
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Paramagnetic spin Hall magnetoresistance
Koichi Oyanagi, Juan M. Gomez-Perez, Xian-Peng Zhang, Takashi Kikkawa, Yao Chen,

Edurne Sagasta, Andrey Chuvilin, Luis E. Hueso, Vitaly N. Golovach, F. Sebastian
Bergeret, Fèlix Casanova, and Eiji Saitoh

Phys. Rev. B 104, 134428 — Published 25 October 2021
DOI: 10.1103/PhysRevB.104.134428

https://dx.doi.org/10.1103/PhysRevB.104.134428


 1 
 

Paramagnetic Spin Hall Magnetoresistance 1 

Koichi Oyanagi1,2*†, Juan M. Gomez-Perez3*, Xian-Peng Zhang4,5, Takashi Kikkawa1,6,7, Yao 2 

Chen1,6, Edurne Sagasta3, Andrey Chuvilin3,8, Luis E. Hueso3,8, Vitaly N. Golovach4,5,8, F. 3 

Sebastian Bergeret4,5, Fèlix Casanova3,8†, and Eiji Saitoh1,6,7,9,10 4 

1. Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 5 

2. Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan 6 

3. CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country, Spain 7 

4. Donostia International Physics Center, 20018 Donostia-San Sebastian, Basque Country, 8 
Spain 9 

5. Centro de Fisica de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 10 
Donostia-San Sebastian, Basque Country, Spain 11 

6. WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, 12 
Japan 13 

7. Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan 14 

8. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain 15 

9. Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan 16 

10. Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, 17 
Japan 18 

*These authors contributed equally to this work. 19 

†Correspondence and requests for materials should be addressed to K.O. (email: 20 
k.0yanagi444@gmail.com) or F.C. (email: f.casanova@nanogune.eu) 21 
 22 

  23 



 2 
 

We report the observation of the spin Hall magnetoresistance (SMR) in a 24 

paramagnetic insulator. By measuring the transverse resistance in a Pt/Gd3Ga5O12 25 

(GGG) system at low temperatures, paramagnetic SMR is found to appear with an 26 

intensity that increases with the magnetic field aligning GGG's spins. The observed 27 

effect is well supported by a microscopic SMR theory, which provides the parameters 28 

governing the spin transport at the interface. Our findings clarify the mechanism of spin 29 

exchange at a Pt/GGG interface, and demonstrate tunable spin-transfer torque through 30 

the field-induced magnetization of GGG. In this regard, paramagnetic insulators offer a 31 

key property for future spintronic devices. 32 

Spintronics [1,2] aims to add new functionalities to the conventional electronics using 33 

interconversion of spin angular momentum between different carriers in solids. Especially, the 34 

spin exchange between conduction-electron spins in a normal metal (NM) and magnetization, 35 

M, in a ferromagnet (FM) is a central topic to the branch of spintronics trying to manipulate 36 

M for developing new types of magnetic memory devices [3,4]. When spin angular 37 

momentum is transferred into a FM through a NM/FM interface [Fig. 1(a)], it modifies the 38 

transverse dynamics of M by exerting two types of torque, known as spin-transfer 39 

(damping-like) torque [5,6] and field-like torque [7], while it hardly couples to the 40 

longitudinal component. This is because the magnetic susceptibility in spin order, such as FM, 41 

is anisotropic due to the broken rotational symmetry reflecting spontaneous M; the magnetic 42 

susceptibility is large (small) along the transverse (longitudinal) direction, resulting in 43 

anisotropy into the spin injection.  44 

The efficiency of the transverse spin injection has been characterized by the spin-mixing 45 
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conductance G↑↓ [8,9]. Its evaluation is of crucial importance in spintronics as G↑↓ governs the 46 

device performance [10]. To this end, the spin Hall magnetoresistance (SMR) [11-21] can be a 47 

powerful tool. SMR is a resistance modulation effect in NM caused by a spin-current flow in 48 

NM and spin injection across a NM/FM interface. So far, SMR has been detected in NMs 49 

with various ordered (ferri-, ferro-, and antiferro-) magnets [11-21], which quantified G↑↓ in 50 

the magnets. SMR has also been reported in some paramagnetic systems [22-25], but the 51 

mechanism of the effects has not been elucidated. 52 

In this Letter, we demonstrate spin Hall magnetoresistance in a paramagnetic insulator (PI) 53 

Gd3Ga5O12 (GGG), with a NM (Pt) contact. Unlike ordered magnets, a paramagnet has no 54 

spontaneous magnetization and shows huge longitudinal susceptibility. At the interface, 55 

conduction-electron spins in the NM couple not only to the transverse component 56 

(spin-transfer and field-like torque) but also to the longitudinal component of spins in PI 57 

through the interfacial spin-flip process [Fig. 1(b)], whose efficiency is characterized by the 58 

effective spin conductance (or spin-sink conductance) Gs [9,26-29]; both G↑↓ and Gs are 59 

crucial for spin exchange at NM/PI interfaces. First, we show evidence of the paramagnetic 60 

SMR in Pt/GGG through transverse resistivity measurements. By combining experimental 61 

and theoretical results, we then evaluate G↑↓ and Gs, and demonstrate that these spin 62 

conductances are controllable with external magnetic fields B. Such controllability in 63 

paramagnets is distinct from SMR in ordered magnets, highlighting the novelty of the 64 

paramagnetic SMR. 65 

The sample consists of a Pt Hall bar (thickness d = 5 nm, width w = 100 μm, and length l = 66 

800 μm) on a single-crystalline GGG (111) slab. We measured longitudinal and transverse 67 



 4 
 

resistivity ρL = wdRL/l and ρT = dRT, where RL = VL/Jc (RT = VT/Jc,) is the Pt longitudinal 68 

(transverse) resistance [15] (see Appendix A) by applying current Jc of typical amplitude of 69 

200 µA using a DC reversal method [30] with applying B up to 9 T. 70 

Figure 1(c) shows the temperature (T) dependence of M of the GGG slab measured by a 71 

vibrating sample magnetometer. The M-T curve follows the Curie-Weiss law down to 2 K 72 

with a very low Curie-Weiss temperature ΘCW = -2 K. M arises from Gd3+ spins (S = 7/2), 73 

which are coupled via a weak exchange interaction [31] of 0.1 K. Because of the half-filled 74 

4f-shell in Gd3+, the orbital angular moment is zero, leading to the very small magnetic 75 

anisotropy of 0.04 K [31], which makes GGG an ideal paramagnetic system.  76 

We have investigated paramagnetic SMR in a Pt/GGG junction system shown in Fig 1(d). 77 

SMR originates from a combination of the direct and inverse spin Hall effects (SHE and 78 

ISHE) [32-34]. When the charge current Jc is applied to the Pt layer, SHE creates a 79 

conduction-electron spin current, Js, with the spin polarization σ flowing along the σ×Jc 80 

direction. When the spin current Js reaches the interface, it is reflected back into the Pt layer 81 

and again converted into a charge current via ISHE, causing the modulation of the Pt 82 

resistivity ρPt. We can tune the reflected spin current and thereby ρPt by the field-induced 83 

magnetization M ~	〈S∥〉 of GGG. At the Pt/GGG interface, conduction-electron spins in Pt 84 

interact with the paramagnetic spins S in GGG via the interface exchange interaction, that 85 

exerts torque on S. This torque is maximal (minimal) when σ⊥〈S∥〉 (σ||〈S∥〉), where the 86 

intensity of the reflected spin current and the resultant ISHE are suppressed (enhanced). 87 

