII
−iω +

iω

4
χQQ −

1

2
(χIQ − χQI) , (50d)

(we suppressed the frequency arguments for brevity). We
assume that the presence of the weak link does not af-
fect the structure of the modes of the resonator. This
assumption is justified if the admittance of the load is
small enough. In that case, Eq. (49) can be solved by
taking Yij into account perturbatively. We find that the
frequency of the mode of the resonator in the presence of
the load is given by ωres + δω, where

δω = −
∑
i,j∈L,R V

?
res,iYij [ωres]Vres,j∑

i,j∈L,R V
?
res,i(Y

res
ij )′[ωres]Vres,j

(51)

and (Y res
ij )′[ωres] = dY res

ij /dω|ω=ωres . Equation (51) is a
generalization of the relation between the frequency shift
and the admittance [45] to the multi-terminal case. The
numerator of Eq. (51) depends on Vres, i.e., on the struc-
ture of the mode of the resonator. This opens a prospect
of extracting particular components of the response func-
tion of the weak link by choosing a suitable geometry of
the resonator. In Figures 6 (b) and (c) we demonstrate
lumped element circuits of resonators that can be used to
isolately measure χII and χQQ. We note the components
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χQI and χIQ cannot be measured separately from χQQ
or χII irrespective of the geometry of the resonator (as
can be verified directly from Eq. (51)).

Finally, we mention that Eq. (51) was derived under the
assumption that the capacitance between the dot in the
weak link and the gate is much larger than that between
the dot and the leads. We derive a similar expression
for arbitrary ratio of capacitances in Appendix E, see
Eq. (E2).

VIII. DISCUSSION AND CONCLUSIONS

Our work elucidates the problem of computing the mi-
crowave response of a finite-length weak link hosting a
single ABS. Within a minimal Hamiltonian model, we cal-
culated the corresponding linear response functions and
found their evolution with the number of quasiparticles
occupying ABS. The resulting linear response functions
can be used to analyze the state-dependent dispersive
shifts in cQED experiments with the weak link coupled
to a microwave resonator. Our minimal model captures
the essential features differentiating a finite-length weak
link from a point contact: (a) for the former both the
ABS and the delocalized states contribute to the inductive
response, and (b) a finite-length link may accommodate
electric charge making Coulomb interaction important.
Our theory combined with the recent experimental results
[29] highlight that quantum dot models provide an insight-
ful perspective on microwave experiments with nanowire
weak links. Below, we discuss the salient points of our
work.

Low-energy Hamiltonian. The energy of an ABS
formed in a finite-length weak link lies within the super-
conducting gap and does not reach ∆ at any phase bias.
To describe the ABS energy spectrum and dynamics, we
derived a 2× 2 low-energy Hamiltonian which takes into
account weak charging effects and delocalization of the
quasiparticle into the leads [see Eq. (29)]. This Hamil-
tonian yields an approximate expression for the ABS
energy, see Eq. (11), where the dependence of δ and τ
on the model parameters is presented in Eqs. (20) and
(21). Equation (11) becomes exact if the tunneling rate is
either large, Γ� ∆, or small, Γ� ∆ [27, 28]. It remains
valid in the intermediate regime, Γ ∼ ∆, in the domain
of ϕ for which EA(ϕ) � ∆, and provides a reasonable
extrapolation between the solvable limits at EA(ϕ) ∼ ∆.

The low-energy Hamiltonian describes the dynamics of
the ABS in the even fermion parity sector. It provides a
lumped element model of the weak link that can be used
to analyze a variety of microwave experiments. Here, we
applied the Hamiltonian to calculate the linear response
functions of the weak link. The low-energy Hamiltonian
may also be used in more complicated situations where
the quantum fluctuations of phase across the weak link
are appreciable [27, 28].

Inductance of the continuum part of the weak-
link spectrum. As well-known in theory [15, 16, 18]

and demonstrated in experiments [8, 13], the dynamic
response of a single-channel point contact is fully deter-
mined by the properties of the two-level ABS system
hosted by the weak link. This is however not the case for
the finite-length weak links. In particular, to compute the
inductance of the weak link it is not enough to account for
the contribution of the ABS ∝ (∂2

ϕEA)−1. This is because
the continuum of states outside of the superconducting
gap also contributes to the energy [see Eq. (12)] and hence
to the inductance. We show that the continuum contri-
bution becomes comparable to that of the ABS when the
coupling between the dot and the leads is strong, Γ ∼ ∆
[cf. Eq. (10) and Eq. (13)]. The effect of the continuum
is especially prominent in the odd states, where it fully
determines the inductance. Interestingly, the contribu-
tion of the continuum to the energy is minimal at phase
bias ϕ = π [see Eq. (13)]. A π-junction is thus realized
whenever the ABS traps a single quasiparticle [46]. These
results indicate that taking the continuum contribution
into account is necessary to accurately describe microwave
experiments with ABSs [29].

Electrodynamic response functions. A finite-
length weak link may accommodate charge. Both this
charge and the current through the weak link respond
to gate voltage and phase bias. Thus, the microwave
response of an ABS has a multi-terminal character; the
linear response functions form a 2×2 matrix, χ. At small
frequencies the response functions are adiabatic, i.e., they
can be found as the derivatives of the energies of the
many-body states with respect to appropriate parameters
[see Eq. (35)]. Adiabatic response functions characterize
the quasi-static properties of the weak link, such as the
inverse inductance and quantum capacitance. At finite
frequency, a dynamic contribution to the response func-
tions appears [see Eq. (36)]; it is the most prominent in
the even sector where χ may have a resonant behavior
[see Fig. 4]. Our theory smoothly interpolates between
the adiabatic and resonant limits. The matrix χ can be
accessed in cQED architecture by coupling the weak link
to a microwave resonator and measuring the dispersive
shift of the latter [see Eq. (50) and (51)]. Recent experi-
ments used this technique to study the inductive response
of weak links [13, 29]. The investigation of the capacitive
response may be an interesting direction for future ex-
perimental works. Such a study can be carried out in a
setup similar to that used in [13, 29], with appropriately
modified resonator geometry [see Fig. 6(c)]. We note that
interpolation between the adiabatic and resonant limits
for the dispersive shift was also pointed out in a recent
work [47].

Coulomb interaction. Accumulation of charge in a
finite-length weak link makes the effects of Coulomb inter-
action important for the ABS physics. Surprisingly, most
of the microwave experiments with nanowire weak links
completely ignore the role of interaction in interpreting
the data. Our recent experimental results [29] suggest
that the on-site interaction may in fact be important to
adequately describe the state-dependent response func-
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tions of the system. The theory presented here provides
a guidance for assessing the strength of the interaction by
comparing to each other the microwave responses mea-
sured at different occupancy of the ABS [see Eq. (44) and
Eq. (45)].

