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The kagome Hubbard model (KHM) is a paradigmatic example of a frustrated two-dimensional
model. While its strongly correlated regime, described by a Heisenberg model, is of topical interest
due to its enigmatic prospective spin-liquid ground state, the weakly and moderately correlated
regimes remain largely unexplored. Motivated by the rapidly growing number of metallic kagome
materials (e.g., Mn3Sn, Fe3Sn2, FeSn, Co3Sn2S2, Gd3Ru4Al12, and AV3Sb5 with A = K, Rb, Cs), we
study the respective regimes of the KHM by means of three complementary numerical methods: the
dynamical mean-field theory (DMFT), the dynamical vertex approximation (DΓA), and determinant
quantum Monte Carlo (DQMC). In contrast to the archetypal square-lattice, we find no tendencies
towards magnetic ordering, as magnetic correlations remain short-range. Nevertheless, the mag-
netic correlations undergo a remarkable crossover as the system approaches the metal-to-insulator
transition. The Mott transition itself does not affect the magnetic correlations. Our equal-time and
dynamical structure factors can be used as a reference for inelastic neutron scattering experiments
on the growing family of metallic kagome materials.

I. INTRODUCTION

Electronic correlations are at the origin of a large va-
riety of exotic phases in transition metal oxides and in-
termetallic compounds [1–3]. Yet, an adequate descrip-
tion of correlated materials remains a long-standing co-
nundrum in condensed matter physics [4]. Pioneering
works of Kanamori [5], Hubbard [6], and Gutzwiller [7]
enlightened the key role of onsite Coulomb repulsion as
the leading source of electronic correlations. The en-
suing model, known as the Hubbard model, became a
paradigm of correlated materials: it is widely used to ra-
tionalize the experimentally observed phenomena such as
metal-to-insulator transitions (MIT) [8], the formation of
local moments [9] and high-temperature superconductiv-
ity [10].

The flip side of such a rich physics and complexity
is that a solution of the Hubbard model becomes in-
tractable for physically relevant regimes. Two prominent
exceptions are the one-dimensional [11] and the infinitely-
dimensional Hubbard models. The latter can be solved
within the dynamical mean-field theory (DMFT) [12, 13],
a self-consistent mapping of a lattice Hubbard model onto
a single-site Anderson impurity model. This mapping
is justified by the rapid suppression of nonlocal corre-
lations concomitant with an increase of the spatial di-
mensionality or the nearest neighbor coordination num-
ber [14, 15]. While in infinite dimensions the DMFT
offers an exact solution of the Hubbard model [16], it
remains a well-justified approximation for realistic three-
dimensional models.

The restriction to local correlations may break down
in two-dimensional models relevant for various experi-
mental situations, e.g. in high-temperature superconduc-
tors [17], ultrathin van der Waals superlattices [18], and
oxide heterostructures [19, 20]. Coordination numbers
in such systems are typically small, and hence the out-

FIG. 1. (a) Unit cell (shaded green) of the kagome lat-
tice described by the basis vectors a1 and a2 comprises three
sites labeled 1, 2, and 3. The Wigner-Seitz cell is shaded
ochre. (b) High-symmetry points of the reciprocal space, the
first and the extended Brillouin zones (BZ). (c) The band
structure (left) and the density of states (DOS, right) of the
tight-binding kagome model with a positive t. The blue line
marks the chemical potential µtb ≈ 0.47, for which the non-
interacting system is half-filled.

come of an onsite scattering event strongly depends on
the configuration of the neighboring sites. A striking ex-
ample showing the importance of nonlocal correlations is
the square-lattice Hubbard model at half-filling, which
describes the physics of parent compounds of cuprate
high-temperature superconductors. Here, DMFT finds
a first-order Mott transition from a metal to a para-
magnetic insulator at low temperatures. Nonlocal cor-
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relations drastically change the physics: while short-
range antiferromagnetic correlations significantly reduce
the critical interaction U , long-range antiferromagnetic
correlations shift the MIT to much smaller interactions,
even to U = 0 for a square lattice Hubbard model with
perfect nesting [21, 22]. Long-range antiferromagnetic
correlations open a gap. This conclusion is corroborated
by quantum Monte Carlo simulations on large finite lat-
tices [21, 23–25]. For two-dimensional lattices without
perfect nesting these results suggest a MIT at still con-
siderably lower values of U . As we will see below, for a
magnetically frustrated model with only short-range an-
tiferromagnetic correlations, such as the KHM, DMFT
only slightly overestimates the critical U of the MIT.

The situation becomes qualitatively different in the
presence of frustration. As sizable ground-state degen-
eracy is typical for a frustrated model, magnetic instabil-
ities may spread over different momenta, suppressing the
overall tendency towards magnetic ordering. Ramifica-
tions for the MIT are surmised, but model-specific infor-
mation is scarce. The most studied case, the Hubbard
model on the triangular lattice, shows a conventional
MIT even if nonlocal correlations are taken into account.
However, the triangular lattice has the sizable coordina-
tion number of six bonds per site, which is the same as in
the 3D cubic lattice. As a result, quantum fluctuations
in the triangular lattice are largely suppressed [26, 27].

The kagome lattice (Fig. 1, a) is a much more apt play-
ground to study the interplay of nonlocal correlations and
frustration. This simple tessellation of regular hexagons
and triangles exhibits a remarkably involved magnetism:
the ground state of the S = 1

2 Heisenberg model on a
kagome lattice remains under debate for several decades,
with the handful of candidate states comprising a Dirac
spin liquid [28–34], a Z2 spin liquid [35–41], a chiral spin
liquid [42–50], and a valence bond solid [51–59]. The vi-
brant research is boosted by experimental studies of her-
bertsmithite γ-Cu3Zn(OH)6Cl2 [60–62]. This correlated
insulator material does not show any sign of magnetic or-
dering down to lowest temperatures [63], despite the siz-
able antiferromagnetic exchange of ∼200K [64, 65]. As
typical for cuprates, the (screened) onsite Coulomb repul-
sion U largely exceeds the intersite hopping amplitude t,
placing herbertsmithite into the strongly correlated limit
of the Hubbard model (U � t). Interactions between
localized S= 1

2 spins in this limit are well-described by
the Heisenberg model.

Much less is known about less correlated regimes of
the half-filled kagome Hubbard model (KHM). Dynami-
cal spin correlations were studied using cluster DMFT on
a N =3 site clusters [66–68] where the first-order metal
to insulator transition (MIT) occurs at Uc = 8.4t [66].
As was noticed in Ref. [69], a major drawback of odd-
numbered clusters is their incompatibility with valence
bond states. Instead, variational cluster calculations on
N =6 and N =12 clusters demonstrate that the forma-
tion of intersite singlets (valence bonds) underlies the
MIT, and propels it to a smaller U value. In the

weak coupling limit, determinant quantum Monte Carlo
(DQMC) calculations reveal a saturation of magnetic cor-
relations at low temperatures, and a Curie-like behavior
for a strong interaction U = 8t [70]. A recent study sug-
gests that the KHM harbors a topologically nontrivial
state, a higher-order topological Mott insulator, charac-
terized by corner modes whose spin excitation spectrum
is gapless [71].

