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The quantum geometry of Bloch states fundamentally affects a wide range of physical phenomena.
The quantum Hall effect, for example, is governed by the Chern number, and flat band supercon-
ductivity by the distance between the Bloch states — the quantum metric. While understanding
quantum geometry phenomena in the context of fermions is well established, less is known about
the role of quantum geometry in bosonic systems where particles can undergo Bose-Einstein conden-
sation (BEC). In conventional single band or continuum systems, excitations of a weakly-interacting
BEC are determined by the condensate density and the interparticle interaction energy. In contrast
to this, we discover here fundamental connections between the properties of a weakly-interacting
BEC and the underlying quantum geometry of a multiband lattice system. We show that, in the flat
band limit, the defining physical quantities of BEC, namely the speed of sound and the quantum
depletion, are dictated solely by the quantum geometry. We find that the speed of sound becomes
proportional to the quantum metric of the condensed state. Furthermore, the quantum distance
between the Bloch functions forces the quantum depletion and the quantum fluctuations of the
density-density correlation to obtain finite values for infinitesimally small interactions. This is in
striking contrast to dispersive bands where these quantities vanish with the interaction strength. Ad-
ditionally, we show how in the flat band limit the supercurrent is carried by the quantum fluctuations
and is determined by the Berry connections of the Bloch states. Our results reveal how non-trivial
quantum geometry allows reaching strong quantum correlation regime of condensed bosons even
with weak interactions. This is highly relevant for example for polariton and photon BECs where
interparticle interactions are inherently small. Our predictions can be experimentally tested with

flat band lattices already implemented in ultracold gases and various photonic platforms.

I. INTRODUCTION

In recent years, it has become clear that the quantum
geometry of Bloch states is a fundamentally important
property that complements the information given by en-
ergy band dispersions. If the unit cell hosts multiple or-
bitals (lattice sites, spins, etc.), the Bloch states become
vectors in the orbital basis. Consequently, the quantum
geometry of the band, namely the phase and amplitude
distances of the Bloch states, may become non-trivial. In
other words, they may differ drastically from the single
band or continuum systems. This is quantified by the
quantum geometric tensor [1] whose imaginary part is
the Berry curvature and real part is the quantum metric
— a measure of distance between two quantum states [2].

Quantum geometry can play a central role in deter-
mining the properties of a given system. For instance,
Berry curvature governs the anomalous transport of an
electron wave-packet [3], while its integral over the Bril-
louin zone (BZ) gives the Chern number, which, among
other topological invariants, is central in explaining the
quantum Hall effect and topological insulators [4-9]. The
importance of the quantum metric for phenomena such
as superconductivity [10-13], orbital magnetic suscepti-
bility [14, 15] and light-matter coupling [16] has been un-
derstood only recently, and the interest in the quantum
metric is rapidly growing [17-20]. Quantum geometric
concepts have also been proposed for bosonic systems

composed of light, bosonic atoms, or collective excita-
tions [21-30].

While prominent topological properties can already
arise from single particle physics, interactions between
particles lead to even more intriguing phenomena [7, 31—
37] such as topological superconductors and fractional
Chern insulators. In the context of interacting sys-
tems, (nearly) dispersionless bands with diverging effec-
tive mass — so-called flat bands [38] — are particularly
exciting for two reasons. First, quantum many-body in-
teraction and correlation effects are expected to be strong
when the kinetic energy scale is quenched. Second, the
effects of the Bloch state quantum geometry are likely
to dominate if the band dispersion itself is featureless.
Superconductivity is an important example of this, as
the critical temperature is predicted to be exponentially
enhanced in a flat band [39], and the stability of a super-
current guaranteed by a non-zero quantum metric and
the Chern number [10-12]. Flat band systems, both for
fermions and bosons, can be experimentally realized, for
example in ultracold gases, photonic and polaritonic sys-
tems, and atomistic designer matter [38, 40-46]. A well-
known example of a nearly flat band system is given by
twisted bilayer graphene, where the observed supercon-
ductivity [47-49] has indeed been proposed to be influ-
enced by quantum geometry [17-20].

While geometric properties of quantum states in
fermionic systems are widely explored, the significance



of quantum geometry in the context of bosonic systems
remains less studied. It is therefore natural to ask how
the quantum geometry affects the Bose-FEinstein conden-
sation (BEC) of interacting bosons, particularly in a flat
band. There are obvious outstanding puzzles. Since the
states of the flat band are degenerate, which one is cho-
sen for BEC? Since single particles are localized in a flat
band, is superfluidity even possible? Due to the high
degeneracy, is the condensate immediately fragmented?
It has been theoretically shown that interactions be-
tween the bosons enable mass current [50-55] , even in
a flat band, and thereby a BEC [56]. Semiconductor
polariton condensates have been experimentally studied
in Lieb [57-60] and kagome [61] lattices, showing frag-
mentation and localization. Theory work on the kagome
lattice predicts that due to interactions, a certain lattice
momentum is favorable for BEC, even when initially all
momenta have degenerate energies [62]. Thus far, stud-
ies of flat band BECs have mainly focused on mean-field
properties, although Ref. [62] analysed the stability of
the condensate against quantum fluctuations using Bo-
goliubov theory. However, the density-density response
and excitation density have not been calculated and, im-
portantly, the relation between the quantum geometry
and the excitations of a BEC has not been considered.

Here, we investigate excitations of weakly interacting
bosonic condensates and reveal fundamental connections
to quantum geometry. In a flat band, we find conden-
sate behavior radically different from that in a disper-
sive band. By applying multiband Bogoliubov theory,
we study the speed of sound c,, density-density correla-
tions, superfluid weight D?®  and excitation density ne,
i.e. the amount of particles depleted from the condensate
due to interactions (so-called quantum depletion).

In a flat band, ¢s is found to be determined by the
quantum metric of the condensate state such that a finite
quantum metric guarantees a finite c¢;. Moreover, in con-
trast to the usual square root dependence [63], ¢s in a flat
band is linearly proportional to the interaction, because
the quantum metric provides an interaction-dependent
effective mass.

We furthermore show that the excitation density neyx
is found to behave in a striking way in a flat band: it
has a finite value for both finite and infinitesimally small
interactions. This is remarkable for two reasons. First, it
is totally different from the conventional dispersive case
where ney vanishes with the interactions. Second, for
finite interactions, one could intuitively expect the ex-
citation fraction to diverge in a band with flat energy
spectrum, as the excitations have no kinetic energy cost.
However, it turns out that the excitation density for small
interactions is determined by the quantum distance be-
tween the condensed state and the other states of the
band: a finite distance between them curtails the exci-
tation fraction from diverging. A salient point here is
that the excitation density does not depend on the total
density. Therefore, by decreasing the condensation den-
sity, one can increase the depletion of the condensate,

even in the U — 0 limit. In this way, the importance
of quantum fluctuations and correlations can be signifi-
cantly enhanced at the weak-coupling limit.

Density-density correlations are typically dominated
by the macroscopic population of the condensate. We
show that in a flat band the quantum correlations be-
tween excitations are also prominent. In fact, the quan-
tum fluctuation contribution obtains a finite value, even
in the U — 0 limit, due to quantum geometric proper-
ties of the flat band, similar to nex. This means that in
flat band BECs, quantum geometry can provide access
to manifestly quantum (beyond mean-field) correlations,
even for weak interactions.

Finally, the superfluid weight is usually given by the
density of the condensed bosons and the band dispersion
relation. In a flat band, we find that finite superfluid-
ity arises extraordinarily due to the quantum fluctua-
tions only and is determined by the Berry connections of
the Bloch states. We prove this analytically in the non-
interacting limit and show that for the kagome lattice the
result is valid for a wide range of interaction values.

