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We use an exact analytical technique [Phys. Rev. B 101, 115405 (2020), Phys. Rev. B 102,
165117 (2020)] to recover the surface Green’s functions for Bernal (ABA) and rhombohedral (ABC)
graphite. For rhombohedral graphite we recover the predicted surface flat bands. For Bernal graphite
we find that the surface state spectral function is similar to the bilayer one, but the trigonal warping
effects are enhanced, and the surface quasiparticles have a much shorter lifetime. We subsequently
use the T-matrix formalism to study the quasiparticle interference patterns generated on the surface
of semi-infinite ABA and ABC graphite in the presence of impurity scattering. We compare our
predictions to experimental STM data of impurity-localized states on the surface of Bernal graphite
which appear to be in a good agreement with our calculations.

I. INTRODUCTION

Despite graphite having been known to theorists for
decades [1], it was not until after the experimental dis-
covery of graphene in 2004 [2, 3] that graphene-based
systems started to attract a lot of attention, both in ex-
perimental and theoretical groups in condensed matter
physics. While a lot of interest is devoted to few-layer
systems since these are cleaner and possibly more in-
teresting for nanoelectronics applications, here we focus
rather on 3D graphite, in particular on the relationship
between the electronic properties of its surface states, ac-
cessible via ARPES or STM, and the properties of few-
layer systems. We consider two types of stacking: the
Bernal stacking (also known as ABA) and the rhombo-
hedral stacking (also known as ABC). Both are shown in
Fig. 1. To describe the surface states we use the tech-
nique presented in Refs. [4] and [5], in which the surface
Green’s functions are obtained by introducing an infinite-
strength plane-like impurity, which effectively cuts the
system in two, and by solving exactly the problem using
the T-matrix formalism.

Thus, for semi-infinite ABC graphite we recover the
existence of the surface state flat bands previously pre-
dicted to appear in multi-layered ABC graphene [6–8]
and observed in Ref. [9], and we determine their extent
in a fully semi-infinite system. For the ABA graphite the
surface states are similar to those of bilayer graphene in
that they have a parabolic dispersion close to the Dirac
point. However, the effects of the trigonal warping are
more pronounced for graphite surface states than for a
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Figure 1. Lattice structure for A: single-layer graphene, B: bi-
layer graphene with AB stacking, C: Bernal-stacked graphite,
D: rhombohedral-stacked graphite. Modified from Ref. [10].

bilayer system. Moreover, we find that the quasiparti-
cle lifetimes and coherence lengths are greatly reduced
for the surface states, making these states less sharp in
momentum space.

We subsequently consider the quasiparticle interfer-
ence (QPI) patterns arising on the surface of graphite
from impurity-scattering processes. These features have
been studied before in connection to various aspects of
graphene physics [11–31]. We demonstrate that the os-
cillations in the local density of states associated with
the impurity scattering decay much faster on the sur-
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face of graphite, be it ABA or ABC, than in bilayer
graphene(BLG) and trilayer graphene (TLG). Further-
more, we show that trigonal warping gives rise to a three-
fold symmetry reflected both in the spectral functions
and the quasiparticle interference patterns; this effect is
enhanced on the surface of graphite compared to the BLG
and gives rise to impurity states with a striking three-fold
symmetry. Our theoretical results on graphite reproduce
well experimental STM data obtained on graphite and
thick graphene films.

The paper is organized as follows: In Sec. II we present
the tight-binding models used to describe graphene and
graphite. In Sec. III we compute the band structure
for multilayer graphene systems using numerical tight-
binding calculations; the latter can be used as a refer-
ence point for the analytical semi-infinite-system calcu-
lations in Sec. IV. Furthermore, in Sec. IV we calculate
the surface spectral function for both ABA and ABC
graphite. In Sec. V we compute the QPI patterns (both
in real space and in momentum space) for ABA and
ABC graphite, BLG and TLG. In Sec. VI, we present
experimental STM results obtained on freshly exfoliated
graphite crystals, as well as on a multilayer graphene
film (∼ 10 layers thick) supported by hexagonal boron
nitride (hBN), and we show that both the short localiza-
tion length and the trigonal warping features agree well
with our theoretical results. In Sec. VII we describe the
evolution of the QPI main features with the number of
layers by comparing the results for semi-infinite graphite
with those for 2, 3, 4, and 8 layers. We leave the conclu-
sions to Sec. VIII, while in the Appendix we present the
models used in Sec. VII for multilayer systems.