For a long time, the KHM attracted little attention:
although their potential modifications of herbertsmithite
hold promise for unconventional phases [72], pristine
herbertsmithite and related quantum magnets [73–75]
are correlated insulators deep in the Heisenberg limit,
The situation changed drastically after the discovery of
metallic kagome materials Mn3Sn [76–81], Fe3Sn2 [82–
90], Co3Sn2S2 [91–100], Gd3Ru4Al12 [101, 102], and
FeSn [103–106]. The potential of kagome systems to
harbor superconductivity was elucidated by DQMC sim-
ulations long ago [70]. Very recently, the discovery of
superconductivity in the new family of V-based kagome
materials AV3Sb5 [107] (KV3Sb5 [108], RbV3Sb5 [109],
and CsV3Sb5 [110]) resulted in a flurry of activity on ex-
perimental as well as theory side. At present, the mag-
netic properties of these materials remain largely enig-
matic and even the presence of local moments is discussed
controversially [111, 112]. Despite the diversity of struc-
tural motifs and physical behaviors, a common trait of
these materials is metallic conductivity concomitant with
partially filled 3d electronic shells whose contributions
dominate in the low-energy sector. Hence, a key to their
electronic and magnetic properties should be sought in
less correlated regimes of the KHM, which remain hith-
erto largely unexplored.

In this paper, we fill this gap by performing an ex-
tensive numerical investigation of the KHM using three
different many-body techniques: the DQMC[113], the dy-
namical mean-field theory (DMFT) [12, 13], and the dy-
namical vertex approximation (DΓA) [114, 115]. DQMC
is a numerically exact technique for fermionic lattice
models. With the caveat that finite lattices beget finite
size effects, it provides a sound benchmark for quantum
impurity methods. Since frustration of the KHM gives
rise to a severe sign problem, we restrict our DQMC cal-
culations to relatively high temperatures. We use these
results as a benchmark for DΓA, a diagrammatic ex-
tension of DMFT. In contrast to cluster extensions of
DMFT [116], this method accounts for nonlocal corre-
lations on all length scales — from short-range to long-
range. And unlike many QMC-based techniques, dia-
grammatic extensions of DMFT are immune to the sign
problem [115], allowing us to explore more correlated
regimes of the KHM also at lower temperatures. In this
study, we apply the recently implemented self-consistent
DΓA scheme [117], which eliminates the need to re-
store the sum rules by means of so-called λ-corrections
[118, 119].

Our main finding is the gradual correlation-induced
change in the regime of magnetic correlations: While
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maxima at the K-point of the extended Brillouin zone
are indicative of dominant

√
3×
√

3 correlations, the en-
hancement of interaction strength gives rise to the sign
change of third-neighbor correlations. Interestingly, this
crossover occurs in the metallic phase, while spin corre-
lations in the moderately correlated regime are similar to
those of the Heisenberg model. This finding gives us a key
to distinguish between weakly and strongly correlated
regimes in the growing family of kagome materials. Fur-
thermore, we compute the dynamical structure factors
S(q, ω) for the different regimes of the kagome Hubbard
model. Since these quantities are accessible in inelastic
neutron scattering experiments, the relative strength of
electronic correlations in real materials can be estimated
by a direct comparison to our calculated S(q, ω).

Our study is equally important for method develop-
ment in the field of electronic correlations: it applies a di-
agrammatic beyond-DMFT method, DΓA, to a strongly
frustrated two-dimensional model. Extensive compar-
isons with the numerically exact lattice-based method
(DQMC) reveal an overall good agreement, indicating
that a self-consistent DΓA calculation captures the lead-
ing effects of nonlocal fluctuations, even if tendencies to-
wards magnetic ordering are strongly suppressed.

This paper is organized as follows. In Sec. II we in-
troduce the Hubbard model on a kagome lattice, and
briefly explain the methods we use to obtain our results.
The main results are presented in Sec. III, where we first
present the phase diagram and then discuss the magnetic
structure factors. In Sec. IV our results are compared to
previous theoretical results from the literature and put
in the context of present-day experimental research. We
summarize our results in Sec. V. Additionally we pro-
vide more detailed information about the influence of
certain real-space correlations on the structure factor in
Appendix.

II. NUMERICAL METHODS

A. KHM Hamiltonian

We define the Hamiltonian of the Hubbard model on
a kagome lattice as

H =
1

VBZ

∫
BZ

dk
∑
jl,σ

hjl(k)c†jσ(k)clσ(k)

+
∑
R

∑
j

UnRj↑nRj↓, (1)

where VBZ is the volume of the Brillouin zone (Fig. 1, b),
k is the 2D crystal momentum, and indices j and l refer
to the sites within the unit cell and run from 1 to 3. The
three sites comprising the unit cell (as shown in Fig. 1,
a) form an equilateral triangle whose side length is a half
of the lattice constant. The tight-binding Hamiltonian
hjl(k) incorporates the lattice geometry and hopping am-
plitudes. In the second term, we have a sum over all unit

cells, where site j = 1 is located at the Bravais lattice
position R. The interaction, parametrized by a scalar U ,
is of density-density type.

As hopping is allowed only between neighbor sites, the
non-interacting part of the Hamiltonian reads:

hjl(k) = −t

 0 1 + eik1 1 + eik2

1 + e−ik1 0 1 + e−i(k1−k2)

1 + e−ik2 1 + ei(k1−k2) 0

 ,

(2)
where k1 and k2 are the projections of k onto the re-
ciprocal basis vectors b1 and b2. We set the hopping
amplitude to unity t ≡ 1, which defines our unit of en-
ergy used throughout the paper. By further setting ~ ≡ 1
and kB ≡ 1 we also fix the units of frequency and tem-
perature.

By applying a unitary transformation U(K), the
Hamiltonian matrix Eq. (2) can be diagonalized

h(k) = U(k) ε(k)1 U†(k), (3)

where h and U are k-dependent matrices of dimen-
sion three, 1 is a 3×3 identity matrix, and ε is a k-
dependent three-dimensional vector, defining the tight-
binding bands. The latter are shown in Fig. 1, c. Re-
markably, one band is completely flat, corresponding to
a δ-peak in the density of states (DOS). The two disper-
sive bands are identical to those in a honeycomb lattice,
featuring two Van Hove singularities and a Dirac cross-
ing. The eigenstates of the flat band correspond to states
that are localized on hexagonal plaquettes and combina-
tions thereof [120].

Evaluation of eigenenergies of the full Hubbard Hamil-
tonian Eq. (1) is not possible: the tight-binding term
and the interaction term do not commute. We are there-
fore restricted to a handful of numerical methods that al-
low us to calculate correlation functions within a certain
approximation. In this work, we use three many-body
methods to compute properties of the Hubbard model
on a kagome lattice: the dynamical mean-field theory
(DMFT), the dynamical vertex approximation (DΓA),
and the determinant quantum Monte Carlo (DQMC).
Since the kagome lattice is not a standard application
of these methods, we briefly review how they work in
this case in order to prevent confusion.