To summarize, in contrast to a dispersive band BEC,
the excitation properties of a weakly-interacting flat band
BEC depend on the underlying quantum geometry in the
following way. 1) The speed of sound ¢, is given by the
quantum metric and depends linearly (in contrast to the
conventional square root dependence) on the interaction
strength. 2) The excitation density can be non-zero even
in the limit U — 0 and is given by the quantum distance
among the flat band states. 3) The quantum fluctuations
can be significant even for U — 0 and are determined
by the quantum distance. 4) The superfluid weight is
induced by the quantum fluctuations and has a quantum
geometric origin. Our main results are summarized in
Fig. 1.

Our present work accompanies the joint study of
Ref. [64] and together these two works establish funda-
mental new relations between the quantum geometry and
BEC. We show that bosonic condensation and superfluid-
ity can be stable in a flat band if there is a finite quantum
metric and a quantum distance between the condensed
state and non-condensed states of the band. Importantly,
the fluctuations dominate over mean-field properties in
several physical observables, making flat bands a promis-
ing platform for realizing strongly correlated bosonic sys-
tems, even at the weak interaction limit.
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FIG. 1. The connection between flat band Bose-Einstein con-
densation and quantum geometry. The right panel summa-
rizes the main results of this article; for comparison, the left
panel shows known results on dispersive band BEC. Here we
show results for the case of a kagome flat band model, how-
ever the general formulas (see text) have essentially similar
dependence on the geometric quantities.

II. THEORETICAL FRAMEWORK OF BEC
AND BOGOLIUBOV APPROXIMATION IN A
FLAT BAND SYSTEM

We consider a weakly interacting BEC in a multiband
system described by the Bose-Hubbard Hamiltonian

_ t
H=>"c Hiajscip
ia,j 8

U
— I Z c;racm + 5 Z c;racm(c:facm -1. (1)

Here, ¢;, is a bosonic annihilation operator for the ath
sublattice site within the ¢th unit cell; the matrix H con-
tains the hopping coefficients between different sites; p
is the chemical potential; U > 0 is the repulsive on-site
interaction. The sublattice index ranges from 1 to M,
where M is the number of lattice sites per unit cell. By
assuming periodic boundary conditions and introducing
the Fourier transforms c;, = \/%Zk exp(ik - riq)Cka,
where N is the number of unit cells, r;, is the location
of the ath lattice site in the ¢th unit cell, and k is the

momentum, one gets

H= Z (cL’H(k)ck - ,LLC;r(Ck)
k

U
Ton 2o 2 Chalk-antlatiran (2)
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Here, the one-particle Hamiltonian H (k) is a M x M ma-
trix and ¢y is a M x 1 vector such that [ck]q = ckq. One
can diagonalize H(k) as H(k)|un(k)) = en(k)|un(k)),
where €, (k) (Ju,x)) are the eigenenergies (Bloch states)
and n is the band index so that €1(k) < ea(k) < ... <
em (k).

As we consider an equilibrium situation, the condensa-
tion takes place within the lowest Bloch band. Further-
more, we are mainly interested in condensation occurring
within a flat or quasi-flat Bloch band; the latter is defined
by J << Ung, where J is the width of the band and ngq is
the number of condensed bosons per unit cell. Since the
Bloch states of the flat band are degenerate in energy, the
question arises: on which state does the condensation oc-
cur? To answer this, we use the approach of Ref. [62], i.e.
utilize the mean-field (MF) approximation [65],where we
substitute operators in Eq. (2) by complex numbers, and
the resulting MF energy Envr (k) is solved separately for
each k with fixed density ng (see Appendix A). The con-
densation takes place at the Bloch state |¢g) = |ui(ke))
that minimizes Eyr(k) [62]. The momentum (energy) of
the condensed Bloch state is denoted as k. (9 = €1(k.))-

Therefore, even if the lowest Bloch band is strictly
flat, the condensate can still occur at some specific Bloch
state, as the repulsive on-site interaction favors Bloch
states that distribute the particles among the sublattices
as equally as possible. We herein assume uniform con-
densate density, i.e. |(a|¢po)|? = 1/M for all & with (a|eg)
being the projection of |¢g) to the orbital o. This is a
rather general condition; examples will be presented be-
low.

To analyse the excitations of the condensate, we ex-
press Ciq as

Cia = /00 (Tia) + 0Cia = €2 + 5ciq. (3)

Here, 1o(ria) = exp(ik. - ria){(a|@o) is the wavefunction
of the condensate with the wave vector k. and dc¢;, de-
scribes the fluctuations on top of the condensate. By
Fourier transforming, one finds ¢k, = v/ Nng{(a|pg) and
Cktkoa = N—1/2 ) e~k Tiage. |

We now treat the Hamiltonian within the multiband
Bogoliubov approximation (for details, see Appendix B)
by neglecting the interaction terms that are higher than
quadratic order in the fluctuations cyg, and CLX with
k # k.. One can then express Eq. (1) as H = E. + Hp,
where F. is a constant giving the ground energy of the
condensate. The excitations are described by the Bogoli-
ubov Hamiltonian (See Appendix B for details)

1 /
Hp =3 Zk: Ul Hp (k) Wy, (4)



where Hp(k) is a 2M x 2M matrix given by
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The primed sum in Eq. (4) indicates that all the operators
within the sum are for non-condensed states only, i.e.
k # k. and 2k, — k # k..

To obtain the excitation energies of the condensate,
one cannot directly diagonalize Hp since this would vi-
olate the bosonic commutation relations. Instead, one
needs to find the eigenstates of L(k) = o, Hp(k), where
0, is the Pauli matrix [66]. One obtains Bogoliubov
bands of the energies Ej (k) > ..Ea(k) > Ei(k) >
0> —E1(2k. — k) > ... — Ep(2k. — k). Here positive
(negative) energies describe quasi-particle (-hole) excita-
tions. The quasi-particle and -hole states are labelled as
[} (k)) and |+, (k)) such that

LK)y, (k) = En (k)¢5 (k) (6)
L(K)|t,, (k)) = —Em(2ke — k)|, (k).) (7)

The chemical potential in Eq. (4) is fixed such that the
lowest quasi-particle energy band is gapless at k., i.e.
Ei(k — k;) = 0. This is the usual Goldstone mode
that emerges because the condensate wavefunction spon-
taneously picks up a complex phase, leading to the spon-
taneous gauge U(1) symmetry breaking [63, 65].

III. SPEED OF SOUND AT THE
WEAK-COUPLING REGIME

After setting up the Bogoliubov theory, we now pro-
ceed to derive our main results. We first compute the
speed of sound ¢y for small U, which is given by the
slope of the lowest Bogoliubov excitation band in the
long-wavelength limit:

e(0) = tim Dk D ZBilke) _  Fitkefa),
la[—0 |CI| la|—=0 ‘q| ()
8

with |q| << 1 (we use units where the lattice constant
is unity). In general, ¢; depends on the direction of its
momentum ¢, parametrised by the angle 64 between q
and the z-axis. We assume that around k., the lowest
Bloch band is isolated from the higher Bloch bands by an
energy gap I, that is large compared to the interaction
energy, i.e. Ung < Ey4. In this case, the interaction term
does not cause notable mixing between the lowest and
dispersive bands. This is important as we are interested
in the properties of flat band BECs. In the large inter-
action regime with Ung > E,, the importance of a flat

band would be obscured by the dispersive bands. With
Uny < Ej4, we therefore discard the higher bands and
project to the lowest band to obtain (see Appendix C)

U a(q)
Ly(k) = Qm,jf,io 3  Ung 9)

MY (q) ~ o M

for g — 0. Here, the subscript p indicates that this is the
projected 2 x 2 matrix. We have furthermore defined the
off-diagonal term as a(q) = U%nowl(kc + q)|Alui (ke —
q)), which contains information about the quantum ge-
ometric properties of the Bloch states. It is this quan-
tity that encodes quantum geometric effects to various
physical properties of a BEC taking place in a multiband
system, as can be strikingly seen in the flat band limit
shown below. To contrast geometric effects to the behav-
ior of a conventional BEC, we have retained a possible
finite dispersion relation of the lowest band via the term
q2/2meff-

Tt is easy to obtain E;(k.+q) by diagonalizing Eq. (9),
which yields

R K G
(10)

for small |q|. The two terms inside the square root in
Eq. (10) have a completely different origin. The first
is the usual term arising from the dispersion of the
bosons in the considered Bloch band, which vanishes for
a strictly flat band, i.e. when meg — oco. On the other
hand, the second term involves overlaps of the Bloch
states, and its connection to quantum geometry has not
been considered in the context of Bose-Einstein conden-
sation before. The quantity «(q)reads

MZul

e+ a)la){alo)(dole) (elui (ke — q)),
(11)

which gives an overlap between |¢g) and the states of the
particle |uj (k. + q)) and the hole |uj (k. — q)).

