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Two indicators of finite-temperature topological properties based on the Uhlmann connection,
one generalizing the Wilson loop to the Uhlmann-Wilson loop and the other generalizing the Berry
phase to the Uhlmann phase, are constructed explicitly for a time-reversal invariant topological
insulators with a Z2 index. While the phases of the eigenvalues of the Wilson loop reflect the Z2

index of the model at zero temperature, it is found that the signature from the Uhlmann-Wilson
loop gradually fades away as temperature increases. On the other hand, the Berry phase exhibits
quantization due to the underlying holonomy group. The Uhlmann phase retains the quantization
at finite temperatures and serves as an indicator of topological properties. A phase diagram showing
where jumps of the Uhlmann phase can be found is presented. By modifying the model to allow
higher winding numbers, finite-temperature topological regimes sandwiched between trivial regimes
at high and low temperatures may emerge.

I. INTRODUCTION

In recent years, there has been a huge progress in
understanding the topological properties of quantum
matter, such as topological insulators and topological
superconductors1–5. One important achievement is the
ten-fold way classification3 of free fermion systems ac-
cording to three types of discrete symmetries. Other than
the symmetry class A, almost all topological non-trivial
phases are protected by certain symmetries, leading to a
more general concept of symmetry protected topological
phases. Despite the rapid developments over the past
decade, most works focus on the topology of the ground
state at zero temperature. When a quantum system is
at finite temperature or out of equilibrium, one has to
consider the topological properties of a mixed state that
represents a statistical ensemble. The research on the
topology of mixed states is an active field6–11 and is the
main focus of this work.

The basis of the ground state topology is usually built
on the Berry connection12, which gives a geometric phase
to the wavefunction under cyclic adiabatic evolution.
From the Berry connection, one can obtain the Berry
phase, Berry curvature, and other topological character-
istics. In parallel, several pioneer works7,8,13,14 tried to
generalize the concept of geometric connection of pure
states to mixed states. Among these attempts, the
Uhlmann connection15–18 is a promising notion defined
on the fiber bundle from full-rank density matrices. The
key point of the Uhlmann connection is the parallel con-
dition between the amplitudes of density matrices, which
will be briefly reviewed later. The Uhlmann connection
and its associated quantities have been applied to un-
derstand the topology of several one-dimensional or two-
dimensional models6,7,19,20, spin systems21,22, and oth-
ers23. It has been found that at certain critical temper-
ature, there exists a transition from a topologically non-
trivial phase to a trivial phase accompanied by a jump
in the Uhlmann phase. The topology change comes from
the Uhlmann holonomy, as explained in Refs.19,22.

Here we will apply the Uhlmann connection to in-
vestigate an exemplary time-reversal invariant topolog-
ical insulators (TI) at finite temperatures. The time-
reversal invariant TI, or quantum spin Hall effect, has
been proposed by Kane and Mele for graphene24 but
was not successfully realized due to the weak spin-orbital
coupling. The non-trivial phase was also proposed to
be realizable in the HgTe quantum well25, which was
experimentally observed26. The band structure of the
HgTe quantum well can be captured by a simple 4-band
model, which is also known as Bernevig-Hughes-Zhang
(BHZ) model. This model will be the main platform
here for testing finite-temperature topological indicators
based on the Uhlmann connection. The Z2 topological
index characterizing the topology of the time-reversal in-
variant TI at zero temperature is more subtle than the
ordinary Chern number. For example, the calculation
of the Fu-Kane invariant27 requires the use of globally
defined eigen-functions. This drawback prompted later
works28 to make use of gauge invariant quantities, such
as the Wilson loop, to indicate the underlying topol-
ogy. Due to the strong analogy between the Berry and
Uhlmann connections, we propose to implement both the
Uhlmann-Wilson loop and the Uhlmann phase as indica-
tors to study the finite-temperature topology, using the
BHZ model as an example. We mention that the BHZ
model has been studied by using the Uhlmann connec-
tion in Ref.6, and the Uhlmann holonomy eigenvalues are
presented.

While the Uhlmann-Wilson loop generalizes the Wil-
son loop that gives the Z2 index at zero temperature,
we found that the finite-temperature contributions grad-
ually reduce the magnitude of the phases of it eigen-
values. As a consequence, the difference between the
topological and trivial cases becomes less prominent as
temperature increases. In contrast, the Uhlmann phase
generalizes the Berry phase and still reflects the holon-
omy group. For the BHZ model, the holonomy group is
the Z2 group and the Uhlmann phase remains quantized
at finite temperatures. Therefore, the Uhlmann phase
can still clearly distinguish the topological regime from
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the trivial one. Moreover, a finite-temperature topolog-
ical regime sandwiched by topologically trivial regimes
at both lower and higher temperatures may emerge if
the model allows higher winding numbers. Such a pos-
sibility will be demonstrated by a modification of the
BHZ model. Moreover, it will be pointed out that the Z2

Uhlmann holonomy group is not directly associated with
the Z2 index of the ground state although their topolog-
ical regimes agree at zero temperature. Such a subtlety
shows the rich topological properties and their indicators
at finite temperatures.
The rest of the paper is organized as follows. In Section

II, we briefly review the Uhlmann process from a geomet-
ric point of view. The properties of the BHZ model will
also be reviewed. In Section III, we present the topologi-
cal properties of the BHZ model according to the Wilson
loop and its Uhlmann-Wilson generalization. The gauge-
invariant Z2 index of the BHZ model at T = 0 is shown
to lose its signature as temperature increases. In Section
IV, the Uhlmann phase is introduced as a generalization
of the Berry phase. The quantized Uhlmann phase al-
lows a clear distinction of finite-temperature topological
regimes. We offer semi-analytical explanations of the be-
havior from both approaches. Finally, we conclude our
study in Section V. The Appendix summarizes some de-
tails and properties mentioned in the main text. We set
kB = ~ = 1 for the rest of the work.