B. Dynamical mean-field theory

The dynamical mean-field theory (DMFT) utilizes the
equivalence of the Hubbard model in infinite dimen-
sions to an Anderson impurity model. The latter is
amenable to an exact numerical evaluation of correla-
tion functions. The pertinent hybridization function
of the (auxiliary) Anderson impurity model is deter-
mined self-consistently [13]. While DMFT self-energies
are frequency-dependent, they lack momentum depen-
dence, i.e., they are local.
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Although DMFT workflows are exhaustively described
in the literature, we nevertheless provide an outline of our
calculation scheme for the sake of clarity. In each step
of a DMFT calculation, the four following operations are
performed:

1. Calculate the local Green’s function Gloc(iωn) for
the Hubbard model:

Gloc(iωn) =
1

VBZ

∫
BZ

dk
[(
iωn+µ−Σ(iωn)

)
1− h(k)

]−1
At this step the chemical potential µ is adapted in
order to keep the system half filled. Note that the
local Green’s function Gloc(iωn) at fermionic Mat-
subara frequency ωn is a still a matrix with respect
to the three j sites at Bravais lattice site R = 0,
whereas the self-energy Σ(iωn) is scalar multiplied
with the 3× 3 unit matrix 1.

2. Calculate the non-interacting Green’s function
Gj(iωn) for the impurity model at site j within the
unit cell:

[Gj(iωn)]
−1

=

[[
Gloc(iωn)

]
jj

]−1
+ Σ(iωn)

This Gj(iωn) defines three (equivalent) impurity
problems for each site j of the unit cell, consistent
with the DMFT approximation.

3. Calculate the self-energy Σ(iωn) of the impurity
models defined in step 2 by an impurity solver. To
this end, we use the numerically exact continuous-
time quantum Monte Carlo (CT-QMC) algorithm
in the hybridization expansion [121]. Since all three
impurities are equivalent, we need to do this calcu-
lation only once, thus saving computational time.

4. Insert the self-energy Σ(iωn) of step 3 into the ex-
pression for the Green’s function Gloc(iωn) in step
1 and iterate until convergence.

Our calculations were carried out by the program pack-
age w2dynamics [122]. Although we are solving a three-
band model, the downfolding approximation reduces the
numerical cost of the DMFT calculation roughly to that
of a one-band calculation. By using symmetric improved
estimators [123], our DMFT calculations converge very
precisely and the resulting self-energies are practically
free of noise. Using the final impurity model of the con-
verged DMFT calculation, we compute also the general-
ized susceptibility in CT-QMC by worm sampling [124].

C. Dynamical vertex approximation (DΓA)

The DΓA [114, 115] is a method based on Feynman
diagrams. Compared to DMFT, where the self-energy is
local, DΓA goes one step further and imposes locality on

the irreducible two-particle vertex. The Bethe-Salpeter
equation combines these local building blocks by nonlocal
propagator lines and leads to a momentum dependence in
the susceptibility. A momentum-dependent self-energy
is then obtained via the Schwinger-Dyson equation of
motion. In our calculations we use ladder-DΓA, where
nonlocal fluctuations are considered only in the density
(charge) and the magnetic (spin) channel. In the follow-
ing, we sketch the DΓA procedure in a compact tensor
notation suppressing the frequency and for the lattice
quantities momentum and three basis site indices: the
interested reader will find a more detailed description in
[125] and particularly in [117].

The main input of a DΓA calculation is, besides the
tight-binding Hamiltonian, the irreducible vertex Γd(Γm)
in the density (magnetic) channel. It is computed from
the generalized susceptibility χ of the DMFT impurity
by the Bethe-Salpeter equation

Γr = β2
(
χ−1r − χ−10

)
, (4)

where r denotes the channel. Note that the inversion is
done only with respect to fermionic Matsubara frequen-
cies, since the impurity problem has no orbital degrees of
freedom. Next, we perform the following iterative proce-
dure [117]:

1. Calculate momentum-dependent reducible vertices
Fd and Fm for the kagome lattice by the Bethe-
Salpeter equation

Fr =
[
1− 1

β
ΓrGG

]−1
Γr with r = d or m. (5)

Here, the inversions pertain also to the site indices
j and l, since G is the Green’s function of the Hub-
bard model and thus a 3×3 matrix.

2. Combine Fd and Fm to a crossing symmetric vertex
F as explained in Ref. [125].

3. Compute the momentum-dependent self-energy by
the equation of motion, which schematically reads

Σ(k) =
1

2
Un+

1

β2
UGGFG. (6)

The first term is the static (Hartree) contribution,
the second one contains the diagrams of higher or-
der.

4. Construct a new lattice Green’s function G by

G(k, iωn) =
[(
iωn+µ)1− h(k)−Σ(k, iωn)

]−1
(7)

Similar to DMFT, the chemical potential µ can be
(slightly) adapted in order to keep the system half
filled. This Green’s function is now used as a prop-
agator in step 1 and the steps are repeated until
convergence in Σ.
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After convergence is reached, we obtain the self-energy
Σ(k, iωn), which is a full 3×3 matrix in the space of the
three lattice sites of our basis and depends, in addition
to the fermionic Matsubara frequency, also on the crys-
tal momentum k. A similar procedure for unit cells with
multiple equivalent one-orbital impurities was also pro-
posed for the dual fermion approach [126].

D. Determinant quantum Monte Carlo (DQMC)

Mapping onto an auxiliary impurity problem lies at the
core of both DMFT and DΓA approaches. It is therefore
crucial to cross-check the DMFT/DΓA results with an in-
dependent numerically exact method working explicitly
with a lattice problem. To this end, we employ determi-
nant quantum Monte Carlo (DQMC) simulations [113].
This technique explicitly computes nonlocal correlation
functions, such as the lattice Green’s function. There-
fore, the main approximation lies in the restriction to a
finite cluster. As a consequence, quantities such as the
susceptibility or equal time structure factor, which sam-
ple correlations to large distance, have corrections which
scale as 1/L, where L is the linear lattice size. How-
ever, local (e.g. near neighbor) correlation functions are
usually converged to a few percent on lattices of linear
extent L ∼ 10. In the present case computations were
done for clusters of 5×5 unit cells (i. e. 75 sites). We
note that finite-size effects can be efficiently suppressed
by using twist averaged boundary conditions [127, 128].
While it is desirable particularly for low U values, in the
moderately and strongly correlated regimes the Hubbard
U mitigates finite-size effects. DQMC calculations also
have ‘Trotter’ errors proportional to the square of the dis-
cretization interval of the inverse temperature β = 1/T .
In our work Trotter errors are of the same order as, or
smaller than, the statistical errors from the Monte Carlo
sampling. Finally, as noted earlier, DQMC calculations
are limited by the sign problem [129, 130]. A rough rule of
thumb is that DQMC can be done down to temperatures
T ∼ W/30, where W is the bandwidth, for interaction
strengths U ∼W .