Finally, quantum-dot inspired description of a finite-
length weak link can be extended in multiple ways. In
particular, it is possible to include the Zeeman effect,
account for more levels in the weak link, and for spin-
orbit interaction. Looking forward, it would be interesting
to compute and analyze, in the same framework, the
microwave response of a finite-length weak link connecting
topological superconductors [48, 49]. It would also be

interesting to evaluate the microwave response of a weak
link containing a quantum dot in the regime of strong
Coulomb interaction [24, 25, 37–39, 41, 50–52] where
Kondo effect might be important.
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bation theory of a superconducting 0− π impurity quan-
tum phase transition, Scientific Reports 5, 8821 (2015).
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Appendix A: Spectral properties of the ABS in the absence of Coulomb interaction

1. Green’s functions in the non-interacting case

In this Appendix we derive the expression for the Green’s functions of the system in the absence of interaction.
The central result is the Green’s function of the dot, Gdd(ε) [see Eq. (8) of the main text]. This Green’s function
can be conveniently used to find the energy of the Andreev bound state EA,0 [see Eq. (7)], as well as the continuum
contribution to the energy of the system, see Eq. (12) and Appendix A 2. We start by rewriting the Hamiltonian (1)
in the particle-hole representation for U = 0. Up to an irrelevant c-number we obtain

H =
∑
i=L,R

(Hi +HT,i) +Hd, (A1)

where

Hi =

∫
drΨ†i (r)

[
ξ̂τz + ∆τx

]
Ψi(r), Hd = D†εgτzD, HT,i = ti

{
D†τze

i
2 τzϕiΨi(0) + h.c.

}
, (A2)

τx,y,z are Pauli matrices in the Nambu space, Ψi(r) = (ψi,↑(r), ψ†i,↓(r))T , and D = (d↑, d
†
↓)
T . Next, we introduce the

retarded and advanced Green’s functions GR/A. These Green’s functions have multiple components, of which the
important ones are:

G
R/A
dd,µν(t) = ∓iθ(±t)〈{Dµ(t), D†ν(0)}〉, G

R/A
ij,µν = ∓iθ(±t)〈{Ψi,µ(0, t),Ψ†j,ν(0, 0)}〉, (A3)

G
R/A
id,µν(t) = ∓iθ(±t)〈{Ψi,µ(0, t), D†ν(0)}〉, G

R/A
di,µν(t) = ∓iθ(±t)〈{Dµ(t),Ψ†i,ν(0, 0)}〉, (A4)

where curly brackets denote the anticommutator. In the subsequent calculations we will only need the Green’s functions
at the position of the junction; hence the lead operators are all evaluated at r = 0 in the above definitions. Using the
Heisenberg equations of motion for the operators D(t) and Ψi(t), we may obtain a system of two coupled equations for

G
R/A
dd and G

R/A
id . In the energy domain, the system reads:

(ε− εgτz ± i0)G
R/A
dd (ε) = 1 +

∑
i=L,R

T †i G
R/A
id (ε), G

R/A
id (ε) =

1

V

∑
k

1

ε− ξkτz + ∆τx ± i0
TiG

R/A
dd (ε), (A5)

where Ti = tiτze
− i

2 τzϕi . Note that Gdd(ε), Gid(ε), and Gij(ε) have different dimensions. In particular, Gdd(ε) has the
dimension of inverse energy, Gid(ε) has the dimension of inverse energy times inverse square root of volume, Gij(ε) has
the dimension of inverse energy times inverse volume. Substituting the second equation into the first and computing

the sum over the momenta we obtain Eq. (8) of the main text for G
R/A
dd [in Eq. (8), ε should be changed to ε± i0 for

retarded and advanced Green’s function, respectively].
For future reference, we also obtain the remaining components of the Green’s functions. From Eq. (A5) we find

G
R/A
id (ε) = gR/Aε TiG

R/A
dd (ε), gR/Aε =

−πν√
∆2 − (ε± i0)2

(
ε ∆
∆ ε

)
, (A6)

where ν is the normal-state density of states in the leads (per spin projection). The components G
R/A
di and G

R/A
ij can

be found analogously to G
R/A
dd and G

R/A
id . We obtain

G
R/A
di (ε) = G

R/A
dd (ε)T †i g

R/A
ε , G

R/A
ij (ε) = gR/Aε δij + gR/Aε TiG

R/A
dd (ε)T †j g

R/A
ε . (A7)

2. Many-body energy spectrum

In this Appendix we describe the structure of the discrete many-body states |00〉, |10,↑/↓〉, and |20〉 in the absence of
Coulomb interaction, and derive Eqs. (6), (12) for the energies of these states.

At U = 0, the many-body Hamiltonian [see Eqs. (A1), (A2)] can be decomposed into the quasiparticle creation and
annihilation operators as

H =
∑
|ε|>∆

εγ†εγε + EA,0γ
†
EA,0

γEA,0
− EA,0γ

†
−EA,0

γ−EA,0
. (A8)
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Here, we work in the “semiconductor” picture of superconductivity, in which there are states with both positive and
negative energies. The first term corresponds to the states of the continuum. The second and the third terms describe
the ABS; EA,0 is the ABS energy which may be found as a solution of detG−1

dd (ε) = 0 in the interval ε ∈ [0,∆). The
ground state of Hamiltonian (A8) corresponds to all single-particle states with negative energy being occupied,

|00〉 = γ†−EA,0
|O〉, |O〉 =

∏
ε<−∆

γ†ε |Ω〉, (A9)

where |Ω〉 is the vacuum state. Other discrete many-body states are

|20〉 = γ†EA,0
γ−EA,0

|00〉 |10,↑〉 = γ†EA,0
|00〉, |10,↓〉 = γ−EA,0

|00〉. (A10)

The number n in the label of the state |n0〉 characterizes the number of single-particle excitations above the ground
state.

