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We study the Josephson effect in spin-triplet superconductor—quantum anomalous Hall
insulator—spin-triplet superconductor junctions using the nonequilibrium Green function method.
The current-phase difference relations show strong dependence on the orientations of the d-vectors
in superconductors. We focus on two d-vector configurations, the parallel one with the left and
right d-vectors being in the same direction, and the nonparallel one with the left d-vector fixed
at the z-axis. For the parallel configuration, the O-7 transition can be realized when one rotates
the d-vectors from the parallel to the junction plane to the perpendicular direction. The ¢¢ phase
with nonzero Josephson current at zero phase difference can be obtained as long as d,d. # 0. For
the nonparallel configuration, the 0-7 transition and the ¢o phase still exist. The condition for the
formation of the ¢y phase becomes dr, # 0. The switch effects of the Josephson current are found
in both configurations when the d-vectors are rotated in the zy plane. Furthermore, the symmetries
satisfied by the current-phase difference relations are analysed in details by the operations of the
time-reversal, mirror-reflections, the spin-rotation and the gauge transformation, which can well
explain the above selection rules for the ¢¢ phase. Our results reveal the peculiar Josephson effect
between spin-triplet superconductors and the quantum anomalous Hall insulator, which provide
helpful phases and effects for the device designs. The distinct current-phase difference relations
for different orientations may be used to determine the direction of the d-vector in the spin-triplet

superconductor.

PACS numbers:

I. INTRODUCTION

The quantum anomalous Hall insulator (QAHI) with
bulk gap and chiral edge states in the absence of exter-
nal magnetic field has been experimentally observed in
the magnetic topological insulator! soon after its theo-
retical prediction?. QAHI can realize the chiral topolog-
ical superconducting states when it is in proximity to a
conventional s-wave superconductor®. Various studies on
the electrical transport have been carried out to detect or
regulate the chiral Majorana edge modes produced in the
composite system® 2. The Josephson junctions are also
researched, which exhibit novel phase shift'3'4, anoma-
lous critical current!®, tunable Majorana valve effect'® or
induced paring states'”. However, the superconductors
involved in the existing studies are limited to the spin-
singlet pairing. The form of interaction between QAHI
and the spin-triplet superconductors (STSs) is still un-
known.

Generally, STSs show more physics due to thier com-
plex spin structures of Cooper pairs'®. The spin part of
the superconducting wave function is described by the so
called d-vector which has three components in a rectan-
gular coordinate system, i.e., d = (dy, dy, d,).* Its direc-
tion can be tuned by a very weak field2°. The orientation
of the d-vector can impose decisive impact on the trans-
port and topological properties of STS?! 23, Especially,
for the magnetic Josephson junctions, the relative orien-

tation of two d-vectors in STSs can be used to adjust the
Andreev bound states?* and to produce the Josephson
current switches?® or the 0-7 phase transitions?%27 valu-
able for the circuit element of quantum computation?®.
For the material realization of STSs, there are many the-
oretical and experimental researches for the identification
of the spin-triplet pairing!®29 3!, which include the de-
termination of the direction of the d-vector3?33. In ad-
dition, the spin-triplet pairing with a nonzero d-vector
also appears in some superconducting material with the
spin-orbit coupling.343% In this paper, we study the STS-
QAHI-STS Josephson junctions with the chiral p-wave
pairing in ST'Ss. The d-vectors are expressed as (ky+ik,)
for their orbital part. This type of paring is believed to
be the candidate state for SroRO,.18:36

In our STS-QAHI-STS junctions, the two d-vectors
in STSs can be along any directions. For definiteness,
we study the current-phase difference relations (CPRs)
for two configurations using the lattice nonequilibrium
Green function technology. For the first configuration,
the vectors keep parallel and are rotated simultaneously.
We find if the orientation of d-vectors is changed from
the direction parallel to the junctions to that perpen-
dicular to the junctions, the 0-7 transition will happen.
When the d-vectors satisfy the condition d,d, # 0, the
cos ¢-type current emerges. The ¢ phase with free en-
ergy minimum at the phase difference ¢ # 0,7 forms.
This phase possesses the nonzero current as the phase
difference ¢ is zero, which has attracted numerous the-



oretical and experimental researches®” #? due to its po-
tential applications in device designs*3. For the second
configuration, the d-vector for the left STS is fixed along
the z-axis, while that for the right STS is rotated arbi-
trarily. It is found the O-7 transition happens when the
right vector is inverted from the 4z direction to the —z
direction. When the x component of the right vector is
not zero, i.e., dr; # 0, the cos¢-type current appears
and the ¢y phase forms. We also find the on/off effects
of the Josephson current for both configurations when
the d-vectors are rotated from the x direction to the y
direction in the zy plane.