Since correlation functions in DQMC are computed di-
rectly in the real space, the necessary postprocessing in-
cludes a Fourier transformation to the momentum space.
This is in contrast to DMFT and DΓA, where we obtain
our results directly in the momentum space. Provided
that the correlation functions show a rapid decay on the
length scale equal to a half of the finite lattice, we can
approximately assume that in the infinite-lattice model
all longer-range correlations are zero. This allows us to
do an interpolation in the momentum space, such that
we can use the same momentum grid in all three meth-
ods. Spatial correlations, especially in the one-particle
Green’s function, become shorter-ranged if the interac-
tion strength U is increased. At U = 3 our maximally
feasible cluster size of 75 sites leads to mild finite-size
effects, noticeable as a peak broadening in the spectral

function around the Γ-point in the bottom left panel
of Fig. 4. However, no finite size effects are visible for
stronger interactions.

III. RESULTS

We divide our results in two parts. In Sec. III A, we
focus on the phase diagram of the KHM in the metal-
lic regime and discuss how the spectral function evolves
as a function of the interaction strength and tempera-
ture. While it is a common way to describe the physics
of a model, we surmise that from the experimental view-
point such a discussion is largely disconnected from the
physics of kagome materials: there is no recipe to extract
the information on the interaction strength U for a given
material. To alleviate this problem, we present our re-
sults for the equal-time S(q) as well as dynamical S(q, ω)
structure factors for different U values in Sec. III B. As
these quantities are experimentally accessible, a direct
comparison between theory and experiment can yield an
estimate for U .

A. Phase diagram of the kagome Hubbard model

The Hubbard model is famous for exhibiting a tran-
sition between a metallic state and an insulating state
upon variation of the interaction strength. This generic
trend holds for the kagome lattice: In the KHM, the local
spectral functions [131] (Fig. 2) show a reduction of the
spectral weight around the Fermi level (at ω = 0) upon
increasing U , and the system eventually turns insulating
once the interaction exceeds a certain critical value Uc.
In the high-temperature regime (T = 0.33), some spec-
tral weight remains in the gap, but the spectral function
develops a distinct dip at the Fermi level, with Uc ≈ 7 in
DQMC and Uc ≈ 9 in DMFT. It was unfortunately not
possible to obtain an estimate for Uc in DΓA, since the
calculations did not converge for U ≥ 8.

The transition also manifests itself in the DMFT quasi-
particle renormalization factor Z defined as

Z =

[
1− Re

dΣ(ω)

dω

∣∣∣
ω=0

]−1
, (8)

which decreases from unity in the non-interacting case to
zero at the transition to the insulating state. In Fig. 3,
we illustrate this behavior for two different temperatures
T = 0.33 and T = 0.1. For the latter, Z vanishes around
Uc ≈ 9.45. At the higher temperature, the critical U
is reduced, but its precise estimation is impeded due to
thermal broadening. In the same plot, we plot a rough
estimate for Z from DQMC, which are estimated as the
fraction of the spectral weight located in the quasiparticle
region. The latter is determined from the DMFT spectral
function for the same U value. For DΓA we calculate
a momentum-dependent Z which is presented in Fig. 5
below.
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FIG. 2. Local spectral functions for interaction strength rang-
ing from U = 3 to 9 at T = 0.33 in units of the hopping t ≡ 1
as obtained by DMFT, DQMC, and DΓA. The gray line is
the density of states of the underlying tight-binding model,
the opaque dotted blue bars show the approximate position of
the Hubbard bands calculated by Eq. (9). We show no DΓA
data for U = 7 and 8, because the respective calculations did
not converge.
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0.4

0.6

0.8
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DMFT, T = 0.33

DMFT, T = 0.10

DQMC, T = 0.33

FIG. 3. Quasiparticle renormalization factor Z [Eq. 8] based
on DMFT and DQMC data as a function of the interaction
strength U for the temperatures specified in the legend box.

Another characteristic correlation-induced phe-
nomenon is the formation of the Hubbard bands —
two incoherent spectral features separated by ∼ U . As
these bands are strongly asymmetric, we estimate their
position by

ωupper/lower = ZDMFT × ωmax/min ±
U

2
(9)

where ωmax/min are the upper/lower band edge of the
tight binding Hamiltonian, i. e. 2−µtb and −4−µtb.
This heuristic formula interpolates between the non-
interacting regime and the strongly correlated insulting
regime where the Hubbard bands are at ±U2 . It accounts
for the fact that the separation of the Hubbard bands is
more than ±U at small U , and describes the position of
the Hubbard bands in Fig. 2 very well.

-6

-3

0

3

6 U=3 DMFT U=6 DMFT

-6

-3

0

3

6 DΓA DΓA

Γ M K Γ

-6

-3

0

3

6 DQMC

Γ M K Γ

DQMC

FIG. 4. Spectral functions of DMFT, DΓA and DQMC
on a high-symmetry path through the Brillouin zone. The
dotted green lines are the tight-binding bands, the white
line is the Fermi energy. At weak interaction (left column)
there is no sizable renormalization, whereas strong interac-
tions considerably change the spectrum (right column). Spu-
rious momentum-dependent variations of spectral weight in
DQMC (U = 3) stem from variations of the peak widths – an
artifact of analytic continuation.

Next, we discuss the momentum-resolved spectral
functions in Fig. 4. In the case of weak interaction (U=3,
left column of Fig. 4) all three methods basically repro-
duce the non-interacting tight-binding bands; the sole
correlation effect is the quasiparticle broadening of the
peaks. In the case of a stronger interaction (U = 6, right
column of Fig. 4), we still consistently obtain a metal-
lic solution in all the methods. In DMFT, the spectral
function shows the Fermi liquid behavior, with a renor-
malized tight-binding band structure and distinct Hub-
bard bands. However, nonlocal correlations alter this pic-
ture: the DΓA calculations show a merging of the bottom
edge of the quasiparticle band with the lower Hubbard
band. Such “waterfall-like” structures have also been
observed experimentally in angle-resolved photoemission
spectroscopy (ARPES) of cuprate superconductors [132].
In DQMC the lower Hubbard band is even further sup-
pressed, and we almost recover the non-interacting band
structure, albeit with a large broadening.

Looking at the upper Hubbard band in DMFT and
DΓA (upper and middle panels in the right column of
Fig. 4), we notice that in DΓA the upper Hubbard band
moves to a lower energy, closer to the quasiparticle flat
band. In DQMC this is again slightly more extreme:
the spectral weight of the upper Hubbard band moves



7

further down in energy and is visible only as an extreme
broadening of the quasiparticle flat band [133].