II. BRIEF REVIEW OF CONCEPT AND

MODEL

A. Uhlmann process

We begin by briefly reviewing the Uhlmann process,
which is a finite-temperature generalization of the Berry
process at zero temperatures. The Uhlmann process is
based on the concept of the Uhlmann connection, an ana-
logue of the Berry connection. Before going into details,
we first present the Berry connection in a more geometric
point of view. The Berry connection is defined for a given
eigenstate |ψ(r)〉 = eiθ(r)|u(r)〉 with some parameter r.
Due to the arbitrary phase θ(r), |ψ(r)〉 forms a U(1) fiber
bundle over the parameter space. Two different states are
said to be parallel to each other if29 〈ψ(r1)|ψ(r2)〉 > 0.
The infinitesimal version of the parallel condition can be
written as 〈ψ(r)|∂r |ψ(r)〉 = 0, which gives rise to the
Berry connection

Ar = ∂rθ = −i〈u|∂r|u〉. (1)

At finite temperature, the density matrix ρ of a mixed
state should be used in place of the wave function.
The spectral decomposition of the density matrix gives
ρ =

∑

i pi|ui〉〈ui| with the eigenstates |ui〉. In thermal
equilibrium, the weight pn is proportional to the Boltz-
mann factor and all the eigenstates contribute to the den-
sity matrix. At T = 0, the density matrix reduces to a

projection operator of a pure state. The amplitude de-
composition of the density matrix is given by

ρ = ww†, w =
√
ρU. (2)

Here w may be thought of as the counterpart of the wave
function for a mixed state. However, w is not uniquely
determined for a given ρ. Just as a pure state can have
an arbitrary U(1) phase, the definition of w also includes
an arbitrary unitary matrix U . The amplitudes actu-
ally forms a Hilbert space like the wave functions do. In
this space, one can introduce the Hilbert-Schmidt inner

product29 (w1, w2) ≡ Tr(w†
1w2).

The crucial idea of the connection in a fiber bundle
is the parallel condition. Analogous to the case of pure
states, one may attempt to define a parallel condition
for a pair of amplitudes as (w1, w2) > 0. Nevertheless,
Uhlmann15 proposed a more stringent parallel condition:

w†
1w2 = w†

2w1 = X > 0. (3)

Here X > 0 means X is a Hermitian and positive definite
matrix. Given two different amplitudes w1 =

√
ρ1U1

and w2 =
√
ρ2U2, the above parallel condition leads to a

relation between U1 and U2. Note that

X2 = w†
1w2w

†
2w1 = U †

1

√
ρ1ρ2

√
ρ1U1 (4)

implies

X = U †
1

√√
ρ1ρ2

√
ρ1 U1. (5)

Combining the equation with the parallel condition, we
find the phase factor of w2 relative to w1 as

U21 ≡ U2U
†
1 =

√

ρ−1
2

√

ρ−1
1

√√
ρ1ρ2

√
ρ1. (6)

This may be thought of as a finite version of the Uhlmann
connection between w2 and w1. We remark that the
derivation assumes all the ρ’s are full-rank matrices.
Moreover, the parallel condition is not transitive, which
is a general feature of curved space. Therefore, the rela-
tive phase factor is path dependent. For example, if one
considers three different states w1, w2, and w3. The rel-
ative phase factor between w3 and w1 can be computed
in two ways. First, one can go from w1 to w2 and then to
w3. The phase factor is U32U21 in this case. Second, one
can directly go from w1 to w3, which generate a phase
factor U31. From Eq. (6), U31 6= U32U21 in general. In
practice, Eq. (6) may be used to compute the phase fac-
tor between states with small parameter differences.
Sometimes, it is more convenient to work with an in-

finitesimal version of the Uhlmann connection. We con-
sider a pair of density matrices with a small parameter
difference: ρ1 = ρ and ρ2 = ρ+∆kµ∂µρ. Here we assume
that ρ depends on the parameter kµ. The difference in

the parameter is ∆kµ, and ∂µ = ∂
∂kµ

for abbreviation.

After some algebra, the infinitesimal Uhlmann connec-
tion is given by

AU
µ = ∂µUU

†. (7)
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Note that AU
µ defined above is anti-Hermitian. By using

the spectral expansion of the density matrix, an explicit
expression of the Uhlmann connection is shown to be

AU
µ =

∑

i,j

|ui〉〈ui|
[∂µ

√
ρ,

√
ρ]

pi + pj
|uj〉〈uj |. (8)

Meanwhile, the following expression will also be useful:

AU
µ =

∑

i,j

(
√
pi −√

pj)
2

pi + pj
|ui〉〈ui|∂µ|uj〉〈uj |. (9)

The derivation is in Appendix A.
We remark that the Uhlmann connection is also a U(n)

non-Abelian gauge field over a parameter space. Here n
may be associated with the number of bands. Some fea-
tures of the Uhlmannn connection are mentioned here.
Since the definition requires ρ to be non-singular with-
out any zero eigenvalue, Eq. (8) cannot be applied to
pure states. However, it has been shown7 that in cer-
tain cases, the Uhlmann phase obtained from AU ap-
proaches the Berry phase as T → 0. A serious drawback
of the Uhlmann connection is that AU is always non-
singular and supports a global section of the underlying
U(n) bundle. This implies that the the U(n) bundle is
topologically trivial and all characteristic classes, such
as the Chern class and Chern character, computed from
the Uhlmann curvature will vanish8. To overcome this
difficulty, Ref.20 proposes the Uhlmann number, which
approaches the Chern number as T → 0. Ref.30 also sug-
gests a modified Chern-number formula to extract non-
vanishing results from the Uhlmann connection.