In addition, three universal symmetry relations for
CPRs in STS-QAHI-STS junctions are derived, which ap-
ply to the general d-vector configuration. These relations
can well explain the novel behaviours of CPRs including
the selection rules for the cos ¢-type current and the ¢q
phase. To clarify the origin of the relations, we analyse
the invariance of QAHI using the continuum model un-
der operations of the time-reversal, mirror-reflections, the
spin-rotation and the gauge transformation, as well as the
changes imposed on STSs by the operations. From the
analyses, we find the symmetry relations actually reflect
the unique nature of QAHI and its peculiar interaction
with STSs.

The rest of paper is organized as follows. In Sec. II, we
present the continuum and lattice models for QAHI and
STSs. The edge states of QAHI are solved with the con-
tinuum Hamiltonian. The Josephson current is expressed
based on the lattice model by the nonequilibrium Green
function method. In Sec. III, the numerical results are
presented for the parallel and nonparallel configurations
of d-vectors. The 0-m transition, the selection rules for
the ¢p phase and the symmetry relations for CPRs are
discussed in detail. Sec. IV analyses the origin of the
symmetry relations through the continuum models un-
der five kinds of transformations. At last, the results are
summarized in Sec.V.

II. MODEL AND FORMULATION
A. Continuum model

We consider the two-dimensional STS-QAHI-STS
Josephson junction in the zy plane as shown in Fig. 1(a).
The finite width along the y direction of the junctions is
W. The length of QAHI is L and is limited in the region
—é <z < % The semi-infinite STSs are placed in the
region x < —% and z > % for the left one and the right
one, respectively. The Hamiltonian of the junctions is
written as

H =Hps+ Hgaur + Hrs, (1)

where Hrs, Hgamr and Hgs are the Hamiltonians for
the left STS, QAHI and the right STS, respectively.

(b)

FIG. 1: (a) Schematic illustration of the STS-QAHI-STS
junctions. The d-vectors in the left and the right STSs are
denoted by dr, and dr, respectively. The direction of di.(dr)
is depicted by the polar angle 01, (6r) and the azimuthal an-
gle or.(vr). The junctions are placed in the zy plane. (b)
The energy bands of QAHI. The linear dispersions (yellow)
for the edge states are located in the gap of bulk bands(grey).
(¢) The edge states in QAHI. The yellow arrows denote the
motion direction of electrons and the red arrows denote their
spin.

For the continuum model, the STS Hamiltonian
Hiprys is given by (we take h = 1.)

Hymys = Y V) L (0 Liryes (2)
k

with Wppx = (CL(R)JmCL(R)JQ,CE(R%_M,CE(R),_M)T
and the 4 x 4 Bogoliubov-de Gennes (BdG) Hamiltonian

€L(R)

. (0’ . dL(R))iO'y ) (3)
o-dp(g))*ioy

~CL(R)

9 =

Here er(r) = 2o — pr(ry drry = Af(k)ermng g
and the Pauli matrices 0 = (04, 0y,0). The chemical
potential and the energy gap are denoted by pr(g) and
A, respectively. We choose the chiral p-wave pairing
with f(k) = ky + ik, for STSs'®3% in which k = (ky, ky)
is the two-dimensional wavevector. The direction of
dy (R is expressed by its polar angle 6,(g) and azimuthal
angle @r(r), e, npry = (NL(R)1,NL(R)2; NL(R)3) =
(sin €, gy cos @ (ry,sinOr(ry sin o1, (g, cos O (r)), as
shown in Fig. 1(a).

For QAHI, we adopt the following Hamiltonian of the
BdG form?,

Hoanr = ZlbLﬁQAHI (k)x, (4)
k
with ¥k = (ckr, ks cT_kT, cT_ki)T and

HQAHI(k) = ( h(Ok) _h*(()_k) ) . (5)



The electron part is given by

mo+ BE?  A(ky — ik,
hik) = < Al + iky) —1(710 - Bkg ) : (6)

where the parameters are taken as mg = —1.5 and A =
B = 0.25 in this paper. This will lead to the energy
bands as shown in Fig. 1(b) for QAHI with the periodic
boundary condition in the x direction and open boundary
conditions at y = 0 and W. There is a bulk energy gap
for electrons and linear dispersions at edges. The linear
dispersion with the positive slope corresponds to the edge
y = 0 and the negative slope corresponds to the edge
y=W.