II. TIGHT-BINDING MODELS FOR BILAYER
AND TRILAYER GRAPHENE, AS WELL AS

FOR ABA AND ABC GRAPHITE

To model BLG and TLG, as well as graphite, we
consider three types of hopping: the intralayer nearest-
neighbor hopping γ0, the interlayer nearest-neighbor hop-
ping γ1, i.e., between two sites which have the same coor-
dinates in the (x, y) plane and belong to adjacent layers,
and finally, the interlayer hopping denoted γ3 responsi-
ble for trigonal warping [32–34]. In what follows we will
take γ0 = 3.3eV, γ1 = 0.42eV, and for γ3 we will consider
either γ3 = 0 or γ3 = −0.3eV. If not mentioned all units
will be considered to be given in eV.

For bilayer graphene the k-space Hamiltonian written
in the basis

{
ψA1
k , ψB1

k , ψA2
k , ψB2

k

}
, where A,B and 1, 2

refer to sublattices and layers, respectively, is given by:

HBLG(k) =

 0 h0(k) 0 h3(k)
h∗0(k) 0 γ1 0

0 γ1 0 h0(k)
h∗3(k) 0 h∗0(k) 0

 , (1)

where we defined

h0(k) = −γ0
[

1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)]
, (2)

h3(k) = −γ3ε, (3)

and

ε ≡ 2e−i
3
2a0kx cos

(√
3

2
a0ky

)
+ e−i3a0kx . (4)

The trilayer graphene that we will consider in our
calculations is the ABC (rhombohedral stacking), with
the corresponding Hamiltonian written in the basis{
ψA1
k , ψB1

k , ψA2
k , ψB2

k , ψA3
k , ψB3

k

}
:

HTLG(k) =


0 h0(k) 0 h3(k) 0 0

h∗0(k) 0 γ1 0 0 0
0 γ1 0 h0(k) 0 h3(k)

h∗3(k) 0 h∗0(k) 0 γ1 0
0 0 0 γ1 0 h0(k)
0 0 h∗3(k) 0 h∗0(k) 0

 .

The Bernal-stacked (ABA) graphite (see Fig. 1) is
the most common as well as the most stable form of
graphite[35]. The Hamiltonian is given by:

HABA(k) =
∑
l

h0(k)c†k,l,Ack,l,B × (5)

×
[

1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)]
+γ1

∑
l even

c†k,l,Bck,l+1,A + γ1
∑
l odd

c†k,l,Ack,l+1,B

+
∑
l even

h3(k)c†k,l,Ack,l+1,B

+
∑
l odd

h∗3(k)c†k,l,Bck,l+1,A + H.c.,

where l labels the layer. We define a two-layer unit cell,
so that the Hamiltonian in Eq. (5) can be rewritten as:

HABA(k) =
∑

l=l−,l+

h0(k)c†k,l,Ack,l,B (6)

×
[

1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)]
+γ1c

†
k,l−,B

ck,l+,A
(
1 + e−2id0kz

)
+h3(k)c†k,l−,Ack,l+,B

(
1 + e−2id0kz

)
+ H.c.,

where k = (kx, ky, kz), l− (l+) corresponds to the lower
(upper) layer of the unit cell, d0 is the distance between
two neighboring layers, and ε is defined in Eq. (4). We
take a0 = 1.42, Å, and d0 = 3.35 Å.
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The tight-binding Hamiltonian for rhombohedral
graphite is given by:

HABC(k) =
∑
l

h0(k)c†k,l,Ack,l,B × (7)

×
[

1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)]
+γ1c

†
k,l,Bck,l+1,A + h3(k)c†k,l,Ack,l+1,B + H.c..

This can be rewritten as:

HABC(k) =
∑

l=l−,l0,l+

h0(k)c†k,l,Ack,l,B ×

×
[

1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)]
+γ1c

†
k,l−,B

ck,l0,A + γ1c
†
k,l0,B

ck,l+,A

+γ1c
†
k,l+,B

ck,l−,Ae
3ia0kxe3id0kz

+h3(k)c†k,l−,Ack,l0,B + h3(k)c†k,l0,Ack,l+,B

+h3(k)c†k,l+,Ack,l−,Be
3ia0kxe3id0kz + H.c.,

where l−, l0, l+ correspond to the lower, middle and up-
per layers of the unit cell respectively. The unit cell is
thus composed of six sites: there is an A-sublattice and
a B-sublattice site for each of the three layers.

Using these Hamiltonians, we can define the unper-
turbed Matsubara Green’s function:

G0(k, iωn) = [iωnI−H(k)]
−1
. (8)

To simplify notations hereinafter we will assume that
a0 is set to unity, and hence d0 = 2.36 and all momenta
are given in units of 1/a0.

III. BAND STRUCTURE FOR A FINITE
GRAPHITE SLAB

We now use numerical tight-binding calculations in or-
der to obtain the energy spectrum for a finite slab of
graphite. We first plot in Fig. 2 the spectrum around the
K point for a 100-layer ABA graphite slab with no trig-
onal warping (γ3 = 0). As expected, in full accordance
with Ref. [1], the spectrum shows multiple bands with
parabolic dispersion.