Therefore, ρPt becomes higher for σ⊥〈S∥〉 than for σ||〈S∥〉. Besides, the effective magnetic 88 
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field due to the interface exchange interaction affects the motion of conduction electrons in 89 

the Pt layer and gives an additional Hall component, referring to the spin Hall anomalous Hall 90 

effect (SHAHE) [12,15,16]. 91 

SMR measurements at low temperatures have been very difficult so far. This is because, at 92 

low T and high B, weak anti-localization (WAL) effects appear in magnetoresistance and 93 

mask SMR signals in a four-probe resistance method [35]. Indeed, we observed a clear WAL 94 

signal at T = 2.5 K in ΔρL(Bi) = [ρL(Bi) - ρL(0)]/ρL(0), where i = x, y, z in Fig. 2(e) and 95 

discussed in Appendix B. To overcome the problem, we measured transverse resistivity of the 96 

Pt layer [see Fig. 2(d)], in which WAL does not appear even under B; the setup allows us to 97 

investigate magnetoresistance free from WAL at low T and high B. 98 

Figure 2(b) shows the field dependent magnetoresistance (FDMR) amplitude ΔρT(B) = 99 

[ρT(B) - ρT(0)]/ρL(0) at 2 K with B at α = 45°, where the transverse SMR becomes the most 100 

prominent. The B-rotation angle α is defined in Fig. 2(d). We observed clear 101 

magnetoresistance at α = 45°, in sharp contrast with the result at α = 0. The observed 102 

magnetoresistance increases for |B| < 5 T, while it is saturated for |B| > 5 T. The B range, at 103 

which ΔρT(B) is saturated is similar to that of M [see Fig. 2(a)], suggesting the field-induced 104 

paramagnetism plays a dominant role.  105 

SMR can be discussed in terms of the α dependence, which is phenomenologically given by 106 

cos(α)sin(α) for the transverse component [11,12]. Figure 3(b) shows the angular dependent 107 

magnetoresistance (ADMR) of ΔρT at 2 K by changing α at |B| = 3.5 T [see Fig. 3(d)]. ΔρT(α) 108 

shows a clear cos(α)sin(α) feature, consistent with the transverse SMR scenario. Figure 3(f) 109 

shows the ADMR results at several B values, which are well described by 110 
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SSMRADMR(B)cos(α)sin(α) (except for B = 0). SSMRADMR(B) is plotted in Fig. 3(a) (purple circles), 111 

showing good agreement with the FDMR result (blue solid line), SSMRFDMR  = ΔρT(45°) − 112 

ΔρT(135°). The Hanle magnetoresistance (HMR) may cause a similar signal [36]. Figure 2(f) 113 

shows the B dependence of HMR, LHMR(B) = [ρL(Bx) − ρL(By)]/ρL(0) at 300 K. We confirmed 114 

no meaningful signal from HMR at 300 K in our sample. The same claim can be made at 2 K 115 

because HMR weakly depends on T [36,37] (see details in Appendix C). We thus conclude 116 

that the observed FDMR and ADMR are the experimental signatures of the paramagnetic 117 

SMR. 118 

We found that the paramagnetic SMR manifests itself even in longitudinal resistivity 119 

measurements. Figure 3(c) shows the ADMR amplitude ΔρL(α) = [ρL(α) − ρL(90°)]/ρL(0) at 2 120 

K and |B| = 3.5 T [see Fig. 3(e)]. ΔρL(α) = [ρL(α) - ρL(90°)]/ρL(0) is described by 121 

LSMRADMRcos2(α), consistent with the expected behavior of SMR, i.e., the higher (lower) 122 

resistivity for Jc||B (Jc⊥B). Except for B = 0, similar cos2(α) dependence was confirmed at 123 

several B values [Fig. 3(g)], and LSMRADMR(B) matches SSMR(B) [Fig. 3(a)]. Therefore, even 124 

from the longitudinal FDMR results, we successfully discerned the paramagnetic SMR from 125 

the WAL background signals (see Appendix D for further discussion). 126 

We briefly argue the α, β, and γ dependence of ΔρL in Figs. 4(a) and (b). In contrast to 127 

ΔρL(α), large WAL signals appear in ΔρL(β) and ΔρL(γ), which deviate from a cos2 128 

dependence. The phenomenology of SMR and WAL explains the results as ΔρL(α): SMR 129 

only, ΔρL(β): SMR + WAL, and ΔρL(γ): WAL only. We indeed found ΔρL(β) − ΔρL(γ) ~ 130 

ΔρL(α). Therefore, all the ADMR results are ascribable to WAL and the paramagnetic SMR. 131 
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Figure 4(c) shows SSMRADMR(T) at |B| = 3.5 T. SSMR shows the maximum value at 2 K and 132 

monotonically decreases with increasing T, resembling M-T of GGG [the inset to Fig. 4(c)]. 133 

The results again show the field-induced M is important to generate SSMR, consistent with the 134 

paramagnetic SMR scenario. 135 

Figure 2(c) shows ΔρT(B) measured with applying B||z [sketch in the inset to Fig. 2(c)]. 136 

After subtracting the B-linear ordinary Hall effect (OHE) component, we found a small 137 

B-nonlinear signal SSHAHE for |B| < 5 T at 2 K. For positive (negative) B, a positive (negative) 138 

signal appears; this B-odd dependence is characteristic of SHAHE [12,15,16,18]. With 139 

increasing B, SSHAHE increases and is saturated at around 5 T, concomitant with the saturation 140 

of M in GGG [Fig. 2(a)]. We confirmed the higher-order SHAHE [16] is negligible (see 141 

Appendix E). 142 

We apply a microscopic SMR theory [26] valid for NM/PI with the B-dependent 143 

magnetization instead of the phenomenological SMR theory [12] for NM/FM with the 144 

spontaneous B-independent magnetization, leaving the B dependence of SMR unexplained. 145 

We describe the spin current Js at the NM/PI interface resulting from the interfacial exchange 146 

interaction by using the boundary condition [9,26,28] written as 147 

−eJs = Grn	×	(n	×	μs)	+	Gin×	μs + Gsμs,                                   (1) 148 

where e is the elementary charge, n the unit vector of B, µs the spin accumulation in the NM 149 

side, G↑↓=Gr+iGi the spin-mixing conductance, and Gs the effective spin conductance. The 150 

first and second terms in the right-hand side of Eq. (1) correspond to the spin-transfer and 151 

field-like torque, respectively, and the third indicates the spin-flip (electron-magnon) 152 
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scattering, which accounts for the magnon-related unidirectional SMR [38-40]. We calculate 153 

the spin conductances in Eq. (1) for the NM/PI interface as 154 

Gr(B)	=	A1 )S(S+1)− *coth( ξ 2⁄ )+ ξ
4sinh2(ξ 2⁄ )