From the continuum model Eq.(6), we can solve the
edge states for energy F > 0 at y = 0. The dispersion
relation is

E = Ak,, (7)

and the wave function is

1 Ay . mo A2
c(l)e 2Bysm[y\/—k£—§—@}, (8)

with a constant ¢. The wave function decays towards the
interior of QAHI and the spin of the electron is along
the z-axis. The edge state at y = W can be solved in a
similar way. If QAHI is also finite along the z direction
such as the situation for the junctions in Fig. 1(a), there
will be four edges. The edge sates are plotted in Fig.
1(c). The yellow arrows denote the motion direction of
electrons and red arrows represent their spin.

B. Lattice model

FIG. 2: Schematic illustration of two-dimensional square lat-
tice model for the Josephson junctions in Fig. 1(a). The
lattice constant is a. The width of the lattice is w. The
length of QAHI is N. In our calculations, we take N = 40
and w = 40.

In order to calculate the Josephson current, we dis-
cretize the continuum Hamiltonians on a two-dimensional
square lattice as shown in Fig. 2. The lattice constant
is taken as a. The length and width of QAHI are N
and w, respectively, which satisfy L = (N — 1)a and

W = (w — 1)a. The STS regions are of the same width
but semi-infinite along the x direction.

The discrete Hamiltonians for left STS and right STS
are

His= Y wEEpwE s Y wEtibek,,

12 <0 1o <—1
1<iy <w 1<iy, <w
L+ 7Ly L (9)
+ Y wktatek, +HC,
i, <0
1<iy<w—1

and

Hrs= Y [UHHFO + AU ]

iz >N+1
1<iy <w
Ré i R (10)
+ Y wftEfvE +HC,
iz >N+1
1<i, <w—1
respectively. Here \I/Z.L(R) =

(it Yr(myi Y myin Vigryy)” 1 which Ur(yia
is the annihilation operator of electron with spin a on
the site ¢ = (iy,14,) in the left(right) STS. The matrices
are Hy'"™ = ding(7Zz — prim), e
HL(R) —# + 1L(R));

~ HL(R)s — ez +

. L(R) . L(R)
_ 1 0 —AT AT
2ma? 2a 2q
| idbm At
HL(R) — 0 T 2ma? 2a 2a 11
T - i A L(R)* AL (R)* ( )
—iA —iA
T 1T O
LN
Eas) ) 0 1
2a 2a 2ma?
and
L(R) L(R)
__1 0 AT AL
2ma? 2a 2a
. AL(R) ALl
HLER) — 0 T 2ma? Sa Sa 12
= L(R)» L)« , (12)
Y N N
1 it 1 0
2 2 2 2
ma
_ALG(R)* _AL(%R)*
Tl 14 0 1
2a 2a 2ma?’

where A#R) = A(—npm)y1 + ingry2)e @t Aﬁ(R) =

AJI:T(R) = AnL(R)gei‘z’L(R) and AffR) e A(”L(R)l +

ing(ry2)e @ with npgy = (nL(ry1 NL(R)2> NL(R)3)-
The discrete Hamiltonian for QAHI is

Hoaur = Z w;rHoiﬁH- Z w;er%Jrém

1<iy <N 1<iz<N—1
1<i, <w 1<i, <w
Yy T 3 Yy (13)
+ § 7/11 Hy‘/’ﬂréy + H.C,
1<iy <N
1<, <w—1

with ¢ = (tir, i, 9L, 0])T in which 1), is the an-
nihilation operator of electron with spin « on the site



i = (ig,iy) in QAHI regime. The matrices are Hy =
diag(mo + 28, —mo — 28, —mo — 28, mo + 253),

B _iA
—-—= -5 0 0
; VO S
H, = O2a 28 % A , (14)
0o 0 g -2
and
I
= 2 « 2 0 (15)
V1 o o & 24
0 0 ]
2a a?