We then calculate the spectrum of ABC graphite in
the absence of trigonal warping. This is plotted in Fig. 3
for different numbers of layers. As we can see, the surface
states in this case form a flat band at zero energy, which
extends further away from the K point when increasing
the number of layers. It seems that when the number
of layers tends to infinity, the extension of the flat band
reaches a limit value in k space.

These tight-binding calculations will serve as a refer-
ence for comparison with the analytical calculations for
semi-infinite graphite in the next section. Direct and
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Figure 2. Spectrum for Bernal-stacked graphite around the
K point for 100 layers, with γ3 = 0.
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Figure 3. Spectrum for ABC graphite around the K point for
10, 50 and 100 layers (from left to right), and γ3 = 0.

indirect experimental evidences of the existence of the
above mentioned surface states can be found in Ref. [36]
and [37].
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IV. SPECTRAL FUNCTION FOR
SEMI-INFINITE GRAPHITE

Numerical tight-binding is valid for a finite-width
graphite slab, however it cannot be applied to semi-
infinite systems. To calculate the surface states for a
semi-infinite system we use the technique described in
Ref. [4]. In order to emulate a surface we add a plane-
like impurity to the bulk system, as depicted in black in
Fig. 4, such that the plane is perpendicular to the z axis.
We assume that the impurity is described by V = Uδ(z)I,
where the identity matrix I has the same dimensions as
H. The impurity generates impurity-bound states on ei-
ther side of it (i.e., on the surfaces highlighted in red in
Fig. 4). For large values of the impurity potential ampli-
tude U , these impurity-induced states become the surface
states of graphite. Throughout this work we will thus be
using U = 100 000.

Figure 4. A plane-like impurity (in black) separating a 3D
infinite system into two semi-infinite parts, each with a surface
(in red) parallel to the impurity plane. The impurity and the
red surfaces are separated by a unit-cell spacing, which in this
case is equal to 2d0 for Bernal-stacked graphite and to 3d0 for
rhombohedral-stacked graphite.

Mathematically, this can be translated into a calcula-
tion of the system Green’s function in the presence of
the impurity, which can be done exactly via T-matrix
[18, 38–42]:

G(k1,k2, iωn) = 2πG0(k1, iωn)δ (k1 − k2) +

G0(k1, iωn)T (k1,k2, iωn)G0(k2, iωn) (9)

where the T-matrix T (k1,k2, iωn) embodies the effect of
all-order impurity-scattering processes, and is given by

T (k1x, k1y, k2x, k2y, iωn) = δk1x,k2xδk1y,k2y×[
I− U

∫
dkz
Lz

G0(k1x, k1y, kz, iωn)

]−1
U. (10)

Here Lz is the length of the Brillouin zone in the kz
direction – the direction perpendicular to the impurity
plane [43]. The zero-temperature retarded Green’s func-
tion G(k1,k2, E) is obtained by an analytic continuation
iωn → E + iδ with δ → 0+.

In what follows we assume that there is always some
nonzero broadening of the energy δ accounting for inelas-
tic scattering processes due to random ubiquitous dis-
order in the system and/or nonzero temperature. This

allows us to make a qualitative comparison with the ex-
periments where some nonzero widening of the energy
is always observed. A qualitative comparison of the
broadening parameter in graphite versus that of its two-
dimensional surface can be found in Appendix B.

The surface Green’s functions for a semi-infinite sys-
tem correspond in this configuration to the Green’s func-
tion on the planes shown in red in Fig. 4. These can be
obtained by performing a Fourier transform of G in the z
direction, and fixing z at the appropriate value z = ±z0,
with z0 = 2d0 for ABA graphite and z0 = 3d0 for ABC
graphite:

Gs(kx, ky, z = ±z0, E) =∫ ∫
dk1z
Lz

dk2z
Lz
G(kx, kx; ky, ky; k1z, k2z;E)eik1zze−ik2zz.

(11)

The corresponding surface spectral function is given by:

As(kx, ky, E)
∣∣∣
z=±z0

= − 1

π
Im trGs(kx, ky, z = ±z0, E)

(12)

Figure 5. Surface spectral function of Bernal-stacked graphite
around the K point, at z = 2d0. We have taken γ3 = 0 and
δ = 0.005.

In Fig. 5 we consider Bernal-stacked graphite and plot
As for z = 2d0 over the same range of energies and mo-
menta as in Fig. 2. We recover a parabolic-shape band, as
expected from previous knowledge about graphite. This
is consistent with the tight-binding spectrum presented
in Fig. 2 which contains both the surface and the bulk
bands for a finite graphite slab.