B. Four-band Bernevig-Hughes-Zhang model

We also review a prototype of time-reversal invariant
topological insulators, the four-band Bernevig-Hughes-
Zhang (BHZ) model. Before we consider this model at
finite temperatures, we first describe its topological char-
acter at zero temperature. The Hamiltonian of BHZ
model is given by

H = t

(

H0(k) H1

H†
1 H∗

0 (−k)

)

. (10)

The corresponding wave function is ψ =
(ψ1↑, ψ2↑, ψ1↓, ψ2↓)

T , where the index i = 1, 2 la-
bels the two orbitals and the up or down arrow labels
the spin. Here the hopping coefficient t serves as the
energy unit, and we assume t = 1 for convenience in the
following discussion. H0 is the Qi-Wu-Zhang (QWZ)
model31 given by

H0 = sinkxσ1 + sin kyσ2 + (m+ cos kx + cos ky)σ3.(11)

Here σi for i = 1, 2, 3 are the Pauli matrices. The model
of Eq. (11) is an ordinary Chern insulator with the Chern
number

C =







1, 0 < m < 2;
−1, −2 < m < 0;
0, |m| > 2.

(12)

The H1 term is given by

H1 =

(

0 γ
−γ 0

)

, (13)

which is included to break the Sz conservation and the in-
version symmetry. The corresponding time-reversal (TR)
operator is UTK with UT = iσ2 and K denoting the
complex conjugation operator. The topology of the BHZ
model is protected by time-reversal symmetry because of
the TR invariant condition

U †
TH

∗(k)UT = H(−k). (14)

Due to the TR symmetry condition, the lowest two bands
are degenerate at the four time-reversal invariant mo-
mentum points k1 = 0, k2 = (±π, 0), k3 = (0,±π), and
k4 = (±π,±π). Thus, one cannot define the Chern num-
ber for these two bands separately. However, the total
Chern number of those two band is identically zero be-
cause they have opposite Chern numbers due to the TR
symmetry.
Although the total Chern number is always zero, the

non-trivial topology can be characterized by the Z2 in-
dex. One way to compute the Z2 index is through the
Fu-Kane invariant27 summarized in Appendix B. The
Fu-Kane index has the advantage of being computation-
ally manageable since it only involves an evaluation of
the matrix W̄ shown in Eq. (B1) at the four TR invari-
ant momentum points. However, the evaluation of the
matrix W̄ requires the use of a globally defined eigen-
state, which exists in principle but is difficult to find.
For the BHZ model with small γ, the Fu-Kane invariant
is given by

IFK =

{

−1, |m| < 2,
1, |m| > 2.

(15)

Therefore, the condition of non-trivial topology of the
BHZ model is almost the same as that of the QWZ
model. At T = 0, the emergence of edge states in a sys-
tem with open boundary condition may be considered as
another topological property1–3. The edge states of the
BHZ model are reviewed in Appendix B.

III. TOPOLOGY ACCORDING TO WILSON

LOOP

A. Topology at zero temperature

Instead of the Fu-Kane index, there are other works
proposing manifestly gauge invariant methods to com-
pute the Z2 index. Here we follow the method based
on the Wilson loop or Wannier center28 by defining a
Wilson line operator across a given link on a lattice in
momentum space. The matrix element is given by

Wmn
i,i+1(ky) = 〈um(kx,i, ky)|un(kx,i+1, ky)〉. (16)

Here |um〉 denotes the eigenstate in momentum space and
the indices m,n run through all the occupied bands. In
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the case of the half-filled BHZ model, Wi,i+1 is a 2 by 2
matrix. The Wilson loop with fixed ky can be obtained
from

W (ky) =W0,1W1,2W2,3 · · ·WN−1,NWN,0. (17)

Here N is the lattice number along the x-axis. We note
the Wilson line depends on the gauge choice of the eigen-
states. Under the transformation |u(k)〉 → |un(k)〉eiθ(k),
we find that Wi,i+1 → Wi,i+1e

iθ(kx,i+1,ky)−iθ(kx,i,ky). If
a closed loop is traversed in Eq. (17), all the arbitrary
gauge dependence cancels out and the Wilson loop is
manifestly gauge invariant. In the continuum limit, the
above Wilson line can also be expressed in terms of the
non-Abelian Berry connection as

Wi,i+1(ky) = P exp
(

i

∫ kx,i+1

kx,i

dk′Ax(k
′, ky)

)

≈ exp
(

iAx(kx,i, ky)∆k
)

, (18)

Amn
µ (k) = −i〈um(k)| ∂

∂kµ
|un(k)〉. (19)

Here µ = x, y, ∆k = kx,i+1 − kx,i, and P denotes the
path ordering of the following integral. Therefore, the
Wilson loop can be written as

W (ky) = P exp
(

i

∫

C

Aµ(k)dkµ

)

. (20)

The integral contour C is the loop with fixed ky while
kx varies from 0 to 2π. According to the Stoke theorem,
the line integral of the Berry connection along a close
loop equals to the surface integral of the Berry curvature,
which also demonstrates that the Wilson loop is gauge
invariant.
With the Wilson loop in hand, we define the Z2 index

by the phase of the eigenvalues ofW (ky). SinceW (ky) is
a unitary matrix, its eigenvalues λn(ky) are unit-modulus
complex number. For given ky, we introduce

θ(ky) = arg[λn(ky)]. (21)