When we consider a QAHI ribbon with open boundary
conditions at y = 0 and W, k, will be a good quantum
number. The energy bands of QAHI can be calculated
from the lattice model in Eq. (13), which has been shown
in Fig. 1(b).

The tunneling Hamiltonian describing hopping be-
tween different regions can be written as

Hp= > [U§tTe + O Ty + HC,

1<iy, <w

(16)

with the hoping matrix 7' = diag(t, t, t*). For sim-
plicity, we use the subscript 0 in \IJ£+ to denote the site
i = (0,7y). The subscripts in other operators have the
same meanings.

C. Expression of Josephson current

We define the particle number operator for the left STS
as

DD IR ZR T (17)
1%zly§§0w ¢

The Josephson current is given by

dNp, . 1
I=e <7> = —eiZTr[FZTGés(t,t,ly,zy) + H.C18)

with ', = 0, ® 1loxs. The “lesser” Green function is
0
defined as G&g(t, 1/, 1), 7) = (\I/ﬁ)t/)(t’) ® P14, (t))-
By introducing the contour-ordered Green function

and using Langreth theorem, the current can be ex-
pressed as*> 47

- / AETL.GY(B)SEs (F) + TG E) % s(B)

—T.X7(E)GG(E) — T.X15(E)GG(E)].
Here, the Green functions Gy (F),G4(E) and G§(E)
in QAHI regime can be derived by the recursive al-

gorithm. The self energies are given by X7 ¢(F) =

4

Tig; o(EYT, X3 4(E) = Tilgp o(E)IT and Sig(E)
—f(B)[Sh 4(E) = %4 4(E)] with f(E) the Fermi distri-
bution function. The surface Green function gj ¢(E) for
the left STS can be deduced by the Mdbius transforma-
tion according to Ref.[44]. The detailed derivation for
the Green functions is presented in Appendix.

III. NUMERICAL RESULTS

We will discuss two types of junction configurations,
the parallel one and the nonparallel one. For the first
case, the d-vectors in the two STSs keep the same ori-
entation and are rotated together. For the second case,
the d-vector in the left STS is fixed along the z-axis,

e., dr, || z, while the d-vector for the right STS is ro-
tated arbitrarily. In our calculations, we take a = 0.5,
N=w=40,m =2, u;, = pg = 2.5, t =1, A = 0.005
and the temperature 7 = 0. The current almost keep
the same value at the low temperature, e.g. 7 < 0.057¢.
The superconductor gap A is far less than the bulk
gap E, of QAHI in our calculations. This ensures that
the current flows only through the chiral edge states of
QAHI. The realistic values of A and E, in experiment
can well meet the requirement A< E,. 18,4951 The ynit
of the current is chosen as 2. Since the Josephson cur-
rent only depends on the phase difference, we will define
¢ =o¢L — ¢r.

It is well known that the Josephson current can be
generally decomposed into the Fourier series®®, I(¢) =
Y ons1lan sin (ng) + by cos (ng)].  Accordingly, the free
energy of Josephson Junctlons can be given by F(¢) =
> o[22 (1 — cosng) + 2= sinng]. For the junctions
composed "of a spin-singlet superconductor and a STS,
the lowest order current with n = 1 is absent due
to the orthogonality of the wave functions of Cooper
pairs®2. However, it is not the case for the STS-QAHI-
STS junctions where the lowest order current usually ex-
ists. Therefore, one approximately has I(¢) = a; sing +
bicosg and E(¢) = 5-[a1(1 — cos¢) + bysing]. Since
the Josephson current I(¢) is also a function of ori-
entations of d-vectors, we will express the current as
1(01,,0r, o1, R, ®) in the next sections.

A. Parallel configuration

For the parallel situation, we will use 6z and ¢ r to
denote the common polar angle and azimuthal angle of
STSs for simplicity. In this situation, the current can be
expressed simply as I(0pr,¢Lr, ¢) due to the relations
GL = GR = GLR and L = PR = YPLR- Fig. 3 shows
the dependence of CPRs on orientations of d-vectors.
Fig. 3(a) gives CPRs for different polar angles at the
azimuthal angle ¢ r = 0. In this case, the d-vectors are
rotated in the zz plane. It is found that CPRs are of the
form I(¢) = aysin¢ with by = 0 when the d-vectors are
parallel to the z-axis or the z-axis, i.e., 0y g = 0 or 0.57.
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FIG. 3: The CPRs for different polar angles of d; and dr
at (a) orr = 0, (b) ¢rr = 0.257 and (¢) ¢rr = 0.57.
(d) The CPRs for ,r = 0.5m at prr = 0(dashed line)
and 0.5m(dotted line) are plotted together for comparison.
There are only three curves in (c¢) because the current for
Orr = 0.757m is the same as that for 0. = 0.257 when
prr = 0.5m.