, SBS(Sξ)-  ,                      (2) 155 

Gi(B) = A2SBS(Sξ),                                                    (3) 156 

Gs(B)	= − A1
ξ

2sinh2(ξ 2⁄ )
SBS(Sξ),                                           (4)	157 

where BS(x) is a Brillouin function of spin-S as a function of x, ξ(B) = C1B[T (T− ΘCWeff )⁄ ], 158 

ΘCWeff  the effective Curie-Weiss temperature, which contains ΘCW, S = 7/2 the electron spin of 159 

a Gd3+ ion, and C1 a numerical constant. A1,2 are fitting parameters, which contain the 160 

interface spin density nPI and dimensionless interfacial s-f exchange interaction Jint. Finally, 161 

the magnetoresistance as a function of B is given by: 162 

SSMR(B)	=	D1{ℛ(Gs)− Re[ℛ(Gs − G⇅)]},                                    (5)	163 

SSHAHE(B)	=	D1Im[ℛ(Gs − G⇅)],                                           (6) 164 

where	ℛ(x)	= (1− D2x) (1− D3x)⁄ , and D1,2,3 are known numerical constants. We refer 165 

Appendices F to I for theoretical details. We obtained the best fits using Eqs. (5) and (6) 166 

simultaneously as shown in Fig. 5(a) with the values of nPI = 6.94×1016 Gd atom/m2, ΘCW = 167 

-1.27 K, and Jint = -0.13. Although a direct fit to SSMR(T) is not possible by simply considering 168 

M(T), our model fully explains SSMR(B,T), in which T dependences of the spin-transport 169 

parameters of the Pt film and effects from a paramagnetic subsystem are also taken into 170 

account (see Appendix J for further discussion).  171 
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Figure 5(b) shows Gr(B), Gi(B), and Gs(B) with the estimated parameter values. At zero 172 

magnetic field, Gr and Gi vanish, while |Gs| takes the maximum value of 8.7×1012 S/m2. By 173 

increasing B, both Gr and |Gi| monotonically increases, but |Gi| increases more rapidly than Gr, 174 

and Gr (|Gi|) approaches the value of 1.0×1013 S/m2 (7.4×1012 S/m2) at around 5 T (3 T). On 175 

the other hand, |Gs| monotonically decreases with B and approaches zero. 176 

The B-dependent spin transport at the interface is a unique feature of paramagnets, in sharp 177 

contrast to FM where G↑↓ is almost independent of B. At the NM/PI interface, all the torque is 178 

cancelled out with the randomized spin (〈S∥〉 = 0) at B = 0, resulting in Gr = Gi = 0. When the 179 

PI acquires a net magnetization with applying B, a positive Gr and negative Gi appear; the 180 

latter implies antiferromanetic s-f interaction at the interface. On the other hand, |Gs| decreases 181 

with B due to the Zeeman gap (∝ gμBB, where g is the g-factor and μB the Bohr magneton). 182 

At small B, the localized spin can be easily flipped by spin and energy transfer between the 183 

conduction electron and localized spin. By applying B, the degeneracy of the paramagnetic 184 

spin is lifted to split into different energy levels by the Zeeman effect. Because the energy 185 

scale of the SHE-induced spin-flip scattering is governed by kBT, where kB is the Boltzmann 186 

constant, at 2 K it can be suppressed by increasing B (9 T for electrons corresponds to the 187 

energy scale of 25 K), leading to the reduction of Gs. 188 

Our results clarify the mechanism of SMR and SHAHE in paramagnets. By comparing SSMR, 189 

SSHAHE, Gr , and |Gi|, we found SSMR(B) ∝ Gr(B) and SSHAHE(B) ∝|Gi(B)| in Figs. 5(e) and (f), 190 

respectively. Because Gr and |Gi| represent the efficiencies of the spin-transfer and field-like 191 

torque, respectively [Figs. 5(c) and (d)], the agreement indicates that the spin-transfer 192 
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(field-like) torque is the mechanism of SMR (SHAHE) in Pt/GGG. Furthermore, the 193 

agreement between the experiment and theory clarifies that SMR is attributed to the ensemble 194 

of paramagnetic moments, consistent with the scenario in other magnetic ordered systems. 195 

This contrasts with the conclusions of Ref. 25, in which the MR observed in non-crystalline 196 

paramagnetic YIG/Pt was attributed to the total magnetic moment. Our results thus unify the 197 

description of SMR in compensated ferrimagnets [41,42], antiferromagnets [19-21,43], 198 

ferromagnets [18], and paramagnets, resolving the longstanding controversy for the origin of 199 

SMR. 200 

Finally, we discuss the interfacial parameters Jint, nPI, and ΘCW. We obtained a negative 201 

interfacial exchange interaction of about -2 meV (see Appendix I). This value has the same 202 

sign and order of magnitude as the one found in the Pt/EuS interface [18,44], -3~-4 meV, 203 

indicating the s-f exchange coupling is antiferromagnetic in both systems. On the other hand, 204 

a negative Gi was found in W/EuO [45], corresponding to a positive (ferromagnetic) s-f 205 

exchange interaction. The sign of the exchange interaction in metallic compounds with 206 

rare-earth ions depends on the electron structure of the host metal and the type of the 207 

rare-earth ions [46], and so may do the interfacial exchange interaction. The estimated Gd 208 

atom density corresponds to only 1% of the bulk value for GGG. The depletion of Gd atoms 209 

at the interface is consistent with the smaller ΘCW of -1.27 K than the bulk value of -2 K, 210 

indicating the decrease of the exchange interaction among Gd atoms at the interface. The 211 

feature may be attributed to possible damage of the GGG surface crystallization during the Pt 212 

sputtering (see the TEM images in Appendix J).  213 

In summary, we demonstrate the paramagnetic SMR in a Pt film on GGG at 2 K. The SMR 214 
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is induced with applying magnetic fields, and saturated above several tesla when all localized 215 

spins are aligned. The observed correlation between SMR/SHAHE and magnetization 216 

indicates that the field-induced magnetization plays a significant role in the spin transport at 217 

the Pt/GGG interface. Our microscopic theory well explains the SMR signals as a function of 218 

magnetic fields and quantifies the microscopic spin exchange parameters at the Pt/GGG 219 

interface. Our results indicate that the magnetoresistance measurements allow us to 220 

investigate spin transport at interfaces, essential for accelerating insulator-based spintronics.  221 
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FIG. 1. (a) NM/FM and (b) NM/PI interface with spin exchange. The blue, red, and 241 

green arrows represent the directions of angular momentum related to the 242 

spin-transfer torque, field-like torque, and spin-flip process, respectively. (c) M(T) of 243 

GGG. The inset shows 1/M (blue circles) and a linear fit (red solid line). (d) The 244 

Pt/GGG interface. Js with σ is generated in Pt by SHE with the application of Jc.   245 
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246 
FIG. 2. (a) M(B) of GGG at 2 K. (b) ΔρT(B) at 2 K. The deep blue (grey) curve shows  247 

ΔρT with B at α = 45° (0°). The light blue (grey) curve in the inset shows ΔρT with B at 248 