Here arg denotes the phase angle (or argument) of a
complex number. For the BHZ model, there are only
two arguments θ1,2(ky). Since detW = 1, we always
have θ1 = −θ2. At the TR invariant momentum point
ky = 0 or ky = π, the Wilson loop W has degenerate
eigenvalues due to the TR symmetry. Therefore, we find
θ1(0) = θ2(0) and θ1(π) = θ2(π).
To understand the topology from a different perspec-

tive, we plot θ1 = −θ2 as a function of ky that shows two
different types of behavior in the top row of Figure 1. In
the left panel, we assume m = 0.8 and γ = 0.2 corre-
sponding to the topological case. The two phases start
from zero at ky = 0 and gradually increases to θ1 = π
and θ2 = −π at ky = π. Note that ±π are the same
modulo 2π, thus we have θ1 = θ2 at ky = 0, π as required
by the TR symmetry. As ky further increases to 2π, θ1,2
come back to zero. In this case, one can see that the
phase angle θ1,2 have traveled around a full circle, which
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Figure 1. Top row: The phase angles θ1 and θ2 = −θ1 of the
eigenvalues of the Wilson loop W (ky) of Eq. (17) for the BHZ
model as a function of ky with m = 0.8 and γ = 0.2 (left) and
m = 2.2 and γ = 0.2 (right). Bottom row: The phase angles
θU1,2,3,4 of the eigenvalue of the Uhlmann Wilson loop V (ky)
of the BHZ model as a function of ky with m = 0.8, γ = 0.2,
and T/t = 0.4 (left) and T/t = 2.4 (right). Since θU ’s satisfy
Eq. (26), each point is doubly degenerate.

signals the non-trivial topology. On the other hand, for
the case with m = 2.2 and γ = 0.2 in the right panel
of Figure 1, we find that θ1,2 depart from zero not too
far before coming back to zero again. The phases never
make a full circle in the latter case, and this represents
the trivial topology.

B. Topology at finite temperature

We now study finite-temperature topological proper-
ties of the BHZ model. Away from zero temperature,
the Fermi distribution deviates from the step function,
and all the bands have non-vanishing occupation. It is
not possible to concentrate only on the occupied bands
and define the non-Abelian Berry connection as the zero-
temperature case. Since all the bands contribute at finite
temperatures, we will use the Uhlmann connection to re-
place its zero-temperature counterpart and explore the
topology at finite temperatures.
Following the idea, the Berry connection in the Wilson

loop is replaced by the Uhlmann connection. The result
is the Uhlmann-Wilson loop along a closed curve C in
the parameter space given by

V = P exp
(

∫

C

AU
µ dkµ

)

. (22)
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Again, the integral is under the path ordering. For the
BHZ model, the Uhlmann Wilson loop is a 4 by 4 matrix.
At zero temperature, we have seen that the topology is
reflected by the phase of the eigenvalues of the Wilson
loop. As a finite T counterpart, we define the following
phase angle for a fixed ky:

θUn (ky) = arg[λn(ky)]. (23)

Here λn is the n-th eigenvalue of the Uhlmann-Wilson
loop V .
To compute the Uhlmann-Wilson loop, we discretize

the momentum space by a lattice and calculate the
thermal-equilibrium density matrix ρ(k) at each site. For
a given ky, the Uhlmann-Wilson line across a link on the
momentum-space lattice can be obtained by

Vi,i+1(ky) =

√

ρ−1
2

√

ρ−1
1

√√
ρ1ρ2

√
ρ1. (24)

Here ρ1 = ρ(kx,i, ky) and ρ2 = ρ(kx,i+1, ky). Finally, the
Uhlmann Wilson loop is given by the product around a
loop:

V (ky) = V0,1V1,2V2,3 · · ·VN−1,NVN,0. (25)

The numerical results of θn from the Uhlmann-Wilson
loop is shown in the bottom row of Figure 1 for selected
values of temperature. An interesting feature is the rela-
tion

θU1 = θU2 = −θU3 = −θU4 . (26)

A qualitative understanding of this feature is given in Ap-
pendix C. Although the phase θUn approaches θ from the
Wilson loop at zero temperature as T → 0, we observe
some important differences at finite temperature. Firstly,
θU ’s are no longer pinned to zero at the TR invariant mo-
mentum points away from T = 0. At low temperatures,
when the system traverses a loop from ky = 0 to 2π, θU

is initially close to zero and increases to near π before
going back close to their initial values. The phases thus
do not make a complete circle as θ from the Wilson loop
does at zero temperature. If we raise the temperature fur-
ther, θU only deviates from its initial value slightly before
coming back. Although the winding of θU is obscured by
finite-temperature effects, we may still roughly see the
non-trivial topology at low T . Therefore, the signature
of the Z2 index gradually fades away at high enough T .
As T → ∞, all the density matrix are proportional to
the identity matrices. Thus, V is also proportional to
the identity matrix and θUn = 0 for all n.
The winding number of each θUi can be defined more

precisely as

wU
i =

1

2π

∫ 2π

0

dky
dθUi (ky)

dky
. (27)

Strictly speaking, the winding number of each θUi can be
non-vanishing only in the T → 0 limit. In the regimes
where the winding number is finite at zero temperature,
the variation of θUi deviates from a complete coverage

at finite temperatures. While the Z2 index and the as-
sociated winding number of the zero-temperature BHZ
model may be inferred from transport measurements26,
finite-temperature effects will smear out the signature
and make it more challenging to identify the topologi-
cal regime as temperature increases.

C. Discussion

Here we make some approximations to understand the
main features of the numerical results. To simplify the
calculation, we set γ = 0. We have checked numerically
that a small γ will not cause qualitative changes. With
vanishing γ, the BHZ model becomes

H = R1σ3 ⊗ σ1 +R2σ0 ⊗ σ2 +R3σ0 ⊗ σ3, (28)

R1 = sin kx, R2 = sin ky, R3 = m+ cos kx + cos ky.