Moreover, a; is positive for 8, = 0.57 while it is neg-
ative for r = 0. For the former case, the free energy
E(¢) achieves its minimum at ¢ = 0. The junctions are
in the conventional 0 phase. For the latter case, the min-
imum of F(¢) is obtained at ¢ = w. So the 7 phase can
be realized in the junctions. In other words, the junc-
tions can host the 0-m transition when one rotates the
d-vectors from the direction parallel to the z-axis to the
direction parallel to the z-axis. Additionally, the current
for 0 r = m is equal to that for 6,z = 0. That is, the
current is invariant when one inverses the d-vectors from
the z direction to the —z direction.

When the d-vectors have both the z and z components,
the cos ¢-type current will emerge as shown in Fig. 3(a)
for O, r = 0.257 and 0.757. We have the CPRs of the
form (aj sin¢ + by cos @) with a; # 0 and by # 0. In
this situation, the phase difference for the free energy
minimum is not at ¢ = 0 or w, but at ¢ = ¢9. The
Josephson current no longer vanishes at the zero phase
difference. For 0, = 0.257, ¢¢ is between 0 and 7 while
for 0 = 0.757, ¢g is between 7w and 2. Actually,
the two current curves satisfy the following symmetry
relation,

I(0rr, LR, ) = —I(7 —OLR, LR, — ). (20)

Fig. 3(b) shows the CPRs for different polar angles at
wrr = 0.257. The 0-7 transition still exists for rotation
from g = 0.57 to g = 0. When 01 i deviates from
the two values, the ¢y phase will be realized. The CPRs
for 0, = 0.257 and 0.757 also satisfy the symmetry
relation presented in Eq. (20).

Fig. 3(c) shows the CPRs for different polar angles
at orr = 0.5m. Distinct from CPRs for ¢ r = 0 and
0.257 given in Figs. 3(a) and (b), there is only 0-7 tran-
sition and no ¢y phase is formed in this situation. This
is because the cos ¢-type current will disappear when d-
vectors are rotated in the yz plane with ¢ r = 0.57. The

same thing will happen when d-vectors are rotated in
the xy plane with 0, = 0.57 as shown in Figs. 3(a)-(c).
This indicates the necessary condition for the appearance
of cos ¢ term or the formation of the ¢ phase is

dyd, # 0. (21)

It is reasonable to speculate by & dgzd, in I(¢) and E(¢).
However, the existence of sin ¢-type current is indepen-
dent of the rotation of d-vectors. The selection rule for
the cos ¢-type current and the ¢y phase in Eq. (21) is
a peculiar feature for the STS-QAHI-STS junctions. It
is meaningful to compare our results to those for the
spin-singlet superconductor—QAHI—spin-singlet super-
conductor junctions in Ref.[13]. There, the formation of
¢o phase requires an extra Zeeman field or an asymmetric
junction geometry.

From Figs. 3(a)-(c), we can also find that the current is
dramatically weakened when d-vectors are rotated from
the direction along the = axis to the direction along the
y axis in the xy plane. This will become clear if we plot
the curves for (¢rgr,0Lr) = (0,0.57) and (¢Lgr,0Lr) =
(0.57,0.57) together as shown in Fig. 3(d). The huge
current ration leads to on/off behavior of the Josephson
current.

We do not show CPRs for ¢, g with lager values, since
the following symmetries hold for the junctions,

I0Lr, LR, ¢) = I(0LR, 2T — VLR, D), (22)

and

I(HLR7S0LR7¢) :I(F_QLR77T_S0LR7¢)' (23)

The symmetries of CPRs in Eqgs.(20),(22) and (23) pos-
sess direct correlations to the invariance obeyed by QAHI
and we will discuss them later.

