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We present a first-principles equation-of-state (EOS) table of deuterium aimed at improving the
previously established first-principles equation-of-state table (FPEOS) [Hu et al. Phys. Rev. B 84,
224109 (2011), Hu et al. Phys. Plasmas 22, 5 (2015)]. The EOS table presented here, referred
to as iFPEOS, introduces: 1) a universal density functional theory (DFT) treatment of all density
and temperature conditions, 2) a fully consistent treatment on exchange-correlation (XC) thermal
effects across the entire range of temperatures covered and 3) quantum treatment of ions. Based
on ab initio molecular dynamics driven by thermal density functional theory, iFPEOS includes
density points in the range 1 × 10−3 ≤ ρ ≤ 1.6 × 103 g/cm3 and temperature points in the range
800 K ≤ T ≤ 256 MK, thus covering the challenging warm dense matter (WDM) regime. For
an improved description of the electronic structure, iFPEOS employs an advanced free-energy XC
density functional with explicit temperature dependence, which is at the meta-generalized gradient
approximation level of DFT. We use the latest orbital-free free-energy density functional for the high-
temperature regime where it shows excellent agreement with standard Mermin-Kohn-Sham DFT.
For quantum treatment of ions we use path-integral molecular dynamics in order to take into account
nuclear quantum effects. Results are compared to other EOS models and most recent experimental
measurements of deuterium properties such as the molecular-to-atomic fluid transition, the principal
and reshock Hugoniot and sound speed. We find that iFPEOS provides an improved agreement with
experimental data compared to other first-principles EOS models in the WDM regime for pressures
up to 200 GPa and temperatures up to 60 000 K. For higher pressures and temperatures, however,
iFPEOS is in agreement with other models in predicting lower compressibility and higher sound
speed along the Hugoniot, compared to experiment.

I. INTRODUCTION AND MOTIVATION

Accurate knowledge of the deuterium (D) EOS table
is of particular interest to a broad and interdisciplinary
group of researchers. A reliable EOS model of D cov-
ering a wide range of densities and temperatures is re-
quired in the design of inertial confinement fusion (ICF)
targets, where EOS information is critical in determin-
ing important parameters such as the compressibility of
the deuterium-tritium fuel [1], shock wave timing [2] and
Rayleigh–Taylor instability growth rates [3]. In addition,
accurate EOS table of hydrogen, which can be directly
obtained by that of D through mass scaling, is also im-
portant to the fields of planetary and stellar physics [4].
Yet, even though D is an isotope of the simplest elements
in the periodic table, its properties under extreme condi-
tions have long been a subject of extensive research and
still present challenges [5–7].

Recently, a comprehensive review and analysis of avail-
able models for the EOS of deuterium was published by
Gaffney et al. [8], where EOS models based on drasti-
cally different methodologies such as the chemical model
[9, 10], ab initio molecular dynamics (AIMD) in combi-
nation with path-integral Monte Carlo (PIMC) [11–13],
AIMD driven by orbital-free (OF) DFT (OFMD) [14–16]
etc., were discussed. The main conclusions reached in [8]
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highlight the lack of systematic agreement between the
different D EOS models across a wide range of thermo-
dynamic conditions and the inability of any one single
model to match experimental measurements at all ρ–T
regimes. The same is true for other widely-used EOS
models such as the SCvH (Saumon, Chabrier, van Horn)
[17] and its subsequent improvement in the high-density,
high-temperature regime by Chabrier et al. [18]. Follow-
ing the review by Gaffney et al., new experimental mea-
surements of shocked D by Fernandez–Pañella et al. [5] at
a previously unexplored pressure regime (250 < P < 550
GPa) further confirm the lack of a single, standout model
for the EOS table of D. As shown in Fig. 2 of Ref. [5],
models which agree with experimental measurements of
the principal and reshock Hugoniot at low P fail to do
so in the high-P regime and vice versa. Furthermore,
secondary shock measurements which are also reported
in Ref. [5] are underestimated by first-principles EOS
models by 5-10% for pressures above 600 GPa. In com-
parison with other recently-reported experimental work
by Fratanduono et al. [6] on the sound speed in shock-
compressed D along the principal Hugoniot, recent mod-
els are in relatively good agreement with experiment in
the low-P regime below 75 GPa, but the disagreement
systematically grows as T and P are increased.

Despite all the uncertainty among the different mod-
els, one clear trend emerges, namely that the DFT-based
predictions of the principal Hugoniot, such as FPEOS
[11, 19, 20], Caillabet et al. [21] and Karasiev et al.
[22], are all in good agreement with latest experimental
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data for the low-P , low-T part of the principal Hugo-
niot, however, in the high-P , high-T regime there is a
systematic underestimation of the compressibility. One
of the drawbacks of FPEOS is that it is based on two
different methodologies: AIMD with PBE XC for the
low-T part and PIMC for the high-T part. This intro-
duces a thermodynamic inconsistency across the two T
regimes as thermal effects are fully taken into account by
the PIMC method but insufficiently accounted for by the
zero-temperature PBE XC. Therefore, one of the main
motivations for updating FPEOS is to maintain ther-
modynamic consistency by fully accounting for T effects
across the entire table.

Additionally, iFPEOS was further motivated by the
need to investigate the potential improvement in ac-
curacy by an XC density functional at a level beyond
the generalized gradient approximation (GGA). Two of
the latest DFT-based Hugoniot calculations are those by
Caillabet et al. [21], where the zero-temperature PBE
XC functional is used, and those by Karasiev, which are
based on the thermal KDT16 functional [23]. PBE and
KDT16 are both at the GGA level of DFT and their
only difference is that KDT16, as a finite-T extension of
PBE, is designed to take into account XC thermal ef-
fects (see Sec. II A for a detailed discussion of finite-T
XC functionals). While both predictions appear at sig-
nificantly lower compressibility compared to latest mea-
surements, KDT16 is ∼ 2.5% closer than PBE. This im-
provement in accuracy is likely due to XC thermal ef-
fects which are taken into account by KDT16. KDT16
is limited, however, in its accuracy by the GGA level of
refinement which poses the important question of how a
more-advanced thermal XC functional would perform.

