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The dynamics of arbitrary-order quantum correlations in a cavity magnon-polariton system are
investigated based on the quantum master equation in the coherent state representation. The
phenomena of Rabi-like oscillation and level repulsion of the average cavity-photon number agree
remarkably well with existing experimental observations. The competing nature of coherent and
incoherent components in these two cases is further revealed by the second-order quantum coherence
of the cavity photons and magnons, which can be systematically tuned by the driving microwave
and thermal bath. Our results demonstrate the rich higher-order quantum dynamics induced by
magnetic light-matter interaction, and serve as an indispensable step toward exploring nonclassical
states for cavity photons and magnons in quantum cavity magnonics.

I. INTRODUCTION

The successful realization of strong coupling between
photons and magnons in microwave cavities [1–8] has
brought a new member into the family of cavity quantum
electrodynamics (QED) systems [9]. Experimental mea-
surements of this hybrid quantum system have revealed
the formation of magnon-polariton quasiparticles, which
can be tuned using bias magnetic fields [4–8, 10], the cav-
ity configuration [11–13], a DC voltage [14], the exper-
imental temperature [15, 16], Floquet engineering [17],
and so on. Extended studies have also found that the in-
trinsic nonlinearity of magnon-magnon interactions can
lead to bistable behaviors of cavity magnon-polaritons
[18, 19], and that dissipative magnon-photon coupling
will result in level attraction [20–22] and non-Hermitian
physics [23, 24]. Moreover, the cavity magnon-polariton
has been utilized to develop gradient memory [25] and
logic devices [26], to manipulate spin currents [27] and
magnons[28, 29], and to generate quantum entanglement
[30–34] or Schrödinger’s cat states [35, 36]. Coherent
control of the dynamics of cavity magnon-polaritons has
also been experimentally demonstrated [37, 38], paving
the way to the realization of universal information pro-
cessing.

Current experimental observations of dynamical fea-
tures in cavity magnon-polariton systems have mostly
focused on probing the power spectrum of the reflected
or transmitted microwave field [4–20, 23, 25, 26, 37, 38],
which depends on the average number of microwave pho-
tons in the cavity. However, as pointed out initially
by Glauber [39–41] after the seminal Hanbury Brown-
Twiss experiment [42], infinite sets of field correlation
functions are necessary in order to fully characterize the
quantum statistical properties of electromagnetic fields
[39–41]. Therefore, in addition to the average photon
number, which is directly related to the first-order field
correlation, higher-order field correlations are also cru-
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cial components in quantum optics [43–45]. For example,
the bunching and antibunching phenomena of photons,
which have been observed in classical and nonclassical
optical fields, respectively, are relevant to the second-
order field correlation [43–45]. Furthermore, higher-order
correlations have also played an essential role in many
other quantum systems, such as circuit QED systems [46–
53], cavity exciton-polariton systems [54–56], cavity op-
tomechanics [57, 58], ultracold atoms [59–68], and metal-
magnet hybrid structures [69]. Although the second-
order quantum coherence has been utilized to character-
ize the magnon blockade effect in magnon-qubit systems
recently[28, 29], a systematic investigation of higher-
order quantum correlations in the widely observed dy-
namical processes in cavity magnon-polariton systems is
still missing, which seriously hinders the further devel-
opments of cavity magnonics beyond the semiclassical
level[9].

In this work, the driven-dissipative dynamics in a cav-
ity magnon-polariton system has been thoroughly stud-
ied based on the quantum master equation in the co-
herent state representation. In Sec. II, a Fokker-Planck
equation of quasiprobability distribution function and a
group of hierarchical equations of arbitrary-order corre-
lation functions have been established for the coupled
cavity photons and magnons. Then the theoretical ap-
proach has been applied to investigate the average num-
ber of cavity photons and magnons in Sec. III. A and
their second-order quantum coherence in Sec. III. B for
two typical experimental scenarios. Possible experimen-
tal techniques to measure higher-order correlation func-
tions of cavity photons are briefly discussed in Sec. III.C.
Finally, the results are concluded in Sec. IV.

II. THEORETICAL MODEL AND QUANTUM
DYNAMICAL EQUATIONS

The cavity magnon-polariton system under considera-
tion is schematically illustrated in Fig. 1(a). A highly-
polished YIG sphere with a diameter of 0.36 mm, placed
inside a microwave cavity with a geometric size of 43.0×
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FIG. 1. (Color online) (a) A schematic diagram of the cav-
ity magnon-polariton system. A magnet denoted by m is
coupled to the cavity microwave field c. A bias magnetic
field B is applied to tune the magnon frequency ωm = γB
with gyromagnetic ratio γ. κc and κm are the damping rates
for the cavity photons and magnons, respectively. An exter-
nal microwave field with strength Ω and frequency ω0 can
be applied to continuously drive the cavity. (b) The average
cavity-photon number 〈c†c〉 as a function of the bias magnetic
field B and driving frequency ω0 in the continuous drive sce-
nario, with driving strength Ω/2π = 2 × 1012 Hz. (c) The
time-evolution of the average cavity-photon number 〈c†c〉 for
different bias magnetic fields B after injecting 108 coherent
microwave photons in an initial pulse. (d) The Rabi-like os-
cillation of the average number of cavity photons (blue solid
line) and magnons (red dashed line) with a zero-detuned bias
magnetic field B = 281.25 mT, i.e., ωm = ωc. The other
simulation parameters in (b), (c), and (d) are set to [6]:
ωc/2π = 7.875 GHz, κc/2π = 1.35 MHz, κm/2π = 1.06 MHz,
g/2π = 10.8 MHz, and T = 300 K.