Here σ0 is the 2 by 2 identity matrix. For later con-
venience, we denote Γ1 = σ3 ⊗ σ1, Γ2 = σ0 ⊗ σ2 and
Γ3 = σ0 ⊗ σ3. This model has two doubly degenerate
eigenvalues E = ±R with R =

√

R2
1 +R2

2 +R2
3. We de-

note the eigenstates as |u1〉 and |u2〉 for energy E = R
and |u3〉 and |u4〉 for E = −R. The projectors of the
subspace spanned by |u1,2〉 and |u3,4〉 are found to be

P1 = |u1〉〈u1|+ |u2〉〈u2| =
1

2
(1 + R̂iΓi), (29)

P2 = |u3〉〈u3|+ |u4〉〈u4| =
1

2
(1 − R̂iΓi), (30)

where we define R̂i = Ri/R and the repeated indices
imply a summation.
In thermal equilibrium, the distributions of the two

subspaces are given by (kB = 1)

p1,2 =
e∓R/T

Z
, Z = 4 cosh(R/T ). (31)

From Eq. (9), we can obtain the Uhlmann connection by
evaluating

AU
µ = f(R)(P1∂µP2 + P2∂µP1) = − i

2
f(R)ǫijkR̂i ∂µR̂jSk.

(32)

Here ǫijk is the Levi-Civita symbol, and the repeated
indices imply summation. We also define S1 = σ0 ⊗ σ1,
S2 = σ3 ⊗ σ2, S3 = σ3 ⊗ σ3, and f(R) = 1− 1

cosh(R/T ) .

At the TR invariant momentum points ky = 0, π, we

can compute V explicitly because R̂2 = 0 and find the
vector ǫijkR̂i∂xR̂j = (0, R̂3∂xR̂1 − R̂1∂xR̂3, 0) with a
fixed direction. Therefore, the path ordering becomes
trivial in this case, allowing us to find the Uhlmann-
Wilson loop as

V = exp
[

− iS2

2

∫

C

f(R)(R̂3∂xR̂1 − R̂1∂xR̂3)dkx

]

.(33)
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Here ∂x = ∂
∂kx

, and C is a contour with fixed ky = 0, π
while kx varies from 0 to 2π. Finally, we obtain

θU = ±1

2

∫

C

f(R)(R̂3∂xR̂1 − R̂1∂xR̂3)dkx. (34)

At low T , f(R) ≈ 1 and the above integral gives πw,
where w is the winding number of the 2D vector R =
(R1, R3) around the origin R = 0. With the parame-
ters used in the topological case of Figure 1, we have
|m + cos ky| < 1 at ky = π. Thus the loop traversed
by the tip of R encloses R = 0 in this case, giving rise
to w = 1 and θU ≈ π at ky = π. On the other hand,
|m + cos ky| > 1 at ky = 0, thus the loop of R does not
enclose R = 0. Therefore, we find θU ≈ 0 at ky = 0
as w = 0. In contrast, the topologically trivial case al-
ways has w = 0. This analysis shows that θU reflects the
winding number that characterizes the underlying topol-
ogy. At high T , f(R) decreases rapidly, causing θU to
approach zero. Hence, θU gradually loses its indication
of the winding number, as shown in the bottom row of
Figure 1. Further approximate results when ky 6= 0, π
can be found in Appendix C, which further catch the
features of Figure 1.

IV. TOPOLOGY ACCORDING TO UHLMANN

PHASE

The characterization according to the Uhlmann-
Wilson loop diminishes as temperature increases, pre-
venting it from being a quantized indicator of the topol-
ogy at finite temperatures. In the following, we will show
that the Uhlmann phase, which is a finite-temperature
generalization of the Berry phase, gives quantized values
for characterizing the topology at finite temperatures.

A. Topology at zero temperature

At zero temperature, the Berry phase may be obtained
from the Wilson loop via the expression

Φ = argTr
[

W (ky)
]

. (35)

Here W (ky) is the wilson loop defined in Eq. (20). Since
the two occupied states of the BHZ model are almost
degenerate, the density matrix is close to the identity
matrix. From the discussion of section III, we know that
the eigenvalues of W (ky) are exp[±iθ(ky)]. Therefore,

Φ = arg[cos θ(ky)] =

{

π, π/2 < |θ(ky)| < π;
0, 0 < |θ(ky)| < π/2.

(36)

One can see that the Berry phase will jump from zero to
π when θ is larger than π/2. In the top row of Figure
2, we show the Berry phase Φ of the BHZ model as a
function of ky. For m = 0.8, there is jump from zero to π
indicating a non-trivial topological phase. On the other
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Figure 2. Top row: Berry phase Φ of the BHZ model as a
function of ky with γ = 0.2, m = 0.8 (left) and m = 2.2
(right). Bottom row: Uhlmann phase ΦU of the BHZ model
as a function of ky with m = 0.8, γ = 0.2, and T/t = 0.4
(left) and T/t = 2.4 (right).

hand, there is no such jump for m = 2.2, which is topo-
logically trivial. Although the topological regimes from
the Z2 index and from the nontrivial Berry phase agree
at T = 0, we would like to mention the subtlety that the
Berry phase does not reveal whether θ from the Wilson
loop winds around a full loop or not. In other words,
the Berry phase is not another way of expressing the Z2

index. In fact, the Berry phase indicates whether the
horizontal lift forms a closed loop22, revealing the holon-
omy group. For the BHZ model, the quantized Berry
phase indicates the holonomy forms a Z2 group.