Recently, Hinz et al. [24] performed an accurate calcu-
lation of the insulator-to-metal transition (IMT) bound-
ary in warm dense H and D and showed that this tran-
sition is caused by molecular dissociation of H2/D2 to
atomic H/D (see Fig. 1). The method employed in
Ref. [24] used conceptually and procedurally consistent
DFT calculations based on path-integral molecular dy-
namics (PIMD) [25] for including nuclear quantum effects
(NQEs), and SCAN-L+rVV10 [26, 27] XC functional for
treatment of electrons. A combination of the original,
orbital-dependent SCAN functional [28] with the rVV10
correction has been recently shown to provide an accurate
description of the interaction energies for the molecular
dimers due to the accurate treatment of van der Waals
interactions [29], which further explains the ability of the
SCAN-L+rVV10 method in predicting the IMT bound-
ary. The improvement in accuracy of by van der Waals
functionals is further demonstrated in [30]. Therefore,
the success of this method in solving this long-standing
problem, where other XC functionals such as PBE have
failed [31], serves as our main motivation for applying a
similar but, as will be explained later, improved method-
ology to obtain iFPEOS. Additionally, iFPEOS was fur-
ther motivated by recent developments of advanced free
energy density functionals which provide improved accu-

racy across temperature regimes (see Sec. II for details).
Figure 1 shows the D2 dissociation boundary as pre-

dicted by iFPEOS compared to that by Hinz et al. and
also to a PBE-based prediction and latest experimental
measurements. Here, we do not calculate the dc conduc-
tivity in order to determine the IMT boundary, but as is
shown in Ref. [24], the IMT boundary is directly related
to molecular dissociation. The iFPEOS-predicted molec-
ular dissociation boundary plotted in Fig. 1 has been
determined by the pressure drop which occurs as molec-
ular D2 dissociates into atomic D with rising T along the
four, most-relevant isochores (green circles in Fig. 1).
Extra calculations at 500, 600 and 700 K were performed
in order to determine the lowest-T point. Although iF-
PEOS does not sample the P–T region as finely, results
are in good agreement with those presented in Ref. [24],
and the improvement to the PBE-based prediction (green
line in Fig. 1) is evident. Furthermore, as suggested by
the results in [24], NQEs, taken into account by PIMD,
become more and more important at higher pressures
and at P ∼ 250 GPa NQEs appear to significantly lower
the IMT boundary. Other studies that show the impor-
tance of NQEs at a variety of thermodynamic conditions,
especially for light elements such as H and its isotopes
[31–34], also serve as motivation to employ PIMD in iF-
PEOS since in FPEOS ions are treated classically. In
summary, the work presented here was motivated by (1)
the excellent ability of the SCAN-L+rVV10 method to
describe the H/D IMT boundary; (2) recent theoretical
developments in finite-T DFT including advanced ther-
mal SCAN-L meta-GGA XC functional; and (3) the need
to take into account NQEs.

The remainder of this article is organized as follows:
The methods used in this work are described in Sec. II
where we provide detailed outlines of the T -dependent
T-SCAN-L XC functional (Sec. II A) and the LKTFγTF
orbital-free noninteracting free-energy functional (Sec.
II B) and a brief summary of the PIMD method in Sec.
II C. Section III provides computational details about
all Kohn-Sham molecular dynamics (KSMD) and OFMD
simulations, outlines the procedure of tuning LKTFγTF,
and presents evidence of the excellent agreement between
KSMD and OFMD with tuned LKTFγTF at high T
across the entire density range. Section IV provides de-
tails about PIMD simulations and presents results about
the importance of NQEs across ρ, T regimes covered in
iFPEOS. In Sec. V we compare iFPEOS and other select
EOS models with some of the latest experimental mea-
surements of warm, dense D such as Hugoniot and sound
speed measurements. Finally, Sec. VI summarizes the
work presented here. The full iFPEOS table is provided
in the supplemental material (SM).

II. METHODS

AIMD, where ionic motion is treated classically based
on forces calculated by Mermin–Kohn–Sham (MKS)
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FIG. 1. The dissociation boundary from molecular D2 to
atomic D according to latest experimental measurements
[7, 32, 35], iFPEOS (green curve), SCAN-L+rVV10 [24] (light
blue dashed curve - PIMD, solid blue curve - BOMD) and
PIMD with PBE XC [31] (gray solid curve). The molecular
dissociation boundary according to iFPEOS has been deter-
mined along four isochores: 1.45, 1.59, 1.96 and 2.45 g/cm3

and the P–T conditions at which dissociation occurs is shown
with green circles with the lowest-ρ isochore dissociation point
appearing at 107 GPa and highest at 344 GPa.

DFT with a ground-state XC functional has been a very
successful method for simulating matter at a wide range
of thermodynamic conditions [36–41]. We apply the same
methodology to iFPEOS, but also introduce two ma-
jor improvements: (1) we improve on the DFT ground-
state approximation (GSA) by using a recently developed
meta-GGA XC free-energy density functional T-SCAN-L
[42] to take into account XC thermal effects; and (2) we
go beyond the classical treatment of ions by taking into
account NQEs via PIMD. Additionally, in the high-T
regime, where the MKS treatment is too computationally
expensive we use OF DFT with the recently developed
noninteracting free-energy functional LKTFγTF [43].