Defining D(q) = /1 — |a(q)|?, we can write Eq. (10)
as

Un,
El(kc+q) g

7 Pl (12)
for a flat band with m.g — oo. This shows that the
Bogoliubov excitation energies for a flat band are deter-
mined by D(q), which we call the ”condensate quantum
distance” between the condensed state and the neigh-
bouring states, since D(q) = 0 when {(u;(k. + q)|¢o) =
(u1(ke — q)|¢po) = 1. Indeed, D(q) becomes identical to
the HilbertSchmidt quantum distance D(q) [15, 67]

V1= [{ui(k

D(q) = e+ q)ur (ke — q))*. (13)



when |uj(k)) = |ui(k)). By Taylor expanding up to
second order in q, one has D?(q) = 43, 4 a9, (Ke),
where

91 (1) = Re[ (Dt ()] (1 = [ () 0 ()]} |0, 1 (1)
(14)

is the quantum metric g, (k) of the nth Bloch band and
Oy = %. This implies that the speed of sound for the
flat band, cg f.4., reads

2Un, R - . «
Co, g (0g) = =2/l g (ke)eq, with |uf(k)) = |us (k)

M a
(15)

is purely determined by the quantum metric. Here, &4 =
a/lal, tanfq = ¢, /g, and [g'], = g,,,-

From Eq. (15) we see that finite quantum metric yields
non-zero ¢, and thus allows superfluidity even in case of a
flat band BEC. This result can be contrasted to fermionic
flat band systems where superconductivity was shown to
exists for non-zero Chern numbers or momentum space
integrals of of the quantum metric [10-12]. The difference
to the present bosonic BEC case is that only the quan-
tum metric of the condensed Bloch state |¢g) matters,
not the geometric quantities integrated over the whole
BZ. Furthermore, the speed of sound of a spin-orbit cou-
pled Fermi gas was studied in Ref. [68]: ¢, was shown
to partially depend on the quantum geometric terms but
their significance was hampered due to the presence of
more dominant non-geometric contributions. In our case,
quantum geometry manifests as the sole contribution for
the weakly-coupled flat band BEC.

In the general case of |uj(k)) # |ui(k)), we use the
condition |[{a|¢o)|? = 1/M and expand |u;(k. + q)) and
|uf (k. — q)) up to second order in q. This gives

DZ(q) = Z q;qu{lelw(kc) + 2Re[<au¢0|¢0><¢0‘au¢0>]
+ 2MRe[ >~ (Bu0la) (alo) (65la)(ald,65)] |

= 42Q;¢nglw(kc) (16>
N7

for q — 0. We have introduced a generalised metric g, ,
which replaces g,, in Eq. (15) for the speed of sound
when |uj(k)) # |ui(k)). Consequently, the discussion
following Eq. (15) remains valid for a general flat band
with the replacement g, = §,.,. With Eq. (16), Eq. (10)
and c, . can be recast as

Pyl + ) - ¢(]g;;gﬂ)qz ()’ S g )
o

(17)

2Un0 AT ~ N
Cerfb. = 1 eng(kc)eq. (18)

When the geometric contribution is zero, i.e. gu, = 0,
the speed of sound for a dispersive band reduces to the
usual form ¢, = \/Uno/(Mmeg), i.e. ¢ o< VU [65]. This
should be compared to the flat band limit meg — o0,
where the first term in Eq. (17) vanishes and c¢; o< U.
The linear vs. square root dependence can be used to
distinguish the sound velocities of geometric and conven-
tional origin in an experiment where U can be tuned.
Equivalently, one can define an interaction-dependent ef-
fective mass for the flat band mers = M/(4Un0éqT§éq)
so that the speed of sound is formally the same as for a
dispersive band, ¢, = \/Ung/(Mm.ysy). Different forms
of ¢, for dispersive and flat band condensates are sum-
marized in Fig. 1.

A. Speed of sound in kagome and checkerboard
lattices

We now consider cs in two specific flat band models.
The kagome lattice [see Fig. 2(a)] consists of three sub-
lattices, and one of the three Bloch bands is strictly flat
[Fig. 2(b)] [62]. When the nearest-neighbour (NN) hop-
ping is positive ¢t > 0, the flat band has the lowest energy
and Bose condensation can take place within it. By mini-
mizing the mean-field energy FEyr(k), one finds [62] that
condensation at the I'-point, i.e. k = 0, or at one of the
Dirac points, e.g. k. = kx = [47/3,0], is favoured [see
Fig. 2(c)] since the particle density distributes uniformly
among the sublattices for these Bloch states, minimizing
the repulsive on-site interaction. A fluctuation analy-
sis [62] shows the condensation at kx having a slightly
smaller zero-point energy, being then more favourable
than the I'-condensate. We thus take k. = kg. Since
the upper two dispersive bands are far away from the
flat band at kg, the kg-condensate realises flat band
condensation to a good approximation.

In Fig. 2(d) we show a typical Bogoliubov spectrum
for the kagome flat band condensate at k. = k. A gap-
less Goldstone mode exists whose dispersion around k.
is linear. By extracting the slope of the Goldstone mode,
we obtain ¢, which is plotted in Fig. 3(a) as a function
of interaction U. Furthermore, because |uj(k. — q)) =
|ui (ke — q)), Eq. (15) holds for U — 0. Thus, alongside
the numerical result, we also plot in Fig. 3(a) the weak-
coupling result of Eq. (15). The agreement for small
interactions is excellent. Moreover, c; is isotropic, con-
sistent with the fact that D(q) around k. is rotationally
symmetric, see Fig. 3(c).