Altogether, this implies another interesting observa-
tion at U = 6 (right column of Fig. 4): In DMFT, the
whole band structure is renormalized so that the dis-
tance between the Dirac crossing and the flat band at
the K-point is reduced to approximately half the non-
interacting value (compare also Fig. 5). Surprisingly, the
inclusion of nonlocal correlations in DΓA increases the
width of the middle band with respect to DMFT. Thus
the gap size at the K-point, between Dirac crossing and
flat band, is increased and in DQMC it even reaches its
tight-binding value.

We can extract more insights by comparing the DMFT
and DΓA self-energies. In DMFT, the self-energy is di-
agonal with respect to the three basis-lattice sites j; all
three diagonal elements are even identical and there is no
off-site contribution within DMFT. In DΓA, the diagonal
elements are almost identical to the DMFT self-energy
and show only a weak dependence on the momentum.
The main difference is the presence of sizable off-diagonal
elements that are strongly momentum-dependent.

Analysis of matrix-valued quantities computed on the
Matsubara axis is not straightforward. Often in such
cases one considers the eigenvalues of the quantity. How-
ever, complex eigenvalues of a matrix are returned by
numerics libraries in an arbitrary order, which makes
further analysis, such as analytical continuation, even
more complicated. In the case of the KHM, however,
we (numerically) find that the eigenvalues of the DΓA
self-energy at a certain frequency iωn and momentum k
can be obtained by projecting it onto the eigenvectors of
the tight-binding dispersion matrix Eq. (2) at the same
momentum k. For DMFT this is fulfilled trivially, as Σ
is k-independent and proportional to the 3× 3 unit ma-
trix for the three sites of the unit cell. In DQMC we do
not have direct access to the self-energy, but from the
fact that the lattice Green’s function approximately ful-
fils the property, we can conclude that this holds for the
self-energy as well.

This projection relation implies that the tight-binding
bands are mapped onto interacting quasiparticle bands
with associated Hubbard bands, but they are not mixed
by nonlocal correlations, because the interaction is local.
The momentum dependence entails that the self-energy
in the band basis is, albeit diagonal, no longer propor-
tional to the unit matrix as in the DMFT. This leads to a
momentum- and band-dependent, but still well-defined,
quasiparticle renormalization factor Zα(k), where α is
the band index. We show this quantity for U = 6 and
T = 1/3 in Fig. 5. Since smaller Z implies stronger
renormalization, it explains why the lowest-lying quasi-
particle band merges with the lower Hubbard band at Γ,
the center of the Brillouin zone.

Let us compare these results with the well-studied
Hubbard model on a square lattice. There, antiferro-
magnetic fluctuations dominate the phase diagram at all
temperatures, leading to an insulating antiferromagnetic

Γ M K Γ

0.45

0.46

0.47

0.48

0.49

0.50

Z
α

(k
)

U=6, T =0.33
lower band

middle band

flat band

DMFT

FIG. 5. Momentum- and band-resolved quasiparticle renor-
malization Zα(k) at U = 6 and T = 0.33 obtained by projec-
tion of the DΓA self-energy onto the tight-binding eigenbasis.

state even at smallest values of the interaction U [21] in
the limit of zero temperature. Looking at the magnetic
susceptibility of the kagome lattice, we have to keep in
mind that it is defined as

χjlm(q, iωn) =
∑
R

eiq·R
∫ β

0

dτ eiωnτ 〈Sjz(R, τ)Slz(0, 0)〉, (10)

i.e. it is a 3×3 matrix for each momentum and frequency.
For numerical and technical reasons our DΓA calcula-
tions are restricted to 〈SjzSlz〉 correlation functions, which
yield the standard magnetic susceptibility. Note that in
the absence of magnetic field, diagonal correlations are
equal to one-third of full correlations: 〈SjzSlz〉 = 1

3 〈S
j ·Sl〉.

Without symmetry breaking, and as we will see below
there are no signs of any long range order, spin-off diago-
nal correlation functions such as 〈SjzSlx〉 or 〈SjzSl+〉 vanish
[134].

For a quantitative analysis, we resort to the eigenvalues
of χjlm. Similar as in the case of the self-energy before,
we again (numerically) find that the eigenvalues of the
susceptibility matrix at frequency iωn and momentum
k can be obtained by projection onto eigenstates of the
tight-binding dispersion matrix Eq. (2). Thus the eigen-
values can be associated with the respective tight-binding
bands. In Fig. 6 we show the (projected) eigenvalues of
the zeroth Matsubara frequency on the q-plane for U = 3
at high and low temperature.

Notably, the dominant mode of the susceptibility is
the one that corresponds to flat-band eigenstates. At
high temperature it is flat, but develops an inconspicu-
ous structure at lower temperatures. This is in agree-
ment to CDMFT studies [66, 68] for the presented values
of U = 3 and U = 6. Importantly, Fig. 7 reveals that
the maximal value of the susceptibility does not increase
significantly as the temperature is lowered. Thus, our re-
sults are seemingly contradicting the early DQMC study
in Ref. 70 that finds a Curie-like temperature dependence
for U = 8. However, in the temperature range down to
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FIG. 6. Eigenvalues of the static magnetic DΓA susceptibil-
ity in the first BZ for U = 3 at T = 1 (upper row) and T = 0.1
(middle row), and U = 6, T = 0.1 (lower row). There are
three eigenvalues corresponding to the three bands in Fig. 1
(c): the left column shows the projection of χ on the lowest-
energy eigenstate [energies below the Dirac point in Fig. 1
(c)]; the middle column that of the part of the bandstructure
above the Dirac point and below the flat band; finally the
right column corresponds to the flat-band states.
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FIG. 7. Temperature dependence of the maximal magnetic
susceptibility χmax with respect to the momenta and the three
eigenvectors (three panels in Fig. 6) at ω = 0 for the weakly
(U = 3) and moderately (U = 7.5) correlated regimes.

T = 0.25 which was studied there, our results also show
an increasing susceptibility. Therefore, in sharp contrast
to the square [22] and the triangular lattice [135], the
KHM does not show any visible tendency towards mag-
netic ordering. Instead, the flat structure of the magnetic
susceptibility indicates short-ranged spin fluctuations.

B. Structure factors

Structure factors are on the one hand inherently con-
nected with magnetic susceptibilities, and on the other
hand can be addressed experimentally e.g. by neutron
spectroscopy. Following work on the Heisenberg kagome
model [136, 137], we calculate the equal-time structure
factor S0(q) given by

S0(q) =
∑
j,l

eiq·(rj−rl)
∑
ωn

χjl(q, iωn) (11)

and the dynamical structure factor S(q, ω) given by

S(q, ω) =
−Im

∑
j,l e

iq·(rj−rl)χjl(q, ω + i0+)/π

1− e−βω
. (12)

In Eqs. (11) and (12), rj denotes the position of the j-th
atom in the unit cell. Since the shortest distance between
two sites ( 12 ) is twice smaller than the unit cell constant
(1), the structure factor is periodic in the extended Bril-
louin zone (Fig. 1, b). The analytic continuation of Mat-
subara frequencies or imaginary time to real frequencies
is performed using ana_cont [138, 139] employing the
maximum entropy method [140]. As a technical remark,
we note that in DΓA we can analytically continue the
projected eigenvalues of the susceptibility matrix indi-
vidually, and then go back to the sublattice space, where
the summation in Eq. (12) is carried out. In the follow-
ing we present our results for the extended BZ of Fig. 1
(b). Upfolding the three eigenvectors of the first BZ (e.g.
for the magnetic susceptibility in Fig. 6) yields a single
eigenvector for the larger (extended) BZ.