A. T-SCAN-L free-energy XC density functional

Mermin’s extension of the Hohenberg–Kohn theorems
to finite T leads to the MKS formalism, which extends
the ground-state DFT approach to systems at finite
T in thermodynamic equilibrium [37, 44]. The MKS
formalism formally defines a free-energy density func-
tional; however, currently, the most popular exchange-
correlation approximations used in finite-T DFT simu-
lations are ground-state density functionals, which only
implicitly depend on T through the T -dependent den-

sity [45, 46]. Demonstrations of GSA deficiencies to ac-
curately predict physical properties for specific systems
at certain thermodynamic conditions were presented in
studies of Ref. [47]. Recently, there has been major
progress in developing thermal functionals, which are
true XC free-energy density functionals with explicit T
dependence [23, 48, 49]. In Ref. [48], Karasiev et al.
introduce the KSDT (Karasiev-Sjostrom-Dufty-Trickey,
also see corrKSDT in SM of Ref. [23]) thermal XC func-
tional at the local density approximation (LDA) level
of DFT. In Ref. [23], Karasiev et al. introduce the
GGA-level thermal functional KDT16 (Karasiev-Dufty-
Trickey 2016) which, by construction, reduces to the PBE
exchange-correlation at the zero-T limit. The improve-
ment in accuracy at elevated T provided by (corr)KSDT
and KDT16 has been presented in [22, 47, 50]. In par-
ticular, in Ref. [22], KDT16 is shown to predict a signif-
icantly softer, and in better agreement with experimen-
tal measurement, principal Hugoniot of D in the high-
T/high-P range, where XC thermal effects are impor-
tant. It is clear that KDT16 captures XC thermal effects
at the GGA level of theory, however, due to the fact that
KDT16 reduces to PBE as T approaches zero, its accu-
racy is inherently limited to that of PBE at low T . As a
next step to create a thermal XC functional at a higher
level of accuracy, Karasiev et al. presented a thermal
XC functional at the meta-GGA level – the T-SCAN-
L functional [42]. This is accomplished by adding the
dominating GGA-level XC thermal correction provided
by KDT16 to the ground-state SCAN-L meta-GGA XC
functional [26] (the de-orbitalized version of the advanced
SCAN [28] functional):

FT-SCAN-L
xc [n, T ] = ESCAN-L

xc [n] + ∆FGGA
xc [n, T ], (1)

∆FGGA
xc [n, T ] = FKDT16

xc [n, T ]− EPBE
xc [n]

where ∆FGGA
xc [n, T ] is an additive thermal correction

that reduces to zero in the limit T → 0 K. Therefore,
at low T , T-SCAN-L reduces to the ground-state SCAN-
L functional and at elevated temperatures XC thermal
effects are provided by the GGA-level thermal correc-
tion. Consequently, T-SCAN-L is an improvement to
both SCAN-L and KDT16 because it retains the meta-
GGA-level accuracy of SCAN-L at low T and accounts for
the dominating XC thermal effects through the KDT16
additive thermal correction. In Ref. [42], T-SCAN-L is
shown to provide significant improvement to both SCAN-
L and KDT16 in DFT simulations of warm dense matter.
In addition, T-SCAN-L is shown to be in good agreement
with reference PIMC data [51] in EOS calculations of he-
lium in the T range 125 kK < T < 250 kK. Finally, we
combine T-SCAN-L with the rVV10 [27] functional to
take into account long-range van der Waals interactions,
resulting currently in the most-advanced treatment of XC
effects applied to obtain an EOS model.
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B. LKTFγTF orbital-free noninteracting
free-energy density functional

It is well-known that at high T conventional Kohn-
Sham (KS) DFT becomes prohibitively expensive due to
the growing number of thermally occupied KS orbitals
that need to be included in the calculation. OF DFT
mitigates this problem by replacing the exact, orbital-
dependent noninteracting kinetic energy with a density
functional, e.g., the local Thomas–Fermi (TF) kinetic en-
ergy [52, 53] or within semi-local approximations [54, 55].
Generalization of OF DFT to finite T has led to the
development of several noninteracting free-energy den-
sity functionals [14, 15, 56–59]. In this work we em-
ploy one of the latest developments in OF noninteracting
free-energy density functionals. In particular, we use the
LKTF GGA functional [59] in combination with thermal
TF [56]. A convex combination of the LKTF functional
and TF results in the one-parameter tunable OF GGA
functional that preserves the correct high-T limit:

FLKTFγTF
s [n, T ] = γFLKTF

s [n, T ] + (1− γ)FTF
s [n, T ] ,

(2)
where γ is a free parameter that varies from 0 to 1 [43].
The value of γ is determined such that OF calculations
at certain thermodynamic conditions return results for
desired variables that match results from a reference KS
calculation. The γ-tuned LKTFγTF is then transfer-
able to other thermodynamic conditions within a trans-
ferability domain. In their original work introducing the
LKTF functional [59] Luo et al. show that at low T ,
LKTF underestimates P and TF overestimates it com-
pared to a reference KS calculation, and as T increases,
agreement with KS calculation improves for both func-
tionals (see Fig. 7 in Ref. [59] for D at ρ = 1.96361
g/cm3, 2.7 < T < 8.2 eV). LKTFγTF, with appropri-
ately tuned γ, agrees, by definition, with the reference
KS calculation at the thermodynamic conditions at which
the tuning is performed and, as Karasiev et al. show [43],
the γ-tunable functional shows excellent transferability
to higher T along same isochore. Here we tune γ to
match results from reference KS calculations for pressure
at the highest iFPEOS T points achievable with KSMD
on select ρ points and use this γ for the higher T points
along same isochore (see Sec. III for details and com-
parison between OFMD with LKTFγTF and KSMD at
select ρ–T conditions).

C. Path-integral molecular dynamics

The ring-polymer PIMD method, where the quantum
ion is modeled by a fictitious system of P number of
beads connected circularly via harmonic springs form-
ing a closed flexible polymer, has emerged as a powerful
tool for going beyond the Born–Oppenheimer approxi-
mation and taking into account NQEs [25, 60–66]. Here
we provide the relevant equations for energy and pres-

sure derived from the path-integral representation of the
partition function with a Hamiltonian for free and inter-
acting ions and electrons (for a detailed derivation, see
Refs. [34, 67]). For a system of N identical interacting
ring polymers with mass M at temperature T , the kinetic
and potential energies are expressed as

Ekin =
3

2
NPkBT −

P∑
s=1

N∑
i=1

1

2
Mω2

P(R
(s)
i −R

(s+1)
i )2

(3)

Epot =
1

P

P∑
s=1

E[{φj}(s), {Ri}(s)] (4)

where kB in the Boltzmann constant, ωP = kBT
√
P/~,

R
(s)
i are the ionic positions at imaginary time slice s and

E[{φj}(s), {Ri}(s)] is the KS energy functional of the KS
orbitals φj and ionic positions, the evaluation of which
includes the sum over ionic indices i and electronic indices
j. For the XC part of the KS energy functional we use
T-SCAN-L+rVV10. For a system with volume V , the
pressure P is estimated with the following relation:

P =
NPkBT

V
− 1

3V

P∑
s=1

N∑
i=1

[
Mω2

P(R
(s)
i −R

(s+1)
i )2+

(5)

+
1

P
R

(s)
i ·

∂E[{φj}(s), {Ri}(s)]
∂R

(s)
i

]
where all other symbols retain the same meaning as in
Eqs. (3) and (4). In the limit of P = 1 the classical
BOMD method is recovered [68, 69] and in the limit
of P → ∞, the classical ring-polymer system becomes
isomorphic to the true quantum-ion one. Details about
our calculations and convergence tests for the value of P
necessary to approach the quantum limit within certain
accuracy are discussed in Sec. III.