B. Topology at finite temperature

The Uhlmann phase has been previously used to char-
acterize the topology of two-dimensional Chern insula-
tor at finite temperatures20. Here we will present the
Uhlmann phase of the BHZ model with periodic bound-
ary condition. Suppose we start from a state with ampli-
tude w0 =

√
ρ0 and parallel transport it along a closed

loop to obtain w1 =
√
ρ0V , where V is from Eq. (22),

then the Uhlmann phase is defined as

ΦU = argTr(w†
0w1) = argTr

[

ρ0 P exp(

∫

C

AU
µ dkµ)

]

.(37)

We consider the integration path C from kx = 0 to 2π
with fixed ky. The numerical results of ΦU for this case
is shown in the bottom row of Figure 2 for selected values
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of temperature. We remark that path ordering appears
explicitly in the definition of ΦU and needs to be followed
in the numerical calculation.
Importantly, we find that ΦU only takes discrete values

of 0 or π. At low T , ΦU = π inside an interval along the
ky axis. At high T , ΦU is always zero, regardless of the
value of ky. Therefore, we may consider the abrupt jump
of ΦU from 0 to π as an indicator of the emergence of
non-trivial topology in the Uhlmann holonomy, implying
a change of the horizontal lift after a cycle22. We find
that the Uhlmann phase actually provides us a quantized
indicator of the topology when compared to θU from the
Uhlmann-Wilson loop. Based on ΦU , we can estimate
the transition temperature Tc that separates the trivial
and topological regimes as m varies. Here the trivial
regime has ΦU = 0 throughout all values of ky while the
topological regime has ΦU = π in certain range of ky.
The phase diagram of the BHZ model is shown in Figure
3. At T = 0, the topological regime agrees with that from
the Z2 index. However, the Uhlmann phase allows a clear
distinction between the topological and trivial regimes at
finite temperatures.
Moreover, we have verified that the critical tempera-

ture of the BHZ model according to the Uhlmann phase
is not affected by switching the order of kx, ky in the cal-
culation. It has been shown8 that the transition temper-
ature of the QWZ model based on the Uhlmann Chern
number does depend on the order of integration of kx, ky.
However, the Uhlmann phase ΦU can vary continuously
between zero and ±π in the QWZ model8,19, but ΦU only
takes two discrete values 0, π in the BHZ model. The
simplicity of the Uhlmann holonomy of the BHZ model
may be behind the independence of its Tc on the order
of kx, ky. We also mention that finite-temperature topo-
logical properties of the BHZ model have been discussed
in Ref.6. However, the topological indicators used there
for the BHZ model to show the change of topological
properties by temperature effects are the amplitudes and
phases of the eigenvalues of the matrix ρ0V , where V is
given by Eq. (22). Those quantities are different from θU

and ΦU that we have used here. Although the Uhlmann
phase ΦU was mentioned in Ref.6, its behavior from the
BHZ model was not analyzed in detail.

C. Discussion

Again, we will use approximations to understand the
Uhlmann phase ΦU . It can be shown that the density
matrix of the BHZ model with γ = 0 in equilibrium is
given by

ρ = piPi =
1

4

(

1− tanh(
R

T
)R̂iΓi

)

, (38)

where Γi with i = 1, 2, 3 are the matrices defined below
Eq. (28). For convenience, we assume that the initial
point of the holonomy corresponds to kx = 0. Note that
Tr(ΓiSj = 0) for all i, j. Combining this with Eq. (C6),

Trivial

Topological

-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

m

T
�t

Figure 3. Phase diagram of the BHZ model according to the
Ulhamnn phase as a function of m. Here γ = 0.2. The dashed
line at T = 0 indicates the topological regime according to the
Z2 index.

we find

Tr(ρV ) = cosu, (39)

which is a real number. Therefore, the Uhlmann phase
ΦU = arg[Tr(ρV )] can only be 0 or π and thus quantized.
Moreover, we have the exact result

Tr(ρV ) = cos
[1

2

∫

C

f(R)(R̂3∂xR̂1 − R̂1∂xR̂3)dkx

]

(40)

at ky = 0, π. The Uhlmann phase also indicates the
Uhlmann holonomy forms a Z2 group. In the topological
case, u can be greater than π/2 and give rise to a jump
of ΦU from 0 to π.
Although both the Berry phase and Uhlmann phase

are quantized due to the corresponding holonomy groups,
the latter has temperature as an additional tuning pa-
rameter. Because of this, a possibility of seeing topo-
logically nontrivial ΦU only within some finite-T region
emerges. To demonstrate the finite-temperature topo-
logical regime, we consider the following generalization
of the BHZ model, which introduces a higher winding
number:

H = R1σ3 ⊗ σ1 +R2σ0 ⊗ σ2 +R3σ0 ⊗ σ3, (41)

R1 = sin 2kx, R2 = sin ky R3 = m+ cos 2kx + cos ky .

At T = 0, the phase θ of the eigenvalues of the Wilson
loop winds around the Brillouin Zone twice. Therefore,
the ground state is topologically trivial according to the
Z2 index due to the higher winding number. Meanwhile,
the Berry phase takes the quantized values of 0 or π as ky
varies. The Uhlmann holonomy varies with temperature
and jumps of the Uhlmann phase may occur at finite tem-
peratures. In Figure 4, we plot the Uhlmann phase ΦU

as a function of ky of the model at different temperatures
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Figure 4. Uhlmann phase ΦU of the BHZ model with a higher
winding number shown in Eq. (41) as a function of ky for
panels (a,b,c) and as a function of T for panel (d). For panels
(a), (b) and (c), T/t = 0.4, 0.8, 1.4, respectively. For panel
(d), ky = π. Here m = 0.8 and γ = 0.2 for all panels.

and as a function of temperature with fixed ky. One can
see that ΦU as a function of ky may jump even number
of times at fixed T . Importantly, the plot of ΦU as a
function of T with fixed ky (in this case, ky = π) shows
that there exists a topological regime only at finite tem-
perature. Therefore, temperature may introduce topo-
logical behavior in systems with higher winding num-
bers instead of destroying it. Such a finite-temperature
topological regime has also been found in a spin-j para-
magnet driven by a magnetic field21,22, indicating the
generality of temperature-induced topological behavior.
We remark that while the Z2 index reflects the winding
number, which is a topological invariant, the Uhlmann
phase reflects the Uhlmann holonomy group, which ex-
hibits quantized values in the BHZ model.