21.0× 9.6 mm3, is coherently coupled to the electromag-
netic mode in the cavity via the magnetic dipole inter-
action [6]. We assume that only the Kittel mode of the
magnet is excited by the magnetic component of the mi-
crowave field. The cavity can be excited by an external
microwave source, either a discrete pulse [6, 38, 70] or a
continuous wave [4–8]. The Hamiltonian of this system
is [6, 30]

H = ~ωcc†c+ ~ωmm†m+ ~g(c†m+m†c)

+i~Ω(e−iω0tc† − eiω0tc). (1)

Here, ~ is the reduced Planck constant; c†(c) and m†(m)
are the creation (annihilation) operators of the cavity
photons and magnons with eigenfrequencies ωc and ωm,
respectively; g is the coupling rate between the cavity
photons and magnons, where the rotating-wave approx-
imation (RWA) has been employed; and Ω and ω0 are
the strength and frequency of the continuous driving mi-

crowave. The last term in Eq. (1) will not be included
for the pulse excitation scenario.

In order to incorporate the dissipation effect mi-
croscopically, we assume that the cavity photons and
magnons are independently coupled to a corresponding
thermal bath[71]. The dynamics of this system will then
be governed by the quantum master equation for the re-
duced density matrix ρ (Appendix A)

dρ

dt
=

1

i~
[H, ρ] + L{ρ}. (2)

Here, L{ρ} is the Lindblad operator, where L{ρ} =∑
o=c,m

[κo(1 + no)(2oρo
† − {o†o, ρ}) + κono(2o

†ρo −

{oo†, ρ})]; nc ( nm) is the average number of thermal
cavity photons (magnons) with frequency ωc (ωm) for the
thermal bath with temperature T ; and κc and κm are the
damping rates for the cavity photons and magnons. Once
Eq. (2) is solved, the correlation functions 〈c†pcqm†rms〉
to arbitrary order (p, q, r, s) of the operators c†, c,m†,m
can be obtained for the cavity magnon-polariton system.
Here, 〈O〉, taking the form Tr[ρO], is the quantum sta-
tistical average of a generic operator O over the density
matrix ρ.

In terms of the coherent states |α〉 and |β〉
for the cavity photons and magnons, respectively,
the density matrix ρ can be expressed as ρ =∫
d2αd2βP(α, β)|α, β〉〈α, β|. The quasiprobability dis-

tribution function P(α, β) will then satisfy the Fokker-
Planck equation (Appendix B)

∂P
∂t

= iωc
∂

∂α
(αP) + iωm

∂

∂β
(βP) + ig(β

∂

∂α
+ α

∂

∂β
)

− Ωe−iω0t
∂

∂α
P + κc

∂

∂α
(αP) + κm

∂

∂β
(βP)

+ κcnc
∂2

∂α∂α∗
P + κmnm

∂2

∂β∂β∗
P + h.c. (3)

Then the expectation value O can be further expressed
as

〈O〉 =

∫
d2αd2βP(α, β, t)〈α, β|O|α, β〉. (4)

In addition to solving the Fokker-Planck equation
(3) directly, the quasiprobability distribution function
P(α, β, t) can also be obtained by simulating the stochas-
tic differential equations for α and β[44]

dα = (−iωcα− igβ + Ωe−iω0t − κcα)dt

+
√
κcnc(dW1 + idW2), (5)

dβ = (−iωmβ − igα− κmβ)dt

+
√
κmnm(dW3 + idW4), (6)

Here, dWi(i = 1, 2, 3, 4) are independent Wiener pro-
cesses, whose increasements satisfy the Gaussian distri-
bution with expectation value 0 and variance dt. The
statistical assembles of quantum trajectories of α and β
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generated by Eq. (5) and (6) will give the quasiprobabil-
ity distribution function P(α, β, t). This so-called “quan-
tum trajectory method” can be more efficient from the
computational aspect, although these two methods are
mathematically equivalent[44].

Based on the Fokker-Planck equation (3), it is also
able to get the dynamical equations for the correlation
functions of cavity-photon and magnon operators. For
example, the time derivative of 〈c〉 can be expressed as
∂
∂t 〈c〉 =

∫
d2αd2β ∂P∂t α, according to Eq. (4). By substi-

tuting the expression of ∂P
∂t given by Eq. (3) and per-

forming the integrations over α and β, one will get

∂

∂t
〈c〉 = −iωc〈c〉 − ig〈m〉 − κc〈c〉+ Ωe−iω0t. (7)

Similary, the equation for 〈m〉 will be

∂

∂t
〈m〉 = −iωm〈m〉 − ig〈c〉 − κm〈m〉. (8)

In fact, Eq. (7) and (8) describe the dynamics of the
coherent components in cavity photons and magnons re-
spectively.