As another example, we consider the checkerboard-III
(CB-III) geometry [69] [Fig. 2(e)] that consists of two
sublattices and features a strictly flat band, see Fig. 2(f).
By minimizing the MF energy Eyw(k), one finds that
there exists a continuous subset of flat band Bloch states
that minimize the condensation energy [Fig. 2(g)]. One of
these states is at k = [27/3, 7], and computing D(q) for
this state gives D(q) = 0 at q||e, as shown in Fig. 3(d).
This means that ¢; = 0 in the y—direction, implying
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FIG. 2. Flat band models considered in this work. (a) Kagome lattice geometry. The unit cell is shown as a blue parallelogram.
Purple lines depict NN hopping terms of strength ¢. (b) Bloch bands of the kagome lattice with ¢ = 1 along high-symmetry
points. (c¢) Mean-field energy Emr (k) across the BZ for the kagome lattice. It is minimized at the I'- and Dirac-points but
fluctuation analysis [62] shows that the Dirac-point condensate is the most favourable. The red lines depict the path along
which the dispersions in panels (b) and (d) are plotted. (d) Bogoliubov spectrum for the kagome lattice along high-symmetry
lines with k. = [47/3,0] [marked as a black dot in (b) and (d)] and Uno/Mt = 0.2. Quasiparticle (-hole) modes are depicted
with solid (dashed) lines. There is a gapless Goldstone mode at k.. (e¢) Checkerboard-I11 (CB-III) geometry. The blue square
represents the unit cell. Solid purple (orange) lines depict kinetic hopping terms of strength ¢t = 1 (2¢), whereas bolded black
(red) dashed lines are hoppings of strength —2¢ (—¢). Thin black and red dashed lines depict hoppings of strength —2¢(1 — 9)
and —t(1 — §), where a finite staggering parameter 6 < 1 can be used to render the flat Bloch band slightly dispersive. In
the computations we use § = 107°. The sublattice depicted as black (red) dots has the on-site energy of 5t (2t). (f) Bloch
band structure for CB-II1. (g) Mean-field energy Emr (k) for the CB-III model with 6 = 0. The red lines depict the path along
which the dispersions in panels (f) and (h) are plotted. There is a continuous subset of Bloch states that minimize Fix equally
well. By using a finite §, one can introduce stable condensation to the momentum k = [27/3,7]. (h) Bogoliubov spectrum
for the CB-IIT model along high-symmetry lines with k. = [27/7, 7] [marked as a black dot in (b) and (d)] and § = 107" at
Uno/Mt = 0.2. Quasiparticle (-hole) modes are depicted with solid (dashed) lines. A gapless Goldstone mode exists at ke. A
small gap opens at the M-point, despite being barely visible in the plot.

an unstable BEC. This is consistent with Eyr(k) being
minimized for a continuous subset of flat band states, see
Fig. 2(g), which makes condensation in a single Bloch
state ambiguous.

Our results demonstrate an important aspect of flat
band condensation. While finite interactions are needed,
they are not sufficient to obtain a stable flat band BEC.
An additional condition is to have a suitable quantum
geometry for the flat band. Indeed, in the CB-III geome-
try, a flat band BEC cannot be obtained as the quantum
distance is zero between some of the flat band states.
Another example of an unstable flatband BEC is a single
band model for which D(q) = 0 for all q. In case of the
kagome lattice, we have shown above that the flat band
condensate can be stable due to a non-zero quantum dis-
tance between the Bloch states. The connection between
the stability of a flat band BEC and the quantum dis-
tance is elaborated further in the next section.

The checkerboard-III lattice condensation can be made
stable by introducing a small perturbation to the NN
hopping terms [Fig. 2(e)] that renders the lowest Bloch

band slightly dispersive. By computing ¢, with Eq. (17),
one finds that ¢, in the y-direction scales as VU due to
finite dispersion. In the x-direction, however, ¢, scales
linearly in U and is therefore determined by the geomet-
ric term D(q). Although the condition |u}) = |u;) is not
strictly met, cs in the z-direction is still mostly dictated
by the quantum metric, see Fig. 3(b). By computing c
for all the directions 6, we see that c, decreases mono-
tonically between the directions 64 = 0 and 04 = 7/2
[see inset of Fig. 3(b)], reflecting the anisotropy of D(q)
shown in Fig. 3(d).

IV. EXCITATION FRACTION

In addition to the speed of sound, quantum geome-
try can manifest also via other physical quantities. We
demonstrate this here for the excitation density n,, i.e.
the number of non-condensed bosons per unit cell, in the
limit of U — 0. In case of the usual dispersive band
condensate, one has limy_,g ne; = 0 at zero-temperature
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FIG. 3. Speed of sound in flat band condensates. (a)-(b) The
speed of sound cs for kagome and CB-III flat band conden-
sates, respectively, as a function of U. Total density was
chosen to be nit = M, i.e. one particle per lattice site.
We also show the weak-coupling result of Eq. (15). The
quasi-flat band of CB-III has a small but non-zero bandwidth
J ~ 107%Uno due to a finite 6. For the kagome model, c,
is determined by the quantum metric of the condensed state,
which in this case is isotropic. In CB-III, ¢ in the x-direction
(cs,») depends on the quantum metric and in the y-direction
(cs,y) on the effective mass meg of the quasi-flat band. The
energy scaling F, is taken to be the energy gap between the
flat band and higher bands at k.. To make it more visible,
data for cs,, is scaled by a factor of 30. Inset of (b) shows the
angle dependence of ¢s for CB-11I at Uno/E4 = 0.07. (c)-(d)
The condensate quantum distance f)(q) for the kagome and
CB-III lattices as a function of k = k. + q. For the kagome
(CB-I11) lattice, D is computed with respect to k. = [47/3, 0]
(ke = [27/3, 7)), marked as a red dot. For CB-III, D(q) = 0
in the ky-direction, consistent with the fact that for § = 0 the
condensation at k. = [27/3, 7] is unstable.

[63, 65]. However, for a strictly flat band, the limit U — 0
implies that the lowest Bogoliubov excitation band be-
comes flat as the off-diagonal terms of Hp in Eq. (5)
vanish, i.e. A — 0. This implies that the BEC at a sin-
gle flat band state becomes unstable (see also Appendix
D) as the lowest Bogoliubov band excitations have van-
ishing energy cost. Therefore, it is not intuitively clear
what kind of asymptotic behavior limy_,gne, of a flat
band condensate features. In this section we show that,
remarkably, ne, can be mon-zero and finite for vanish-
ing interaction strength, and that its value is dictated by
quantum geometry.

The expression for ney can be written as (see Appendix
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FIG. 4. Excitation density. (a) Functional form of Eq. (20).
For D — 0, one has (1 —D)/2D — oo, which implies instabil-
ity of the BEC and breakdown of the Bogoliubov theory. (b)
Excitation fraction nex/ntot of the two kagome lattice con-
densation schemes for niyos = 3 as a function of U. For the
flat band condensate (t = 1), nex remains finite even in the
limit of U — 0. Purple triangle depicts the analytical re-
sult of Eq. (20). (c) Densities ng and nex as a function of
ngot for kagome flat band condensation at k. = [47/3,0] and
U = |t|/1800. Excitation density nex remains constant, as it
is determined by only the quantum geometry.
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= %Z/nem(k), (19)
k

where c;r(m creates a boson in the Bloch band m with mo-

mentum k and energy ¢,,(k), obtained by diagonalising
H(k) in (5).

It is instructive to consider first a single band
case for which the one-particle energy spectrum reads
e(k) o« k?/m.s; corresponding to a continuum sys-
tem or the long-wavelength limit of a square lattice.
The corresponding Bogoliubov energy is then F;(k) =
VEé(k)[E(k) + 2Uno] with é(k) = e(k) — €y, and one has
Ney (k) = [€(k) + Ung]/E1(k) — 1 [63]. We see that ney
diverges in the flat band limit 1/mess = 0. Thus, a
flat band BEC within a single band system is always
unstable. This is consistent with the results of the pre-
vious sections since for a single band lattice system one
always has a(k) = 1. Consequently, one needs to incor-
porate quantum geometric effects to reach a stable BEC,
i.e. consider a multiband system.

We now focus on a multiband lattice system, assum-
ing the condensation to take place within a strictly flat
band and neglecting higher bands, which is justified for




a small U. We therefore deploy Eq. (9) with 1/m.g = 0.
Solving L, (k)|y7 (k)) = —E1(k)|¢7 (k)) and taking into
account the proper normalization requirements [Eq. (B9)
in Appendix B] gives

1 - D(q)
2D(q)

where q = k — k.. This expression relates a simple way
the density of non-condensed bosons to the condensate
quantum distance D(q). It is valid for infinitesimally
small but finite U; in complete absence of interactions
(U =0), a BEC in a strictly flat band cannot exist since
all momentum states remain degenerate, as discussed in
Section II.