In Fig. 6 we plot the surface spectral functions at a
given energy E = 0.05 as a function of kx and ky, both for
bilayer graphene and Bernal-stacked graphite (left and
right columns of Fig. 6, correspondingly). To provide
better understanding, we compute the surface spectral
functions with and without trigonal warping (top and
bottom rows of Fig. 6, respectively). In the absence of
the warping term the surface spectral function taken at
a fixed energy seems to be rotationally symmetric in the
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Figure 6. Surface spectral functions of bilayer graphene (left
column) and Bernal-stacked graphite (right column), around
the K point calculated at E = 0.05, without (top row, γ3 = 0)
and with trigonal warping (bottom row, γ3 = −0.3). We have
taken δ = 0.005.

(kx, ky) plane, both for graphite and bilayer graphene.
Once the trigonal warping term is introduced into the
model, the results acquire a three-fold symmetry. The ef-
fect of this trigonal warping seems to be more pronounced
for the surface states of graphite than for the BLG. This
can be understood as follows: the warping is a result of
inter-layer coupling terms, and hence the more layers the
material contains the more pronounced the warping is ex-
pected to be. Moreover, we note that the surface spectral
function of graphite is much less sharp, with equal energy
lines much wider and less well defined than for BLG, as
well as with a large residual intensity in the background.
This suggests that quasiparticles have shorter lifetimes
on the surface of graphite than in BLG, and thus a de-
crease in the coherence length for the surface states.

We have performed a similar analysis for rhombohedral
graphite: the dependence of the surface spectral function
on the energy and momentum is depicted in Fig. 7. We
observe once more the formation of flat bands, consistent
with the results of the tight-binding analysis of the fin
ite-size graphite slabs (Fig. 3). The extension of the flat
band observed here for the semi-infinite graphite seems
close to the one observed in the tight-binding calculations
for 100 layers (the right panel in Fig. 3), confirming that
it is converging to a finite value when the width of the
slab is going to infinity.

Furthermore, in Fig. 8 we plot the surface spectral
function in the (kx, ky) plane, with and without trigo-
nal warping. For comparison, in the left column we plot
the spectral function of the ABC trilayer graphene. In
this case, we can see that a very weak three-fold symme-

Figure 7. Surface spectral function of rhombohedral-stacked
graphite around the K point, at z = 3d0. We have taken
γ3 = 0 and δ = 0.005.

try is present for graphite even when considering γ3 = 0.
A much stronger one is observed on the other hand when
adding the trigonal warping terms.

V. MODIFICATION OF THE LOCAL DENSITY
OF STATES IN THE PRESENCE OF AN

IMPURITY

In what follows, we calculate the modification of the
LDOS for the systems described above in the presence of
a localized impurity. For the surface of ABA and ABC
graphite we start from the surface Green’s functions de-
scribed in Eq. (11) and we apply the T-matrix formalism,
which yields for the Fourier transform of the impurity-
induced modifications of the density of states:

δρ(k, E) =
i

2π

∫
dq

(2π)2
tr12 [g(q,k, E)] (13)

where dq ≡ dqxdqz,

g(q,k, E) ≡ Gs(q, E)T (E)Gs(q − k, E)−
G∗s (q − k, E)T ∗(E)G∗s (q, E), (14)

and the T -matrix can be found via

T (E) =

[
I− V

∫
dq

(2π)2
Gs(q, E)

]−1
V. (15)

The impurity matrix V has the same dimensions as
the Green’s function matrix (4 × 4 for BLG and ABA
graphite, and 6 × 6 for TLG and ABC graphite), and
is a diagonal matrix with a nonzero element at the posi-
tion corresponding to the layer-sublattice combination at
which the impurity is localized (e.g. V11/V22 6= 0 for an
atom in the top layer on the A/B sublattice, and so on).
Note that we take the trace tr12 in Eq. (13) only over the
first two components of the matrix corresponding to the
two top-layer atoms, since this is the contribution to the
density of states that is usually measured experimentally.



6

Figure 8. Spectral function of trilayer ABC graphene (left
column) and surface spectral function for ABC graphite (right
column), without trigonal warping γ3 = 0 (top row) and with
trigonal warping γ3 = −0.3 (bottom two rows) around the K
point at E = 0 (top two rows) and E = 0.05 (bottom row).
We have taken δ = 0.005.

For bilayer graphene and trilayer graphene the same
formalism applies, but with Gs in Eq. (14) and (15) re-
placed by the unperturbed Green’s function calculated
via Eq. (8) starting from the unperturbed BLG and TLG
Hamiltonians in Eqs. (1,5).