The equations for arbitrary-order correlation functions
〈c†pcqm†rms〉 can also be derived in the same way. Us-

ing the fact ∂〈O〉
∂t =

∫
d2αd2β ∂P∂t (α, β, t)〈α, β|O|α, β〉, we

have got

∂

∂t
〈c†pcqm†rms〉 = [i(p− q)ωc − κc(p+ q) + i(r − s)ωm − κm(r + s)]〈c†pcqm†rms〉

+ ig(p〈c†p−1cqm†r+1ms〉 − q〈c†pcq−1m†rms+1〉+ r〈c†p+1cqm†r−1ms〉 − s〈c†pcq+1m†rms−1〉)
+ pΩeiω0t〈c†p−1cqm†rms〉+ qΩe−iω0t〈c†pcq−1m†rms〉
+ 2pqκcnc〈c†p−1cq−1m†rms〉+ 2rsκmnm〈c†pcqm†r−1ms−1〉. (9)

Notice that p, q, r, s are non-negative integers, and the
terms with negative exponents on the right-hand side of
Eq. (9) should vanish. Therefore, the higher-order cor-
relation functions will be dependent on the lower-order
correlation functions hierarchically.

The Fokker-Planck equation (3), stochastic differen-
tial equations (5)(6), and the hierarchical equations (9)
are the central results to describe the driven-dissipative
quantum dynamics in cavity magnon-polariton sys-
tems. In the following, this theoretical approach will
be exploited to investigate the average number and
second-order quantum coherence for cavity photons and
magnons in two experimental scenarios.

III. RESULTS AND DISCUSSIONS

A. Average Number of Cavity Photons and
Magnons

Existing experiments on the cavity magnon-polariton
system have focused on the power spectrum of the mi-
crowave field, which is proportional to the average num-
ber of microwave photons 〈c†c〉 in the cavity. By setting
suitable integers (p, q, r, s) for Eq. (9), a group of coupled
equations for 〈c†c〉, 〈m†m〉, 〈cm†〉, 〈c†m〉, 〈c†〉, 〈c〉, 〈m†〉,

and 〈m〉 can be obtained as

∂

∂t
〈c†c〉 = −ig〈c†m〉+ ig〈cm†〉+ Ωe−iω0t〈c†〉+ Ωeiω0t〈c〉

−2κc〈c†c〉+ 2κcnc, (10)

∂

∂t
〈m†m〉 = ig〈c†m〉 − ig〈cm†〉 − 2κm〈m†m〉+ 2κmnm,(11)

∂

∂t
〈c†m〉 = iωc〈c†m〉 − iωm〈c†m〉 − ig〈c†c〉+ ig〈m†m〉

+Ωeiω0t〈m〉 − κc〈c†m〉 − κm〈c†m〉, (12)

∂

∂t
〈cm†〉 = −iωc〈cm†〉+ iωm〈cm†〉+ ig〈c†c〉 − ig〈m†m〉

+Ωe−iω0t〈m†〉 − κc〈cm†〉 − κm〈cm†〉. (13)

One can see that the average number of thermal cavity
photons and magnons will be involved here.

If the cavity is continuously driven by the external mi-
crowave field, the dynamics of the system will become
stationary after a long time. In this experimental sce-
nario, the solution of Eq. (7) and (8) can be written as
〈c〉(t) = α0e

−iω0t and 〈m〉(t) = β0e
−iω0t, with the ampli-

tudes

α0 = − iΩ(ω0 − ωm + iκm)

(ω+ − ω0)(ω− − ω0)
, (14)

β0 = − iΩg

(ω+ − ω0)(ω− − ω0)
. (15)

Here, ω± are the eigen frequencies of the two branches
of cavity magnon-polariton modes, where ω± = ωc+ωm

2 −
iκc+κm

2 ±
√

(ωc−ωm

2 − iκc−κm

2 )2 + g2. Furthermore, the
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average number of cavity photons and magnons will be-
come constant in this case. Specially, the solutions of
Eq. (10)(11) will give

〈c†c〉 = |α0|2 + (1− γm)nc + γmnm, (16)

〈m†m〉 = |β0|2 + (1− γc)nm + γcnc, (17)

where γm and γc are

γm =
g2κm(κc + κm)

g2(κc + κm)2 + κcκm(κc + κm)2 + κcκm(ωm − ωc)2
,

γc =
g2κc(κc + κm)

g2(κc + κm)2 + κcκm(κc + κm)2 + κcκm(ωm − ωc)2
.

One can find that both the drive source and thermal
bath will affect the average number of cavity photons
and magnons. Fig. 1(b) further shows 〈c†c〉 as a function
of the bias magnetic field B and the driving frequency ω0.
The anticrossing of two branches of the cavity photons
clearly indicates the formation of two magnon-polariton
modes, which has been widely observed in previous ex-
periments [9].

Besides the level repulsion observed in the continuous
drive scenario, Rabi-like oscillation behavior is also ob-
served in the microwave power spectrum in the pulse ex-
citation scenario [6, 38, 70]. Fig. (1)(c) shows the tran-
sient dynamics of 〈c†c〉 in the cavity after a short pul-
sive excitation, which have been obtained by solving the
Fokker-Planck equation (3) based on the quantum trajec-
tory method. The system parameters are the same as in
Fig. 1(b) without the driving term, and the initial exci-
tation is taken into account by injecting 108 coherent mi-
crowave photons. For a rectangular pulse with frequency
ω0/2π = 7.875 GHz and duration 1 ns, the corresponding
microwave power is estimated to be −32.8 dBm.