Fig. 8 shows a smooth distribution of the equal-time
structure factor over the extended Brillouin zone, and a
weak temperature dependence. In all plots, S0(q) grows
as we move from the center towards the boundary of
the extended Brillouin zone, and forms round maxima
at its corners [the K-points in Fig. 1 (b)]. To get a
deeper insight into magnetic correlations, we return to
real space and plot the equal-time susceptibility χ as
a function of real-space vector R connecting two sites.
As expected for a strongly frustrated model, the result-
ing pattern in Fig. 9 is dominated by two contributions:

TABLE I. Four shortest vectors R in the kagome lattice,
connecting nearest neighbors (R1), second-neighbors (R2),
and third-neighbors (R3a) and (R3b). Vector components
and distances are given in units of the lattice constant. (For
a visualization of these vectors, see Fig. 9.)

notation |R| multiplicity R ≡ (Rx, Ry)

R1
1
2

4 ±
(
1
2
; 0
)
, ±

(
1
4
;
√
3

4

)
R2

√
3

2
4 ±

(
0;
√
3

2

)
, ±

(
− 3

4
;
√
3

4

)
R3a 1 4 ± (1; 0), ±

(
1
2
;
√
3

2

)
R3b 1 2 ±

(
− 1

2
;
√
3
2

)
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FIG. 8. Equal-time structure factors S0(q) [Eq. (11)] in the
weakly correlated regime (U = 3) as a function of temperature
(top: T = 0.33, bottom: T = 0.1). Left: DQMC, right:
DΓA. The dashed (solid) hexagons denote the boundary of
the (extended) Brillouin zones.

the on-site contribution, which is trivially positive and
yields a momentum-independent shift, and sizable neg-
ative, i. e. antiferromagnetic, correlations between the
nearest neighbors (R = R1). As we show in Appendix,
the latter are largely responsible for the maxima at the
K-points.

More intriguing is the pattern formed by weak longer-
range correlations. In particular, by doubling the four
R1, we obtain the R3a vectors (Table I) that point to
four (out of six) third-neighbors on the kagome lattice.
A key observation is that the respective correlations are
also antiferromagnetic (red circles in Fig. 9). In contrast,
the second-neighbor correlations (R2) and the remaining
two third-neighbor correlations (R3b) are ferromagnetic
(blue circles in Fig. 9). In momentum space, shown in
Fig. 8 this has the following effect: strong negative cor-
relations at R1 create the peaks at the K-points and
positive correlations at R2 further increase them. The
negative correlations at R3a overcompensate the positive
ones at R3b and thus reduce the structure factor at the
M-points. Altogether this leads to well-separated peaks
at the K-points.

So far, we discussed the structure factor in the weakly
correlated regime (U=3). If we now increase the in-
teraction U , we observe an apparent change, both in
momentum (Fig. 10) and real (Fig. 11) space. While
S0(q) is still peaked at the K-points, the intensity grows
over the entire boundary of the extended Brillouin zone.
Again the behavior is understood better by looking at
the lattice. Still, antiferromagnetic nearest-neighbor cor-
relations generate the dominating peaks at the K-points,

−1

0

1

y

1

2
3a

3b

DQMC, U=3, T =0.33 DΓA, U=3, T =0.33

−1 0 1
x

−1

0

1

y

DQMC, U=3, T =0.1

−1 0 1
x

DΓA, U=3, T =0.1

FIG. 9. Equal-time susceptibility χ (R ≡ (x, y)) in real space
for the weakly correlated regime (U = 3). Units along the x
and y axes are unit cell constants. The area of a circle reflects
the absolute value of the respective term, blue color denotes
positive (ferromagnetic) correlations, red color denotes nega-
tive (antiferromagnetic) correlations. Since the magnitude of
the long-range correlations is very small, we add a background
shading to indicate the sign. Note that weak long-range cor-
relations are antiferromagnetic for R3a and ferromagnetic for
R2 and R3b (see Table I for the notation of intersite vectors).

supported by R2-correlations. However, in the shell of
third neighbors now the positive correlations prevail and
increase the structure factor at the M-points, i. e. be-
tween the K-points. This means that the peaks become
slightly less separated. More quantitatively, the ratio be-
tween the structure factor at the M-point and K-point at
U = 3 is 0.87 (0.85) in DQMC (DΓA), and it increases
to 0.90 (0.87) at U = 6.

Interestingly, our patterns are in excellent agreement
with the equal-time structure factor computed using
numerical linked cluster expansion for the Heisenberg
kagome model [137]. We will discuss the ramifications
in Sec. IV.

Since our calculations provide direct access to dynam-
ical quantities, it is instructive to inspect the energy de-
pendence of the structure factors. In Fig. 12 we plot the
dynamical structure factor S(q, ω) on a path through
the extended Brillouin zone (Fig. 1) at weak interaction
U = 3 for two different temperatures. In line with the
equal-time structure factor, the dominant weight is lo-
cated around the K-point. Additionally, there is a split-
ting into a low- and a high-energy mode at the M-point
(cf. Fig. 1, b), although at high temperature it is con-
cealed by thermal broadening in DΓA.

Finally, we present the evolution of the dynamical
structure factor as a function of correlation strength in
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FIG. 10. Equal-time structure factors S0(q) [Eq. (11)] as
a function of U (top to bottom) for DQMC (left), DΓA(top
right, middle right), and DMFT (bottom right) at T = 0.33.
We used the DMFT susceptibility for U = 10 to calculate the
structure factor, as the respective DΓA calculation did not
converge.

Fig. 13. The main effect is squeezing the frequency
spread of the intensity to lower energies accompanied by
a gradual dissipation of spectral features. Note that it
was not possible to converge a self-consistent DΓA cal-
culation for the U = 10 case, and in DMFT the spectral
weight is pushed to zero energy.