α = 135° (90°). (c) SSHAHE(B) with B||z after subtracting the OHE component. The inset 249 

shows the measurement setup for SHAHE. (d) Measurement setup for SMR. (e) 250 

ΔρL(Bi) in Pt/GGG at 2.5 K. The inset shows the measurement setup. (f) LHMR(B) at 251 

300 K in Pt/GGG.   252 
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253 
FIG. 3. (a) B dependence of the SMR signals obtained from FDMR and ADMR 254 

measurements. The solid curve represents SSMR
FDMR. The purple (blue) circles show 255 

SSMR
ADMR(LSMR

ADMR) obtained via the fitting using SSMR
ADMRcos(α)sin(α) [LSMR

ADMRcos2(α)]. (b) 256 

ΔρT(α) and (c) ΔρL(α) at 2 K with rotating |B| = 3.5 T. The orange solid curves in (b) 257 

and (c) are a SSMR
ADMRcos(α)sin(α) and LSMR

ADMRcos2(α) fit, respectively. (d),(e) Schematic 258 

illustrations of (d) the transverse and (e) longitudinal ADMR measurement setup. (f) 259 

ΔρT(α) and (g) ΔρL(α) at 2K for various B.   260 
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FIG. 4. (a) Schematic illustrations of the ADMR measurement setups. (b) ΔρL(α), 261 

ΔρL(β), and ΔρL(γ) data. (c) SSMR
ADMR(T) at 3.5 T. The inset shows the M-T curve of 262 

GGG.  263 
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FIG. 5. (a) B dependence of SMR and SHAHE together with the fitting of Eqs. (5) and 264 

(6) at 2 K. (b) B dependence of Gr, Gi, and Gs. (c) Spin-transfer and (d) field-like 265 

torque in a NM/PI system. (e),(f) The comparison (e) between Gr and SMR, and (f) 266 

between |Gi| and SHAHE.267 
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APPENDIX A: TEMPERATURE DEPENDENCE OF PT RESISTIVITY 268 
Figure 6 shows the temperature T dependence of the resistivity ρL(B = 0) = ρD of the Pt film 269 
on the GGG slab. We measured ρL by the conventional four-probe method with applying 270 
charge current of 200 µA. Down to around 20 K, ρL linearly decreases with decreasing T. 271 
Below 10 K, ρL starts to increase, which is a signature of the weak anti-localization (WAL) 272 
effect [35]. 273 

 274 
FIG. 6. T dependence of ρL of Pt. The resistivity ρL is measured in a 5-nm thickness Pt Hall bar on the 275 
GGG slab.  276 
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APPENDIX B: WEAK ANTI-LOCALIZATION IN PT FILM 277 
We measured magnetoresistance in the longitudinal configuration [35] for T < 50 K to show 278 
the weak anti-localization (WAL) effects in the Pt film. Figure 7 shows the normalized 279 
longitudinal resistivity change ∆ρL(Bi)	= 1ρL(Bi)− ρL(Bi	=	0)2 ρL(Bi	=	0)3  as a function of B 280 
in the i = x, y, and z directions (see the inset to Fig. 7) at 2.5 K. ΔρL(Bi) increases with 281 
increasing B for all i, but their shapes differ with each other. ΔρL(Bz) increases more rapidly, 282 
while ΔρL(Bx) and ΔρL(By) show similar trends. The largest value of ΔρL(Bz) at 9 T is two 283 
times greater than those of ΔρL(Bx) and ΔρL(By). Note that the difference between ΔρL(Bx) and 284 
ΔρL(By), ~ 4×10-5 at 9 T, corresponds to the paramagnetic SMR (we discuss it in Appendix 285 
D). 286 
 287 

FIG. 7. B dependence of ΔρL(Bi) at 2.5 K. The red, blue and green curves indicate the B dependence of 288 
ΔρL(Bi) for B in the x, y and z directions, respectively. The inset shows the sample with the applied 289 
current Jc || x.  290 
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APPPENDIX C: HANLE MAGNETORESISTANCE IN PT FILM 291 
We here show that the Hanle magnetoresistance (HMR) [36] is negligibly small in our 292 
Pt/GGG sample. As shown in Refs. 36 and 37, the HMR may show B-direction dependence 293 
similar to the SMR [i.e., HMR appears (disappears) under B in the x and z (y) directions] and 294 
may show up in a wide temperature range from 300 K to 2 K, but weakly depends on T. To 295 
investigate the HMR in our sample, we measure the B dependence of the longitudinal 296 
resistivity at 300 K, where the HMR, if present in our sample, may only be detected, while the 297 
paramagnetic SMR is suppressed because of the negligibly small paramagnetic moment in 298 
GGG at such high temperatures. Figure 8 shows the B dependence of LHMR = [ρL(Bx) − 299 
ρL(By)]/ρL(B = 0) at T = 300 K. We found no magnetoresistance, indicating that the HMR is 300 
undetected in the present Pt/GGG system. We thus conclude that the HMR can be neglected 301 
in our sample in all the T range. The absence of the HMR in our Pt/GGG sample may be 302 
attributed to the Pt growth condition, the detail of which is discussed in Ref. 36. 303 
 304 

FIG. 8. B dependence of LHMR at 300 K.  305 
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APPENDIX D: SMR IN LONGITUDINAL MEASUREMENTS IN PT/GGG 306 
We show the paramagnetic SMR in the longitudinal configuration. We performed field 307 
dependent magnetoresistance (FDMR) measurements in the x and y directions and angular 308 
dependent magnetoresistance (ADMR) measurements in the x-y plane [see Fig. 9(a)]. 309 
Figure 9(b) shows the B dependence of ∆ρL(Bi)	= 1ρL(Bi)− ρL(Bi	=	0)2 ρL(B	=	0)3 , where i = 310 
x, y at 2.5 K. The overall behavior is ascribable to the WAL as discussed in Appendix B. We 311 
here address the small difference between ΔρL(Bx) and ΔρL(By), defined as LSMRFDMR(B)	= 312 
1ρL(Bx)− ρL(By)2 ρL(B	=	0)3 . We plot the B dependence of LSMRFDMR as a green curve in Fig. 313 
9(d). LSMRFDMR(B) gradually increases and approaches to ~ 3×10-5 at 5 T, similar to the B 314 
dependence of M in GGG and the FDMR result in the transverse configuration shown in Figs. 315 
2(a) and 3(a). 316 
Next, we investigate ADMR of the longitudinal resistivity in the x-y plane. Figure 9(c) shows 317 
the ∆ρL	=	[ ρL(α)− ρL(α	=	90°)] ρL(B	=	0)⁄  as a function of α at B = 3.5 T and T = 2.5 K. 318 
ΔρT shows a clear LSMRADMRcos2α dependence, consistent with the behavior of the paramagnetic 319 
SMR. We extracted LSMRADMR at various B and obtained the B dependence of the ADMR result 320 
shown in Fig. 9(d). LSMRFDMR and LSMRADMR agree well with each other. All experimental findings 321 
in the longitudinal measurements are consistent with the observed SMR in the transverse 322 
measurements, showing that the difference between ΔρL(Bx) and ΔρL(By) [Fig. 9(b)] can be 323 
attributed to the paramagnetic SMR. 324 
 325 