The Rabi-like oscillation of 〈c†c〉 in Fig. 1(c) can be
simply understood from Eq. (7) and (8) by setting Ω =
0. With the initial conditions 〈c〉(0) = 〈c〉0, 〈m〉(0) =
0, the solution of 〈c〉(t) and 〈m〉(t) will be the linear
combination of the two cavity magnon-polariton modes,
namely, (

〈c〉(t)
〈m〉(t)

)
=
∑
i=+,−

γi

(
αi
βi

)
e−iωit. (18)

Here,

(
α±
β±

)
= 1√

(ω±−ωc)2+κ2
c+g

2

(
g

ω± − ωc + iκc

)
are the two normalized modes of cavity magnon-
polaritons, and the coefficients γ± are determined to

be γ± = ±β∓〈c〉0
α+β−−α−β+

. In the strong coupling case

κc, κm � g, the contribution of 〈c〉(t) and 〈m〉(t) to the
average number of cavity photons and magnons will ap-
proximately be

|〈c〉(t)|2 = |〈c〉0|2(A+ B + 2C cos(∆ωt))e−2κt, (19)

|〈m〉(t)|2 = |〈c〉0|2C(2− 2 cos(∆ωt))e−2κt. (20)

Here, ∆ω =
√

(ωc − ωm) + 4g2 is the frequency differ-
ence between the two cavity magnon-polariton modes;

and κ = κc+κm

2 is the avarage damping rate of the whole
system. The coefficients A,B, C are expressed as A =
|α+β−|2

|α+β−−α−β+|2 ,B = |α−β+|2
|α+β−−α−β+|2 , C = |α+α−|2

|α+β−−α−β+|2 =

|β+β−|2
|α+β−−α−β+|2 .

Eq. (19) and (20) suggest that the Rabi-like oscilla-
tion of cavity photon numbers is caused by the interfer-
ence effect between the two dissipative magnon-polariton
modes. The oscillation frequency depends on the fre-
quency difference between these two modes, which is
at a minimum for the zero-detuned bias magnetic field
B = 281.25 mT. Due to the dissipation effect, the in-
jected microwave photons will gradually decay and the
whole system will reach thermal equilibrium. The os-
cillatory decay of 〈c†c〉 and 〈m†m〉 at zero detuning are
further plotted in Fig. 1(d), which shows the interconver-
sion between the average number of cavity photons and
magnons. The sharp dips suggest that nearly all the cav-
ity photons will be converted into magnons. It is noted
that the proportion of cavity photons participating in the
oscillation reaches a maximum when ωm = ωc, and it will
reduce with a strongly-detuned bias magnetic field. This
is characterized by the ratio 2C

A+B , which will be 100%
at the zero-detuned bias magnetic field and will become
smaller at larger-detuned bias magnetic field.

B. Second-order Quantum Coherence

The cavity photons (magnons) will be either “coher-
ent” or “incoherent” depending on whether their phases
are locked to give non-zero 〈c〉 (〈m〉) or not [9]. Al-
though the formation of cavity magnon-polaritons has
been confirmed by observing level repulsion and Rabi-
like oscillation in the microwave power spectrum, no
information about the coherent and incoherent compo-
nents of the cavity photons or magnons in these dy-
namical processes can be extracted by merely measur-
ing the first-order correlation function. Hence, we fur-
ther investigate the second-order quantum coherence of
the cavity photons and magnons, which are characterized

by the functions g
(2)
pho(0) = 〈c†c†cc〉/〈c†c〉2, g

(2)
mag(0) =

〈m†m†mm〉/〈m†m〉2. The g(2) function has been exten-
sively used to characterize the intensity correlation for
a quantum optical field [43–45]. In particular, a single-
mode thermal field will have g(2)(0) = 2 and an optical
field in the coherent state will have g(2)(0) = 1, even
though the two fields may have the same average num-
ber of photons. Furthermore, g(2)(0) can be less than
1 for non-classical light [43–45]. Measuring the second-
order quantum coherence could certainly provide indis-
pensable knowledge about the quantum dynamics in the
cavity magnon-polariton system.

Fig. 2(a) and (b) show the transient dynamics of

g
(2)
pho(0) and g

(2)
mag(0) after a pulse excitation as a func-

tion of the bias magnetic field B, which are calculated
from the quantum trajectory method with the same pa-
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FIG. 2. (Color online) The transient dynamics of the second-
order quantum coherence after an initial pulse excitation.