We can find energies of the discrete states with the help of Eqs. (A8), (A9), and (A10),

E0[0/2] = Econt ∓ EA,0, E0[1] = Econt. (A11)

Here Econt =
∑
ε<−∆ ε corresponds to the total energy of the filled states of the continuum. This continuum contribution

can be conveniently represented in terms of the Green’s functions GR/A of the system,

Econt = −
∫ −∆

−∞

ε′dε′

2πi

∑
ε

[−2πi δ(ε′ − ε)] = −
∫ −∆

−∞

ε′dε′

2πi

∂

∂ε′
ln det

[
GA(ε′)

[
GR(ε′)

]−1
]
. (A12)

As can be shown,

detGR/A(ε′) = detG
R/A
dd (ε′) · det g

R/A
R,0 (ε′) · det g

R/A
L,0 (ε′), (A13)

where g
R/A
i,0 are the Green’s functions of the lead i in the absence of tunneling to the dot [it is given by g

R/A
i,0 (ε′) =

(ε′ ± i0− [ξ̂τz + ∆τx])−1]. Substituting representation (A13) in Eq. (A12) we obtain

Econt = −
∑
i=L,R

∑
k

√
∆2 + ξ2

k −
∫ −∆

−∞

ε′dε′

2πi

∂

∂ε′
ln det

[
GAdd(ε

′)
[
GRdd(ε

′)
]−1
]
, (A14)

While the first term is thermodynamically large, it is also independent of the phase and gate-voltage biases ϕ, εg.
Therefore, it has no effect on the dynamics of the ABS. By omitting the irrelevant first term and performing integration
by parts on the second term, we obtain Eq. (12).

Appendix B: Corrections to energies due to the interaction

In this Appendix we find the first-order corrections to the energies of the discrete states |00〉, |10,σ〉, and |20〉 due to
a finite strength of Coulomb interaction U � ∆ + Γ.

According to the first-order perturbation theory, we need to compute the matrix elements of the interaction
Hamiltonian

Hint = U
(
d†↑d↑ −

1

2

)(
d†↓d↓ −

1

2

)
(B1)

between the unperturbed discrete states. To do that, it is convenient to expand Hint into the quasiparticle operators
γε [see Eq. (A1)]. The expansion may be performed with the help of the eigenstate decompositions of the creation and
annihilation operators for an electron at the dot:

d↑ = pEA,0
γEA,0

+ p−EA,0
γ−EA,0

+
∑
|ε|>∆

pεγε, d†↓ = hEA,0
γEA,0

+ h−EA,0
γ−EA,0

+
∑
|ε|>∆

hεγε. (B2)

Here, pε and hε are the particle and hole components of the ABS wave function at the dot, respectively. The main
technical trick of our calculation is to perform a rotation of the operators γEA,0

and γ−EA,0
to a particle-hole basis

such that

d↑ =
√
αγp +

∑
|ε|>∆

pεγε, d†↓ =
√
αγh +

∑
|ε|>∆

hεγε, (B3)
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where fermionic operators γp/h are defined as

γp =
1√
α

(
pEA,0γEA,0 + p−EA,0γ−EA,0

)
, γh =

1√
α

(
hEA,0γEA,0 + h−EA,0γ−EA,0

)
, (B4)

and α is a normalization factor that ensures {γp/h, γ†p/h} = 1 [this factor is similar for γp and γh due to particle-hole

symmetry]. The particle and hole operators γp/h are more convenient than operators γ±EA,0
since the interaction

Hamiltonian has a more concise form in terms of the former; this simplifies the calculation of the matrix elements of
Hint. We note that the normalization factor α can be expressed with the help of particle-hole symmetry as

α = |pEA,0 |2 + |hEA,0 |2 = |p−EA,0 |2 + |h−EA,0 |2. (B5)

Thus, physically it describes the probability of finding a quasiparticle in the ABS at the dot rather than in the leads.

Corrections to energies of odd states

We proceed by finding the correction to the energies of the odd states due to the presence of interaction. First, we
note that the matrix element of Hint between different odd states vanishes since the Coulomb interaction conserves
spin. The matrix elements between the odd and even states are zero as well, due to the conservation of fermion number
parity. Therefore, to find the desired corrections to the odd states energies, it is enough to compute the expectation
value of the interaction Hamiltonian in either of the odd states [the result is the same for the two odd states due to
spin-rotation symmetry]. To evaluate this expectation value, it is convenient to express the odd states in terms of the
particle and hole operators γp/h,

|10,↑〉 = γ†pγ
†
h

∏
ε<−∆

γ†ε |Ω〉, |10,↓〉 =
∏
ε<−∆

γ†ε |Ω〉. (B6)

Substituting the decomposition of operators (B3) into Eq. (B1) and using Eq. (B6) we find for the projection of Hint

on either of the odd states:

〈10,σ|Hint|10,σ〉 = −U

 ∑
ε1,ε2<−∆

[
|pε1 |2|hε2 |2 − h?ε1pε1p?ε2hε2

]
− 1

2

∑
ε<−∆

[
|pε|2 + |hε|2

]
+

1

4

 . (B7)

Here, we used a set of relations that follow from particle-hole symmetry:∑
ε>∆

pεh
?
ε = −

∑
ε<−∆

pεh
?
ε ,

∑
ε>∆

|hε|2 =
∑
ε<−∆

|pε|2,
∑
ε>∆

|pε|2 =
∑
ε<−∆

|hε|2, (B8)

and the completeness relation for the single-particle wave-functions:

α+
∑
ε<−∆

|pε|2 +
∑
ε<−∆

|hε|2 = 1. (B9)

The sums over energies in Eq. (B7) can be expressed in terms of the integrals of the Green’s function of the dot. Direct
comparison shows that ∑

ε<−∆

(
pεp

?
ε pεh

?
ε

p?εhε hεh
?
ε

)
= A, where A =

∫ −∆

−∞
dε

i

2π

[
GRdd(ε)−GAdd(ε)

]
. (B10)

Using these relations in Eq. (B7) we obtain Eq. (24) of the main text.
Note that α = 1− trA follows from Eqs. (B9) and (B10). The trace can be easily computed in terms of EA,0 by

bending the integration contour in complex plane. This results in Eq. (19) of the main text.

Corrections to energies of even states

The matrix elements of the interaction Hamiltonian in the even fermion parity sector are computed most easily in
the basis of particle and hole states. These states are defined as

|p〉 = γ†p|O〉, |h〉 = γ†h|O〉 (B11)



19

[see Eq. (A9) for the definition of |O〉]. The states |p/h〉 are directly related to the even states |00/20〉. Using Eq. (B4)
we obtain

|p〉 =
1√
α

(
p?−EA,0

|00〉+ p?EA,0
|20〉

)
, |h〉 =

1√
α

(
h?−EA,0

|00〉+ h?EA,0
|20〉

)
. (B12)

The computation of the matrix elements of Hint between particle and hole states can be carried out similarly to how it
was done for the odd states. This results in Eqs. (15) and (22) of the main text.