FIG. 9. (a) A schematic illustration of the longitudinal resistivity measurement. A charge current Jc is 326 
applied in the x direction and the longitudinal voltage is measured. B indicates the spatial direction of 327 

-5 0
B (T)

0

Δρ
L(B

i) 
(1

0-5
)

5

20

i = x
y

LSMR

0-90-180 90 180
α (deg)

0

2

4 B = 3.5 T
T = 2.5 K Exp.

cos2α

Δρ
L 
(1

0-5
)

(b)

(c)

0 5
B (T)

0

2

4

ADMR 
FDMR 

L S
M

R
 (1

0-5
)

(d)

(a)

FDMR

T = 2.5 K

T = 2.5 K

Jc

VL

Pt
GGG

α

B

z

x y

+

-



 22 
 

the magnetic field, and the angle between Jc and B is defined as α. (b) The field dependent 328 
magnetoresistance (FDMR) in the longitudinal measurement at 2.5 K. The red (blue) curve indicates 329 
ΔρL under B in the x (y) direction. LSMR

FDMR(B) is defined as LSMR
FDMR(B) = !ρL(Bx)− ρL(By)# ρL(B = 0)$ . (c) 330 

The field angular dependent magnetoresistance (ADMR) ΔρL in the xy-plane. The green circles show 331 
the α dependence of ΔρL at 2.5 K. The blue curve indicates a LSMR

ADMRcos2α fitting to the experimental 332 
result. (d) FDMR and ADMR results as a function of B at 2.5 K. The green curve (circles) shows the 333 
FDMR (ADMR) result of LSMR.  334 
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APPENDIX E: SHAHE MEASUREMENT RESULT 335 
Figure 10(a) shows the B dependence of the normalized Hall resistivity ΔρT(B) at 2 K for 336 
Pt/GGG. ΔρT increases linearly with increasing B due to the ordinary Hall effect (OHE). We 337 
estimated the slope of the OHE AOHE as -6.5×10-5 (1/T), using a linear fitting to ΔρT for the |B| 338 
> 5 T range and averaged the obtained slopes for -9 T < B < -5 T and 5 T < B < 9 T. The 339 
obtained AOHE in the 5-nm-thick Pt film is almost the same as that obtained in the 30-nm-thick 340 
Pt film on GGG at low and high T [47]. The absence of the Pt thickness and T dependence of 341 
AOHE indicates that the contribution from the other Hall effects induced by the influence of the 342 
interface found in Pt/YIG is negligibly small [16,35,47]. After subtracting the OHE 343 
component, we found the spin Hall anomalous Hall effect (SHAHE) signal shown in Fig. 344 
2(c).  345 
Here we show that the higher-order contribution of SHAHE [16] is negligible small in our 346 
sample. Figure 10(b) shows the transverse ADMR at 2 K and selected magnetic fields. We 347 
clearly observe a cosβ dependence of ΔρT because of the OHE [see Fig. 10(a)]. To evaluate 348 
the higher-order contribution, we carried out the same analysis procedure used by Meyer et al. 349 
[16]: fitting a A1stcosβ +A3rdcos3β function to the ADMR results shown in Fig. 10(b), where 350 
A1st(B)	=	SSHAHE1st (B)+AOHE1st ∙B , SSHAHE1st (B)  is the first-order SHAHE contribution as a 351 
function of B, AOHE1st  is the coefficient of the OHE, and A3rd(B)	=	SSHAHE3rd (B)+AOHE3rd ∙B is the 352 
higher-order contribution of the same Hall terms. Figure 10(c) shows the B dependence of A1st 353 
(blue solid circles) and A3rd (red solid circles). A1st and A3rd monotonically increase with 354 
increasing B mainly due to the OHE, AOHE1st  and AOHE3rd , respectively. We estimate the slope of 355 
the OHE in the first- and high-order contribution as AOHE1st  = -6.3×10-5 (1/T) and AOHE3rd  = 356 
-2.1×10-6 (1/T) using the results at B = 7 T, and 9 T. AOHE1st  = -6.3×10-5 (1/T) is similar to that 357 
estimated from the FDMR results [~ -6.5×10-5 (1/T)]. After subtracting the OHE, we show the 358 
B dependence of SSHAHE1st (B) and SSHAHE3rd (B) in Fig. 10(d). We found the first-order SHAHE 359 
contribution [SSHAHE1st (B) ~ 2.7×10-5 at 9 T] is about 10 times larger than the higher-order one 360 
[SSHAHE3rd (B) ~ 0.26×10-5 at 9 T] in our system. Furthermore, SSHAHE1st (B) from the ADMR 361 
results is consistent with SSHAHE(B) from the FDMR results [deep blue curve in Fig. 10(d), 362 
and shown in the manuscript]. Therefore, we can accurately obtain the amplitude of the 363 
first-order SHAHE from the FDMR result by subtracting the OHE component, justifying our 364 
analysis described as above. 365 
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FIG. 10. (a) B dependence of ΔρT in the Hall measurement. Jc, B, and β denote the spacial direction of 366 
the charge current and magnetic field, and relative angle, respectively. The Hall resistivity is measured 367 
at β = 0 and T = 2 K. (b) ADMR results of SHAHE at T = 2 K and selected B. (c) B dependence of A3rd. 368 
The inset shows the B dependence of A1st and A3rd. The amplitude of A1st and A3rd are obtained by 369 
fitting a A1stcosβ+ A3rdcos3β function to the ADMR results shown in (b). (d) B dependence of the first- 370 
and third-order SHAHE. The blue (red) plots show the first-order (third-order) SHAHE, SSHAHE

1st  371 
(SSHAHE
3rd ), obtained from the ADMR. The deep blue curve indicates SSHAHE obtained from the FDMR 372 

results.  373 
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APPENDIX F: MOLECULAR FIELD APPROXIMATION FOR MAGNETIZATION 374 
OF GGG 375 
GGG is an ideal Curie-paramagnet with a weak exchange interaction between spins of 376 
neighboring Gd ions. Using the molecular field approximation, the thermal average of spin 377 
〈m〉 is calculated by the self-consistent equation [48] 378 

〈m〉	= − SBS	( SC1Beff T⁄ ),                                          (F1)	379 
where S is the electron spin angular momentum of Gd ions, Bs (x) is the Brillouin function of 380 
spin S as a function of x, C1 = gµB/kB, g is the g-factor, μB is the Bohr magneton, Beff = B + 381 
NPI〈m〉Jex/gμB is the effective field including the applied magnetic field B and the Weiss 382 
molecular fields, kB is the Boltzmann constant, T is the temperature, NPI is the number of the 383 
nearest neighbor of the interfacial magnetic moments and Jex is the strength of the 384 
antiferromagnetic exchange interaction among Gd ions.  385 
We used the effective (renormalized) Curie-Weiss temperature ΘCWeff  for taking all the 386 
correlation effects on a Gd ion into account, which gives the effective field as Beff	=	387 
BT (T− ΘCWeff⁄ ). The ΘCWeff  should recover the bare Curie-Weiss temperature ΘCW in the limit 388 
B→0 and 3TΘCW [C1(S+ 1)B]⁄  in the limit B→∞, respectively. For practical purposes it is 389 
convenient to match these limiting cases into a crossover function for the effective 390 
Curie-Weiss temperature: 391 