(a)(b) g
(2)
pho(0) and g

(2)
mag(0) as functions of the bias magnetic

field B, with 108 injected microwave photons and bath tem-

perature T = 300 K. (c)(d) The time-evolution of g
(2)
pho(0) and

g
(2)
mag(0) for different numbers of injected microwave photons,

with a zero-detuned bias magnetic field B = 281.25 mT and
bath temperature T = 300 K. (e)(f) The time-evolution of

g
(2)
pho(0) and g

(2)
mag(0) for different bath temperatures, with the

zero-detuned bias magnetic field B = 281.25 mT and 104 mi-
crowave photons injected. The other simulation parameters
are the same as in Fig. 1(c) and (d).

rameters in Fig. 1(c). Unlike the oscillations of 〈c†c〉 and
〈m†m〉, which reflect the exchange of energy between cav-

ity photons and magnons, the oscillations of g
(2)
pho(0) and

g
(2)
mag(0) indicate the periodic modulation of these two

bosonic fields between the coherent state and thermal
state. After the cavity photons are coherently excited
by the initial pulse, the coherent component between the
cavity photons and magnons will be interconverted due to
their strong coupling, as suggested by Eq. (19) and (20).
The oscillation in Fig. 2(a) and (b) is not obviously seen
in the beginning, where the coherent component is dom-
inant over the incoherent component, until it is reduced
by the dissipation effect of the thermal bath. Fig. 2(a)
further shows that the coherent component of the cav-
ity photons will be dominant for a longer time under a

more-detuned bias magnetic field, since only a small pro-
portion of it will be involved in the interconversion with
the magnons. Therefore, significant oscillation of second-
order quantum coherence will become obvious only if the
coherent component is comparable to the thermal coun-
terpart in the two bosonic fields.
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FIG. 3. (Color online) The second-order quantum coher-

ence in the continuous drive scenario. (a)(b) g
(2)
pho(0) and

g
(2)
mag(0) as functions of the driving strength for different driv-

ing frequencies, with a zero-detuned bias magnetic field B =

281.25 mT and bath temperature T = 300 K. (c)(d) g
(2)
pho(0)

and g
(2)
mag(0) as functions of the bath temperature for differ-

ent driving frequencies, with a zero-detuned bias magnetic
field B = 281.25 mT and driving strength Ω/2π = 108 Hz.
The other simulation parameters are the same as those in
Fig. 1(b).

The competition between coherent and incoherent
components in the transient dynamics of the cavity
magnon-polariton system is further investigated for the
zero-detuned bias magnetic field B = 281.25 mT. With
fixed bath temperature T = 300 K, Fig. 2(c) and (d)
show the periodic modulations of the cavity photons
and magnons between the coherent state and thermal
state after 108, 106, or 104 cavity photons are coher-
ently injected. The corresponding microwave power will
be −32.8,−52.8,−72.8 dBm for a rectangular pulse with
frequency ω0/2π = 7.875 GHz and duration 1 ns. Ini-
tially, the magnons are still in the thermal state with

g
(2)
mag(0) = 2, which causes a peak at t = 0 in Fig. 2(d).

The more microwave photons are injected, the longer the
time during which the coherent component can suppress
the incoherent component, as incidated by the larger
number of cycles with purely coherent states of the cavity
photons and magnons. On the other hand, the incoherent
component of the two bosonic fields can be tuned by the
thermal bath. With 104 injected photons, more cycles
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FIG. 4. (Color online) Second-order coherence function g
(2)
pho(0) and g

(2)
mag(0) as functions of bias magnetic field B and driving

frequency ω0 in the continuous drive scenario, with five different driving strengths. (a) Ω/2π = 107 Hz; (b) Ω/2π = 108 Hz; (c)
Ω/2π = 109 Hz; (d) Ω/2π = 1010 Hz; (e) Ω/2π = 2 × 1012 Hz. Here, the bath temperature is fixed as T = 300 K. The other
simulation parameters are the same as those in Fig. 1(b).
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FIG. 5. (Color online) Second-order coherence function g
(2)
pho(0) and g

(2)
mag(0) as functions of bias magnetic field B and driving

frequency ω0 in the continuous drive scenario, with five different bath temperatures. (a) T = 300 K; (b) T = 100 K; (c)
T = 50 K; (d) T = 10 K; (e) T = 1 K. Here, the driving strength is fixed as Ω/2π = 108 Hz. The other simulation parameters
are the same as those in Fig. 1(b).

with purely coherent photon and magnon states can be
recovered by decreasing the bath temperature from 300 K
to 1 K(see Fig. 2(e) and (f)). Furthermore, the maxima

of g
(2)
pho(0) and g

(2)
mag(0) have the same time offset as 〈c†c〉

and 〈m†m〉 in Fig. 1(d), since only the coherent compo-
nents of these two bosonic fields will participate in the in-
terconversion process. Our results thus demonstrate the
dynamical control of second-order quantum coherence in
the cavity magnon-polariton system by engineering the
microwave pulse or thermal bath.

The second-order quantum coherence in the continuous
drive scenario can also be tuned by the drive source and
thermal bath, as shown in Fig. 3 by numerically solving
Eq. (9) at the zero-detuned bias magnetic field. Gener-
ally, the two bosonic fields will transition from a ther-
mal state to a coherent state when the driving strength

is continuously increased and the coherent component
becomes dominant (see Fig. 3(a) and (b)). Moreover,
the critical driving strength for the transition is low-
est if the driving frequency is in resonance with either
the cavity magnon-polariton mode (7.865 or 7.885 GHz
here). For a given driving strength Ω/2π = 108 Hz,
Fig. 3(c) and (d) shows the transition from the coher-
ent state to the thermal state if the bath temprature is
increased and the incoherent component becomes domi-
nant. Once again, the second-order quantum coherence
is most robust against the thermal fluctuations when
either cavity magnon-polariton mode is resonantly ex-
cited. Furthermore, the behaviors of the cavity photons
and magnons are asymmetric if the driving frequency
ω0/2π = ωc/2π = ωm/2π = 7.875 GHz (see the dotted
lines in Fig. 3(a)-(d)).