IV. DISCUSSION

Diagrammatic extensions alleviate the main drawback
of DMFT— its restriction to local correlations. An alter-
native route to include nonlocal correlations are cluster
extensions of DMFT. In the conceptually simple cellu-
lar DMFT (CMDFT) approach, such clusters are con-
structed in real space and typically comprise a small
number of sites. Correlations in CDMFT are still purely
local, but the locality spans now the entire cluster. As
a result, nonlocal correlations at the length scale of the
cluster are included, while longer-range fluctuations are
still absent. In addition to this sharp cutoff between the
short-range (included) and long-range (omitted) correla-
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FIG. 11. Equal-time susceptibility χ (R ≡ (x, y)) as a func-
tion of U (top: U = 6, bottom: U = 10) as calculated by
DQMC (left), DΓA(top right) and DMFT (bottom right) at
T = 0.33. The area of a circle reflects the absolute value
of the respective term, blue color denotes positive (ferromag-
netic) correlations, red color denotes negative (antiferromag-
netic) correlations. Note that weak long-range correlations
are ferromagnetic for R2, R3a and antiferromagnetic for R3a

(see Table I for the notation of intersite vectors).

tions, CDMFT introduces a spurious disparity between
the sites falling within the cluster and all other sites.
We can illustrate this by considering the kagome lattice,
where each site has four equivalent nearest neighbors. In
the simplest possible cluster, a triangle, this equivalence
is violated: only two of the four neighboring sites be-
long to the cluster. Keeping these intrinsic limitations
of CDMFT in mind, we compare the results of three dif-
ferent CDMFT studies [66, 141, 142] with our DΓA and
DQMC results.

In three-site CDMFT employing a Hirsch-Fye impurity
solver, Ohashi et al. reported a first-order transition at
the critical Uc = 8.22 [66]. While we were not aiming
at a precise estimate for the critical interaction strength,
the three-site CDMFT values is somewhat lower than our
DMFT value and higher than our DQMC estimate with
75 sites (and no DMFT bath).

In the strongly correlated regime (U = 6.6), the largest
eigenvalue of the magnetic susceptibility plotted as a
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FIG. 13. Dynamical structure factor as a function of inter-
action strength (left to right) as calculated by DQMC (top)
and DΓA(bottom, except for DMFT in the right bottom plot)
on a path through the extended Brillouin zone (Fig. 1) at
T = 0.33. Note that the upper limit of the ω-axis (y-axis) is
reduced as 1/U upon increasing U to resolve the feature-rich
range; for large U such a rescaling must hold as the coupling
of the Heisenberg model is J = 4t2/U . Note that in DMFT
the structure factor is enlarged due to the lack of a self-energy
feedback.

function of q, is nearly flat in CDMFT, with shallow
minima along the six Γ-M lines. Precisely this behavior
is observed in the DΓA susceptibility (Fig. 6). Interest-
ingly, Ohashi et al. report a drastic change of magnetic
correlations in the insulating phase: they argue that a
starlike structure in the structure factor indicates the on-
set of 1D antiferromagnetic correlations [66]. We believe
that this an artifact of CDMFT. This is corroborated by

the fact that the spin correlations that we obtain in DΓA
and DQMC for the moderately correlated regime of the
Hubbard model are similar to those of the Heisenberg
model [137].

The more recent CMDFT study by Udagawa et
al. [141] employs a continuous-time auxiliary-field QMC
impurity solver and uses, in addition to triangles,
also more extended nine-site clusters. While the den-
sity matrix defined from microscopic states of a clus-
ter is not accessible in the diagrammatic extensions,
our temperature-dependent susceptibility (Fig. 7) agrees
with the CDMFT results plotted in Fig. 4(d) of
Ref. [141], except for the lowest temperatures, where we
do not find the downturn of χ(T ) characteristic for an-
tiferromagnetic correlations or the formation of localized
dimers. While not much is known for the KHM, we note
that in the kagome Heisenberg model, dimer tunneling
processes around the loops comprising eight sites play
a pivotal role [143]. The absence of such loops in the
nine-site clusters used in Ref. [141] may give rise to the
formation of static antiferromagnetic dimers, and hence
a suppressed susceptibility.

Finally, Kita et al. focus on the behavior of the KHM
in a magnetic field [142]. Nevertheless, it is instructive
to discuss their CDMFT spectral function in zero field,
computed for U = 4 and U = 8 (Fig. 1 in Ref. [142]). The
former agrees well with our DΓA results for U = 3, ex-
cept for the substantial broadening in the CDMFT data
at low frequencies, which might be an artifact of our an-
alytic continuation. The U = 8 case is more interesting.
Here, in contrast to single-site DMFT and in agreement
with DΓA, no distinct lower Hubbard band is formed;
instead, a dispersive feature stemming from the lowest-
lying branch of the kagome band structure shows up at
low frequencies. Close to the Fermi level, two narrow,
nearly dispersionless bands form in CDMFT[142]. We
do not observe such structures in our U = 6 calculations,
neither in DΓA, nor in DQMC: the intensity maxima lie
above the Fermi level. At higher frequencies correspond-
ing to the upper Hubbard band, CDMFT shows a broad
spectral maximum in the vicinity of the Γ-point which
rapidly decreases for finite momenta. A similar, albeit
less pronounced distribution of the spectral weight is vis-
ible in DΓA results (Fig. 4): the intensity at the Γ-point
is maximal.

Structure factors are a direct source of information on
the dominant magnetic correlations and instabilities. A
prominent example is the antiferromagnetic instability
of the square-lattice Hubbard model, signaled by the di-
verging structure factor at q = (π, π), the propagation
vector of the Néel state. In contrast, the structure factors
of the KHM in the metallic regime lack any apparent in-
stabilities, and instead show an intricate evolution on the
frequency/momentum grid. Thus, to get insights into the
magnetic correlations, we compare the behavior of S(q)
and S(q, ω) with the literature data for the Heisenberg
model.

The kagome Heisenberg model features several low-
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lying states with marginally different energies. While
the debate on the ground state is still not settled, struc-
ture factors recently came into the forefront as a possi-
ble fingerprint to distinguish these states experimentally.
A popular strategy is to pick a certain candidate state
and calculate its structure factor using various mean-field
techniques [31, 50, 136, 144–147]. However, in the con-
text of our study, a more appropriate starting point is the
direct simulation of the Heisenberg model on a finite lat-
tice, followed by the evaluation of structure factors from
the spin correlations. Regardless of the method used, the
resulting S(q) of the Heisenberg model smoothly evolves
from the minimum at Γ to the maximum at the boundary
of the extended Brillouin zone. Further details depend
on the computational method: While exact diagonaliza-
tion on 36-site finite lattices yields feeble, yet discernible
peaks at M [148, 149], these features are practically wiped
out in density-matrix renormalization group (DMRG)
simulations [39, 150] that are less prone to finite-size ef-
fects. The featureless structure factor indicates that ten-
dencies to ordering are strongly suppressed, even on a
short range. Since they arise from competing correla-
tions, this balance can be destroyed by small deviations
from the Heisenberg model, such as anisotropies and/or
longer-range exchanges. A common ramification is the
appearance of maxima at K or M points of the extended
Brillouin zone, indicative of so-called [151]

√
3×
√

3 or
q=0 antiferromagnetic correlations, respectively.