ΘCWeff (B) = 3ΘCW
S(1

BS(S))
)

≈ 9
ΘCW																(gμBB kBT⁄ ≪ 1)
3T

C1(S(1)B
ΘCW							(gμBB kBT ≫ 1)⁄  ,                   (F2) 392 

with the ansatz 𝜉 = − a0+a1|B|+?a02+(a2B)2, where a0 = -3ΘCW/(S+1)T, a1 = C1/(T-ΘCW), 393 

and a2 = C1/T(1-T/ΘCW).  394 
Figure 11 shows the plots of Eq. (F1) solved self-consistently (red line) and using with ΘCWeff  395 
given as Eq. (F2) (the blue line). We find a good agreement between both curves, justifying 396 
the use of	ΘCWeff . In the following discussion and the main text, the approximate form of 397 
Beff	=	BT (T− ΘCWeff⁄ ) is used to analyze the data. 398 
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FIG. 11. B dependence of |<m>|. The red and blue lines represent the self-consistent solution and the 399 
approximation with the effective Curie-Weiss temperature solution for Eq. (F2), respectively.  400 
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APPENDIX G: THEORY OF PARAMAGNETIC SMR 401 
Chen et al. formulated the spin Hall magnetoresistance (SMR) and spin Hall anomalous Hall 402 
effect (SHAHE) in a normal metal (NM)/ferromagnetic insulator (FM) bilayer system in Ref. 403 
12. They considered the NM/FM structure shown in Fig. 12(a) and solved a spin diffusion 404 
equation with a boundary condition which describes spin transfer between a conduction 405 
electron in NM and magnetization in FM at the interface. The longitudinal (ρL) and transverse 406 
resistivity (ρT) of NM is given as 407 

ρL ≈ ρD + ∆ρ0 + ∆ρ1(1− ny2),                                           (G1) 408 

ρT ≈ ∆ρ1nxny + ∆ρ2nz,                                                 (G2) 409 

with 410 

∆ρ0
ρD
= −θSH2

2λNM
dNM

tanh dNM
2λNM

,                                              (G3)	411 

∆ρ1
ρD
= θSH2

λNM
dNM

Re
2λNMG⇅tanh

2 dNM
2λNM

σD	+	2λNMG⇅coth
dNM
λNM

,                                       (G4) 412 

∆ρ2
ρD
= −θSH2

λNM
dNM

Im
2λNMG⇅tanh

2 dNM
2λNM

σD	+	2λNMG⇅coth
dNM
λNM

,                                      (G5) 413 

where ρD = 1/σD is the intrinsic electric resistivity of NM, n = (nx, ny, nz) is the unit vector of 414 
the magnetization of FI, θSH is the spin Hall angle of NM, λNM is the spin diffusion length of 415 
NM, dNM is the thickness of NM, and G⇅ = Gr + iGi is the complex spin mixing conductance 416 
at the NM/FM interface. This formulation [G1 and G2] succeeded in describing the 417 
experimental observation of SMR (Δρ1/ρD) and SHAHE (Δρ2/ρD) in NM/FM systems. They 418 
modeled the coupling between conduction electron spin in NM and macroscopic 419 
magnetization of FM, which is assumed to be independent of B.  420 
In the following sections, we model the paramagnetic spin Hall magnetoresistance [26]. We 421 
consider spin transfer at a paramagnetic insulator(PI)/NM interface via the interfacial 422 
exchange interaction between a conduction electron spin in NM and localized spin (not 423 
magnetization) in PI. As a result of the interaction, the spin relaxation time of the conduction 424 
electron in NM becomes anisotropic, giving rise to the SMR and SHAHE as discussed below. 425 
This approach clarifies the relation between the spin conductance and anisotropic spin 426 
relaxation in NM, which is crucial to understand the paramagnetic SMR. 427 
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FIG. 12. (a) A schematic illustration of the NM/PI or NM/FM sample structure. We apply a charge 428 
current, Jc, in the x direction. (b) A schematic side view of the interface. Conduction electron spins are 429 
coupled to spins in PI in the deep blue region (0 < z < b) with the thickness of b. dNM is the thickness of 430 
NM.  431 
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APPENDIX H: CORRECTION FROM EFFECTIVE SPIN CONDUCTANCE AT THE 432 
INTERFACE 433 
First, we describe SMR with the boundary condition including the effective (longitudinal) 434 
spin conductance Gs. Gs characterizes the spin-flip process at the interface, which is neglected 435 
in a conventional NM/FM interface [12]. For the sake of completeness, we keep Gs in the 436 
boundary condition describing the spin current at the interface, 437 

−eJs= Gsμs+Grn	×	(n	×	μs)	+	Gin	×	μs,                                 (H1) 438 

where e is the elementary charge, Js is the spin current vector, µs is the spin accumulation 439 
vector at the NM/PI interface, and n = B/B is the unit vector of the applied magnetic field B. 440 
By solving a one-dimensional spin diffusion equation in the z direction with the boundary 441 
condition [Eq. (H1)] at z = 0 and the zero spin current at z = dNM, we obtain the same form of 442 
the longitudinal and transverse resistivity with Eq. (G1) and (G2) but the different expressions 443 
of Δρ0/ρD, Δρ1/ρD, and Δρ2/ρD as, 444 

∆ρ0
ρD
= 2θSH2 *1− λNM

dNM
tanh @ dNM

2λNM
Aℛ(Gs)	,,                                  (H2)	445 

∆ρ1
ρD
= θSH2

2λNM
dNM

tanh @ dNM
2λNM

A [ℛ(Gs)− Re[ℛ(Gs − G⇅)]	]  446 

= D1[ℛ(Gs)− Re[ℛ(Gs − G⇅)]	],                                     (H3) 447 

∆ρ2
ρD
= θSH2

2λNM
dNM

tanh @ dNM
2λNM

A Im[ℛ(Gs − G⇅)] = D1Im[ℛ(Gs − G⇅)],              (H4) 448 

with 449 

ℛ(x)	= 1.xρDλNMcoth(dNM 2⁄ λNM)
1.2xρDλNMcoth(dNM λNM⁄ )

= 1.D2x
1.D3x

,                                     (H5) 450 

where D1 	= θSH2 ( 2λNM dNM⁄ )tanh( λNM 2dNM⁄ ), D2 = ρDλNMcoth( dNM 2λNM⁄ ), and D3 =451 
2ρDλNMcoth( dNM λNM⁄ ) are constants, which can be calculated using material parameters 452 
shown in the later. 453 
Equations (H2)-(H4) describe the correction from Gs, and they are reduced to Eqs. (G3)-(G5) 454 
when Gs = 0, which corresponds to the same boundary condition used by Chen et al. [12].  455 
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APPENDIX I: ANISOTOROPIC SPIN RELAXATION DUE TO INTERFACIAL SPIN 456 
EXCHANGE INTERACTION  457 
Next, we explain the relation between the interface spin conductances and the spin relaxation 458 
times calculated for the conduction electron in the NM in close vicinity of the NM/PI 459 
interface. We model the interface by introducing an auxiliary intermixing layer between the 460 
NM and the PI with the thickness b and taking a b→0 limit for calculation [26,49] of G⇅ and 461 
Gs. In such layer, dark blue region in Fig. 12(b), conducting electrons couple to the localized 462 
spins in the PI via an interfacial exchange interaction. This interaction is described by the 463 
effective Hamiltonian: 464 