We focus on the modification of the LDOS both in
momentum space and in real space. The modulation of
the LDOS due to the impurity in the T-matrix formalism
in real space is given by:

δρ(r, E) = − 1

π
Im tr12 [Gs(r, E)T (E)Gs(−r, E)] , (16)

where Gs(r, E) =
∫

dq
(2π)2Gs(q, E)eiqr is the Green’s func-

tion in real space calculated via a Fourier transform.

A. Fourier transform of the LDOS

The results for the quasiparticle interference patterns
for ABA graphite and BLG are presented in Fig. 9. For
BLG we observe a high-intensity hexagonal contour in
agreement with the recent high-resolution experimental
results [44] and in contrast to the circular contour ob-
served in BLG without trigonal warping [15]. For ABA
graphite a hexagonal feature is also observed. The struc-
ture of these features may be inferred from the corre-
sponding surface spectral function shown in Fig. 6. While
the surface spectral function for bilayer graphene consists
of a sharp uniform triangle, the spectral function for the
surface of ABA graphite consists of a blurred deformed
triangle with well-pronounced maxima on the sides. The
curvature of the triangle sides, and the intensity higher
on the sides than in the corners, imply an enhancement
of the scattering inside a single side, consistent with a
high-intensity feature at the center of the QPI hexagone.
This feature is absent from the QPI BLG pictures. More-
over, the blurring of the spectral function feature implies
a wider distribution of the allowed scattering states and
thus a wider and more blurred QPI feature.

Figure 9. Quasiparticle interference patterns for bilayer
graphene (left panel) and Bernal-stacked graphite (right
panel) around the K point calculated at E = 0.05. We
consider a trigonal warping value γ3 = −0.3, and we take
V = −10, γ0 = −3.3.

We also compute the quasiparticle interference features
for ABC graphite and ABC trilayer graphene. The re-
sults are shown in Fig. 10. As expected from the surface
spectral function calculated at E = 0, the graphite QPI
features are blurred due to the fact that many states
with equal spectral weight exist at the surface, both at
zero-energy, inside the flat band, as well as at higher en-
ergy, as we can see in Fig. 8. The six-fold symmetry
arising due to the trigonal warping effects is harder to
see in the QPI features for ABC graphite, though it is
still visible in real space, as we will show in the next sec-
tion. Note that in the absence of trigonal warping our
findings are consistent with the analytical calculations of
Fourier-transformed local density of states in rhombohe-
dral N -layer graphene from Ref. [30].

We note that all the QPI features above simulate an
average response of impurities being localised not on one
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Figure 10. Quasiparticle interference features for ABC
graphene (left) and rhombohedral-stacked graphite (right)
around the K point at E = 0 (top row), and E = 0.05 (bot-
tom row). We take δ = 0.005 , and γ3 = −0.3 and V = −33.

of the sublattices, but equally distributed on all the sub-
lattices. In order to generate the QPI results for such a
configuration we have used an impurity matrix described
as an identity matrix in the full matrix sublattice space,
which is equivalent to having equal impurity contribu-
tions from all sublattices.

B. Real-space profile of impurity states

We now focus on the fluctuations of the LDOS in
real space in the vicinity of different types of impurities.
Thus, in Fig. 11 we plot the correction to the local density
of states both for bilayer graphene and Bernal-stacked
graphite. We consider four different types of impurities
localized on the A/B atoms of the top/bottom layer of
the unit cell. First of all, we observe that the LDOS pro-
file of the impurity states depends strongly on which sites
the impurity is located. As also noted in Ref. [44] cer-
tain impurities give rise to almost rotationally symmet-
ric patterns which do not reflect the presence of trigonal
warping, while other impurities clearly reflect the three-
fold symmetry originating from trigonal warping terms.
The most important observation is that the localization
length of the impurity-induced states is much smaller for
graphite than for bilayer graphene. This is consistent
with the reduction of the quasiparticle lifetime, which
corresponds to the blurring of the spectral function of the
surface states, and can be intuitively understood as being
the result of the three-dimensional character of graphene
for which quasiparticles have an extra spatial dimension

Figure 11. Impurity-induced corrections to the local density
of states in bilayer graphene (left column row) and Bernal-
stacked graphite (right column) calculated at E = 0.05. We
set V = −33 and γ3 = −0.3. The four rows correspond to
impurities located on sites A1/B1/A2/B2. The LDOS correc-
tions are given in units of the value of the unperturbed back-
ground. The results for bilayer graphene are in a good agree-
ment with the analytical calculations presented in Ref. [45].

to be scattered in. In contrast, in bilayer graphene the
oscillations in the local density of states stay very well-
pronounced much further away from the impurity. Such
a difference in localization length seems to be in gen-
eral governed by the dimension of the problem: the lo-
calization length is shorter in higher dimensions, as it
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Figure 12. Impurity-induced corrections to the local density
of states in ABC graphite at E = 0, γ3 = −0.3, V = −33
and δ = 0.005. The panels correspond to impurities located
on sites A1/B1/A2/B2/A3/B3. The LDOS corrections are
given in units of the value of the unperturbed background.

was observed for instance for Yu-Shiba-Rusinov states in
three- versus two-dimensional superconductors [46–48].
The evolution from two layers to a large number of lay-
ers is explored in more details in Sec. VII.