We are now in the position to compare the equal-time
structure factors of the KHM in Figs. 8 and 10 with that
of the Heisenberg model. First, the smooth q-evolution
and the minimum at Γ are common for both models. For
all studied U and T values, the maximal intensity is at K,
indicating the predominance of

√
3×
√

3 correlations. This
is seemingly at odds with the Heisenberg model, where
weak maxima, if any, are found at M [148, 149]. However,
a key difference lies in the methods: we do calculations
at finite temperature. Looking at the finite-temperature
structure factors for the Heisenberg model [137], we see a
strikingly similar picture: a smooth evolution with max-
ima at K. This brings us to one of the main conclusions:
at moderate temperatures, the magnetic correlations of
the KHM are similar to those of the Heisenberg model.
Recently, a similar trend has been discovered in a dual-
fermion study of the Hubbard model on the triangular
lattice [135]. While the insensitivity of magnetic correla-
tions to the MIT is likely related to geometrical frustra-
tion, we remind the reader that in contrast to KHM the
triangular-lattice model has a ordered, three-sublattice
ground state in the Heisenberg limit.

While our equal-time structure factors are quanti-
tatively similar in the weakly and strongly correlated
regime (cf. Fig. 8 and Fig. 10), real-space plots of re-
spective susceptibilities reveal a subtle change in third-
neighbor correlations (cf. Fig. 9 and Fig. 11). At
weak coupling (U = 3), Fig. 11 shows along the direc-
tion of the two Bravais lattice vectors a negative(R1)-
negative(R3a)-positive spin correlation function, hinting

at tendencies toward a 120◦ spin-orientation. At strong
coupling (U = 6 and U = 10) the third nearest-neighbor
(R3a) changes sign. In the half-filled one-band Hubbard
model with a strong negative (antiferromagnetic) pref-
erence between nearest neighbors, this is arguably the
most dramatic change one might expect, devoid an ac-
tual ordering that is prevented by the frustrated lattice.
Note that the third nearest neighbors and second nearest
neighbors are both at a distance of two hopping elements,
they only differ by their distance in real space because of
the geometry.

We attribute this difference to the correlation-induced
onset of q = 0 magnetic correlations that compete
with dominating

√
3×
√

3 correlations. At the same
time, susceptibilities in the moderately correlated regime
(Fig. 11) are qualitatively similar to those in the Heisen-
berg model [137], where the sign of the correlation func-
tion is determined by the Manhattan distance [152].
Therefore, we conclude that q = 0 correlations develop
already in the moderately correlated regime, i.e. in the
metallic phase. This nontrivial result provides a key to
distinguish between the weakly and moderately corre-
lated regimes in real materials: The former features pre-
dominantly

√
3×
√

3 correlations, while in the latter ad-
ditional q=0 correlations become manifest.

Next, we discuss the features of the dynamical struc-
ture factor S(q, ω). While details of the plots are prone to
uncertainties of the analytic continuation, we comment
on one salient feature: the difference between the fre-
quency dependencies at K and M. The highest spectral
density is associated with K (consistent with the max-
ima in the equal-time structure factor), but is it shifted
to higher frequencies as compared to M. Interestingly,
the same structure is found in the structure factor of
a Z2 spin liquid with a moderate spinon-vison interac-
tion [136]. Our work should motivate further studies to
clarify whether metallic kagome magnets can serve as a
playground for topological vison excitations, which have
been suggested in [136].

Finally, we put our results in the context of ongoing ex-
perimental activities on metallic kagome magnets. While
we computed the quantities that can be measured by in-
elastic neutron scattering, several aspects impede a direct
comparision. First, all so far discovered metallic kagome
materials are multi-orbital systems. A simplified effec-
tive one-orbital description is generally possible, but the
mapping scheme depends on the specifics of a particular
material and has to be adjusted accordingly. Second, a
kagome-like arrangement of magnetic atoms in the crys-
tal structure does not guarantee the applicability of the
KHM: coupling beyond nearest neighbors as well as in-
terplane couplings can play a significant role. This is the
case for Mn3Sn, where neutron scattering experiments re-
veal the relevance of multiple magnetic exchanges [104].
Bilayer kagome systems Fe3Sn2 [90] and Co3Sn2S2 [100]
that entail a sizable interlayer coupling fall in the same
category. Also the band filling, whose estimation in a real
material is per se challenging, can deviate from the case
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in point: KHM at strict half-filling. All in all, we believe
that presently the most promising case is FeSn, whose
band structure (Fig. 4 in Ref. [104]) bears apparent simi-
larities to the half-filled tight-binding kagome model. We
are looking forward to future inelastic neutron scattering
experiments (announced in Ref. [106]) that can be com-
pared with our structure factors and dynamical suscep-
tibilities. Potentially even more promising are V-based
AV3Sb5 (A = K, Rb, Cs) materials [107–112, 153, 154],
yet more experimental information on their magnetism
is urgently needed.

V. CONCLUSION

We studied the phase diagram and the magnetic struc-
ture factor of the kagome Hubbard model, focusing on
the weakly and moderately correlated regime relevant for
the growing family of real materials. To this end, we em-
ployed three complementary methods: DMFT, DΓA and
DQMC. We observe neither tendencies towards magnetic
ordering of any kind, nor fingerprints of singlet formation.
To provide solid reference data for inelastic neutron scat-
tering experiments on candidate materials, we calculate
dynamical as well as equal-time structure factors and sus-
ceptibilities, for a wide range of the interaction parame-
ters U and at different temperatures. By comparing our
results with the literature data for the Heisenberg model,
we conclude that the Mott transition is not accompanied
by a sensible alteration of magnetic correlations: the ma-
jor change happens already in the metallic phase, where
the magnetic coupling to third-nearest neighbors changes
sign. We argue that this change gives a key to estimate
U , and hence the proximity to a metal-to-insulator tran-
sition, in real materials.
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Appendix: Fingerprint of real-space correlations

For a better understanding of how spin-spin correla-
tions between certain points in the lattice affect the sus-
ceptibility or structure factor in momentum space, it is
helpful to study the connection analytically. The basis
for this is Eq. (10), where we set 〈Sjz(R, τ)Slz(0, 0)〉 = 1
for a certain vector R and all vectors that are related by
symmetry transformations. Fig. 14 shows, row by row,
how correlations to a certain neighbor R and its sym-
metrically related counterparts reflect in k-space. The
first three rows are the projections to tight-binding eigen-
states, and the fourth row is the structure factor.

Unsurprisingly, on-site correlations yield just a con-
stant contribution. R1- and R2-correlations lead to
peaks at the K-point in the extended Brillouin zone,
whereas R3-correlations enhance the M -point (last two
rows in Fig. 14).

It is important to note that, for this analysis, we al-
ways consider positive correlations (of unit magnitude)
between neighboring sites at the indicated distance, neg-
ative ones just change the sign. For the nearest-neighbor
correlations (R1) this means, e.g., that we get negative
peaks at the K-points, whereas the actual correlations
at R1 are negative yielding positiv peaks around the K-
points. Furthermore let us note that the number of neigh-
bors at R3a is twice as large as the number of neighbors
at R3b. Therefore also their influence on the structure
factor is twice as large.
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