III. BOMD COMPUTATIONAL DETAILS

iFPEOS includes 53 ρ points in the range of 0.001 ≤
ρ ≤ 1596.49 g/cm3 and 39 T points in the range 800 K
≤ T ≤ 256 MK. Figure 2 shows all density-temperature
points and the type of calculation corresponding to each
one. AIMD calculations were performed in the NVT en-
semble (number of particles, volume and temperature are
kept constant) regulated by the Nosé–Hoover thermostat
[70]. For KSMD we use the Vienna ab initio simula-
tions package (VASP) [71, 72] which is a plane-wave code
that implements the projector-augmented wave (PAW)
method [73, 74]. The PAW method greatly simplifies
the treatment of the electron-ion interaction by replac-
ing the rapidly changing all-electron (AE) KS orbitals in
the region near the nucleus with smooth nodeless pseudo-
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(PS) orbitals (thereby drastically decreasing the required
plane-wave energy cutoff) and then restoring the all-
electron behavior and nodal structure by a linear trans-
formation from the PS to the AE orbitals. This approxi-
mation breaks down, however, at high T and/or high ρ as
nuclei come closer and closer together and augmentation
spheres start to overlap. We have performed convergence
tests with respect to the augmentation sphere radius, and
consequently, plane-wave energy cutoff, at different T
and ρ conditions, ensuring that no accuracy greater than
∼ 1% in both P and internal energy is sacrificed. We
use two different PAW pseudopotentials (PP) with differ-
ent augmentation sphere radii: Rcut = 1.1 Å (soft) and
Rcut = 0.8 Å (hard), as well as a bare Coulomb potential.
The soft PAW PP is accurate enough for the low-T , low-
ρ regime, and as T and ρ increase, we find that the hard
PAW PP and the bare Coulomb potential become neces-
sary. The plane wave energy cutoffs are 500, 1400, and
2100 eV for the soft, hard PAW PP and bare Coulomb
potentials respectively. All calculations were performed
at the Baldereschi mean value point [75]. Convergence
tests for simulation cell size, which in turn determines
the number of particles in the box, and number of ther-
mally occupied bands included in each simulation were
also performed. All bands with occupation & 10−6 were
included in each simulation. Initial geometries for the
low-density, low-T regime, where the system is expected
to be fully or partly molecular, were constructed by ran-
dom placement of D2 molecules and only the part of the
MD simulation after the system has come to equilibrium
was kept for analysis. In the regime where system is fully
atomic, simulations start from a random placement of D
atoms. Time step for each ρ, T point was determined
by performing a convergence test at certain conditions,
T ′ = 100 K, ρ′ = 1.0 g/cm3, and scaling to other con-
ditions via t = (T ′/T )(1/2)(ρ′/ρ)(1/3). We find that this
scaling relation ensures that the average ion displacement
remains uniform at all ρ and T conditions. T-SCAN-
L was implemented into locally modified versions of the
VASP and Quantum-Espresso codes by combining the
previously implemented and extensively tested SCAN-L,
KDT16 [22, 24, 26, 49] [see Sec. II, Eq. (2)] and ground-
state PBE (part of standard release). PIMD simulations
were performed with the i-PI code [76], which is a Python
interface for the quantum ion dynamics based on forces
calculated by an external electronic structure code, in our
case VASP. OFMD simulations are performed with the
Profess@Quantum-Espresso package [14] and local
pseudopotential [77].

KS calculations cover densities from 0.1 ≤ ρ ≤ 1596.49
g/cm3 and temperatures from 800 K up to 250 kK for
the density range 0.1 ≤ ρ ≤ 15.71 g/cm3, and for higher
densities we were able to perform KSMD for tempera-
tures above 250 kK (see Fig. 2). For higher-T points
KSMD becomes too computationally demanding, there-
fore, for those temperatures we use OFMD (see Fig. 2
and detailed explanation below). In addition to the high-
T regime, the low-T , low-density (ρ < 0.1 g/cm3) regime
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FIG. 2. Density-temperature points (circles) covered by iF-
PEOS, color-coded based on type of calculation: KSMD -
blue, OFMD - purple, interpolation - orange. For reference,
we plot some relevant plasma parameters: Green line corre-
sponds to dimensionless coupling parameter Γ = 1 and red
line corresponds to degeneracy parameter Θ = 1 for a par-
tially ionized plasma, where the ionization fraction has been
determined via Saha’s equation by taking into account contin-
uum lowering using the Stewart-Pyatt model [79]. Below the
red and the green lines, which is mostly covered by KSMD,
the system is strongly coupled and degenerate. Gray line
shows the path of the imploding shell during ICF. The col-
lection of KSMD points in the region around ρ ∼ 1.5 − 2.5
g/cm3, T ∼ 1000−2500 K corresponds to the region of molec-
ular dissociation, where we use extra-fine sampling in T–space
(∆T = 100 K) for an accurate description of the dissociation
boundary.

is also computationally challenging. Therefore, in the
range 0.002 ≤ ρ ≤ 0.084 g/cm3, we perform OFMD cal-
culations for T ≥ 182 kK only. At these conditions we
expect OFMD and KSMD results for pressure and en-
ergy to agree within 1%. This is further justified by per-
forming KSMD and OFMD calculations along the lowest-
density, ρ = 0.001 g/cm3 isochore. Below T = 182 kK,
however, OFMD becomes unreliable and KSMD becomes
too computationally expensive. Therefore, in the range
0.002 ≤ ρ ≤ 0.084 g/cm3, 800 K≤ T ≤ 182 kK, we inter-
polate [78] using our results for the ρ = 0.001, 0.1, 0.2 and
0.3 g/cm3 isochores from T = 800 K to T = 500 kK, and
the T = 182, 250, 400, 500 kK isotherms from ρ = 0.001
g/cm3 to ρ = 0.3 g/cm3 (orange circles in lower left quad-
rant of Fig. 2). We advise cautious use of iFPEOS in
this relatively large region of interpolation within which
important processes such as molecular dissociation and
ionization are encountered. Comparison between this re-
gion of interpolation and the well-established H-REOS.3
[13], which specifically targets this low-energy-density
regime, as well as details of the KSMD calculations of
the ρ = 0.001 g/cm3 isochore are presented in SM.