Note that the three-fold character of the observed fea-
tures is much more pronounced when the impurity is lo-
cated in the bottom layer. We believe that this stems
from the fact that we only plot the intensity of the
LDOS in the top layer. Thus, when an impurity is lo-
cated in the top layer we expect the features generated
in the same layer to be roughly similar to those gener-
ated in monolayer graphene, i.e., circularly symmetric at
long distances, with the trigonal warping not manifesting
strongly since the main visible effects are the intra-layer
ones. On the other hand, when the impurity is in the
bottom layer, the effects visible in the top layer will be
mostly due to the inter-layer hopping terms among which
the trigonal warping term plays an important role, and
thus the symmetry of the impurity feature should show

a strong enhanced three-fold character.
For ABC graphite, in Fig. 12 we compute the impurity-

induced corrections to the local density of states for six
different types of impurities, localized on the A/B sublat-
tices and in one of the three layers of the ABC graphite
unit cell. Same as for the ABA graphite we see that
some of the features are fully circular, while others re-
flect, as expected, the three-fold symmetry originating
from trigonal warping. Also, same as for ABA graphite,
the oscillations decay very fast with the distance from
the impurity.

VI. EXPERIMENTAL DATA

We performed STM measurements on graphite and
multilayer graphene (∼ 10 layers) to verify our theo-
retical findings. We first describe the experimental de-
tails. The STM measurements were conducted in ultra-
high vacuum with pressures better than 1 × 10−10 mbar
at 4.8 K in a Createc LT-STM. The bias is applied to
the sample with respect to the tip. The tips were
electrochemically-etched tungsten tips, which were cal-
ibrated against the Shockley surface state of Au(111)
prior to measurements. The graphite (Flaggy Flakes and
Graphenium Flakes from NGS Naturgraphit) sample was
exfoliated in situ and introduced in the STM head within
seconds after the exfoliation. The graphene multilayer
heterostructures were stacked on hBN using a standard
polymer-based transfer method [49]. A graphene flake
exfoliated on a methyl methacrylate (MMA) substrate
was mechanically placed on top of a ∼ 50 nm thick hBN
flake that rests on a SiO2/Si++ substrate where the ox-
ide is 285 nm thick. Subsequent solvent baths dissolve the
MMA scaffold. After the Graphene/hBN heterostructure
is assembled, an electrical contact to graphene is made
by thermally evaporating 7 nm of Cr and 200 nm of Au
using a metallic stencil mask. The single-terminal device
is then annealed in forming gas (Ar/H2) for six hours at
400 ◦C to reduce the amount of residual polymer left af-
ter the graphene transfer. To further clean the surface of
the sample, the heterostructure is mechanically cleaned
using an AFM [50, 51]. Finally, the heterostructure is
annealed under UHV at 400 ◦C for seven hours before
being introduced into the STM chamber.

We show in Figs. 13a and 13b typical dI/dVS spatial
maps of graphite and ∼ 10-layer graphene film, respec-
tively. These maps were acquired at low tip-sample bias
(around 5 mV), so that they are essentially proportional
to the LDOS at the Fermi level. As for the simulations
presented above (Fig. 11), one can see the real-space scat-
tering patterns around defects are localized around the
scattering centers, contrary to what was observed for bi-
layer graphene at high charge carriers concentration [44],
where much longer localization lengths were observed.
Also, the scattering pattern around the defect displays
a salient three-fold symmetry, originating from the trig-
onal warping, as discussed above. The FFT signatures
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Figure 13. Experimental measurements of the real-space and
Fourier-space quasiparticle interference patterns for impuri-
ties in graphite and many-layer graphene. Panels (a) and
(b): dI/dVS maps obtained on, respectively, graphite and
ten-layer-thick graphene film supported by hexagonal boron
nitride. Panels (c) and (d): zoom-ins around the origin of
the respective fast Fourier transforms. The dI/dV maps were
measured at a tip-sample bias VS = +5 mV, while applying a
VAC = 3.5 mV excitation with a lock-in amplifier, and scan-
ning at a constant current I = 0.5 nA and I = 0.25 nA for
panels (a) and (b), respectively.

for dI/dVS spatial maps in Figs. 13a and 13b are pre-
sented in Figs. 13c and 13d, correspondingly. The latter
also agree well with the calculations presented above (the
right panel in Fig. 9), with high intensity at the center
of the scattering pattern, corresponding to the short lo-
calization length visible in the real space images.