The functional form of Eq. (20) is depicted in Fig. 4(a).
If D(q) = 0, ne, (k) diverges, implying the breakdown of
the Bogoliubov theory. This is intuitively easy to com-
prehend as a consequence of a perfect overlap between
|¢o) and non-condensed Bloch states, which leads the
particles to "spill” out of the condensate. It is also in
agreement with the results presented in the previous sec-
tion where D(q) = 0 indicated unstable flat band con-
densation.

To illustrate the role of the condensate quantum dis-
tance, we now consider ney in case of the flat band BEC of
the kagome lattice. For comparison, we also consider the
dispersive band BEC by carryring out the calculations
for negative NN hopping term, i.e. ¢t = —1. With this
choice, one of two dispersive Bloch bands is the lowest
one in which the bosons condense at k. = 0.

In Fig. 4(b) we plot nex/ntor (With ngey being the total
density) as a function of interaction for the flat and dis-
persive band condensates. In the case of the dispersive
band BEC (red curves), we see that neyx vanishes when
the interaction goes to zero as usual. In contrast, for the
flat band condensate ney is non-zero when U — 0, indeed
approaching the value obtained by integrating Eq. (20)
over the BZ (purple triangle). The different behavior of
nex for dispersive and flat band condensates is summa-
rized in Fig. 1.

In Fig. 5(a), we present mex(k) of the kagome flat
band BEC across the BZ for a small U. As predicted
by Eq. (20), the momentum dependence of D(k), shown
in Fig. 3(c), is imprinted to the momentum distribution
of nex(k). Similar conclusions can be reached by consid-
ering the CB-III model [Fig. 5(b)], where nex(k) is non-
zero only near the momenta for which D(k) vanishes [see
Fig. 3(d)].

The kagome flat band condensate respects the condi-
tion |uj(k)) = |ui(k)) and therefore D(q) reduces to
the usual Hilbert-Schmidt quantum distance D(q) (13).
Thus, in the kagome lattice, the Hilbert-Schmidt dis-
tance of the flat band states directly determines ney.
The Hilbert-Schmidt distance has been previously con-
nected to Landau level spreading in non-interacting flat
band models [15], and our result is one of the first to re-
veal how the quantum distance affects physically relevant
quantities in an interacting many-body quantum system.

Jim (e cra) = , (20)
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FIG. 5. Momentum dependence of the excitation density. (a)-
(b) Momentum dependence of nex(k) for kagome and CB-III
lattices, respectively, with niot = M. The interaction in the
kagome (CB-IIT) model is chosen to be Ung/E, = 5.13x10™*
(Uno/E4 = 0.011); in the case of CB-IIT, we use § = 107° to
avoid a diverging nex. Remarkably, the excitation fraction
follows the features of D shown in Figs. 3(c)-(d), as predicted
by Eq. (20).

Remarkably, limy_,onex of the flat band BEC in
Eq. (20) does not depend on nyo but is determined by
the quantum distance. Therefore, one can, by decreasing
Ntot, increase the excitation fraction nex /nior and the role
of the interaction and quantum fluctuation effects even
in the non-interacting limit U — 0. We show this in
Fig. 4(c) where ng and ney are depicted as as a function
of ngot for small interaction of Ung/E, = 5.13 x 10~* in
the case of the kagome model. The excitation density nex
remains constant as a function of n., in contrast to ng
which decreases when the total density becomes smaller.

Note that in Fig. 4(c) we consider the regime ney ~ ng
and thus one might anticipate the usual Bogoliubov the-
ory to break down [70]. We thus also considered the
Hartree-Fock-Bogoliubov (HFB) approximation, which,
unlike the simple Bogoliubov theory, takes into account
the first order self-energy diagrams not containing any
condensate propagators (see Appendix E and Fig. S1
in Supplementary Material (SM) [71]). Even for rather
large nex/ntot, the Bogoliubov and HFB approximations
yield the same results in the limit of U — 0. This agree-
ment between HFB and Bogoliubov theory confirms the
accuracy of our approach, even when n., becomes rather
large.

The lowest total density used in Fig. 4(c) is approxi-
mately niot ~ 0.75. By utilizing the HFB approach for
even smaller total densities, one notes that it is unable
to yield self-consistent solutions, implying that our as-
sumption about the existence of a homogeneous BEC
might become invalid. It was shown in Ref. [56] using
mean-field theory that for densities nio: < 0.72, a charge
density wave (CDW) co-exists, alongside the condensate
at k. = [47/3,0]. Therefore, the breakdown of our HFB
method around this density may occur because of a co-
existing competing order which is not taken into account
in the HFB theory. In Ref. [56], the co-existence of the
CDW order was confirmed by exact diagonalization com-
putations.



The dilute limit considered in Ref. [56] sets important
limits for the applicability of our Bogoliubov and HFB
approach, that assume the existence of a BEC. Namely,
it can easily be shown analytically [56] that for densities
neot < 1/3, the ground state consists of spatially non-
overlapping compact localized states (CLS), leading to
CDW order. This is a unique feature of flat band systems,
since CLS states can be constructed as superpositions of
flat band states only [69, 72]. Below the critical density
Nyot,c = 1/3, the particles are distributed among spatially
non-overlapping CLSs. However, for nio¢ > Mot it is not
(due to the repulsive interaction) energetically favourable
to accumulate particles only to the non-overlapping CLSs
and added bosons hop between interstitial sites of the
CDW order, forming a condensate at k. = [47/4,0]. In
Ref. [56], the dilute densities of ny € [1/3, ~ 0.72]
were studied showing that both the CDW and the BEC
phases can exist or co-exist such that the order parameter
of CDW (BEC) decreases (increases) as a function of ne¢.
In this work, however, we are interested in BEC phenom-
ena of flat band systems rather than different co-existing
many-body phases, that possibly take place within a flat
band system. Accordingly, we do not consider the di-
lute density limit of Ref. [56] but instead higher densities.
While our Bogoliubov and HFB theories ignore a possible
co-existing CDW phase, it is expected that our method
should capture the essential physical features of the BEC
phase itself. Based on Ref. [56], the BEC is expected to
be favorable as compared to the CWD order at higher
densities. Our calculations are therefore reliable for the
kagome lattice system at the densities we consider.

V. SECOND ORDER CORRELATIONS

We further unravel the significance of the fluctua-
tions by considering the second order coherence g(?) (r,7)
where r is the separation of two spatial positions and 7
of two time instances. Specifically, we focus on the cor-
relations within a unit cell:

DY a5<c cmcmcm
9@(0,0) = s

Mot

Z <nznz> Ntot
= P} ) (2 1)
Mot

Z|~

where the second form follows from the bosonic commu-
tation rules. Heren; =3 ¢ mcm is the density operator
of the ith unit cell. In other words, we are interested
in the sum of second order coherences within a unit cell,
averaged over all the unit cells of the lattice.

By treating Eq. (21) at the Bogoliubov level, one finds
(see SM [71] for details) that the resulting g consists of

three terms, i.e. g(? = Z?:l 91(2)_ The first term is the

MF contribution, reading gf) = 1 —1/nyot, whereas géz)
involves the overlap functions between the Bogoliubov

excitations and the condensed Bloch state. Finally, géz)

describes the contribution arising solely from the quan-
tum fluctuations. The expressions for g( ) and g§2) are
provided in SM [71] and their Feynman diagrams are de-
picted in Fig. 6(a).

We find that as ney, géz) of the flat band condensate
at U — 0 is also governed by quantum geometry only.
Namely, by considering again only the flat band degrees
of freedom, one finds

@_ 1 ra(k) ra (k)
O 95 = g (21; (k)Z D(k)

tot D k
. Z,l — D(k) Z,1+~D(k)> (22)
< D&k L D)

This expression diverges (vanishes) when D — 0 (D — 1)
and is finite for 0 < D < 1. Quantum geometry therefore
guarantees finite quantum fluctuations even in the non-
interacting limit of U — 0.