B. Nonparallel configuration

For the nonparallel situation, the polar angle for dy, is
taken as 6 = 0. Fig. 4 shows the dependence of CPRs
on the orientation of d g-vector. Fig. 4(a) gives the CPRs
for different values of the polar angle 0 at wr = 0. The
junctions host the 0 phase at 0p = 7 and the 7 phase at
0r = 0. The 0-7 transition happens when one inverses
the vector from the —z direction to the +z direction.
As the dg-vector has the nonzero x component such as
Or = 0.257 and 0.757, the cos ¢ term in I(¢) appears.
The ¢ phase will be achieved. Especially, the term cos ¢
dominates the Josephson current when 6z = 0.5m. The
minimum of the free energy is obtained at ¢o ~ 7. Fig.
4(b) gives the CPRs for different 0 at or = 0.257. The
0-7 transition still exist in this case. However, the cos ¢-
type current is suppressed compared with CPRs in Fig.
4(a). The ¢ phase evolves towards the 0 and 7 phases
as @p is increased from 0 to 0.257.

When pr = 0.57 as given in Fig. 4(c), the cos ¢-type
current disappears and the ¢g phase cannot be realized in
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FIG. 4: The CPRs for different polar angles of dr at (a)
vr =0, (b) ¢r = 0.257 and (c) ¢r = 0.57. (d) The CPRs
for g = 0.5 at ¢r = 0(dashed line) and 0.57(dotted line)
are plotted together for comparison. The dr-vector is fixed
along the z axis.

the junctions. There are only the 0-7 transitions. From
Figs. 4(a)-(c), we can summarize that the necessary con-
dition for cos ¢-type current or the formation of the ¢q
phase is that the x-component of the d-vector in the right
STS is nonzero

dRm 7é 07 (24)

when the dp-vector is fixed along the z-axis. In Fig.
4(d), we plot together the CPRs for pp = 0 and 0.57
when the dr-vector lies in the xzy plane with 6z = 0.57.
The current is dramatically weakened when one rotates
the vector from the z direction to the y direction. In
addition, I(¢) = by cos ¢ for v = 0 while I(¢) = a; sin ¢
for o = 0.5, hence the junctions can be used as a
current switch at the fixed phase difference 0 or .

The CPRs I(0y,,0r, ¢1., ¢r, ¢) for the nonparallel con-
figuration satisfy the following symmetry relations,

1(079R7QOL7S0R7¢) = _I(079R77T — YL, T — YR, _¢)7
1(079R7<PL,@Ra¢) = I(?T,ﬂ' - 9R77T+ @Laﬂ-_'— ¢R7¢)(25)
I(OvonwLa @Ragb) = 1(9R50727T - <PR727T - @Lv(b)'

Although the two configurations (the parallel one and
the nonparallel one) are different, the relations satis-
fied by CPRS are consistent. For example, the com-
bination of Eqs.(20) and (23) gives I(0Lr, LR, P) =
—I(0Lr, ™ — wLR,—¢) which is in line with the first
equality in Eq.(25). This implies that the STS-QAHI-
STS junctions have some universal symmetry relations
of CPRS. We will present the their derivation in the next
section through the symmetry analysis of Hamiltonians.

IV. SYMMETRY ANALYSIS

The behaviours of CPRs in Josephson junctions are
closely related to Hamiltonians of junctions.'??3%* Now,
we derive the symmetries of CPRs from the continuum

model in Eq. (1). We introduce five transformation op-
erators: (1) the time-reversal T,(2) the mirror-reflection
about the zz plane Mg, (3) the mirror-reflection about
the yz plane M., (4) the spin rotation of m about the
z-axis R,(m) and (5) the gauge transformation U (n).
Their actions on the annihilation operators are given by

TexaT ' = ac xa,
MaCliey 1y )yaMiazr = QC(1, —k,)as
My.c,, ky)aM_l = —UC(—ky ky)as (26)
R.(m)ckaR; () = azcka,
U (n)exally (77) = Crac”"
with (@) =1 ({1) or =(F). The matrices for the trans-

formation operators 7, M., M., R.(7) and U (n) are
shown in Appendix A.3.