1. Low-energy expression for EA

In this subsection, we use Eqs. (15) and (22) to find the energy EA in the limit EA,0 � ∆. This leads to Eqs. (20)
and (21) of the main text. The limit EA,0 � ∆ is achieved in the weak coupling regime, Γ, |εg| � ∆ at any ϕ (case (i)
of Table I), and the strong coupling regime, Γ >∼ ∆, provided that |ΓL − ΓR|, |εg| � Γ and |ϕ− π| � 1 (case (ii) of
Table I).

According to Eq. (15), EA can be found as a solution of the following characteristic equation:

det

ε− 1

1 + Γ√
∆2−E2

A,0

 εg
∆√

∆2−E2
A,0

∑
i Γie

iϕi

∆√
∆2−E2

A,0

∑
i Γie

−iϕi −εg

− αU (App−Ahh

2 Aph
A?ph −App−Ahh

2

) = 0. (B13)

Here, in the second term under the sign of det, EA,0 can be neglected in comparison to ∆ in the square root factors.
With a similar precision, α can be exchanged for its low-energy value, ∆/(∆ + Γ). Finally, the elements of the matrix
A may be approximated by

App −Ahh
2

≈ εg
∆
f

(
Γ

∆

)
, f (x) = −2x

π

∫ −1

−∞
dz

1√
z2 − 1

1

z2
(

1 + x2

z2−1

)2 = −x
π

2 + x2 − 3x arccos(x)√
1−x2

(1− x2)2
, (B14)

Aph ≈
ΓRe

iϕR + ΓLe
iϕL

∆
g

(
Γ

∆

)
, g(x) =

1

π

∫ −1

−∞
dz

1√
z2 − 1

1− x2

z2−1

z2
(

1 + x2

z2−1

)2 =
1

π

1 + 2x2 − x(2+x2) arccos(x)√
1−x2

(1− x2)2
. (B15)

Substituting Eqs. (B14) and (B15) with ϕL = −ϕR = ϕ/2 in Eq. (B13) and solving the resulting simplified equation
we obtain Eqs. (20) and (21) of the main text. Note that, at the first glance, functions f(x) and g(x) in Eqs. (B14)
and (B15) are divergent at x = 1 due to the vanishing of the denominators. This, however, is not the case because the
numerators also vanish at x = 1 resulting in a smooth curve depicted in Fig. 2. In the weak coupling regime, case (i)
of Table I, the results for f and g, Eqs. (B14) and (B15), are reliable only to the leading order in Γ/∆. For case (ii) of
Table I the calculation of the matrix elements of A is valid at arbitrary Γ/∆.

2. Interaction corrections to energies E[1] and Eeven for weak coupling between the dot and the leads

Here, we explicitly calculate energies E[1] and Eeven to the first order in U/∆ in the weak coupling limit, Γ, |εg| � ∆
(case (i) of Table I). The interaction correction to the energy of the odd states is given by

E[1]− E0[1] ≈ −U det(A− 1/2) ≈ U
[
−1

4
+

Γ

2∆
+

3Γε2g
4∆3

+

(
2

π2
− 1

)
ΓRΓL

∆2
cosϕ

]
, (B16)

where we retained only the leading terms that determine the εg- and ϕ- dependence of E[1]− E0[1]. In particular, we
suppressed small terms ∼ Uε2gΓRΓL cosϕ/∆4 that depend both on εg and on ϕ. In principle, such terms are important
for the careful calculation of the adiabatic contribution to χQI and χIQ. However, capturing them analytically is
beyond the scope of the manuscript.

With a similar precision we find

Eeven − E0[1] ≈ −U det(A− 1/2) + U
α2

2
≈ U

[
1

4
− Γ

2∆
− 3Γε2g

4∆3
+

(
2

π2
+ 1

)
ΓRΓL

∆2
cosϕ

]
. (B17)
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Appendix C: Low-energy Hamiltonian

In this Appendix, we derive the low-energy Hamiltonian governing the dynamics of the ABS in the even fermion
parity sector [Eq. (28) of the main text]. To do that, we project the full Hamiltonian of the system onto the low-energy
subspace, and then employ the adiabatic approximation. The low-energy subspace is formed by the discrete states
|0〉 and |2〉, whose energies are denoted by E[0/2] = Eeven ∓ EA. The low-energy regime of EA � ∆ is reached in
two cases: (i) in the weak coupling limit, |εg|,Γ� ∆ at arbitrary phase bias ϕ, and (ii) in the strong coupling limit,
Γ >∼ ∆, provided |ϕ− π| � 1 and |ΓL − ΓR|, |εg| � Γ (as summarized in Table I). We assume below that either of the
two conditions is fulfilled.

We first focus on the case in which the Coulomb interaction is absent, U = 0; we discuss the modifications arising
due to U 6= 0 at the end of the section. Let us consider the many-body Hamiltonian H[ϕi, εg] [Eq. (1) with U = 0],
in which parameters ϕi ≡ ϕi(t) and εg ≡ εg(t) depend on time. We assume that the dynamics of ϕi(t) and εg(t) is
sufficiently slow — i.e., the associated frequency scale ~ω � ∆. At the same time, we allow ~ω to be comparable to
EA � ∆, which makes it important to account for possible transitions between the states of the low-energy subspace.

The wave-function solving the time-dependent Schrödinger equation can be approximated by

|ψ(t)〉 ≈ cp(t)|p(t)〉+ ch(t)|h(t)〉. (C1)

Here the particle and hole states |p/h〉 were introduced in Eq. (B12); they depend on time parametrically due to the
time-dependence of ϕi(t) and εg(t). This parametric dependence is in fact weak, which makes the particle-hole basis
convenient for the derivation. Finding an effective Hamiltonian that would describe the evolution of amplitudes cp(t)
and ch(t) is the main goal of this Appendix. The approximation (C1) is in the spirit of a usual adiabatic approximation
extended to a two-level system.