The results in Fig. 3 can be explained by the analyt-
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ical expressions of the second-order quantum coherence,

where g
(2)
pho = (|α0|2+2n)2−2n2

(|α0|2+n)2 , g
(2)
mag = (|β0|2+2n)2−2n2

(|β0|2+n)2 .

Here, α0 and β0 are given by Eq. (14) and (15), and
one has nc = nm ≡ n at the zero-detuned bias magnetic
field. Therefore, when |α0|2 � n and |β0|2 � n for large
drive strength or low bath temperature, the second-order

quantum coherence functions g
(2)
pho(0) and g

(2)
mag(0) will be

nearly 1; in contrast, they will be nearly 2 if |α0|2 � n
and |β0|2 � n. While for given driving strength and
bath temperature, |α0| and |β0| will be largest when the
ω0 = ω+ or ω0 = ω−. Besides, when ω0 = ωm, the
ratio |α0|/|β0| = κm/g, which explains the asymmetric

behavior between g
(2)
pho(0) and g

(2)
mag(0).

We have also studied the dependence of second-order
quantum coherence on the bias magnetic field and driving
frequency with given driving strength or bath tempera-
ture, as shown in Fig. 4 and Fig. 5 respectively. When
the driving strength is weak, the incoherent components
of cavity photons and magnons will be dominant, and
these two bosonic fields are nearly in the thermal state

in the entire parameter space, where g
(2)
pho(0) ≈ 2 and

g
(2)
mag(0) ≈ 2 (see Fig. 4(a)). With larger driving strength,

the coherent components of cavity photons and magnons
will be enhanced, especially when the driving frequency is
resonant with the cavity magnon-polariton modes. One
can see that the level repulsion will also appear in the
second-order quantum coherence (see Fig. 4(b)). When
the driving strength is further increased, the coherent
components will be dominant in more parameter space,
as shown in Fig. 4(c). Finally, the level repulsion will van-
ish again when the drive strengh is very strong, since the
cavity photons and magnons will be nearly in the coher-

ent state in most parameter space, where g
(2)
pho(0) ≈ 1 and

g
(2)
mag(0) ≈ 1 (see Fig. 4(d)(f)). On the other hand, the

feature of level repulsion will also be drastically modified
when the bath temperature is continuously decreased (see
Fig. 5). As the incoherent components of cavity photons
and magnons are suppressed at lower bath temperature,
these two bosonic fields will get closer to the coherent
state. Therefore, the evolutions of level repulsion in the
second-order quantum coherence have directly reflect the
competition between the coherent and incoherent compo-
nents in these two bosonic fields.

C. Experimental Proposal

Second-order quantum coherence is usually measured
in the spirit of the Hanbury Brown-Twiss experimental
setup [42]. For an optical field, this can be performed
with single-photon detectors. However, the detection of
a single microwave photon is challenging, since the en-
ergy of a microwave photon is about four or five orders
of magnitude lower than that of an optical photon. In-
stead, experimental techniques with linear detectors [72]
have been developed to measure the second-order coher-

ence function of a microwave field in circuit QED systems
[47–53], as schematically shown in Fig. 6. Here, a 90◦ hy-
brid coupler is used as a beam splitter to separate the mi-
crowave field b emitted from the cavity into two modes c
and d, which will be amplified afterwards. Then IQ mix-
ers will be used to perform the quadrature measurement
on c and d modes, which gives the complex envelopes
Sc(t) and Sd(t). The correlation functions can be calcu-
lated from the measured Sc(t) and Sd(t)[72]. In the past,
this technique has been successfully applied to obtained
the second-order correlation functions of microwave field
in circuit QED systems[47–53]. We anticipate that the
same experimental techniques can be exploited to inves-
tigate higher-order quantum correlation effects in cavity
magnon-polariton systems.

FIG. 6. (Color online) A schematic diagram of the experi-
mental setup to measure second-order quantum coherence of
microwave field. Here, the microwave field b emitted from the
cavity is splitted into c and d by a 90◦ hybrid coupler. The
two output modes c and d will be amplified first, and then IQ
mixers are used to perform the quadrature measurement on c
and d. This will give the complex envelopes Sc(t) and Sd(t),
which can be used to extract the correlation functions of the
microwave field[72].

IV. CONCLUSION

In conclusion, the driven-dissipative dynamics in a cav-
ity magnon-polariton system has been theoretically stud-
ied in a full quantum level. The Fokker-Planck equa-
tion, stochastic differential equations, and a group of hi-
erarchical equations have been established to give the
arbitrary-order correlation functions of cavity photons
and magnons. The theoretical approach has successfully
reproduced the remarkable phenomena of level repul-
sion and Rabi-like oscillation observed in the microwave
power spectrum. Furthermore, the second-order coher-
ence functions of cavity photons and magnons have been
thoroughly investigated for two typical experimental sce-
narios. The results reveal the competition between the
coherent and incoherent components in these two bosonic
fields, which can be systematically tuned by engineering
the external drive source and the thermal bath. There-
fore, measuring second-order quantum coherence with
currently available experimental techniques could pro-
vide another window to observe the rich dynamics in
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this hybrid quantum system. It would also be interesting
to search for nonclassical states for cavity photons and
magnons by extending the current work to the dissipative
coupling, ultrastrong coupling, or nonlinearly interacting
cases, which are of fundamental and practical importance
for quantum cavity magnonics.
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Appendix A: Quantum Master Equation