OFMD calculations were carried out with recently in-
troduced noninteracting free-energy density functional
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FIG. 3. A Padé [2,2] analytical fit (red curve) to the values
of the γ parameter tuned to match KSMD results at select
density points (black circles). The analytical fit provides the
values of γ for OFMD calculations across entire iFPEOS den-
sity range.

LKTFγTF (see Sec. II B) and T-SCAN-L free-energy
density functional for the XC part of the electron-electron
interaction (see Sec. II A). At such high T , the rVV10
correction is essentially zero, so XC part in OFMD cal-
culations is T-SCAN-L only. LKTFγTF is parametrized
with respect to a reference KS calculation at certain ρ and
T and transferred to higher T within the transferability
domain. The standard procedure is as follows; (1) per-
form a KS calculation at certain ρ and T , which serves as
reference; (2) perform OF calculations with LKTFγTF,
varying γ to find the value that gives results for P that
match the KS reference value; and (3) use this γ for all
higher-T points along the isochore. Here, we tune the γ
parameter to match KSMD results for P at the highest-
T point for which we have a KS calculation. We find
that tuning γ only at select density points and applying
an analytical fit for γ’s dependence on ρ is enough to
parametrize γ across the entire table. The results for γ
at the density points at which we perform explicit match-
ing with KS results, along with the analytical fit (Padé
approximant), are shown in Fig. 3.

The disagreement between the analytical fit and ex-
plicit calculations is mostly a result of statistical uncer-
tainty in the MD runs; therefore, since the analytical
fit serves as a de facto statistical averaging, we use γ
provided by the analytical fit for all densities, even for
those for which γ has been tuned explicitly. For ρ ≤ 0.1
g/cm3, we use γ = 0.233 and, for ρ ≥ 300 g/cm3, we
use γ = 0.0. OFMD calculations were performed with
PROFESS@Quantum-Espresso [14].

As explained in Ref. [43], the higher the T at which
γ tuning is performed, the better the agreement between
KS and OF calculations; therefore, here we tune γ at
the highest-T points for which KS calculations were per-
formed. To verify transferability to different T condi-
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FIG. 4. Comparison between KSMD (blue squares) and
OFMD (red circles) pressures along selected isochores that
span iFPEOS. For each of the densities, γ was tuned with
respect to the KS calculation at the highest-T point shown.

tions, we performed additional OF calculations at the
next few lower-T points along several isochores that span
the range 0.1 ≤ ρ ≤ 1000 g/cm3 (see Fig. 4 for the ex-
cellent agreement between OFMD with LKTFγTF and
KSMD for results for P ).

Since we perform KS calculations with VASP, us-
ing a PAW data set, and OF calculations with
PROFESS@Quantum-Espresso using local pseu-
dopotentials, results for total internal energies are not
compatible. This inconsistency is purely due to difference
in computational procedures and can be remedied by
either construction of pseudopotentials compatible with
both codes or applying an energy shift. While the latter
seems like a much simpler solution, the energy shift that
needs to be applied, due to the approximate character
of the non-interacting free-energy functional, depends on
thermodynamic conditions and needs to be determined
for every OFMD calculation. We find that this energy
shift has a weak T -dependence in the region where KSMD
calculations switch to OFMD. Therefore, the magnitude
of the energy shift is determined by the difference be-
tween the KSMD and the γ-tuned OFMD results for total
energies at the highest-T point along each isochore. This
density-dependent energy shift is assumed constant for
higher temperatures. The excellent agreement between
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FIG. 5. Comparison between KSMD (blue squares) and
OFMD total internal energies (red circles) along selected iso-
chores that span iFPEOS. OFMD calculations have been per-
formed with γ tuned at the highest-T KS calculation pre-
sented. OFMD energies at highest-T KSMD calculations have
been shifted to match the KSMD energies, and the same shift
has been applied to the lower-T points.

KSMD and OFMD energies for six isochores that span
iFPEOS is illustrated in Fig. 5.

IV. NUCLEAR QUANTUM EFFECTS ON
IFPEOS

PIMD calculations with quantum ions simulated by
an N -bead ring polymer are N times more expensive
than BOMD, which renders using PIMD for the entire
iFPEOS prohibitively expensive. Here we find that for
N = 8, pressure and energy have converged to within
1%. Therefore, we performed PIMD calculations at se-
lect density points in the region 0.3 ≤ ρ ≤ 1596.49 g/cm3

starting from the lowest T = 800 K point and going up
in T along each isochore until NQEs vanish. In principle,
BOMD performed with VASP and 1-bead PIMD calcula-
tions with i-PI interfaced with VASP should give identi-
cal results; however, the two calculations give slightly dif-
ferent results mainly due to the difference in thermostats.
The i-PI code utilizes the PILE-G stochastic thermostat
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FIG. 6. Relative corrections to pressure as a function of T
and ρ, ∆PNQE(ρ, T ) plotted in the ρ–T region of iFPEOS
for which explicit PIMD calculations were performed. Note
that, for clarity, below 0.0, the color gradient does not change
linearly with change in ∆PNQE(ρ, T ).

[80]. Therefore, to eliminate this inconsistency, for each
ρ–T point, we performed additional 1-bead PIMD (effec-
tively, BOMD) as well as the 8-bead calculations, and the
resulting differences in P and E between the two calcu-
lations are applied to the BOMD calculations as NQEs
corrections. Figure 6 shows the relative correction to
pressures due to NQEs, ∆PNQE(ρ, T ), defined as:

∆PNQE(ρ, T ) =
∆PNQE(ρ, T )

PBOMD(ρ, T )
× 100, (6)

∆PNQE(ρ, T ) = PPIMD(ρ, T )− PBOMD(ρ, T ).