ℋint = −𝒥int ∑ Si∙i s(ri),                                               (I1) 465 

where 𝒥int is the coupling constant, Si is the localized spin operator and s(ri) is the spin 466 
density of conduction electrons at position ri. The continuity equation for the spin current in 467 
the interaction region 0 < z < b reads 468 

∂t𝜇sα −
1
eνF

∂i𝑗s,iα − ωL(r)ϵαβγnβμs
γ=− Γαγμs

γ,                                 (I2) 469 

where the superscript Greek indices denote spin projections (α, β, γ = x, y, z), subscript Latin 470 
ones (such as i = x, y, z but not the descriptor index "s") denote current directions,	μs

α is the 471 
spin accumulation polarized in the α direction, νF is the density of states at the Fermi level, 472 
js,i
α is the spin current flowing in the i direction and spin-polarized in the α 473 

direction,	ωL	=ωB − δb(z)	〈SH∥〉(nPI𝒥int ℏ)⁄  is the effective (renormalized) Larmor frequency, 474 
ωB	=	gμBB/ℏ is the bare Larmor frequency, g is the g-factor, µB is the Bohr magneton, ℏ is 475 
the Dirac constant, δb(z) =1/b (0 < z < b), 0 (z > b),	〈SH∥〉 is the expectation of spin parallel to 476 
B, nPI is the number of localized spins per unit area at the surface of the PI, and Γαγ is the spin 477 
relaxation tensor. Here, ωL is renormalized by the interfacial exchange fields [18] due to 478 
〈SH∥〉. 479 
For the case with uniaxial symmetry set by B, Γαγ has the general form: 480 

Γαγ(r)	= δαγ
τs
+δb(z) Iδαγ

τ⊥
+( 1

τ∥
− 1
τ⊥

)nαnγJ ,                                   (I3)	481 

where τs is the isotropic part of spin relaxation time induced by the spin-orbit coupling or 482 
magnetic impurities in NM, and τ⊥ and τ∥ is the transverse and longitudinal spin relaxation 483 
time per unit of thickness in the interaction region, respectively. 484 
By combining Eq. (I2) with Eq. (I3), we obtain the spin current in the region where the 485 
exchange interaction takes place [dark blue region in Fig. 12(b)] as  486 

− 1
evF
𝑗s,zα K

z=0

z=b
=bωLϵαβγnβμs

γ − @b
τs
+ 1
τ⊥
A μs

α − L 1
τ∥
− 1
τ⊥
M nα(n	∙	μs).                (I4) 487 
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We take a b→0 limit to describe the interface spin current, where δb(z) becomes a delta 488 
function. We compare Eqs. (H1) and (I4) and obtain the relation between the interfacial spin 489 
conductances and anisotropic spin relaxation times, 490 

Gr	=	e2vF L
1
τ⊥
− 1
τ∥
M,                                                  (I5) 491 

Gi	= −
e2

ℏ
nPIJint〈SH∥〉,                                                 (I6) 492 

Gs	= − e2vF
1
τ∥

,                                                      (I7) 493 

where vF𝒥int = Jint is the dimensionless interfacial exchange interaction. 494 
In order to determine the anisotropic spin relaxation times τ⊥	 and τ∥ , we use the 495 
Born-Markov approximation [50] and obtain [26] 496 

1
τ∥
= 2π
ℏ
nPIJint

2

vF
ξnB(ξ)[1+nB(ξ)]|〈SH∥〉|,                                        (I8)	497 

1
τ⊥
= 1
2τ∥
+ π
ℏ
nPIJint

2

vF
〈SH∥
2〉,                                                  (I9) 498 

where nB(ξ) = 1/(eξ-1) is the Bose-Einstein distribution as a function of ξ = gµBBeff/kBT = 499 
C1Beff/T, and Beff is the effective magnetic field of the PI (see Appendix F). In a paramagnetic 500 
phase, |〈SH∥〉| and〈SH∥

2 〉 in Eqs. (I8) and (I9) can be determined as [26], 501 

〈SH∥〉 = −SBS(Sξ),                                                     (I10) 502 

〈SH∥
2〉 = S(S+1)− coth( ξ 2⁄ )SBS(Sξ),                                      (I11) 503 

where S is the spin of Gd3+ in GGG.  504 
Importantly, the difference between the longitudinal and transverse spin relaxation times 505 
appears only for a finite	O〈SH∥〉O. At the zero magnetic field, Eqs. (I8) and (I9) become the same, 506 
then 507 

1
τ∥
= 1
τ⊥
= 2π
3ℏ
nPIJint

2

vF
S(S+1).                                                (I12) 508 

Substituting the above results into Eqs. (I5)-(I7), we obtain the magnetic field dependence of 509 
the spin conductances at a NM/PI interface: 510 

Gr=
6
ℏ

nPI(eJint)2 )S(S+1)− *coth( ξ 2⁄ )+ ξ
4sinh2(ξ 2⁄ )

, SBS(Sξ)-  511 

  	=A1 )S(S+1)− *coth( ξ 2⁄ )+ ξ
4sinh2(ξ)

, SBS(Sξ)-                           (I13) 512 
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Gi=
e2

ℏ
nPIJintSBS(Sξ) = A2SBS(Sξ),                                       (I14) 513 

Gs=−
6
ℏ

nPI(eJint)2
ξ

2sinh2(ξ 2⁄ )
SBS(Sξ) = −A1

ξ
2sinh2(ξ 2⁄ )