In this section, we derive the quantum master equation
for the reduced density matrix of the cavity magnon-
polariton system. The dissipation of the cavity photons
and magnons will arise when they are coupled to the
thermal bath. We write the Hamiltonan for the whole
system as

H = H +HB + V, (A1)

where

H = ~ωcc†c+ ~ωmm†m+ ~gc†m+ ~gm†c
+i~Ω(c†e−iω0t − ceiω0t),

HB =
∑
i

~ωia†iai +
∑
j

~ωjb†jbj ,

V =
∑
i

gc,i(c
†ai + a†i c) +

∑
j

gm,j(m
†bj + b†jm).

Here, H describes the cavity magnon-polariton system
under consideration; HB describes the thermal bath for
cavity photons and magnons respectively, which consists
of an infinite set of harmonic oscillators with frequencies
{ωa,i} and {ωb,j}; and V describes the coupling interac-
tion between the system and the thermal bath. The total
density matrix ρT for the whole system will satisfy the
Liouville-von Neumann equation

dρT (t)

dt
=

1

i~
[H(t), ρT (t)]

=
1

i~
[H(t), ρT (0)] + (

1

i~
)2
∫ t

0

[H(t), [H(τ), ρT (τ)]dτ.

(A2)

In the interaction picture, Eq. (A2) will become

dρintT (t)

dt
=

1

i~
[V(t), ρintT (0)]

+(
1

i~
)2
∫ t

0

[V(t), [V(τ), ρintT (τ)]dτ.

(A3)

Here, we have denoted ρintT (t) = U†(t, 0)ρT (t)U(t, 0) and
V(t) = U†(t, 0)V (t)U(t, 0) using the unitary evolution
operator U(t, 0) = US(t, 0)UB(t, 0), where US(t, 0) =

e
1
i~

∫ t
0
H(τ)dτ , UB(t, 0) = e

1
i~

∫ t
0
HB(τ)dτ .

The reduced density matrix ρint for the cavity magnon-
polariton system can be obtained by tracing over the
degree of freedom of the thermal bath, namely, ρint =
TrB [ρintT ]. Therefore, the quantum master equation for
ρint can be obtained from Eq. (A3) as

dρint

dt
=

1

i~
TrB [V(t), ρintT (0)]

+ (
1

i~
)2TrB

∫ t

0

[V(t), [V(τ), ρintT (τ)]dτ. (A4)

With the Born approximation ρT (t) = ρ(t) ⊗ ρB(0),
the first term in the r.h.s. of Eq. (A4) will be

TrB [V(t), ρintT (0)]

= TrB(U†SU
†
BV (t)ρT (0)USUB − U†SU

†
BρT (0)V (t)USUB)

=
∑
i

gc,i(U
†
Sc
†ρUSTrB [aiρB ] + U†ScρUSTrB [a†iρB ]

−U†Sρc
†USTrB [ρBai]− U†SρcUSTrB [ρBa

†
i ])

+
∑
j

gm,j(U
†
Sm
†ρUSTrB [bjρB ] + U†SmρUSTrB [b†jρB ]

−U†Sρm
†USTrB [ρBbj ]− U†SρmUSTrB [ρBb

†
j ]). (A5)

This term will vanish because one has TrB [aiρB ] =

TrB [a†iρB ] = TrB [bjρB ] = TrB [b†jρB ] = 0 for the ther-
mal bath.

For the parameter range we will study here, the cou-
pling term and drive term in H will be much smaller than
the terms of cavity photons and magnons. Therefore, the
time-evolution operator can be further approximated as

US(t, 0) ≈ e−iωcc
†cte−iωmm

†mt. Then the second term in
the r.h.s of Eq. (A4) will describe the damping of the
cavity photons and magnons due to the thermal bath
individually, which will give [43]

dρint

dt

= −κcnc(cc†ρint − 2c†ρintc+ ρintcc†)

−κc(nc + 1)(c†cρint − 2cρintc† + ρintc†c)

−κmnm(mm†ρint − 2m†ρintm+ ρintmm†)

−κm(nm + 1)(m†mρint − 2mρintm† + ρintm†m).

(A6)

Here, κc (κm) is the damping rate for cavity photons
(magnons), and nc(nm) is the average number of the
quanta at frequency ωc(ωm) in the thermal bath[43].
Transforming the result above back to the Schrödinger
picture, we get the Lindblad form of the quantum mas-
ter equation (2) in the body text.
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Appendix B: Fokker-Planck Equation

In this section, we describe how to get the Fokker-
Planck equation from the quantum master equation. In
the coherent state representation for cavity photons and
magnons |α, β〉, the reduced density matrix ρ can be

expressed in terms of the quasi-probability distribution
function P(α, β) as[43]

ρ =

∫
d2αd2βP(α, β)|α, β〉〈α, β|. (B1)

Substituting the expression (B1) into the left and right
sides of Eq. (2), we will have

∫
d2αd2β

∂P
∂t
|α, β〉〈α, β|

=

∫
d2αd2βP{−iωc(c†c|α, β〉〈α, β| − |α, β〉〈α, β|c†c)− iωm(m†m|α, β〉〈α, β| − |α, β〉〈α, β|m†m)