At high T , above ∼ 10 kK, NQEs corrections vanish. At
low T we identify two distinct regions where NQE cor-
rections are significant (≥ 1%). Below ∼ 1 g/cm3 PIMD
calculations predict lower P than BOMD and above ∼ 2
g/cm3 PIMD pressures are higher. This sign change in
∆PNQE occurs around the molecular dissociation bound-
ary. For ρ ≥ 2 g/cm3, T ∼ 1 kK (blue region in Fig. 6)
where system is atomic fluid, ∆PNQE is positive, which is
expected and was recently demonstrated by Kang et al.
[34]. In the region of molecular D2 (ρ ≤ 1 g/cm3), how-
ever, NQEs lower the pressure. This can be explained by
the fact that NQE tend to facilitate dissociation [21, 81]
and at this low-ρ regime, where the transition boundary
is not well defined, PIMD could be predicting a higher
fraction of atomic D and, therefore, lower pressures. This
reasoning is further supported by results obtained by
Caillabet et al. [21].

In the lower left corner of Fig. 6 (ρ ≤ 0.5 g/cm3,
T ≤ 2500 K) ∆PNQE reaches values of ∼ −30%. This
large relative difference between PIMD and BOMD is due
to a sudden drop in total pressure [denominator on the
right-hand side in Eq. (6)], as at these ρ–T conditions
the degeneracy pressure diminishes. For densities lower
than ρ = 0.3 g/cm3, PIMD calculations become com-
putationally expensive, and it is reasonable to assume
that ∆PNQE(ρ)T=800K remains approximately constant.
The rationale behind this assumption is based on the
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BOMD total internal energies.

fact that, since the degeneracy pressure no longer plays
a major role, both ∆PNQE(ρ, T ) and PBOMD(ρ, T ) con-
tinue decreasing at approximately the same rate. The
NQEs corrections found at the higher-T points along the
ρ = 0.3 g/cm3 isochore were applied to corresponding
T points at lower densities. ∆PNQE(ρ, T ) peaks in the
region 4 ≤ ρ ≤ 10 g/cm3, T = 800 K and decreases for
higher densities as a result of the much-faster-increasing
total pressures compared to ∆PNQE(ρ, T ).

NQEs corrections to total internal energies,
∆ENQE(ρ, T ) = EPIMD(ρ, T ) − EBOMD(ρ, T ), are
shown in Fig. 7. For densities below ∼ 150 g/cm3,
NQE corrections decrease monotonically as T rises.
For ρ ≥ 150 g/cm3, however, NQEs energy corrections
increase with increasing T and a peak is observed at
temperatures around 2 to 20 kK. Similar effect, although
less pronounced, is observed in the NQEs corrections
to total P . This non-monotonic behavior of ∆ENQE

and ∆PNQE is due to two competing effects; (1) NQEs
decrease as T increases, and (2) NQEs increase as atoms
get closer and closer together. The latter is amplified at
high ρ and for ρ ≥ 150 g/cm3, it dominates the low-T
regime.

V. COMPARISON WITH EXPERIMENT AND
OTHER MODELS

In the following section we aim to benchmark iFPEOS
against some of the latest experimental measurements
and compare to other EOS models based on different
methodologies. One material property that can be di-
rectly measured in experiment and calculated from an
EOS table is the Eulerian sound speed, which is defined
as the square root of the rate of change of the pressure
with respects to density at constant entropy:

c =

√(
∂p

∂ρ

)
S

. (7)
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FIG. 8. Eulerian sound speed as a function of pressure in
D along the principal Hugoniot. iFPEOS (green curve) is in
good agreement with experimental measurements by Holmes
(orange triangles) and Fratanduono (red diamonds) for pres-
sures up to ∼175 GPa.

Recent measurements by Fratanduono et al. [6] and
Holmes [82] along with predictions by iFPEOS and other
select models are shown in Fig. 8. iFPEOS (green curve
in Fig. 8) is in excellent agreement with the experimental
data by Holmes [82] in the low-P (10 < P < 30 GPa),
low-ρ (0.6 < ρ < 0.8 g/cm3) regime which coincides with
the conditions for molecular dissociation. This agree-
ment with experiment further verifies iFPEOS’s accurate
modelling of the molecular-to-atomic transition, even at
low densities, where the transition is smooth (lower than
those presented in Fig. 1, Sec. I). At higher pressures
(50 < P < 150 GPa) we again see a good agreement
between iFPEOS and experiment which is an improve-
ment compared to other models, especially the PBE-
based FPEOS and Caillabet which tend to overestimate
c in this regime. This improvement can be explained by
XC thermal effects which are expected to be important in
this T -regime (10 . T . 80 kK) [47] and are captured by
T-SCAN-L, as well as the improved accuracy provided by
SCAN-L over PBE. For P > 180 GPa, iFPEOS predicts
∼ 10% higher sound speed compared to experiment. This
disagreement with experimental measurements at high P
is characteristic not only to iFPEOS, but also to other
models based on different methodologies such as PIMC
and chemical models.