Substituting the decomposition (C1) into the time-dependent Schrödinger equation, we obtain an equation for the
evolution of C(t) = (cp(t), ch(t))T :

i~∂tC(t) = H(le)
even C(t). (C2)

The 2× 2 matrix H
(le)
even plays the role of an effective Hamiltonian; it is given by

H(le)
even = Eeven +H+ Θ. (C3)

Here

Hµν = 〈µ(t)|H[ϕi(t), εg(t)]|ν(t)〉 − Eevenδµν , Θµν = −i~〈µ(t)|∂t|ν(t)〉, µ, ν ∈ {p, h}, (C4)

and Eeven is a c-number term which — in the absence of Coulomb interaction — is related to the continuum energy,
Eeven = Econt(εg(t), ϕ(t)) [see Eq. (12)]. The matrix H can be found straightforwardly using the definition (B12) of
particle and hole states. We obtain

H =
1

1 + Γ√
∆2−E2

A,0(t)

 εg(t)
∆

∑
i Γie

iϕi(t)√
∆2−E2

A,0(t)

∆
∑

i Γie
−iϕi(t)√

∆2−E2
A,0(t)

−εg(t)

 ≈ ∆

∆ + Γ

(
εg(t)

∑
i Γie

iϕi(t)∑
i Γie

−iϕi(t) −εg(t)

)
, (C5)

where in the latter equality we neglected EA,0 � ∆.
Next, Θ in Eq. (C3) is the matrix of Berry connection. It stems from the parametric dependence of |p(t)〉 and

|h(t)〉 on time. To find Θ, it is convenient to use the many-body representation for the states: |p/h〉 = γ†p/h|O〉. This

representation allows us to rewrite Θ as

Θµν = −i~〈O|γµγ̇†ν |O〉 − i~δµν〈O|Ȯ〉. (C6)

Here the second term is ∝ δµν and thus does not influence the dynamics of the system [e.g., it has no effect on the
response functions]; we omit it in what follows. To find the first term, −i~〈O|γµγ̇†ν |O〉, it is convenient to expand γp
and γh into the electron field operators. The expansion reads:(

γp
γh

)
=
√
α

(
d↑
d†↓

)
+
∑
i,k

Π†i,k

(
ψ↑,i,k
ψ†↓,i,−k

)
, (C7)



21

where dσ is the annihilation operator for an electron at the dot with spin σ = ↑ or ↓, and ψσ,i,k is the annihilation
operator for an electron in the lead i ∈ {L,R} with momentum k and spin projection σ. Parameter α is defined in
Eqs. (18), (19). Finally, Πi,k is a 2× 2 matrix that is defined in terms of the ABS wave-functions as

Πi,k =
1√
α

(
ΦEA,0,i,k, Φ−EA,0,i,k

)(pEA,0
p−EA,0

hEA,0
h−EA,0

)
. (C8)

Here, p±EA,0 , h±EA,0 are the components of the wave-function at the dot [see Eq. (B2)], and Φ±EA,0,i,k are the 2× 1
spinors describing the components of the ABS wave-functions in the lead i. Using the decomposition (C7) together

with the normalization condition α+
∑
i,k Π†i,kΠi,k = 1 [where α and 1 are proportional to the 2× 2 identity matrices]

in Eq. (C6) we may represent the Berry connection Θ as

Θ = − i~
2

∑
i,k

[
Π†i,kΠ̇i,k − Π̇†i,kΠi,k

]
. (C9)

The matrix Πi,k can be found using the Schrödinger equation for the ABS wave-functions. We obtain

Πi,k =
1√
V

√
αTi

∆2 − E2
A,0 + ξ2

k

[
ξkτz −∆eiϕiτz/2τxe

−iϕiτz/2 +H
]
, (C10)

where τx,y,z are Pauli matrices in the Nambu space, Ti = tiτze
−iϕiτz/2, and V is the volume of the lead. The third term

in brackets is ∼ EA,0 and may be neglected in comparison with the first two terms ∼ ∆ at low energies EA,0 � ∆ [53].
Then, we find

Πi,k ≈
1√
V

√
∆

∆ + Γ

Ti
∆2 + ξ2

k

[
ξkτz −∆eiϕiτz/2τxe

−iϕiτz/2
]
, (C11)

where we also disregarded EA,0 is the denominator and used α ≈ ∆/(∆ + Γ). Substituting this expression in Eq. (C9)
we obtain

Θ ≈ −τz
ΓR~ϕ̇R + ΓL~ϕ̇L

2(∆ + Γ)
. (C12)

Combining Eqs. (C3), (C5), and (C12), we arrive to a final expression for the low-energy Hamiltonian in the absence
of Coulomb interaction:

H(le)
even = Eeven +

∆

∆ + Γ

(
εg(t)

∑
i Γie

iϕi(t)∑
i Γie

−iϕi(t) −εg(t)

)
− ΓR~ϕ̇R(t) + ΓL~ϕ̇L(t)

2(∆ + Γ)

(
1 0
0 −1

)
. (C13)

The Hamiltonian H
(le)
even is evidently consistent with the gauge-invariance. The gauge-invariance means that the physics

should not be affected by a common shift Vsh(t) of all electric potentials,

εg(t)→ εg(t)− eVsh(t), ~ϕ̇R/L(t)→ ~ϕ̇R/L(t) + 2eVsh(t). (C14)

Indeed, as can be easily checked, such a common shift may be compensated by a unitary transformation [54]

H(le)
even → UH(le)

evenU† − i~UU̇†, where U = exp
[
−iτz

1

~

∫ t

eVsh(t′)dt′
]
. (C15)

The next step is to account for a weak Coulomb interaction, U � ∆+Γ. The interaction leads to the renormalization

of the parameters of the low-energy Hamiltonian H
(le)
even. The renormalizations may be accounted for by combining the

perturbative approach of Appendix B with the requirement of the gauge-invariance, as detailed below.

To start with, it is again convenient to represent the low-energy Hamiltonian as H
(le)
even = Eeven +H + Θ, where

Hµν = 〈µ|H|ν〉 − Eeven and Θµν = −i~〈µ|∂t|ν〉. To find Eeven and H, we project the full many-body Hamiltonian
H (including the Coulomb interaction part) onto particle and hole states which depend on time parametrically. The
projection is carried out similarly to how it was done in Appendix B. We obtain Eeven given by Eq. (22) and H given
by

H ≈ ∆

∆ + Γ

(
εg(t)

[
1 + U

∆f( Γ
∆ )
] ∑

i Γie
iϕi(t)

[
1 + U

∆g( Γ
∆ )
]∑

i Γie
−iϕi(t)

[
1 + U

∆g( Γ
∆ )
]

−εg(t)
[
1 + U

∆f( Γ
∆ )
] )

. (C16)
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Here dimensionless functions f and g are defined in Eqs. (B14) and (B15), respectively.
To understand how expression (C6) for the Berry connection Θ gets renormalized by U 6= 0, we require the low-energy

Hamiltonian H
(le)
even = Eeven +H + Θ (with H given by Eq. (C16)) to be consistent with the gauge-invariance [see

Eqs. (C14) and (C15)]. This leads to

Θ ≈ −τz
ΓR~ϕ̇R + ΓL~ϕ̇L

2(∆ + Γ)

[
1− U

Γ
f

(
Γ

∆

)]
(C17)