VII. DEPENDENCE ON THE NUMBER OF
LAYERS AND ENERGY

To understand the experimental observations, which
show a majority of features with a strong triangular sym-
metry, we first point out that, as noted also in Ref. [44],
impurities fully localized on the topmost layer give rise to
circularly symmetric features. On the other hand, exper-
imentally most of the features observed in graphite are
trigonally warped. We believe that one origin of this dis-
crepancy, is, as also explained in Ref. [44], the fact that
the impurities are not exactly fully localized in the top
layer, but also have some component in the bottom layer.
This components gives rise to a very strongly warped
component to the LDOS in the top layer, and thus may
explain the majority of the trigonally warped features in

Figure 14. Impurity-induced corrections to the local density
of states in bilayer graphene at four different energies, E =
0.25 (top left), 0.05 (top right), 0.02 (bottom left), and 0
(bottom right). We take γ3 = −0.3, δ = 0.005 and V = −33.
The LDOS corrections are given in units of the value of the
unperturbed background.

graphite.
Moreover, we present here two more arguments which

show that impurities in graphite are susceptible to show
a very pronounced trigonal warping: 1. the closest we are
to the Dirac point, and 2. the larger the number of the
layers in the sample, the more pronounced the trigonal
warping of the features.

For this, we study the dependence of the real-space
patterns on the number of layers and on energy. Thus
we consider systems with 2, 3, 4 and 8 layers, as well as a
range of energies from 0 to 250 meV. For all these differ-
ent cases, we consider an ABA stacking and an impurity
located on the B2 site. We note that for low energy, close
to the Dirac point, the effects of the triangular warping
are most pronouned, and the asymmetry of the triangular
features becomes less visible when increasing the energy
(see Fig. 14).

A similar observation can be made about changing the
number of layers: the thicker samples show the strongest
triangular features (see Fig. 15). The details of the tech-
nique used to obtained the real-space impurity features
in multilayer systems are presented in App. A. Note that
our results on multilayer graphene confirm the validity
of the technique used in the previous sections to study
semi-infinite systems, the results for the 8-layer system
in Fig. 15 are basically identical to those corresponding
to the semi-infinite system (lower right panel of Fig. 11).

The last observation is that, when increasing the num-
ber of layers, the oscillations decay faster and faster, and
indeed for the semi-infinite system results presented in
the previous sections, the impurity features are strongly
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Figure 15. Impurity-induced corrections to the local density
of states in bilayer graphene (top right) and in a 3-layer (top
left), 4-layer (bottom left) and 8-layer (bottom right) systems
at E = 0.05. We take γ3 = −0.3, δ = 0.005 and V = −33.
The LDOS corrections are given in units of the value of the
unperturbed background.

Figure 16. Impurity-induced corrections to the local density
of states in an 8-layer system at E = 0. We take γ3 = −0.3,
δ = 0.005 and V = −33. The LDOS corrections are given in
units of the value of the unperturbed background.

localized close to the impurity. We observe that some-
thing similar happens also when decreasing the energy.
Thus the highest energy features are the most long-lived,
as well as the most circular. This is consistent with the
measurements presented in Fig. 2 of Ref. [44], which re-
veal that at low gate voltages the oscillations are harder

to see, decaying very fast, and showing a mostly trian-
gular character, while at higher gates they decay much
slower and become rather circular.

Thus, by taking a very wide system such as the 8-layer
graphene at zero energy (see Fig. 16) we recover indeed
the strongest triangular asymmetry.

These findings indicate that, consistent with the ex-
perimental observations, strongly trigonally warped fea-
tures should be dominant in graphite at energies close to
the Dirac point. Also, as also pointed out in Ref. [44],
it appears that very localized impurities with a domi-
nant component on a single atom in the top layer are
not very common, since these would yield rather circular
features: it seems that most of the impurities observed
experimentally in graphene show some impurity poten-
tial component in the second layer, which introduces a
strong triangular warping of the impurity features.