Although the BHZ model is related to engineered solid-
state structures26, it is difficult to directly measure the
Uhlmann phase in those devices because of the incom-
patibility between the Uhlmann process and Hamilto-
nian evolution32. Nevertheless, it is possible to simulate
and extract the Uhlmann phase of the BHZ model on
a quantum computer, following the idea of Ref.22. In-
stead of constructing the amplitude of the density ma-
trix, the purified state of the system is constructed with
the assistance of an ancilla because of the correspondence
between the amplitude of a density matrix and its puri-
fied state22,33. To compensate for the incompatibility
between the Uhlmann process and the dynamical evolu-
tion according to the Hamiltonian of the system32, one

has to impose engineered time evolution operators on the
system and ancilla to render the correct Uhlmann phase
of the system alone in the purified state. The phase of the
purified state can then be measured via interferometric or
tomographic methods22,33. Furthermore, interferometric
methods34 for statistical ensembles may be generalized
to infer the Uhlmann phase in the future.

V. CONCLUSION

We have presented two finite-temperature generaliza-
tions of topological indicators based on the Uhlmann con-
nection and tested them on the BHZ model. The first
one extends the Wilson loop at zero-temperature to the
Uhlmann-Wilson loop at finite temperatures. While the
eigenvalues of the Wilson loop reflects the winding num-
ber associated with the Z2 index of the BHZ model, the
finite-temperature factor smears out the signature gradu-
ally as temperature increases. In contrast, the Uhlmann
phase extends the Berry phase to finite temperatures
and exhibits quantized values associated with the Z2

group of the Uhlmann holonomy. The quantized values
of the Uhlmann phase thus allow us to map out the di-
agram showing where topological behavior may survive.
The comparison of the two indicators shows that finite-
temperature quantum systems may exhibit various topo-
logical properties characterized by different indicators.
Since the two Uhlmann-connection based approaches to
finite-temperature topological indicators are general, one
can use them to further classify other topological systems
away from the zero-temperature limit.
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Appendix A: Derivation of AU
µ

For completeness, we reproduce the calculation of AU
µ

here. As explained in the main text, we consider two
density matrices ρ1 = ρ and ρ2 = ρ + ε∂µρ. Here ε is a
small parameter, and those two density matrices are close
to each other in the parameter space. Making use of the
parallel condition, we find that the following relation:

(U + ε∂µU)U † =
√

(ρ+ ε∂µρ)−1
√

ρ−1

√√
ρ(ρ+ ε∂µρ)

√
ρ.

(A1)
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The Uhlmann connection is then given by

AU
µ = ∂µUU

†

=
d

dε

√

(ρ+ ε∂µρ)−1
∣

∣

∣

ε=0

√
ρ

+ρ−1 d

dε

√√
ρ(ρ+ ε∂µρ)

√
ρ
∣

∣

∣

ε=0
. (A2)

Now we assume that the eigenvalues and eigenvectors are
Ei and |ui〉. Using the spectral expansion, the density
matrix is given by

ρ =
∑

i

pi|ui〉〈ui|, pi =
e−Ei/T

∑

i e
−Ei/T

. (A3)

To simplify the expressions, we define A =
√

(ρ+ εdρ)

and B =
√√

ρ(ρ+ ε∂µρ)
√
ρ. The following identities

can then be derived:

〈ui|
d

dε
A2|uj〉

∣

∣

∣

ε=0
= (

√
pi +

√
pj)〈ui|

d

dε
A|uj〉

= 〈ui|dρ|uj〉, (A4)

〈ui|
d

dε
B2|uj〉

∣

∣

∣

ε=0
= (pi + pj)〈ui|

d

dε
B|uj〉

=
√
pipj〈ui|∂µρ|uj〉, (A5)

〈ui|
d

dε
A−1|uj〉 = −〈ui|A−1 dA

dε
A−1|uj〉

= − 1
√
pipj

〈ui|
dA

dε
|uj〉. (A6)

Making use of the above identities, we find the matrix
elements of AU

µ as

〈ui|AU
µ |uj〉 =

√
pj〈ui|

d

dε
A−1|uj〉+ p−1

i 〈ui|
d

dε
B|uj〉

= − 1√
pi(

√
pi +

√
pj)

〈ui|dρ|uj〉+
√
pipj

pi(pi + pj)
〈ui|∂µρ|uj〉

= − 1

pi + pj

√
pi −√

pj√
pi +

√
pj

〈ui|∂µρ|uj〉

=
〈ui|[∂µ

√
ρ,

√
ρ]|uj〉

pi + pj
. (A7)

Therefore, we obtained Eq. (8) in the main text. The
above matrix elements can also be rewritten as

〈ui|AU
µ |uj〉 = − 1

pi + pj

√
pi −√

pj√
pi +

√
pj

〈ui|∂µρ|uj〉

=
1

pi + pj

√
pi −√

pj√
pi +

√
pj

(pi − pj)〈ui|∂µ|uj〉

=
(
√
pi −√

pj)
2

pi + pj
〈ui|∂µ|uj〉, (A8)

which give rise to Eq. (9).
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Figure 5. Top row: Energy eigenvalues of the BHZ model
as a function of ky with open boundary along the x-axis.
The left (right) panel corresponds to m = 0.8 and γ = 0.2
(m = 2.2 and γ = 0.2) in the topologically non-trivial (triv-
ial) regime. Bottom row: Wave function amplitudes of typical
edge (squares) and bulk (circles) states of the spin down com-
ponent. The right (left) moving edge state is shown in the
left (right) panel. Here ky = 1.2π, m = 0.8 and γ = 0.2.