In the main text, we focus on a particular gauge in which ϕL(t) = −ϕR(t) = ϕ(t)/2. In this gauge, we find by
combining Eqs. (C16) and (C17):

H(le)
even ≈ Eeven +

∆

∆ + Γ

(
ε̃g(t) γ̃[ϕ(t)]

γ̃?[ϕ(t)] −ε̃g(t)

)
− δΓ ~ϕ̇(t)

4(∆ + Γ)

[
1− U

Γ
f

(
Γ

∆

)](
1 0
0 −1

)
, (C18)

where δΓ = ΓL − ΓR and

ε̃g(t) = εg(t)

[
1 +

U

∆
f

(
Γ

∆

)]
, γ̃[ϕ(t)] =

(
Γ cos

ϕ(t)

2
+ iδΓ sin

ϕ(t)

2

)[
1 +

U

∆
g

(
Γ

∆

)]
. (C19)

Finally, we note that in the considered gauge the Berry connection term in Eq. (C18) is small: at most, it produces
relative corrections ∼ EA/∆ to the transition matrix elements. The renormalization of the Berry connection due to
U � ∆ + Γ thus has a very weak influence on the dynamics of the ABS (which is controlled by a small parameter
∼ EAU/∆

2 � 1). Neglecting the renormalization, we arrive to Eq. (28) of the main text.

Appendix D: Linear response functions

1. General expression for the linear response functions

In this section, we derive Eq. (35) of the main text. We start with a general linear response relation,

χAB [ω, n] = 〈∂bÂ〉+ χK
AB [ω, n], χK

AB [ω, n] = −i
∫ ∞

0

dteiωt〈[Â(t), B̂(0)]〉, (D1)

that includes the diamagnetic term 〈∂bÂ〉 and the Kubo term χK
AB [ω, n]. This relation can be expressed identically as

χAB [ω, n] = 〈∂bÂ〉+ χK
AB [0, n] + δχAB [ω, n], where δχAB [ω, n] = χK

AB [ω, n]− χK
AB [0, n]. (D2)

By definition, the dynamic part of the response function δχK
AB [ω, n] vanishes at zero frequency. The remaining part,

〈∂bÂ〉+ χK
AB [0, n], in turn describes the zero-frequency response. We may simplify the latter part using the fact that

at ω = 0 the system follows the applied drives adiabatically. The adiabaticity implies

χAB [0, n] = ∂b〈Â〉 = ∂a∂bE[n], (D3)

where we used 〈Â〉 = 〈∂aH〉 = ∂aE[n]. Thus we identify

〈∂bÂ〉+ χK
AB [0, n] = χAB [0, n] ≡ ∂a∂bE[n], (D4)

which leads to Eq. (35) of the main text.

2. Off-diagonal components of the response function

In this Appendix, we present the plots of phase- and gate voltage- dependence of χIQ[n, ω] for the parameters
ΓL,ΓR, U and ω similar to those used in Fig. 4. Non-dissipative parts of χIQ and χQI are related by the complex
conjugation and thus we do not consider the latter separately. In contrast to χQQ and χII , non-dissipative part of χIQ
has both real and imaginary components. We plot these components separately in Fig. 7. Note that χIQ vanishes if
εg = 0 or ϕ = π (as a consequence of particle-hole and time-reversal symmetries, respectively [see discussion after
Eq. (34)]). Thus, we plot the phase dependence for εg = 0.05∆ and the gate voltage dependence for ϕ = 9π/10.
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FIG. 7. The response function χIQ in states |0〉, |1σ〉, |2〉 with different number of quasiparticles at the ABS. ReχIQ is plotted
as a function of ϕ in panel (a) [for εg = 0.05∆] and as a function of εg in panel (b) [for ϕ = 9π/10]; ImχIQ is plotted as a
function of ϕ in panel (c) [for εg = 0.05∆] and as a function of εg in panel (d) [for ϕ = 9π/10]. The plots are produced using
Eqs. (35), (39), (41), for parameters ΓL = 0.3∆, ΓR = 0.35∆, U = 0.35∆, and ~ω = 0.21∆ [these parameters are similar to that
in Fig. 4]. The response functions in states |0〉 and |2〉 diverge when the frequency is in resonance with the transition between |0〉
and |2〉, i.e., when ~ω = 2EA (vertical dashed lines in the plots). Generally, the response function χIQ in the odd states is small
compared to that in the even states. We note that, away from resonances, both ReχIQ and ImχIQ describe the non-dissipative
response. The dissipative part of the response functions — which is present at resonances only — is not shown in the plot.

3. Full expressions for dynamic parts of the response functions at small frequencies

Here, we present expressions for the dynamic parts of the response functions without neglecting the small phase
factor in Eq. (30) (as was done in the main text). We only present expressions for δχAB in the state |0〉. In the
state |2〉 the dynamic part of the response function can be approximately recovered as δχIQ[ω, 2] = −δχIQ[ω, 0]. The
dynamic part of the response function in the odd states is small at ~ω � ∆.

Equation (40) for δχQQ remains unaltered when the phase factor is taken into the account. For δχII at ~ω � ∆ we
get

δχII [ω, 0] = −φ
−2
0

EA

~2ω2

4E2
A − (~ω + i0)2

1

|γ̃|2

[
ε̃2g(∂ϕEA)2 +

1

4

(
∆

∆ + Γ

)2(
1 + g

U

∆

)4

δΓ2

(
Γ− |γ|2

∆ + Γ

)2
]
, (D5)

where |γ|2 = Γ2 − 4ΓRΓL sin2(ϕ/2). For δχIQ we obtain at ~ω � ∆

δχIQ[ω, 0] =
eφ−1

0

4E2
A − (~ω + i0)2

[
~2ω2∂εg∂ϕEA +

(
∆

∆ + Γ

)3
i~ω
EA

(
Γ− |γ|2

∆ + Γ

)
δΓ

(
1 + f

U

∆

)(
1 + g

U

∆

)2
]
. (D6)

Response function δχQI can be obtained from Eq. (D6) by conjugating the expression in the square brackets.