VIII. CONCLUSIONS

Using the technique developed in Ref. [4] and [5], we
have studied the surface spectral function, as well as the
impurity-induced oscillations on the surface of Bernal-
stacked and rhombohedral-stacked graphite, and com-
pare the results to those obtained in bilayer and trilayer
graphene. We have shown that this analytical technique
is very well suited to the study of the surface physics
of graphite; for example it allows to recover the flat-
band surface states of rhombohedral-stacked graphite.
Our first main observation was that the spectral func-
tion for graphite surfaces shows a decrease in coherence
and quasiparticle lifetime compared to that of bilayer
graphene, as well as stronger features associated with
the trigonal warping. Secondly we have demonstrated
that, independent of the type of stacking—Bernal or
rhombohedral—surface impurity-induced oscillations de-
cay much faster in graphite than in two- and three-layer
graphene. Furthermore, these oscillations strongly reflect
the presence of trigonal warping. Most importantly, we
have shown that our analytical results are in good agree-
ment with the experimental data.
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Appendix A: Obtaining the LDOS correction for multilayer graphene

The process of obtaining the correction to the LDOS for 3, 4 or 8 multilayer graphene systems is the same as the one
for bilayer graphene described in the main text, with the starting Hamiltonian H(k) being replaced by the multilayer
Hamiltonian. If N is the number of layers, then the Hamiltonian is a matrix of size 2N × 2N , corresponding to the
number of layers and the two sublattices A and B. If we define

h0(k) = −γ0
[

1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)]
, (A1)

h3(k) = −γ3ε, (A2)

the 8-layer Hamiltonian can be written as:

H(k) =



0 h0(k) 0 h3(k) 0 0 0 0 0 0 0 0 0 0 0 0
h∗0(k) 0 γ1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 γ1 0 h0(k) 0 γ1 0 0 0 0 0 0 0 0 0 0
h∗3(k) 0 h∗0(k) 0 h∗3(k) 0 0 0 0 0 0 0 0 0 0 0

0 0 0 h3(k) 0 h0(k) 0 h3(k) 0 0 0 0 0 0 0 0
0 0 γ1 0 h∗0(k) 0 γ1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 γ1 0 h0(k) 0 γ1 0 0 0 0 0 0
0 0 0 0 h∗3(k) 0 h∗0(k) 0 h∗3(k) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 h3(k) 0 h0(k) 0 h3(k) 0 0 0 0
0 0 0 0 0 0 γ1 0 h∗0(k) 0 γ1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 γ1 0 h0(k) 0 γ1 0 0
0 0 0 0 0 0 0 0 h∗3(k) 0 h∗0(k) 0 h∗3(k) 0 0 0
0 0 0 0 0 0 0 0 0 0 0 h3(k) 0 h0(k) 0 h3(k)
0 0 0 0 0 0 0 0 0 0 γ1 0 h∗0(k) 0 γ1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 γ1 0 h0(k)
0 0 0 0 0 0 0 0 0 0 0 0 h∗3(k) 0 h∗0(k) 0



,

where ∗ denotes the complex conjugate. The Hamiltonians for 3 and 4 layers are obtained by taking only the first 8
and 10 rows and columns respectively.

Appendix B: Qualitative estimate of the broadening parameter δ

Assuming, for example, that the broadening originates from random disorder, we could use a simple approach to
scattering and use the Born approximation:

δ ∼ DOS× V,
where DOS is the density of states calculated for the surface of graphite or for the bulk, and V denotes the impurity
potential amplitude. The bulk of graphite is three-dimensional and the electrons are approximately linearly dispersed,
and hence the density of states is given by

DOSbulk =
E2

2π2~3v3
,

where v is the velocity of the linearly dispersed electrons and E is the energy at which we compute the DOS. At the
surface, as pointed out in the main text, we have parabolically dispersed surface bands, and in two dimensions one
has

DOSsurf =
m

π~2
.

Hence we have at E = 0.01 eV:

δbulk
δsurf

∼ 1

2π~
E2

mv3
Vbulk
Vsurf

∼ 1

π

E2E0

~3v3k20
× 100d0 ≈ 10,

where we took E0 = 0.05 eV, k0 = 0.03 Å−1, d0 = 3.35 Å−1, and v = 1015 Å/s. Above we assumed that we are dealing
with a 100-layer graphite, and k0, E0 were taken from Fig. 2 to make an estimate for the effective mass m of the
parabolic surface bands.
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Figure 17. Left: Equal-energy contours of bilayer graphene electronic bands plotted for lower and higher energies (red and blue
contours, respectively). Right: bands of bilayer graphene. We take a0 = 2.46 Å, γ0 = 3.3 eV, γ1 = 0.42 eV, γ3 = −0.3 eV. The
lower-energy contours are calculated at E = 0.0007, 0.0014, and 0.002 eV, while the higher-energy contours are at E = 0.01,
0.02, and 0.03 eV.

Appendix C: Band structure of bilayer graphene

In Fig. 17 we plot equal-energy contours and bands for bilayer graphene calculated from the Hamiltonian in Eq. (1).
The red contours correspond to energies closer to the Dirac point split by the trigonal warping into four Dirac points.
It is clear that the trigonal warping is better pronounced at lower energies.
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