First, the center finite QAHI is invariant under the
joint transformation X = R, (7)T M., i.e.,

= Hganr, (27)

but the same transformation can change the Hamiltoni-
ans of STSs according to

XHps(0r, oL, ¢0)X " = Hys(m — 01,21 — o, _¢L)<28)
XHps(0r,or, 9r)X ™" = Hrs(m — 0R, 2™ — 0r, —R).
Although the operations R, () and M,. do not alter
the direction of the Josephson current, the time-reversal

operation can inverse the direction of the current. There-
fore, we obtain the following relation,

XHoagr X~

I(eLv eRv YL, PR, ¢)

29
=—I(r—0,7m—0g,2m — (29)

@L, 2m — PR, _¢)
Secondly, the center finite QAHI is invariant under the
joint transformation Y = R, (m)T M,., i.e.,

YHoanrY ™!

but the same transformation can change the Hamiltoni-
ans of STSs according to

YHs(Or, o, 60)Y " = Hrs (01,27 — o1, — 1),
VHrs(0r, ¢r, or)Y "+ = Hrs(0r, 2T — Or, —R).

Because M, will alter the axis + — —=x, the current
is reversed in the original coordinate system. After the
time-reversal operation 7, the current changes back to
the original direction. Hence, we obtain

= Hganur, (30)

(31)

I(eLv eRa YL, ¥R, ¢)

32
ZI(HR,HL,27T—§0R,27T— ( )

PL, (b)
Note, the polar angle and the azimuthal angle for the left
STS and those for the right STS have been interchanged.

Thirdly, the center finite QAHI is invariant under the
gauge transformation Uj (n), i.e.,

Uy(m)HoauiUs " (n) = Hoanr. (33)



If one choose n = 7, the Hamiltonians of STSs will be
changed into

Un(5)Hos(Or, o, 60 )U (5) = His(m = 60,7 + o1, 61),

7T
2
Since the unitary operation U (n) does not change the

Josephson current, we can conclude the following sym-
metry relation

Ml(g)HRS(9R7<PR7¢R)U1_1(

I(eLv eRv YL, PR, ¢)

35
:I(ﬂ'—9L,7T—6‘R,7T+<PL,7T+SDR7¢)' ( )

One can easily prove that the derived symmetry rela-
tions of CPRs here from the invariance of Hgapms can
immediately lead to the equalities in Eqgs. (20)-(23) and
(25) summarized from numerical calculations for the par-
allel and nonparallel configurations. In addition, from
Eqs.(29) and (35), we can find I(oL, pr,¢) = —I(m —
©L, ™ — pr, —¢) which is irrespective of 0, and 0r. For
w1, = ¢r = 0.5m, the relation means the pure sin ¢ CPRs
which are demonstrated in Figs.3(c) and 4(c). The devia-
tion from ¢, = pr = 0.57 will ruins the pure sin ¢ CPRs
and causes the formation of the ¢ phase. From Egs.(29)
and (32), we can deduce I(0pgr,¢) = —I(7m —OLg, — ) ir-
respective of ¢ g for the parallel configuration (see also
Eq.(20)). For 01, = 0r = 0.57, the relation also leads to
the pure sin ¢ CPRs as shown in Fig. 3. The deviation
from 67, = 6r = 0.57 will break the pure sin ¢ CPRs and
the ¢y phase will form.

For spin-singlet superconductor—QAHI—spin-singlet
superconductor junctions'®, the breaking of magnetic
mirror reflection (the joint operation of the time reversal
T and the mirror-reflection M) symmetry is essential
to form the ¢y phase. It can be achieved by exerting an
extra field along the y-axis or constructing an asymmet-
ric junctions with different width of superconductors and
QAHIs. However, for the STS-QAHI-STS junctions here,
the ¢ phase can be realized through rotating d-vectors
to deviate from specific angles. It’s also important to
note that the 0-7 transition in STS-QAHI-STS junctions
can not be achieved in the spin-singlet case. These crit-
ical differences originate from the peculiar coupling of
STS and QAHI.

Finally, we give some discussions of the size depen-
dence of CPRs. The Josephson currents show strong de-
pendence on the width w of the junctions. In addition,
the Josephson currents also depend on the length N of
QAHI. However, the size dependence of CPRs will not
change our essential results including the symmetry re-
lations of CPRs and the selection rules for the ¢y phase.
The 0-7 transition and the switch effect still exist in junc-
tions with different values of the width w and length V.