4. Exact evaluation of the linear-response functions in the absence of interaction

In this Appendix, we provide the exact expressions for linear response functions in the discrete states |00〉, |10,σ〉,
and |20〉 in the absence of Coulomb interaction. We also clarify why in the non-interacting case the linear response
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functions satisfy the occupation rule (χ[ω, 0] + χ[ω, 2])/2 = χ[ω, 1]. Again, we use units with ~ = 1.
We start with a general expression for the linear response functions. As was shown in Appendix D 1,

χAB [ω, n] = ∂a∂bE0[n] + δχAB [ω, n], (D7)

δχAB [ω, n] = χK
AB [ω, n]− χK

AB [0, n], χK
AB [ω, n] = −i

∫ ∞
0

dteiωt〈[Â(t), B̂(0)]〉. (D8)

Here, A and B stand for either current or charge, a and b are the corresponding drive variables (Vg corresponds to
Q and φ corresponds to I), and the average in χKAB is taken over the discrete state |n0〉 (with n = 0, 1 or 2). The
adiabatic part of the response function, ∂a∂bE0[n], can be calculated using the exact expression for the energies of
the discrete states, cf. Eq. (6). To calculate the dynamic part, δχAB , it is convenient to introduce the single-particle
representations of the current and charge operators I and Q. These objects are related to the corresponding many-body
operators Î and Q̂ through

Î = η†Iη, Q̂ = η†Qη, where η =

 D
ΨL(r = 0)
ΨR(r = 0)

 , (D9)

and are given explicitly by

I = −e
2
τz

 0 −itLeiϕLτz/2 itRe
iϕRτz/2

itLe
−iϕLτz/2 0 0

−itRe−iϕRτz/2 0 0

 , Q = −eτz

1 0 0
0 0 0
0 0 0

 . (D10)

We will now use the Wick’s theorem to express the average 〈[Â(t), B̂(0)]〉 in terms of the single-particle Green’s
functions and matrix elements of the operators I and Q [see Eq. (D10)]. To do that, we first introduce the relevant
Green’s functions:

G+−
µν (t) = −i〈ηµ(t)η†ν(0)〉, G−+

µν (t) = i〈η†ν(0)ηµ(t)〉, (D11)

where µ, ν are the indexes in the Nambu space. In terms of these Green’s functions the response functions can be
expressed as

χK
AB [ω, n] = −i

∫ ∞
0

dteiωtTr
[
AG+−(t)BG−+(−t)−AG−+(t)BG+−(−t)

]
, (D12)

where A and B are the single-particle versions of the operators Â and B̂, respectively, and the trace is taken over the
matrix indices both in the dot/lead subspace and in the Nambu subspace. Note that the information about the state
of the system — |00〉, |10,σ〉, or |20〉 — is encoded in G+− and G−+. Next, it is convenient to relate G+− and G−+ to
the retarded, advanced, and Keldysh Green’s functions,

GR/Aµν (t) = ∓iθ(±t)〈{ηµ(t), η†ν(0)}〉, GKµν(t) = G+−
µν (t) + G−+

µν (t). (D13)

The relations may be summarized as

G+−(t > 0) =
GK(t) + GR(t)

2
, G−+(t > 0) =

GK(t)− GR(t)

2
,

G+−(t < 0) =
GK(t)− GA(t)

2
, G−+(t < 0) =

GK(t) + GA(t)

2
.

(D14)

Representation of Eq. (D14) is convenient, because the retarded and advanced Green’s functions are agnostic to the
state of the system. The information about the latter is solely contained in the Keldysh Green’s function. Substituting
Eq. (D14) into Eq. (D12) we obtain

χK
AB [ω, n] = − i

2

∫ ∞
0

dteiωtTr
[
AGR(t)BGK(−t) +AGK(t)BGA(−t)

]
(D15)

As the next step, we transfer the latter equation to the energy domain and use Kramers-Kronig relations

GR(~ω + ε1) = −
∫ ∞
−∞

dε2

2πi

GR(ε2)− GA(ε2)

~ω + ε1 − ε2 + i0
, GA(ε1 − ~ω) = −

∫ ∞
−∞

dε2

2πi

GR(ε2)− GA(ε2)

ε1 − ~ω − ε2 − i0
, (D16)
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as well as

GK(ε) = (1− 2n(ε))
[
GR(ε)− GA(ε)

]
. (D17)

In the Eq. (D17) n(ε) is the distribution function. For the considered discrete states n(ε > ∆) = 0 and n(ε < −∆) = 1.
State |00〉 is determined by n(−EA,0) = 1 and n(EA,0) = 0; states |1σ,0〉 have n(EA,0) = n(−EA,0) = (1 + σ)/2, where
σ = 1 and σ = −1 correspond to spin up and down, respectively; finally, in the state |20〉 we have n(−EA,0) = 0 and
n(EA,0) = 1. Ultimately, we obtain

χK
AB [ω, n] =

∫ ∞
−∞

dε1dε2
n(ε1)− n(ε2)

~ω + ε1 − ε2 + i0
Tr [AV(ε2)BV(ε1)] , V(ε) =

i

2π
(GR(ε)− GA(ε)). (D18)

Notice that the trace in Eq. (D18) does not depend on the distribution function n(ε) since it contains only the retarded
and advanced Green’s functions. The components of these Green’s functions were computed in Appendix A 1. We
identify

GR/A(ε) =

G
R/A
dd (ε) G

R/A
dL (ε) G

R/A
dR (ε)

G
R/A
Ld (ε) G

R/A
LL (ε) G

R/A
LR (ε)

G
R/A
Rd (ε) G

R/A
RL (ε) G

R/A
RR (ε)

 , (D19)

where G
R/A
dd is determined by Eq. (8) (with ε exchanged for ε ± i0), while G

R/A
id , G

R/A
di , and G

R/A
ij are given in

Eqs. (A6) and (A7). Note that the advanced Green’s function can be obtained from the retarded Green’s function via
GA(ε) = (GR(ε))†. Matrix V can be decomposed into a continuum contribution (that is non-zero for |ε| > ∆ only) and
the contributions corresponding to the ABS (which are non-zero only at ε = ±EA,0),

V(ε) = V(ε)θ(|ε| −∆) + V+δ(ε− EA,0) + V−δ(ε+ EA,0). (D20)

In this expression,

V± =

νdd,± νdL,± νdR,±
νLd,± νLL,± νLR,±
νRd,± νRL,± νRR,±

 , (D21)

where

νdd,± = ±
(∆2 − E2

A,0)

2ΓRΓL∆2

dEA,0

d cosϕ

 ± EA,0

Z(EA,0) + εg
∆√

∆2−E2
A,0

∑
i Γie

iϕi

∆√
∆2−E2

A,0

∑
i Γie

−iϕi ± EA,0

Z(EA,0) − εg

 ,
1

Z(ε)
= 1 +

Γ√
∆2 − ε2

, (D22)

and

νid,± = g±EA,0
Tiνdd,±, νdi,± = νdd,±T

†
i g±EA,0

, νij = g±EA,0
Tiνdd,±T

†
j g±EA,0

. (D23)