The fluctuation term g§2) can be made significant by
tuning down the total density ni.t. This is demonstrated
for the kagome lattice in Fig. 6(c), where g ) and 9(2)
are shown as a function of ni. for flat and dispersive
band condensates for a small interaction of U = |¢|/1800.

We see g3 belng negligible for the dispersive band con-
densate, whereas quantum geometry guarantees finite

) for the flat band condensate.
(2)

comes comparable to g( ). The full coherence function
in Fig. 6(b) shows essentially the coherent BEC value
g? = 1 in the dispersive case, as expected. Intrigu-
ingly, the flat band condensate shows antibunching be-
havior, despite the minute value of the interaction U,
which crosses over to the bunching regime at small den-
sities. This non-monotonic behavior as a function of the
density could be used experimentally to probe the effect
of quantum geometry in case of a flat band condensate.
The fundamental difference between the second order co-
herence function for dispersive and flat band BECs is
outlined in Fig. 1.

For decreasing niot,

the fluctuation term g3~ increases and eventually be-

VI. SUPERFLUID WEIGHT

Finite ¢y guarantees the possibility of superfluidity,
but to understand the phenomenon more deeply, we con-
sider the superfluid weight tensor Dy, (also referred to
as superfluid density or superfluid stiffness in the liter-
ature). The superfluid weight is the long-wavelength,
zero frequency limit of the current-current linear response

K/JV(qvw) [12]7 ie

D;, = lim lim K, (q,w). (23)

HY q—0w—0

We calculate this by deploying the Matsubara Green’s
function formalism in the framework of the Bogoliubov
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FIG. 6. Second order local correlator. (a) Diagrammatic pre-
sentation of géz) and g§2). The solid (dashed) lines depict the
Bogoliubov (condensate) propagators. (b) The second order
correlation function ¢(® for the kagome lattice in the case of
dispersive (red curve) and flat band (blue curve) condensates.
The dashed blue line gives g§2) +g§2) for the flat band conden-
sate. (c) Terms gf) and géz) for the dispersive band conden-
sate (red curves) and flat band condensate (blue curves) as a
function of niot. The term gig) is also shown (purple curve)
and is the same for both of the cases, as it depends only on
ngot. The interaction is set to U = |¢]/1800.

theory (see SM [71]) at zero temperature. The resulting

D# can be divided into three contributions, i.e. D}, =

Z?:l %uv- The first term is the pure condensate con-
tribution and reads DY ,,, = n0(¢0|0.0,H(ke)|po). This
generalizes the usual mean-field result of a single-band
system D*® = ng/meg, where the effective mass meg is
replaced by (¢0|0,0,H (ke)|¢o) accounting for the multi-
band nature of the system. The second term D3 con-
stitutes the mixed contribution of the condensate wave
function and quantum fluctuations, and the third term
D3 arises solely from the quantum fluctuations, i.e. from
the Bogoliubov excitations. The expressions for D3 and
D3 are provided in SM [71].

For a single band square lattice, one has Dj ,, =
nodrei(ke), Dy = 0 and D5 < 0. Thus, the conden-
sation contribution D7 is determined by the inverse ef-
fective mass of bosons at k. and quantum fluctuations
decrease the supercurrent via negative D3. However, for
a flat band condensate, the story is very different. We
demonstrate this in Fig. 7 by depicting D® and its com-
ponents as a function of U in the case of the kagome
model for both the dispersive [Fig. 7(a)] and flat band
condensates [Fig. 7(b)]. For the dispersive band conden-
sate, D? is mainly given by D7 4+ D3 and the fluctuation
term D3 gives a negative contribution. In stark contrast,
the flat band condensate results depicted in Fig. 7(b) re-
veal that D? is solely determined by the fluctuation term
Ds. Therefore, instead of inhibiting the superfluidity,
quantum fluctuations are actually responsible for finite
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FIG. 7. Zero temperature superfluid weight D® and its differ-
ent components for the kagome lattice as a function of U. (a)
Dispersive band condensate. (b) Flat band condensate. The
particle density is set to nyot = 3. Superfluidity of the flat
band is governed by the fluctuation term D3 alone.

superfluidity of the flat band condensate.

Flat band superfluidity is governed by D3 because D3
cancels the condensate contribution Dj. This can be
proven in the weak-coupling limit U — 0 (shown in
SM [71]). For the kagome lattice, the cancellation also
takes place for finite interactions as shown in Fig. 7(b).
A very similar result was obtained recently in Ref. [73],
where condensation was studied in a two-dimensional
spin-orbit coupled system featuring a one-particle dis-
persion with a continuous subset of degenerate ground
states on a circle of equal momentum amplitudes. Also
in that case, finite superfluidity in the direction where
the effective mass diverges was shown to arise from the
quantum fluctuations only.

Our result regarding quantum fluctuation-mediated
flat band superfluidity is intuitively easy to understand.
Namely, due to destructive interference among the flat
band states, bosons condensed to a single flat band Bloch
state are spatially localized to a subset of lattice sites and
thus have vanishing group velocity. In contrast, for a dis-
persive band BEC, it is the condensate that mainly car-
ries the supercurrent as the effective mass of a dispersive
band BEC is finite. In case of a flat band BEC, instead,
it is the fluctuations, arising due to interactions, that are
needed for a finite supercurrent. This fundamental dif-
ference regarding the origin of superfluidity in disperisve
and flat band condensates is summarized in Fig. 1.

The fluctuation term Dj is similar to the superfluid
weight of fermionic systems [10, 12], except for fac-
tors accounting for fermionic statistics, as expected from
the formal connection between bosonic Bogoliubov and
fermionic BCS approximations. Like fermionic D*, D3
can also be split into intra- (”conventional”) and inter-
band ("geometric”) terms, i.e. D§ = D3 .y + D3 seom-
Specifically, D3 contains the current terms of the form
(see SM [71])

(un (k)[0,H (k) [um (k) = Opuen (k) dmn+
[em (k) = € (k) (Dpun (k) [um (K)).  (24)

The intraband term Dj ., contains only the diagonal
current terms (m = n) proportional to the derivatives of



the single-particle dispersions d,€,(k), whereas the geo-
metric contribution Dj ., includes the interband cur-
rent terms (m # n) proportional to the interband Berry
connection (0, un (k)|uy, (k)). For aflat band D3 ., van-
ishes due to momentum independent dispersion, and D7
and D3 cancel each other, therefore it is the geometric
part of the fluctuation term, D3 ,.,,,, that is responsible
for the superfluidity of the flat band condensate.

VII. CONCLUSION

We have deployed multiband Bogoliubov theory to
study how quantum geometric properties of the Bloch
states affect various physical quantities of a weakly-
interacting BEC, with the emphasis being in lattice mod-
els that feature flat bands. We showed that in case of a
flat band BEC, the speed of sound c¢, is dictated by the
quantum metric and the excitation density ney remains
finite at U — 0 due to finite quantum distance between
the condensed state and other Bloch states of the band.
Similarly, we demonstrated that also the quantum fluc-
tuation part of the density-density correlations remains
finite in the limit of U — 0 and is given by the same
quantum distance.

Our results demonstrate the unusually prominent role
of fluctuations in a flat band BEC. The weak-coupling
limit of the excitation fraction and the quantum fluctua-
tion contribution of the density-density correlator do not
depend on the condensate density, and therefore their rel-
ative importance can be enhanced by reducing the total
density. Even the extreme situation where the superfluid
weight is given by the quantum fluctuations alone can be
achieved in the small interaction limit.