Another robust verification of the accuracy of a theo-
retical EOS model can be done by comparing the model’s
prediction of the principal Hugoniot with that measured
in experiment. When a liquid is shock compressed, the
internal energy per unit mass, E, the pressure P , and the
density ρ behind the shock front are related to those in
front of it (E0, P0, ρ0) through the following equation:

E − E0 =
1

2
(P + P0)

(
1

ρ0
− 1

ρ

)
, (8)

known as the Rankine–Hugoniot (RH) equation [83] and
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FIG. 9. Pressure as a function of density compression along
the principal Hugoniot of D according to iFPEOS (green
curve) compared to latest experimental measurements, var-
ious EOS models other Hugoniot calculations. Early gas
gun measurements by Nellis et al. [88] at P < 20 GPa are
blue stars. Shock compression by converging explosives by
Boriskov et al. [86] (green crosses) are in good agreement
with the chemical models SESAME [10] (light purple dashed
line) and Kerley03 [9] (dark purple dotted line). Orange
empty squares are magnetically-driven flyer plates measure-
ments [90] and black empty squares are laser-driven shock
compression measurements [84]. High-precision Z-pinch mea-
surements [85] (blue inverted triangles) are in good agreement
with recent laser-driven shock compression (red diamonds [5]
and gray filled circles [91]) in the low-ρ regime. Light blue
dots and dashes are PBE-based EOS model by Caillabet et al.
[21], black dotted line is FPEOS [11, 19], orange dashes are
Hugoniot calculations based on DFT with KDT16 thermal
XC functional [22] and pink triangles are recent variational
Monte Carlo (filled) and reptation Monte Carlo (empty) cal-
culations [89]. iFPEOS is green, solid line.

in single-shock compression from ambient conditions the
thermodynamic states satisfying Eq. (8) form the prin-
cipal Hugoniot. The D principal Hugoniot has been ex-
tensively studied experimentally [5, 84–88] and theoret-
ically [9, 10, 21, 22, 89]. The principal Hugoniot in P–
compression space (Fig. 9) and in T–compression space
(Fig. 10) is compared below to popular first-principles
and chemical model based EOS table and latest experi-
mental measurements obtained with various techniques.

In order to obtain a more-systematic comparison with
experiment, we determine P0 and E0 in Eq. (8) with
an additional calculation at the initial conditions: ρ0 =
0.173 g/cm3 and T0 = 19 K, which are the initial con-
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FIG. 10. Temperature as a function of pressure along the
principal Hugoniot. Experimental results are shown as yel-
low triangles (gas gun) [92], black empty diamonds (laser)
[93], magenta diamonds (laser) [94] and brown filled circles
(Z machine) [95]. Theoretical models are labeled as in Figs.
8, 9.

ditions reported by Fernandez-Pañella et al. [5]. These
initial conditions were chosen so that iFPEOS can be
compared to the latest experimental measurements which
also probe the high-P , high-T regime. Computations at
such low T0 and ρ0 are challenging because the uncer-
tainty in P0 calculated with the largest unit cell achiev-
able with our methods is larger by approximately two
orders of magnitude than the extremely low value for
P0 (∼ 10−4 GPa), therefore, we take P0 = 0.0 GPa.
We tested the effect of P0 on the Hugoniot and for
0 < P0 < 10−2 GPa, we see a maximum variation in
the predicted compression of less than 0.01%. For ini-
tial energy we obtain E0 = −15.7755± 0.0004 eV/atom.
To verify the accuracy of our value for E0, we perform
an additional calculation on an isolated D2 molecule
and compare to high-precision wave function-based cal-
culations [96]. Our result, ED2 = −15.8192 ± 0.0002
eV/atom is only 0.4% higher than the reported value;
ED2 = −15.886 eV/atom. To obtain the principal Hugo-
niot with higher accuracy, we increase the density point
sampling around the anticipated region of maximum
compression and high-pressure Hugoniot, which occur in
the range 0.6 . ρ . 0.8 g/cm3. The smooth Hugoniot
curve shown in Fig. 9 has been obtained by solving the
RH equations on a dense ρ–T grid (∆ρ = 0.0005 g/cm3,
∆T = 250 K) obtained through spline interpolation [78]
applied to the ρ–T points corresponding to explicit calcu-
lations shown in Fig. 2. Here we note that the maximum
compression peak in the iFPEOS principal Hugoniot at
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ρ/ρ0 = 4.64 corresponds to T = 8000 K, which is close
to the 7500 K isotherm for which we have performed
explicit KSMD calculations and therefore, any potential
error in the maximum compression peak due to inter-
polation has been eliminated. According to iFPEOS,
maximum compression is 2.5% higher than the highest-
compression experimental datum by Knudson et al. [85]
and the maximum compression predicted by the KDT16
thermal functional [22] and 3.5 % higher than the PBE
prediction. In addition, the iFPEOS maximum compres-
sion is halfway between recent high-precision variational
Monte Carlo (VMC) (1.9 % lower than iFPEOS) and rep-
tation Monte Carlo (RMC) (1.8 % higher than iFPEOS)
calculations in this regime. In the region immediately
above maximum compression, P ∼ 100 GPa, iFPEOS is
in excellent agreement with recent experimental measure-
ments by Fernandez-Pañella et al. [5]. For P > 200 GPa,
however, iFPEOS predicts a significantly stiffer (∼ 1.5%)
Hugoniot compared to experiment, consistent with PIMC
and KDT16-based predictions in this regime. Compari-
son between iFPEOS with other popular models and ex-
perimental measurement of T and P along the principal
Hugoniot (Fig. 10) shows that there is an excellent agree-
ment between the first-principles models up to P = 150
GPa, however the growing disagreement between theoret-
ical models and experiments as pressure grows is evident.

We also compare iFPEOS with experimental measure-
ments of shock Hugoniot data from laser-driven shock
compression of D2 targets, precompressed to different ini-
tial pressures, as reported by Loubeyre et al. [94], where
diamond anvil cell is used to precisely control the initial
density of the sample. Measurements of Hugoniot data
is reported for 5 shots at initial pressure P0 = 0.16±0.03
GPa (ρ0 = 0.13±0.012 g/cm3), 6 shots at P0 = 0.3±0.03
GPa and 4 shots at P0 = 1.61 ± 0.03 GPa. To compare
iFPEOS with those measurements, we performed extra
calculations at the reported initial conditions: T = 297
K, ρ0 = 0.13, 0.1758 and 0.3288 g/cm3. The iFPEOS
Hugoniot curve for each ρ0 are compared to experimen-
tal measurements and a PBE-based model [21] in Fig. 11.
For the lowest initial density, ρ = 0.13 g/cm3, iFPEOS
predicts a softer Hugoniot compared to PBE, consistent
with results for principal Hugoniot, and ∼ 6% higher
maximum compression which is in much better agree-
ment with highest-compression experimental datum. At
these conditions, improved accuracy is attributed to the
advanced, meta-GGA level of XC treatment. The ρ0 =
0.1758 g/cm3 precompressed Hugoniot is similar to the
principal Hugoniot shown in Fig. 9 for which ρ0 = 0.173
g/cm3. At these initial conditions the iFPEOS Hugo-
niot curve moves closer to the PBE one, however both
are at significantly higher compression than the major-
ity of experimental data points. Finally, for the case of
ρ0 = 0.3288 g/cm3 we find that iFPEOS and PBE Hugo-
niot curves are in agreement up to P ∼ 100 GPa. At
higher pressures T & 10 000 K, which is the temperature
regime in which XC thermal effects become important
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FIG. 11. Shock Hugoniot for different precompressed D2 sam-
ples at T = 297 K. Red - ρ0 = 0.13 g/cm3, P0 = 0.16 GPa,
orange - ρ0 = 0.1758 g/cm3, P0 = 0.3 GPa, blue - ρ0 = 0.3288
g/cm3, P0 = 1.6 GPa. Triangles - experimental measurements
[94], dashed curves - AIMD calculations with PBE XC [21],
solid curves - iFPEOS.