Equation (D18) combined with the representation Eq. (D20) allow us to break the response function into physically
distinct contributions. Using the particle-hole symmetry and Eq. (D20) we obtain

χK
AB [ω, n] = −

∫ +∞

∆

dε1dε2
1

~ω + ε1 + ε2 + i0
Tr [Aν(−ε2)Bν(ε1)]−

−
∫ +∞

∆

dε1
1 + n(EA,0)− n(−EA,0)

ε1 − EA,0 + ~ω + i0
Tr [Aν+Bν(ε1)]−

∫ +∞

∆

dε1
1 + n(−EA,0)− n(EA,0)

ε1 + EA,0 + ~ω + i0
Tr [Aν−Bν(ε1)]− (D24)

− [n(−EA,0)− n(EA,0))]
Tr [Aν−Bν+]

2EA,0 + ~ω + i0
+ c.c.(−ω),

where c.c.(−ω) denotes the complex conjugate of all of the preceding terms in the equation, in which we also change
ω → −ω. Different terms in Eq. (D24) correspond to different transition processes. The first line corresponds to a
process in which a Cooper pair in the condensate is broken to produce two quasiparticle excitations in the continuum.
The second line contains processes that involve both the ABS and the quasiparticle continuum. Finally, the first
term in the third line corresponds to transition processes that involve only the ABS. The contributions to χK

AB [ω, n]
stemming from the first two lines are small at small frequencies due to the large energy denominators. They can be
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neglected for ~ω � ∆− EA,0 in comparison with either the first term in the third line of (D24), or with the adiabatic
contribution to the response function. In the main text we assumed EA,0

<∼ ∆ and thus it was enough to require
~ω � ∆ to neglect the first two lines of Eq. (D24).

Equation (D24) can be used to obtain an especially simple expression for the diagonal components of the dynamic
part of the response function, δχAA. We find

δχAA[ω, n] = −
∫ +∞

∆

dε1dε2

ε1 + ε2

2~2ω2

(ε1 + ε2)2 − (~ω + i0)2
Tr [Aν(−ε2)Aν(ε1)]−

−
∑
σ=±

(1 + σ [n(EA,0)− n(−EA,0)])

∫ +∞

∆

dε1

ε1 − σEA,0

2~2ω2

(ε1 − σEA,0)2 − (~ω + i0)2
Tr [AνσAν(ε1)]− (D25)

− [n(−EA,0)− n(EA,0))]
1

2EA,0

2~2ω2

4E2
A,0 − (~ω + i0)2

Tr [Aν−Aν+] .

Notice that the diagonal parts of the response function scale as ∝ ω2 at small frequencies.

5. Occupation rule in the absence of interactions

In the absence of interaction the response functions satisfy the occupation rule,

1

2
(χAB [ω, 0] + χAB [ω, 2]) = χAB [ω, 1]. (D26)

This can be easily checked using Eq. (D24) for the finite-frequency response function χAB [ω, n]. To do that, first note
that n(−EA,0)− n(EA,0) = 1 in the state |00〉 and n(−EA,0)− n(EA,0) = −1 in the state |20〉. Therefore, the average
of n(−EA,0)− n(EA,0) between the even states is zero. At the same time, n(−EA,0)− n(EA,0) = 0 in the odd states.
Thus Eq. (D26) holds.

We believe that the validity of the occupation rule Eq. (D26) in the absence of Coulomb interaction is not restricted
to a particular model considered here. First of all, Eq. (D26) is agnostic to the presence of other ABS within the gap,
as long as they have a consistent occupation. Equation (D26) should also hold at U = 0 in the presence of magnetic
field and spin-orbit coupling (though in the absence of spin-degeneracy the right hand side of Eq. (D26) should be
replaced with a half-sum of the odd sates in the considered spin-split doublet). Finally, the occupation rule also
survives the presence of above-the-gap quasiparticles provided that the occupation of the ABS is certain.

Appendix E: Effects of capacitance between the dot and the leads

Throughout the main text, we assumed that the capacitance between the dot in the weak link and the gate, Cg,
is much larger than capacitances between the dot and the leads, CL and CR (indices L/R correspond to left and
right lead, respectively). This may not necessarily be the case in the experiments. In this Appendix, we discuss
the modifications of our theory that arise when capacitances between the leads and the dot are comparable to the
capacitance between the gate and the dot. We still neglect the capacitance between the dot and the ground, assuming
that the grounded parts of the device are located sufficiently far away from the weak link.

The main effect of appreciable CR and CL is the modification of a relation between the energy of the level at the
dot, εg(t), and the voltages Vg(t), VL(t), and VR(t) [here Vg(t) is the voltage bias applied to the gate, VL(t) is the
voltage at the left lead, and VR(t) is the voltage at the right lead]. We find

εg(t) = −eCgVg(t) + CLVL(t) + CRVR(t)

Cg + CL + CR
. (E1)

This expression should be contrasted with a simpler relation used in the main text, εg(t) = −eVg(t); the latter relation
is justified only when Cg � CL, CR. Keeping in mind the modified expression for εg(t), Eq. (E1), the low-energy

Hamiltonian is still given by H
(le)
even = Eeven +H + Θ, where Eeven is determined by Eq. (22), H is determined by

Eq. (C16), and Θ is determined by Eq. (C17).
Next, we derive the relation between the admittance matrix of the weak link and the response functions χII , χIQ,

χQI , and χQQ, taking into the account CL and CR. Motivated by cQED applications of Section VII, we assume that
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the gate voltage is static. Then we find

YLL[ω] =
χII [ω]

−iω +
Cg − CL + CR
Cg + CL + CR

χIQ − χQI
2

+

(
Cg − CL + CR
Cg + CL + CR

)2
iωχQQ

4
, (E2a)

YLR[ω] =
χII [ω]

iω
− 1

2

Cg(χIQ + χQI)− (CL − CR)(χIQ − χQI)
Cg + CL + CR

+
C2
g − (CL − CR)2

(Cg + CL + CR)2

iωχQQ
4

, (E2b)

YRL[ω] =
χII [ω]

iω
+

1

2

Cg(χIQ + χQI) + (CL − CR)(χIQ − χQI)
Cg + CL + CR

+
C2
g − (CL − CR)2

(Cg + CL + CR)2

iωχQQ
4

, (E2c)

YRR[ω] =
χII [ω]

−iω − Cg + CL − CR
Cg + CL + CR

χIQ − χQI
2

+

(
Cg + CL − CR
Cg + CL + CR

)2
iωχQQ

4
. (E2d)

Matrix Yij [ω] can be used to determine the frequency shift of the microwave resonator coupled to the weak link, see
Eq. (51).
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