Appendix B: More topological properties of the

BHZ model at T = 0

The Fu-Kane invariant is constructed from the matrix
with elements

W̄ij(k) = 〈ui(−k)|UTK|uj(k)〉. (B1)

Here |ui(k)〉 denotes the eigenstate in momentum space
and the indices i, j run through all the occupied bands.
W̄ is an anti-symmetric matrix at the TR invariant mo-
mentum points. The Fu-Kane index is then defined as

IFK =
4
∏

i=1

Pf [W̄ (ki)]
√

det W̄ (ki)
. (B2)

Here the product runs through all the TR invariant mo-
mentum points and “Pf” denotes the Pfaffian. One
then finds non-trivial or trivial topology corresponding
to IFK = −1 or IFK = 1, respectively.
To see the non-trivial topology of the ground state

more clearly, we consider the BHZ model on a cylindrical
geometry with open boundary along the x-axis and peri-
odic boundary along the y-axis. The band structures of
the BHZ model are shown in the top row of Figure 5 for
a topological case (left panel) and a topologically triv-
ial case (right panel). There are four bulk bands. The
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bands of spin up and spin down are not exactly degener-
ate due to the Sz breaking term H1. In the topological
case, there exist two curves connecting the valence and
conducting bands. Each curve actually corresponds to
two degenerate edge states. Thus, there are four edge
states in total. To verify the edge states are localized at
the open boundaries, we show in the bottom row of Fig-
ure 5 the spin down components of two edge states with
different propagating directions, which are localized at
different edges. This is consistent with the helical-mode
behavior, which requires the spin direction to be locked
with the velocity direction at a given edge35. At finite
temperatures, however, all the states are partially occu-
pied due to the Fermi distribution. Therefore, the edge
states no longer provide clear indications of topological
properties.

Appendix C: Approximate results of

Uhlmann-Wilson loop

For ky 6= 0, π, we can only find some approximate re-
sults of the Uhlmann-Wilson loop V . The Uhlmann con-
nection of the BHZ model becomes

AU
x = −if(R)niSi; (C1)

n2 =
1

2
(R̂3∂xR̂1 − R̂1∂xR̂3),

n1 =
R2∂xR3

2R2
, n3 = −R2∂xR1

2R2
.

For fixed ky , R2 is a constant. Thus, we choose to write

the coefficients of ni in terms of Ri instead of R̂i. Since
all the coefficients of Si vary with kx, the matrices of AU

at different ky do not commute with each other. The path
ordering becomes a challenge for evaluating the Uhlmann
connection. In the case of ky 6= 0, π, we can only solve
the Uhlmann-Wilson loop from the following differential
equation

dV (kx)

dkx
= AU

x V (kx) (C2)

with the formal solution V (kx) =

P exp
(

∫ kx

0
AU

x (k
′
x)dk

′
x

)

. We will focus on the Uhlmann-

Wilson loop around a path obtained by V = V (kx = 2π)
as kx goes from 0 to 2π.
For fixed ky , R only weakly depends on kx. Thus, we

would expect that the trajectory of the vector (n1, n3) ∝
(sin kx, cos kx) as a function of kx is roughly like a circle.
We can make a gauge transform to convert the above
circle to a single point. Suppose V = U(kx)V

′, then the
equation becomes

dV ′

dkx
=

(

U †AUU − U † dU

dkx

)

V ′. (C3)

Next, we rewrite AU
x as

AU
x = −if(R)

[

n2S2 −
R2

2R2
e−ikxS2/2S3e

ikxS2/2
]

.(C4)

Now it is clear that we can choose U = e−ikxS2/2 to find

dV ′

dkx
=

{

− if(R)
[

n2S2 −
R2

2R2
S3

]

+
i

2
S2

}

V ′. (C5)

Comparing with the ky = 0, π cases, there are two ex-
tra terms in the transformed AU

x with almost constant

components. If we approximate the trajectory of R̂i by a
constant-latitude circle on a unit sphere, then the vector
n2 is also almost constant. With the above consideration,
we can make a crude approximation to solve the equation
by ignoring the non-commuting parts of AU at different
values of kx and obtain the final results. Explicitly,

V ≈ exp
[

i(−u2S2 + u3S3)
]

, (C6)

u2 =
1

2

∫

C

f(R)(R̂3∂xR̂1 − R̂1∂xR̂3)dkx,

u3 = sin ky

∫

C

f(R)

2R2
dkx,

which can also be expanded as

V ≈ cosu+ i(−û2S2 + û3S3) sinu. (C7)

Here ûi = ui/u and u =
√

u22 + u23. It can be shown that
the eigenvalues of V are e±iu with double degeneracy.
Then, the arguments of the eigenvalues are θU = ±u and
satisfy the relation of Eq. (26). We would expect that
θU will interpolate the results between θU ≈ 0 at ky = 0
and θU ≈ π at ky = π. The correction due to u3 is
negligible around ky = 0, π but becomes largest around
ky = π/2. Thus, the above discussion roughly explains
the qualitative behavior of θU as a function of ky.
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