V. CONCLUSIONS

We study CPRs in the STS-QAHI-STS Josephson
junctions by the lattice nonequilibrium Green function

theory. The junctions host rich physics due to the pres-
ence of d-vectors in STSs and the unique electric struc-
ture of QAHI. The CPRs are strongly dependent on the

dﬁrections of the two d-vectors in STSs. The dependences

3& e detailedly investigated for the parallel and the non-
) = Hps(m —0r, ™+ @R, Or). v s b

parallel case. The O-7 transitions, the ¢y phase and the
current switch effects are found in the both situations.
The selection rules for the cos¢-type current which is
the essential element for the ¢y phase, are summarized
from the numerical results. The CPRs satisfy three kinds
of different symmetry relations, which are closely related
to the selection rules. We analyse the origin of these rela-
tions through the invariance of QAHI and the changes of
STSs under the operations of the time-reversal, mirror-
reflections, the spin-rotation and the gauge transforma-
tion. Our results exhibit a new type of Josephson cou-
pling based on STSs and QAHI, which provide helpful
O-7 transition, ¢ phase and on/off effects for the device
design. The strong dependence of CPRs on the d-vector
orientation may be used to detect the information of the
spin-triplet paring in ST'Ss.
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V1. APPENDIX
A.1. Swurface Green functions for STSs

STSs have been discretized into a series of slices as
shown in Fig. 2. Each slice consists of w lattice points.
We define the Hamiltonian of an isolated slice as Hp,(g)11
for the left(right) STS. The hopping Hamiltonian from
one slice to its right neighbor slice is denoted by Hp(g)12-
The elements of Hp, gy and Hp(g)i2 can be determined
by the lattice model for STSs in Eqs. (9) and (10) of
the main text. Construct the Md&bius transformation
matrix**

X, = < 0 H113 ) (A1)
g _Hzlz [(E+i7)—HL11]HL_112 ' '

with v a small positive quantity. It can be diagonalized
as UngLUL = diag(Ap1, AL2, ALs, -+ ) with the eigen-
values satisfying [Ar1| < [Ar2| < [Ars| <---. We assume
the matrix Uy, has the following form

U, — ( Urir Uri2 ) ' (A.2)

Ur21 Upae



Then, the surface Green function for the left STS is given
by g7(E) = Ur12Up ;.

For the right STS, the Mdbius transformation matrix
is constructed as

Xp = < 0 (Hppo) ™!

—Hpio [(E+iv) — HRll](HIT%u)*l ) .(A.3)

It can be diagonalized by Ug in a similar way. The
surface Green function for the right STS is given by
Ghs(E) = Uri2Upg,. With ghg(E) and gE4(E), the
self energies in the main text will be obtained.

A.2. Green functions for QAHI

We denote the Hamiltonian for an isolated slice of
QAHI as Hgi1 and the hopping Hamiltonian from one
splice to its right neighbor slice as Hgiz2. The Green
function for the rightmost slice is

G§'(BE,N)=[E — Hou — Tgps(E)TT 7!, (A4

with T = lwsxw @ T. The nth slice Green function can
be derived from the following recursive algorithm,

GST(E, n) = [E — HQH — HngGgT(E, n + 1)HQ21]T%.5)

The full retarded Green function for the leftmost slice is
given by
GH(E) = [E — Hou — Tg;s(E)T!

(A.6)
— Hg12G®(E,2)Hga1] .

The full advanced Green function is obtained by the re-
lation G¢,(E) = [GE)(E)]Jf Then, the full “lesser” Green
function for the leftmost slice of QAHI can be written as

GG(E) = —f(E)(Go(E) — G4 (E)).

With Gf,(E) and G§5(E), the Josephson current can be
calculated numerically.

(A7)

A.3. Matrices for transformation operators

Here, we present the transformation matrices for five
operators introduced in the main text. The matrix for
the time-reversal operator is given by

[ —ioy O
Ur = < 0 —ioy ) K,

with I being the complex conjugation operator. The
matrix for the mirror-reflection about the xz plane is

(A.8)

io.
Un,. = Zgy R,, (A.9)
with R, being the reflection operator in the real space,
which will lead to y = —y and k;, — —k,. The matrix
for the mirror-reflection about the yz plane is

o, O
UMyz - < 0 —io, > sz

with R, being the reflection operator in the real space,
which will lead to + — —z and k; — —k,. The matrix
for the spin rotation of m angle about the z axis is

(A.10)

—10, 0
UR.(m) = < 0 io. ) : (A11)
The matrix for the gauge transformation U(n) is
6“712 2 O
Uun) = ( 0 ) e M 1gy0 > ’ (A.12)

with the identity matrix loxo.
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