SBS(Sξ),                 (I15) 514 

where A1 =	(𝜋 ℏ⁄ )nPI(eJint)2 and A2 =	(𝜋 ℏ⁄ )nPI(e2Jint).  515 
From the fitting to the experimental data we determine three free parameters, ΘCW, nPI, and 516 
Jint. ΘCW is obtained from the effective Curie-Weiss temperature ΘCWeff , while nPI and Jint from 517 
the values of A1 and A2. The Pt resistivity of 3.4×10-7 Ωm predicts the following parameters 518 
[51]: θSH = 0.104, λPt = 2 nm. We fit Eqs. (H3) and (H4) to the measured transverse FDMR 519 
results of SMR and SHAHE and obtain nPI = 6.94×1016 atom/m2, Jint = -0.13, and ΘCW = -1.26 520 
K. The lower Curie-Weiss temperature than the bulk value of - 2 K suggests the local 521 
moments on the surface of GGG have a lower coordination number than the bulk. This is 522 
consistent with the lower concentration of spins at the GGG/Pt interface than in bulk GGG, 523 
nPI = 6.9×1018 atom/m2. Taking a typical value of density of state for a metal [52], vF ≈ 524 
3.5×1028 m-3eV-1, the corresponding antiferromagnetic s-f exchange coupling is about -2 meV, 525 
which is similar to the obtained for a Pt/EuS interface [18,44], -3~-4 meV. Our theoretical 526 
framework describing the spin transport at the NM/PI interface and the analysis of SMR 527 
established here can be applied to results in other magnets including para-, ferri-, ferro-, and 528 
antiferromagnets [26].  529 
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APPENDIX J: TEMPERATURE DEPENDENCE OF THE EXPERIMENTAL AND 530 
THEORETICAL RESULTS 531 
Here we discuss the T dependence of SMR in our system by comparing the experimental and 532 
theoretical results. Figure 13(a) shows the detailed T dependence of SSMR. If one assumes that 533 
in Eqs. (H2)-(H5) the charge and spin-transport parameters of the Pt film (such as 534 
conductivity, spin diffusion length and spin Hall angle) are T-independent, our theoretical 535 
model with the used parameters predicts a 1/T2 dependence for high temperatures, T >> 536 
SgµBB (which in our case corresponds to ~ 15 K). However, a direct fit to the measurement 537 
shows a slower power-law decay, ~ 1/T0.5 in the discussed T range. 538 
First of all, to reconcile the experiment and theory, we take the T-dependence of the 539 
parameters into account. From the T dependence of the Pt resistivity (see Fig. 6), we extract 540 
their values at each T based on the scaling law in Ref. 51. After substituting these values into 541 
Eqs. (H2)-(H5), we obtained a good agreement between the experiment and theory for the 542 
power-law decay of SMR with T. However, the amplitude of the measured signal at large T > 543 
50 K is larger than the one obtained from the theoretical model. 544 
According to the theory, the paramagnetic SMR dominates SSMR below 50 K [the shaded 545 
region in Fig. 13(a)] and a strong reduction of SSMR at high T is expected. In contrast, a sizable 546 
signal is observed up to 200 K with a weaker T dependence. Most likely, this spurious signal 547 
stems from a spin subsystem with a much broader T dependence than the paramagnetic SMR. 548 
To confirm this, we subtract this "background" signal from SSMR below 50 K. Figure 14(a) 549 
shows the T dependence of USMR(T) = SSMR(T) - SSMR(T = 50 K) as blue solid plots. 550 
Interestingly, after this "background" subtraction, the amplitude of the SMR signal is in very 551 
good agreement with the theory. This indicates that at large T when the paramagnetic SMR 552 
becomes negligible, we clearly detect another SMR-like magnetoresistance with a weaker T 553 
dependence.  554 
This finding, together with the good agreement between the model and experiment on the B 555 
dependence, confirms that at low T (< 50 K) the observed magnetoresistance is attributed to 556 
the paramagnetic SMR. Figures 14(b), (c), and (d) show the best fits of our model to USMR(B) 557 
and SSHAHE(B) at T = 2 K, 5 K, and 10 K, respectively. USMR(B) is obtained by subtracting 558 
SSMR(B) at 50 K presented in Fig. 13(b). The model again reproduces USMR(B) at all T. In 559 
Table 1, we summarize the value of the parameters obtained from the best fitting to USMR and 560 
SSHAHE. Our model can explain the B dependence of USMR at different T in the low T regime 561 
(T < SgµBB ~ 15 K) with similar parameters, which indicates that the origin of USMR is the 562 
paramagnetic SMR. The long tail observed at high T is clearly not the effect we are focusing 563 
on and, as demonstrated, a simple subtraction of such background can reveal the 564 
paramagnetic SMR. 565 
From our transport experiments, we cannot infer the origin of the "background" signal. This 566 
requires an investigation which is beyond the scope of this manuscript. Nevertheless, the data 567 
suggest the existence of a paramagnetic subsystem with broader T-dependence. Plausibly, it 568 
could be composed of a small amount of Gd atoms absorbed into Pt during its deposition on 569 
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the GGG surface by sputtering. These Gd atoms couple much stronger to electrons in Pt than 570 
the ones at the interface, and their T dependence is expected to be broader than Gd ions in 571 
GGG with different characteristic scale SgµBB. To identify the absorbed Gd atoms, we 572 
performed scanning transmission electron microscopy (STEM) and energy-dispersive X-ray 573 
spectroscopy (EDX). Figure 15(a) shows the STEM image across the Pt/GGG interface. 574 
While the sample has a reasonably good interface, we found an amorphous layer with a very 575 
small thickness of about 0.5 nm, which was created by the Pt sputtering. Importantly, the 576 
EDX profile [Fig. 15(b)] shows the amorphous layer consists of Pt, Ga and Gd atoms, 577 
indicating a small amount of Gd atoms are absorbed into Pt. Besides, at the amorphous layer, 578 
the Ga atoms show broader distribution than Gd, and it makes the majority of Gd atoms at the 579 
surface separated from Pt. These findings support the existence of a paramagnetic subsystem. 580 
Other possible factors that, combined with the above effect, may contribute to the observed 581 
background signal is the renormalization of the effective s-d coupling (Jint) either by the 582 
Kondo effect that may be important in Pt [53], or phonons. Any of these effects may have a 583 
rather different T dependence with respect to SMR. Their studies are beyond the scope of our 584 
work, but definitely, it may be interesting to explore them using SMR in future experiments. 585 
It is important to remark that the above discussion does not change substantially the results 586 
and discussion in the main manuscript. The subtracted background signal, SSMR(T = 50 K), 587 
amounts only to about 19% of SSMR(T = 2 K), indicating that the low-temperature SSMR is 588 
dominated by the paramagnetic SMR. In addition, the obtained parameters at 2 K from 589 
SSMR(B) is consistent with that from USMR(B, T). Therefore, we can confirm that our 590 
manuscript is adequately based on the results of the paramagnetic SMR. 591 
 592 

FIG. 13. (a) T dependence of paramagnetic SMR and magnetization of GGG. SSMR is estimated by 593 
fitting a SSMRsin(α)cos(α) function to the transverse ADMR results at |B| = 3.5 T at various T. The inset 594 
shows the T dependence of M of GGG at |B| = 3.5 T. The paramagnetic SMR dominates the signal in 595 
the shaded T region. (b) FDMR result of SSMR at selected T. The solid blue curves represent SSMR

FDMR =596 
∆ρT(45 °)	−	∆ρT(135 °). 597 
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FIG. 14. (a) T dependence of SMR with the model result at |B| = 3.5 T. We subtract SSMR(T = 50 K) from 599 
SSMR(T) and obtain USMR(T) = SSMR(T) - SSMR(T = 50 K). The solid curve shows the best fitting of Eq. (5) 600 
as a function of T. (b)-(d) B dependence of USMR, and SSHAHE at (b) 2K, (c) 5 K, and (d) 10 K with the 601 
model results. We fit Eqs (5) and (6) to each experimental results shown as the unfiled plots. 602 
 603 

TABLE 1. Parameter values for best fitting. 604 

 605 

FIG. 15. (a) STEM image of the Pt/GGG junction. (b) The spatial distribution of elements along the 606 
Pt/GGG interface probed by EDX. The blue, red, and green lines indicate the intensity of Pt, Ga, and 607 
Gd atoms, respectively. The inset is the image of the distribution of Pt, Ga, and Gd atoms, and the 608 
color-coded image at the interface.  609 
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