−g
(
c†m|α, β〉〈α, β| − |α, β〉〈α, β|c†m

)
− g

(
m†c|α, β〉〈α, β| − |α, β〉〈α, β|m†c

)
+Ω(c†e−iω0t|α, β〉〈α, β| − ceiω0t|α, β〉〈α, β| − |α, β〉〈α, β|c†e−iω0t + |α, β〉〈α, β|ceiω0t)

−κc(1 + nc)(c
†c|α, β〉〈α, β| − 2c|α, β〉〈α, β|c† + |α, β〉〈α, β|c†c)

−κcnc(|α, β〉〈α, β|cc† − 2c†|α, β〉〈α, β|c+ cc†|α, β〉〈α, β|)
−κm(1 + nm)(m†m|α, β〉〈α, β| − 2m|α, β〉〈α, β|m† + |α, β〉〈α, β|m†m)

−κmnm(|α, β〉〈α, β|mm† − 2m†|α, β〉〈α, β|m+mm†|α, β〉〈α, β|)}. (B2)

Using the following rules for the operators c, c†,m,m† acting on the coherent state |α, β〉[43]

c|α, β〉〈α, β| = α|α, β〉〈α, β|, |α, β〉〈α, β|c† = |α, β〉〈α, β|α∗,
m|α, β〉〈α, β| = β|α, β〉〈α, β|, |α, β〉〈α, β|m† = |α, β〉〈α, β|β∗,

c†|α, β〉〈α, β| = (
∂

∂α
+ α∗)|α, β〉〈α, β|, |α, β〉〈α, β|c = (

∂

∂α∗
+ α)|α, β〉〈α, β|,

m†|α, β〉〈α, β| = (
∂

∂β
+ β∗)|α, β〉〈α, β|, |α, β〉〈α, β|m = (

∂

∂β∗
+ β)|α, β〉〈α, β|,

we will get the Fokker-Planck equation (3) for P in the body text.
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Kläui, and M. Weides, Phys. Rev. B 97, 184420 (2018).
[17] J. Xu, C. Zhong, X. Han, D. Jin, L. Jiang, and X. Zhang,

Phys. Rev. Lett. 125, 237201 (2020).
[18] Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu,

and J. Q. You, Phys. Rev. Lett. 120, 057202 (2018).
[19] P. Hyde, B. M. Yao, Y. S. Gui, G.-Q. Zhang, J. Q. You,

and C.-M. Hu, Phys. Rev. B 98, 174423 (2018).
[20] M. Harder, Y. Yang, B. M. Yao, C. H. Yu, J. W. Rao,

Y. S. Gui, R. L. Stamps, and C.-M. Hu, Phys. Rev. Lett.
121, 137203 (2018).

[21] V. L. Grigoryan, K. Shen, and K. Xia, Phys. Rev. B 98,
024406 (2018).

[22] W. Yu, J. Wang , H. Y. Yuan, and J. Xiao, Phys. Rev.
Lett. 123, 227201 (2019).

[23] D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F. Li, and J.Q.
You, Nat. Commun. 8, 1368 (2018).

[24] Y. Cao and P. Yan, Phys. Rev. B 99, 214415 (2019).
[25] X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang,

and H. X. Tang, Nat. Commun. 6, 8914 (2015).
[26] J.W. Rao, S. Kaur, B.M. Yao, E.R.J. Edwards, Y.T.

Zhao, X. Fan, D. Xue, T.J. Silva, Y.S. Gui, and C.-M.
Hu, Nat. Commun. 10, 2934 (2019).

[27] L. Bai, M. Harder, P. Hyde, Z. Zhang, C.-M. Hu, Y.
P. Chen, and J. Q. Xiao, Phys. Rev. Lett. 118, 217201
(2017).

[28] Z.-X. Liu, H. Xiong, and Y. Wu, Phys. Rev. B 100,
134421 (2019).

[29] J. -K. Xie, S.-L. Ma, and F.-L. Li, Phys. Rev. A 101,
042331 (2020).

[30] J. Li, S.-Y. Zhu, and G. S. Agarwal, Phys. Rev. Lett.
121, 203601 (2018).

[31] M. Yu, H. Shen, and J. Li, Phys. Rev. Lett. 124, 213604
(2020).

[32] H. Y. Yuan , P. Yan, S. Zheng, Q. Y. He, K. Xia, and
M.-H. Yung, Phys. Rev. Lett. 124, 053602 (2020).

[33] H. Y. Yuan , S. Zheng, Z. Ficek, Q. Y. He, and M.-H.
Yung, Phys. Rev. B 101, 014419 (2020).

[34] D.-W. Luo, X.-F. Qian, and T. Yu, Opt. Lett. 46, 1073
(2021).

[35] S. Sharma, V. A. S. V. Bittencourt, A. D. Karenowska,
and S. V. Kusminskiy, Phys. Rev. B 103, L100403
(2021).

[36] F.-X. Sun, S.-S. Zheng, Y. Xiao, Q. Gong, Q. He, and K.
Xia, Phys. Rev. Lett. 127, 087203 (2021).

[37] C. Braggio, G. Carugno, M. Guarise, A. Ortolan, and G.
Ruoso, Phys. Rev. