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Twisted bilayers of two-dimensional (2D) materials are proving a fertile ground for investigating
strongly correlated electron phases. This is because the moiré pattern introduced by the relative
twist between layers introduces long-wavelength effective potentials which lead to electron localiza-
tion. Here, we develop a generalized continuum model for the electronic structure of moiré patterns,
based on first-principles calculations and tailored to capture the physics of twisted bilayer 2D semi-
conductors. We apply this model to a database of eighteen 2D crystals covering a range of atomic
relaxation and electronic structure features. Many of these materials host topologically insulating
(TI) moiré bands in a certain range of twist angles, which originate from the competition between
triangular and hexagonal moiré patterns, tuned by the twist angle. The topological phases occur in
the same range as the maximally flat moiré bands.

I. INTRODUCTION

Quantum materials, engineered by creative manipula-
tion of the features of conventional crystals, offer new
possibilities for breakthroughs in understanding electron
correlations and superconductivity. Often these phenom-
ena emerge at a length scale much larger than the under-
lying crystal lattice constant (by a factor of 10 to 1000)
due to strain-induced features. A recently popular plat-
form for such studies are the few-layer two-dimensional
(2D) crystals, like twisted bilayers of graphene or transi-
tion metal dichalcogenides (TMDCs) [1–5]. A slight lat-
tice mismatch between two layers of a 2D material due
to a a relative twist angle results in a moiré superlattice
(MSL), introducing long-wavelength periodic modulation
of the effective electronic potential [6, 7]. In a narrow
range of the twist angle, the moiré potentials act as con-
fining wells for the electrons of the constituent monolay-
ers, causing isolated flat bands and localized wave func-
tions near the Fermi surface [8, 9].

In the moiré flat bands, the kinetic energy is heavily
suppressed and electronic interactions play a dominant
role, with the intensity of the interactions controlled by
the twist angle; this effect has been dubbed “twistron-
ics” [10]. For example, the ultra flat band in polar
2D semiconductors are predicted in previous work [11–
13]. Compared to twisted bilayer graphene (TBG), the
twisted bilayer semiconductors can host flat bands in a
large range of twist angles [14, 15] instead of at precisely
a magic angle. This makes it possible to overcome some
experimental challenges in twisted bilayers of semicon-
ductors; thus, the twist angle becomes an additional de-
gree of freedom for fine-tuning other physical effects in
the strongly correlated regime [16]. Intriguingly, topolog-
ical insulator (TI) moiré bands were predicted in twisted
bilayer semiconductor systems [17–19], suggesting one
could observe concurrent correlated and TI phases.

It is difficult to model twistronic systems at small twist
angles (θ ≤ 5◦) using first-principles calculations because
the number of atoms in the MSL scales as θ−2. To
overcome this limitation, continuum models with a low-
energy effective Hamiltonian based on density functional
theory (DFT) calculations were developed for electronic
structures of TBG to accurately describe flat bands and
magic angles [9, 20–22]. Although continuum models
have also been applied to the twisted bilayer semicon-
ductors [17, 23], they have yet to include the effect of
atomic relaxations which play an important role at small
angles [11, 14, 24, 25].

In this work, we present results from a DFT-based
generalized continuum method designed specifically for
twisted bilayer semiconductors. The computed electronic
structures are consistent with full-DFT results [2, 11, 14]
but only require a relatively inexpensive set of bilayer
calculations. We derive a database of relevant physi-
cal parameters for describing the atomic relaxation and
the electronic structure at band extremum for eigh-
teen materials with various lattice symmetries and band
edge momenta. Each layer contributes one band to the
full twisted bilayer model, and these bands are coupled
through a set of stacking-dependent electronic terms.

In Fig. 1 we provide an overview of the different phases
and their geometric origins, as the twist angle is changed
in a moiré bilayer (Fig. 1a). The full interaction be-
tween the bands can be decomposed into two comple-
mentary parts. The first describes the tendency for elec-
trons in one layer to tunnel to the other, as shown in
Fig. 1b – labeled ∆T for “Tunneling”. The tunneling co-
efficients are strongest at AA (aligned) stacking regions
and form a triangular (TR) lattice across the MSL. The
second contribution captures the stacking dependence of
the monolayer bands’ on-site energies, which depends on
the electrostatic potential from the opposite layer, shown
in Fig. 1c) – labeled ∆t and ∆b for “top/bottom” layer.
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FIG. 1. (a) A moiré pattern of a twisted TMDC with areas
of aligned (AA) stacking and eclipsed (AB or BA) stacking
highlighted. (b) At AA stacking, the local electronic Hamil-
tonian is described by interlayer tunneling between the layers
(∆T ), forming a triangular (TR) lattice. (c) At AB or BA
stacking, the electronic Hamiltonian is described by interlayer
electrostatic potentials (∆t,∆b), forming a honeycomb (HC)
lattice. (d) Twist-angle-dependent dominant moiré terms in
TB WSe2, with atomic relaxation of the superlattice (red line)
or without it (blue line): evolution of the lattice character
from TR to HC with decreasing θ induces TI states and flat
bands at small angles. ∆T,t,b in the vertical axis provides the
potentials’ leading order Fourier components. (e) Connec-
tivity between the moiré bands. The TI phase is caused by
band hybridization as the electrons transition between quan-
tum harmonic oscillator (QHO) states on a TR to a HC lat-
tice.

The electrostatic potentials have maxima at the AB and
BA stacking regions, forming a honeycomb (HC) lattice.

In the majority of materials studied here, the in-
plane atomic relaxation of the twisted bilayers enhances
the effects of the electrostatic potential fluctuations and
reduces that of the interlayer tunneling, especially at
small twist angles. Electron localization transitions, from
the tunneling-dominated TR lattice to the electrostatic-
dominated HC lattice, occur at low twist angle in various
materials, as illustrated in Fig. 1d. In the low-angle re-
gion, ultra-flat moiré bands are predicted, likely to host
superconducting (SC) and Mott insulating (MI) phases.
The topologically insulating (TI) moiré bands appear for
intermediate values of the twist angle, during the transi-
tion between the two types of lattice geometries for the
electronic terms (Fig. 1e). The electronic potentials nat-
urally lead to quantum harmonic oscillator (QHO) states
at small twist angles [26–28]. As electronic states localize
at a specific stacking (either AA or AB/BA in TMDCs),
the moiré potential can be expanded around the stack-
ing center in a 2D harmonic form. Therefore, the energy
levels of electrons (bands) become roughly identical to
those of a 2D QHO. These localized QHO states explain

the appearance of the moiré flat bands, their bandwidth
is defined by the relative “leakage” between QHOs on
neighboring moiré cells, and competition between differ-
ent QHO stacking centers explains the large number of
TI phases possible in twisted semiconductors.

II. METHODS

We here introduce the methodology for performing
the atomic and electronic structure calculations within
the continuum model. The translation symmetry of
the moiré superlattice defines the moiré Brillouin zone
(MBZ), as illustrated in Fig. 2a. The moiré bands closest
to the band gap can be derived from the band extrema in
the original Brillouin zone, which are typically located at
high symmetry k-points. The local electronic structures
are illustrated in Fig. 2b, where the bands of individual
layers are shifted by the electrostatic potential ∆t,b and
split by the magnitude of the interlayer tunneling 2|∆T |.

To capture the stacking-dependent electronic and
atomic details necessary for determination of the ∆ po-
tentials, we perform DFT calculations on aligned bilay-
ers over a grid sampling the possible interlayer displace-
ments. Using the effective mass approximation, we treat
the dispersion around the monolayer band extrema as a
kinetic energy term in a continuum Hamiltonian. Includ-
ing the stacking-dependent ∆ terms described above, we
obtain the effective Hamiltonian:

H =

(
−~2(∇−ik0)

2

2m∗ + ∆t(r) ∆∗T (r)

∆T (r) −~2(∇−ik0)
2

2m∗ + ∆b(r)

)
(1)

where m∗ is the effective mass. We will see that such a
two-band Hamiltonian at the K-edge of a semiconducting
TMDC leads to topological phases.

To evaluate in-plane relaxation effects, we first mini-
mize the total mechanical energy of the moiré patterns
within a linear elastic plate model, using strain and stack-
ing energies derived from DFT calculations [25]. Out-of-
plane relaxation is implicitly included at the level of the
DFT calculations, with each stacking allowed to move
to its ideal interlayer separation. See the Supplemen-
tary Material (SM) [29] and the additional Refs. 30–34
included within for additional information. We incor-
porate the effect of atomic relaxations on the electronic
Hamiltonian of Eq. (1) through a linear mapping start-
ing from the unrelaxed configurations. As the stacking
displacement is a function of the real space coordinate,
d(r) = θ×r+2u, with 2u the relative displacement from
relaxation, the local band energy from DFT calculations
can be expanded as

E(±)(r,k) = E(±)
m (d(r)) +

~2(k − k0)2

2m∗
(2)

with E
(±)
m (d(r)) the bonding (+) and antibonding

(−) band extrema energy. The local band structure
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E(±)(r,k) is well defined only when the moiré length
scale is far larger than the unit cell, as required for
the envelope function approximation [35]. To determine
∆t/b,∆T (r) from the local band energies, the layer po-
larization of the Bloch wave functions are extracted from
the DFT calculations to assess how much of the variation
in E

(±)
m comes from band hybridization versus on-site po-

tentials (see Fig. 2b and SM).

To calculate electronic properties of the twisted moiré
bilayer, we implement a Hamiltonian H(k) according to

H(k) =

(
λk + ∆t(Gu −Gv) ∆∗

T (Gu −Gv)
∆T (Gu −Gv) λk + ∆b(Gu −Gv)

)
(3)

with λk = −~2(k− k0 +Gu)2δuv/2m
∗ (a block-diagonal

matrix with u, v as indices, and Gu as reciprocal lattice
vectors) and ∆i(Gu − Gv) representing scattering pro-
cesses between low-energy states due to the twist angle.
This matrix is diagonalized for a truncated set of moiré
reciprocalGm vectors, and requires only the Fourier coef-
ficients of ∆t, ∆b, and ∆T evaluated on moiré reciprocal
lattice vectors.

FIG. 2. Electronic model for the twisted bilayers. (a) Bril-
louin zones for a twisted bilayer of hexagonal lattices. The
black hexagons show the MBZ expanded around selected high
symmetry points. (b) Formation of moiré flat bands (black)
from top (red) and bottom (blue) single-layer bands near the
band extrema. (c) GSFE landscape (color) and atomic dis-
placements (arrows) for a 2◦ twisted bilayer of WSe2. (d) ∆t, b
and |∆T | values from DFT without (left) and with (right)
atomic relaxation; stars are placed adjacent to AA (red), AB
(green), and BA (yellow) stacking.

III. RESULTS

A. Relaxation induced flat bands

The aligned (AA) stacking configuration has higher
energy than the partially eclipsed (AB/BA) configu-
ration for TMDCs and hBN homo-bilayers (θ ' 0◦).
Consequently, relaxation tends to reduce the in-plane
area of AA stacking region and to increase that of the
AB/BA stacking region, thus minimizing the total en-
ergy (Fig. 2c) [21, 25]. Upon relaxation, the large val-
ues of ∆t,b, at AB and BA stacking, expand to cover a
larger area, while the peak regions of ∆T , at AA stack-
ing, shrink (Fig. 2d). Therefore, the relaxed structures
show stronger electrostatic potential effects and weaker
tunneling effects, which causes a clear angle-dependent
transition of the moiré electronic structure.
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FIG. 3. Angle-dependent band structures and real-space lo-
calization. (a, b) The band average energy (ave[En], averaged
over the MBZ), bandwidth (color saturation, deeper color for
flatter bands), and localization (red for AB/BA stacking and
blue for AA stacking) of the three top moiré valence bands as
a function of the twist angle θ for twisted bilayers of 2H phase
MoTe2. A fitted QHO model is given by the dashed lines, and
the first twist angles with bandwidths less than 10 meV are
denoted with green stars. The 1/0.7◦ band structures are
shown in the insets, with the first two QHO levels highlighted
in color and the corresponding energy axis given in blue on
the left. (c) LDOS of the top six moiré bands of unrelaxed
bilayer MoTe2 twisted at 0.5◦. The quantum numbers in the
QHO model are denoted as n = (nx, ny). (d) LDOS of the
moiré bands for a 0.7◦ and a 2◦ twisted bilayer of MoTe2. The
average LDOS in the MSL are normalized to one in both (c)
and (d).

In Fig. 3a,b we present the angle-dependent bands
and real-space localization of twisted bilayer MoTe2 (2H
phase) as a representative case. The top-most valence
bands for both the relaxed and unrelaxed moiré systems
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have a bandwidth less than 10 meV when the twist angle
is below 2.5◦. Using the Coulomb repulsion energy (U)
in TBG and twisted hBN as a guide [4, 11], this small ki-
netic energy implies that strongly correlated states could
exist for any twist angle below a certain critical value
in some TMDC materials [2, 36]. The relaxation effects
drive the small-angle (< 2◦) valence moiré bands from
TR-type to HC-type (Fig. 3). In the unrelaxed case, the
band structure at 1◦ shows a single uppermost flat band
and a pair of flat bands under it, consistent with a AA
stacking QHO model, with energy levels ~ω(nx +ny + 1)
[26, 27]. In contrast, a pair of top moiré bands and the
four lower bands in the relaxed 0.7◦ structure correspond,
respectively, to the first (n = 0) and second (n = 1) QHO
states of the HC lattice [27].

The real space localization of the tunneling-dominated
(TR) QHO state is evident in the local density of states
(LDOS) of the moiré bands for the unrelaxed condi-
tion, as shown in Fig. 3c. The electronic states local-
ize around the AA stacking center and show s, p, and
d -orbital distribution for the first three energy levels, re-
spectively. The six moiré bands shown correspond to the
QHO ground state, single excitation states (2-fold de-
generate), and double excitation states (3-fold degener-
ate). After relaxation, the competition between the two
types of lattices is greatly altered, as shown in Fig. 3d.
The two top bands in the low-angle case (θ = 0.7◦) lo-
calize in the AB/BA HC potential wells to from 2-fold
degenerate ground states of the HC QHO model, while
the third band is one of the 4-fold degenerate first ex-
cited states. As the twist angle increases, the localiza-
tion of the uppermost band gradually changes to the
AA stacking (θ = 2◦) with the second band localized
in the AB/BA region. This indicates that the energy
level of the HC QHO model and the triangular QHO
model cross as the angle changes, leading to a reordering
of the bands’ localization. Therefore, the transition be-
tween the HC and TR electronic states can be controlled
by varying the twist angle in the presence of atomic re-
laxations. The intermediate twist angles correspond to
competing real-space distribution and band reordering,
making these materials excellent candidates for hosting
non-trivial topological properties.

B. Topological states

To study the topological properties associated with the
TR-HC transition, we calculate the Chern numbers of the
moiré bands from the +K valley for a generic twisted bi-
layer of a hexagonal semiconductor, and use these results
to generate a TI phase diagram. The topological insu-
lator phase (Z2 = 1) refers to the quantum spin Hall
insulator with opposite spin and non-zero Chern number
at the ±K valley (under hole doping of 2 e/u.c.), and our
discussion on topology does not cover the Γ-edge moiré
bands [17]. The condition for the existence of topolog-
ical bands is represented by the electrostatic potential

FIG. 4. Topological phase diagram for moiré bands. (a) Phase
of the moiré bands as a function of the intensity of electro-
static potential α and tunneling fluctuations β (first Fourier
components, defined in Eq.(4)). The light (dark) green areas
represent X (Y) type TI phase, while the orange and light blue
areas represent topologically trivial HC and TR QHO states,
respectively. The twist-angle dependence of the relaxed band
structures is shown by the solid lines for selected materials.
The band structures and Chern numbers (C) for unrelaxed
and relaxed moiré bands in 1◦ twisted bilayer WSe2 are com-
pared. (b) Berry curvature (B) of the uppermost band for
X-type (1◦) and Y-type (1.5◦) twisted bilayer WSe2 in the
MBZ.

and tunneling coefficients in Fig. 4a for a generic sys-
tem, which are approximated by their first order Fourier
coefficients labeled V and w, respectively. In this simpli-
fied model, the topological properties can be completely
described by just two parameters, the intensity of elec-
trostatic potential α = V m∗(a/a0)2/θ2 and tunneling
fluctuations β = wm∗(a/a0)2/θ2 (with a0 = 3.52 Å, θ in
degrees, and m∗ in units of me), with the Hamiltonian

H ≈ K̂ + V̂ + Ŵ =
θ2

m∗(a/a0)2

(
K̂0 + αV̂0 + βŴ0

)
(4)

where a is the lattice parameter, K̂, V̂ , Ŵ are the kinetic,
potential, and tunneling energy, respectively, and K̂0, V̂0,
Ŵ0 are their material-independent counterparts. Using
the first-order harmonic form of the V0 and W0 terms as
an approximation, the topological properties can there-
fore be shown in a material-independent α − β phase
diagram (Fig. 4a). The topologically trivial TR and HC
phases appear in the w-dominated and V -dominated re-
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gions of the phase space, respectively. Topologically non-
trivial band structures occur in the intermediate region,
and we focus on two situations for the top-most valence
moiré bands. The Chern numbers of the three top-most
moiré bands are observed to be either (1, -1, 0) and (1, 1,
-2), which we label X-type and Y-type topological insu-
lators, respectively. Transitions between topological and
trivial insulators for the uppermost band will occur on
the boundary between different phases.

In Fig. 4a we show the curves in the phase diagram
of four 2H phase TMDCs, indicating transitions between
phases with increasing twist angle (without relaxation
these curves would be straight lines like the one shown
for WSe2). We mention that the 2H phase of ML WTe2
in our calculation is a meta-stable phase [37], where the
naturally occurring phase is 1T’ [38]. For comparison, we
include the curve for hBN, which remains in one phase
(TR) as it exhibits weak relaxation in this twist angle
range. An explicit example of the topological transitions
is also shown Fig. 4a for WSe2, including the unrelaxed
case, which confirms that the topological transition is
primarily driven by atomic relaxation.

In realistic experimental conditions, atomic-scale de-
fects, bending, and local strain introduced during fabri-
cation cause twisted bilayers to include different twist an-
gles in different areas within a single sample [39]. There-
fore, different domains of twist angle occur and intro-
duce both topological and trivial bands. Topological edge
states can appear along domain boundaries in the twist
angle, according to the critical values in Tab. I. Therefore,
the quantum spin Hall signature can be observed with
spin-polarized edge current along the domain boundaries
under magnetic field These edge states would not be de-
fined by a sharp change from one crystal to another, or
from material to vacuum, but rather by slow variation
in the twist angle. For this reason, these “internal” pro-
tected edge states would be excellent candidates for ob-
serving spin or valley-polarized states, as the only disor-
der comes from twist-angle variations, which are unlikely
to induce a spin or valley swapping.

TABLE I. θHC/X, θX/Y, and θY/TR are the critical twist an-
gles (in degrees) for transitions of the top bands between the
indicated phases. Egap is the maximum band gap between
the top and lower bands (in meV), and ωtop is the minimum
band width of the top bands in the topologically non-trivial
regime (in meV); θgap and θtop are the angles where these
extrema occur.

Material θHC/X θX/Y θY/TR Egap(θgap) ωtop(θtop)

MoSe2 0.9 1.4 2.4 2.98 (1.67◦) 0.18 (1.21◦)
MoTe2 0.7 1.1 1.5 1.43 (1.20◦) 0.30 (1.10◦)
WSe2 0.8 1.2 2.1 3.24 (1.40◦) 0.19 (1.15◦)
WTe2 0.7 1.4 2.4 3.70 (1.68◦) 0.18 (1.31◦)

In Fig. 4b we show the Berry curvature of the upper-
most valence band for two values of the twist angle. In
the HC phase in the small-angle region, the first tran-

sition appears at θHC/X = 1◦ where the two top bands
separate at the MBZ’s K points, indicated by the Berry
curvature’s concentration there. With increasing twist
angle, the Berry curvature of the top band gradually
transfers to the Γ point accompanied by an X/Y tran-
sition at θX/Y = 1.5◦. At larger twist angle, the Berry
curvature concentrates at the Γ point during the tran-
sition to the TR phase, where the two top-most bands
merge. The numerical results for the critical angles, max-
imal gap, and minimal band width for the TMDCs with
topological valence bands are presented in Table 1. We
have also verified that the bands and real space local-
ization of WSe2 [2], and hBN [11] from our model are
consistent with previous full DFT calculations.

Including spin degrees of freedom, the spin-dependent
moiré Hamiltonian decomposes into two copies [17]. At
the K valleys of the aligned bilayer, the two copies will
be split by the spin-orbit coupling term, ∆SOC, which
for most TMDCs is on the scale of 100 meV, and the
opposite spin-ordering will occur at the K ′ valley. The
Γ and M points tend to have very weak spin-splitting,
leading to two copies of the spin-independent Hamilto-
nian, as is the case in continuum treatments of twisted
bilayer graphene [8]. However, as the two nonequiva-
lent K valleys are related by time reversal symmetry, the
spin-up bands atK valley and spin-down bands atK ′ val-
ley have opposite Berry curvature and Chern numbers.
Topologically non-trivial uppermost bands with opposite
spin and Chern number give rise to the helical edge states
protected by the TR symmetries at the boundaries, and
could lead to observable quantum spin Hall (QSH) ef-
fects [40].

IV. CONCLUSION

The origin of the TI phases was previously ascribed [17]
to a skyrmionic texture in the moiré ∆ terms, which is
an alternate interpretation of the TR/HC competition
we presented here but captures the same key features.
As the flatness of the bands causes stronger correlation
effects, the topological phases in twisted bilayer semi-
conductors could exhibit the combination of TI and su-
perconductivity, which has been the subject of an intense
decades-long search for fractional statistics and Majorana
fermions [40].
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