The fact that interactions, quantum fluctuations, and
correlation effects may become enhanced has been a key
motivation for studies of flat bands. Our work shows
that indeed this promise can be fulfilled in the case of
bosonic condensates, and that these effects can be con-
trolled by the underlying non-trivial quantum geometry,
that is, a non-zero quantum metric, and distances be-
tween the Bloch states. A non-trivial quantum geome-
try guarantees the stability of the condensate via a non-
diverging excitation fraction, and finite speed of sound.
Furthermore, it allows to realize situations where quan-
tum fluctuations and correlations dominate the system
behavior.

Our work, alongside the accompanying study in
Ref. [64], establishes important connections between the
quantum geometry and physical quantities of a BEC,
showing how the geometric properties of quantum states
can be utilized to reach the strongly correlated regime.
This can have important consequences especially in sys-
tems where the interactions between particles are inher-
ently small compared to kinetic tunneling energies and
quantum correlations and depletion are weak, e.g. in
photonic or polaritonic platforms. It could provide a key
step towards realizing strongly correlated photons, im-
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portant for both fundamental research and information
processing. In long-lived, quasi-equilibrium photon and
polariton systems our results should directly apply, while
extending them to the strongly driven-dissipative case is
an interesting future research task.
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Appendix A: Mean-field approximation

To solve the Bloch momentum state in which the Bose-
condensate takes place, we utilize the mean-field (MF)
approximation where we substitute operators in Eq. (2)
by complex numbers, i.e. ¢ — Yk = [V, ... Yrar]? and
minimize the resulting MF energy

Bur9) = M09+ 5 Sl (A

for each k separately with respect to the constraint
Yo lYal? = no [62]. The constraint ensures that the
condensate density ng is the same for all k. The conden-
sation is then chosen to take place at the Bloch momen-
tum k. and state |¢g) for which the MF energy Eyp(k)
is minimized, i.e.

(ol H(ke) o) + 5 3 (aloo)]

[0}

(A2)

with (a|dg) being the projection of |¢pg) to orbital a.
Thus, even though the flat band is strictly flat, the in-
teraction term can favor a subset of Bloch states for
which the condensate density is distributed as uniformly
as possible between the sublattices to minimize the re-
pulsive on-site interaction. For example, in the case
of the kagome lattice, the condensed state at k. =
[47/3,0] reads ¢o = [—1, —1,1]/v/3 whose sublattice den-
sity |(a|¢o)|? = 1/3 is the same for all three sublattices.
Similarly, in the case of the checkerboard-III flat band,
the condensed state at k. = [27/3, 7] is ¢9 = [i, 1], yield-
ing uniform sublattice density |(a|go)|? = 1/2.



Appendix B: Details on Bogoliubov approximation

Here we outline the the well-known Bogoliubov the-
ory [63, 70] for a multiband system. To this end, one de-
fines the bosonic Green’s function for the non-condensed
bosons in the imaginary-time domain as follows:

—(Trex(7)cf (0)) —(Trex(7) 2k, -k (0)

)
~(Trely (1)l (0)) —(Trehy 4 (T)en,1(0))

Gii(k,7) Gia(k,7)
|:CTY21(k7 T) GQQ(k,T):| ’ (Bl)

Here, T, is the imaginary time ordering operator, 7 is
imaginary time, and k # k. as we consider the non-
condensed bosons. Note that in our multiband case,
each block G;;(k,7) in (B1) is a M x M matrix. In the
bosonic Matsubara frequency space, one has the Dyson
equation [63, 70]:

G (k,iw,) = Gyt (k,iw,) — B(k, iw,) <

e et -

|:G0,11(k, iw) 0

( Conti )} B {le(k,iw) Zlg(k,iw)}
0.22(k, iw

221 (k, zw) 222 (k7 zw)
(B2)

Here, w,, is a bosonic Matsubara frequency and ¥ is the
self-energy arising from the finite interaction U # 0 and
G| is the non-interacting Green’s function which reads

H(k) — p 0

Gal(k7 W) = iWn0, — { 0 (k) —

/J . (B3)

Here, o, is the Pauli matrix in the particle-hole basis.
In general, the self-energy 3(k, iw,,) is evaluated by using
the diagrammatic Beliaev theory [63, 70]. The Bogoli-
ubov theory is the first order approximation of the Be-
lieav approach [70], containing the self-energy diagrams
illustrated in black color in Supplementary Fig. S1 [71].
Specifically, the Bogoliubov theory includes only the first
order diagrams that contain the condensate propagators.
In the case of a momentum-independent contact interac-
tion, it is straightforward to evaluate both the diagonal
and off-diagonal self-energy blocks 17 and ¥1o:

[Z11(K)]ap = dap2Uno|(cldo)|? (B4)
[E12(k)]as = SapUno{aléo)’. (B5)

> =

We assume uniform condensate such that |{«|¢g)
1/M. The full Green’s function is then obtained from
the Dyson equation (B2):

Gk, iw,) = iw,0,

H(k) — p+ 2800 A

A* H*(2k, — k) — p+ 2550 | (B6)

12

Here, [A]ap = d0.sUno{(al¢o)?. By rewriting k = k. +q,
we see that the upper (lower) diagonal block in (B6)
represents particles (holes) travelling with momentum q
(—q) with respect to the momentum k. of the conden-
sate.

The poles of G(k, iw,) give the excitation spectrum of
the Bose condensed system [63]. As we are dealing with
the equilibrium condensate, the lowest excitation band
has to be gapless at k., i.e. a pole must exist at w = 0
for k = k. [70]. For our multiband system, we find that
this condition forces u to satisfy the following expression:

2Uny U2?ng 2Ung\ !
€ — U+ [V RNYE (eo—,u+ M) =0
U
@uzeo—l—%. (B7)

This is the multiband generalization of the usual
Hugenholtz-Pines relation [63, 70]. We should note that
for obtaining Eq. (B7), the uniform condensation as-
sumption |[{a|dg)|?> = 1/M is crucial. If this was not
the case, solving p would most likely require numerical
evaluation.

By combining the expression of i to Eq. (B6), one gets

H(K) — pes A
A MW (2ke — K) — preg
(B8)

Gk, iwy) = w0, —

where pog = €y — Uﬁ“. The Bogoliubov approxima-

tion yields a quadratic Hamiltonian, and it is easy to
show that G~1(k,iw,) = iw,0. — Hp so that Hp(k) =
—G71(k,0). This is the Bogoliubov Hamiltonian ex-
pressed in Eq. (4).

In our numerical Bogoliubov calculations, we fixed the
total density ntot and chose an initial ansatz for ng. This
was then substituted to L(k) = o,Hp(k) and the Bo-
goliubov states |4t (k)) were obtained by carrying out
the diagonalization of Eq. (6). To ensure the Bogoliubov
states follow the bosonic commutation rules, we demand
the standard normalization condition for the Bogoliubov
states to hold [66]:

10 () [ (k)1 — 2(v5 (K)[¢y (k)2 = £1, with
T
[iE (k) = ([ (k)1 [ (k)2 | (B9)

Based on the obtained Bogoliubov states, nex was then
calculated with Eq. (19). In this way, a new value for
o = Niot — Nex Was acquired and then substituted back
to L(k). This iteration procedure was continued until a
self-consistent solution for ng was found.

In general, Bogoliubov theory is based on the assump-
tion that the system is Bose-condensed and the remain-
ing quantum fluctuation effects can be described by the
quadratic Bogoliubov Hamiltonian (4). This approxima-
tion is based on the assumption that the local on-site
interaction energy U times condensate density per unit
cell ng, i.e. Unyg, is small compared to the kinetic hop-
ping terms H;qjp of the Hamiltonian of Eq. (1). In our




calculations this is always the case. Furthermore, conven-
tionally the Bogoliubov theory is considered hold only for
cases with ne, < nyot. However, as we discuss at the end
of Sec. IV and Appendix E, our method should be still
valid even for cases when n.y is of the same order of mag-
nitude than n. as long as the aforementioned condition
on Ung < Hiqjg holds. In this work we present re-
sults for two-dimensional systems, but extension to three
dimensions is straightforward as the Bogoliubov theory
works well there.