and are the reason for the Hugoniot hardening towards
the experimental data points at ρ/ρ0 ∼ 3.3.

Next, we compare iFPEOS with experimental mea-
surements of reshock Hugoniot data. The pressure in the
reshocked deuterium is determined by impedance match-
ing with the standard, in the case of latest measurements
by Fernandez–Pañella [5], α-quartz, in a manner consis-
tent with that described in SM in Ref. [5]. In brief,
one solves the RH jump relation, which are Eq. (8) in
combination with the following:

ρ =
ρ0(Us − Up0

)

Us − Up
(9)

P = P0 + ρ0(Us − Up0
)(Up − Up0

) (10)

for given measured shock velocity Us and initial particle
velocity Up0

. The reshock Hugoniot in pressure-particle
velocity (P −Up) space is launched off of the same initial
state as that reported in experiment and its intersection
with the α-quartz principal Hugoniot determines the final
P in the reshocked D. These final pressures determine the
states on each reshock Hugoniot in pressure-compression
space launched from the initial states reported in experi-
ment (black, filled triangles in Fig. 12) and are reported
as green circles in Fig. 12. We also show the reshock
Hugoniot using the iFPEOS principal Hugoniot as initial
conditions (green curve in Fig. 12) and not the experi-
mentally determined initial states, which is a more self-
consistent prediction and allows for a more direct com-
parison with other experimental measurements.

As in the case of principal Hugoniot, iFPEOS reshock
states are in good agreement with experiment and other
first-principles models in the low-P regime around 200
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FIG. 12. Single and reflected shock states in D. Figures in
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dard. Black filled triangles are initial states in the shocked
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iFPEOS prediction of reshock states launched from the initial
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PEOS reshock launched from the iFPEOS principal Hugoniot
using impedance-matching with the α-quartz. Experimental
secondary-shock data using magnetically driven flyer plates
are orange open squares [90] and blue inverted triangles [85],
and using laser-driven shock compression are gray filled circles
[91].

GPa, but significantly underestimate the compression
(6 − 11%) for the three data points above 600 GPa,
thereby confirming a systematic disagreement between
theory and experiment in this high-P regime.

VI. SUMMARY

We have presented iFPEOS, an EOS table of deu-
terium which includes major developments in the AIMD
methodology, such as a more accurate XC functional,
proper treatment XC thermal effects and quantum treat-
ment of ions. iFPEOS employs the newly developed T-
SCAN-L XC functional, which is at the more-accurate
meta-GGA level of DFT and accounts for XC thermal
effects. Long-range van der Waals interactions are taken
into account by combining T-SCAN-L with the rVV10
functional. Finally, iFPEOS takes into account NQEs
via PIMD calculations.

iFPEOS reports pressures and internal energies for
densities 0.001 ≤ ρ ≤ 1596.46 g/cm3 and temperatures
800 K ≤ T ≤ 256 MK. Conditions in which the system is
strongly coupled and degenerate are almost entirely cov-

ered by KSMD. DFT calculations in the high-T regime
(T > 250 000 K) have been made possible with the newly
developed LKTFγTF OF DFT functional, which greatly
reduces the computational cost without introducing ther-
modynamic inconsistencies.

Results are compared with latest experimental mea-
surements and other popular models’ predictions of the
properties of D at a wide range of pressures and tem-
peratures. We conclude that iFPEOS is expected to
provide an improved description of D for T . 60 000
K, P . 200 GPa based on our results of sound speed
and the molecular dissociation boundary, where we see a
clear improvement with latest experimental data. This
improvement can clearly be attributed to the advanced
(meta-GGA level of DFT), thermal XC functional T-
SCAN-L+rVV10, as it occurs precisely in conditions in
which XC thermal effects (not included in PBE) and
accurate prediction of D-D interaction energies are im-
portant. At higher pressures, however, iFPEOS pre-
dicts significantly higher sound speed, in agreement with
other first-principles-based models. In the high-pressure
regime of the principal Hugoniot iFPEOS predicts a sig-
nificantly lower compression (∼ 1.5%) than experimental
measurements. However, we find that iFPEOS does pro-
vide ∼ 1− 1.5% better agreement with experiment com-
pared to PBE-based results and is in excellent agreement
with PIMC-based results in that regime. Similar trend
is seen in comparing iFPEOS with latest reshock mea-
surements. At P ∼ 200 GPa, iFPEOS, as well as other
models, show excellent agreement with experiment. At
P > 600 GPa, however, disagreement in predicted (by all
models) and measured compression in the reshock state
grows to 6-11 %. In summary, we have presented iFPEOS
- an updated D EOS table which provides three im-
portant improvements to previous first-principles based
models: (1) an advanced, meta-GGA-level treatment of
the XC interaction, (2) fully consistent treatment of XC
thermal effects across all temperature conditions and (3)
quantum treatment of ions. Comparison with other mod-
els and latest experimental measurements show that iF-
PEOS does provide an improvement in accuracy where
XC thermal effects are important and in the region of
molecular dissociation. Finally, we conclude that the im-
proved DFT methodology provided in iFPEOS does not
seem to resolve the long-standing disagreement between
theory and experiment in the pressure regime above 200
GPa.
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