L(k) D(kc + Q) — Meff

By only retaining the lowest Bloch band and projecting
out all of the other Bloch band degrees of freedom in
Eq. (C2), one obtains L, (k) of Eq. (9).

T =UT (k. — QAU (ke + q)
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Appendix C: Projection to the lowest band

In obtaining our main results, we used the projected
L,(k) of Eq. (9) in which only the lowest Bloch band
degrees of freedom were retained and the effect of other
Bloch bands were discarded. To obtain (9), we must
first transform the full L(k) = o, Hp to the Bloch basis
that diagonalizes the kinetic energy Hamiltonian # (k).
Specifically, we first write H(k) = U(k)D(k)UT(k),
where D(k) = diagei(k),ea(k),...,epr(k)] and the
columns of U(k) contain the corresponding Bloch states.
We then define the unitary transformation U(k) as

U(k) 0
0 U2k, — k). (C1)
By transforming L(k) — U'(k)L(k)U(k) and moreover
writing the momentum as k = k. + q, we have in the
Bloch basis the following;:

U'(ke +q)AU* (k. - q)

_D(kc - q) + Hett (02)

(



Appendix D: Density of non-condensed particles

The expression (19) for the density of non-condensed
particles can be derived as follows:

1 7
Nex = 37 ; (cLack(y)

1 ,
=N 2 [(cfacka) + (ckacla) — 1]
o lim7_>0 ’

S e M UURS

2N {M+ 3 Tr(G( kzwn}

’Lw"

Here, § = 1/(kBT) with kp is the Boltzmann constant.
We can proceed by noting that for the quadratic Bogoli-
ubov Hamiltonian, one can write the Green’s function
with the aid of the Bogoliubov states and energies as

_ [V (k) (Y5 (k)|
B Zsiwn — 8B (ke +sq)

(D1)

Gk, iw,) (D2)
Here, q = k — k. and |¢?,(k)) are the Bogoliubov
states fulfilling the equations (6) and (B9). The valid-
ity of Eq. (D2) can be confirmed by multiplying it with
Gk, iw,) = iw,0, — Hp. By substituting Eq. (D2)
to (D1) and carrying out the trace, one finds at ' =0

(—1) 1 s(vm (K)[¢7, (k))
”eX:WZ {”B Z z‘wn—sEm(kch)}

k,m S,iWn
- [—HZ (05 (00) 95, () (5 B (ke + 51)]
k,m
— o 3 [ 1+ Wl )], (03)
k,m

where ng(x) = 1/(e”* —1) is the Bose-Einstein distribu-
tion, and in the last step we have used the fact that at
T =0 we have ng(x > 0) =0 and np(z < 0) = —1.

It is instructive to consider ney in a lattice geometry
which respects the time-reversal symmetry, i.e. H(k) =
H*(—k), with zero-momentum condensate k. = 0 and
a scalar-valued A. This special case covers, for exam-
ple, the usual square lattice, honeycomb lattice and the
kagome lattice with a dispersive band chosen as the low-
est Bloch band (i.e. with negative NN hopping, ¢ < 0).
We then find

— i ! _ m 2 m 2

nex_wé [ =1+ @2 + (0] (D)
where the coherence factors ™ (k) and v™ (k) are
1 gm(k) +Un0/M
k) = =y | TR0 g
N \/5\/ En(k)
1 [em(k) + Unog/M
M) =y | TP D5
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with the Bogoliubov  energies  E,, (k) =
Veém(K)[Em (k) +2Ung/M] and &, (k) = en(k) — €.
Note that each Bogoliubov band m depends only on
the mth Bloch band. When the lowest Bloch band is
not strictly flat (€; # 0), one has limy_gnex = 0 as
u™(k) — 1 and v™(k) — 0. This is consistent with the
result shown in Fig. 4 where limy_,gnex = 0 for the
dispersive band condensate of the kagome lattice. On
the other hand, in the case of a flat band condensate,
one finds with Eq. (D4) that limy 0 nex — 00, meaning
that one can never achieve a stable flat band BEC
with the aforementioned conditions. Indeed, in the case
of the kagome flat band condensate, finite condensate
momentum k. = [4m,0] breaks the k. = 0 condition,
implying that Eq. (D4) is no longer valid and one can
then find stable BEC within the flat band.

Appendix E: Hartree-Fock-Bogoliubov
approximation

In our calculations we can have neyx ~ ng, and therefore
it is not evidently clear whether the Bogoliubov theory is
an appropriate method, since Bogoliubov theory usually
assumes that ng > nex [70]. It turns out that in the
U — 0 limit (which we are mostly interested in), the
Bogoliubov approximation should be a valid choice for
our calculations even at the regime of ngy ~ ng. We show
this by considering the Hartree-Fock-Bogoliubov (HFB)
theory, which is an extension to the Bogoliubov theory.
Specifically, HFB counts for all the first order self-energy
diagrams shown in Fig. S1 of SM [71]. In addition to
the Bogoliubov diagrams, one also accounts the diagrams
that do not contain the condensate propagators [70]. By
evaluating the diagrams, one finds

[Z11(K)]ap = 052U (nol(@|¢0)]* + Nex,a)

= 0052Un¢0t,a (E1)
2 5aﬁU !
(Z12(k)]ap = dapUnolaléo)” + —— > (caatar.—aqn)
q
= 0ap (Un0<a|¢o>2 + Aa)' (E2)

Here, Nex,a (Ntot,o) is the excitation (total) density of
the ath sublattice and solving A, in X1, requires a self-
consistent fixed point iteration scheme. It is well-known
that the self-consistent HFB method has problems with
yielding the gapless excitation modes at k. = 0 [70, 74].
Here we circumvent this inconsistency by explicitly de-
manding the existence of the gapless Goldstone mode
at k.. By assuming uniform density niot,a = Mtot/M
and furthermore A, = %A, one finds pu = €9 + ZU"““ —
%|n0 + A|. We therefore obtain the following quadratlc



Hamiltonian for the HFB approximation:

Hk - ﬂeff A

Hurp(k) = |75 2.7 40 — i (E3)
k e

< 0agUA

Aap = [Alas + ﬁ/[

U
fleff = €0 — M|n0 + Al

We see that for U — 0, the HFB approximation reduces
to the Bogoliubov theory. This is due to the fact that
the interaction is taken to be momentum-independent
contact interaction: if this was not the case, ¥1; and
thus the diagonal blocks of Hyrp would acquire a more
complicated momentum-dependent form. Therefore, the
Bogoliubov theory gives the same results as HFB theory
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at the limit of U — 0 even when the excitation density
Nex 1S comparable to the condensate density ng, i.e. TNex ~
no.
Figure S2 in SM [71] compares both Bogoliubov and
HFB methods in the case of the kagome flat band con-
densate. In panels a-b we depict ¢; and in d-f ne, as
a function of interaction for three different total densi-
ties. One can see that at the limit of U — 0, the nex of
the HFB method approaches the Bogoliubov result, con-
sistent with our discussion in the preceding paragraph.
We have confirmed that the HFB results of Fig. S2
are self-consistent and that their excitation spectra fea-
ture the gapless Goldstone mode at k.. We further note
that utilizing the HFB method at total densities even
smaller than those depicted in Fig. S2 does not yield
self-consistent results, indicating that either the conden-
sate becomes unstable or the HFB method breaks down
in the small density limit.
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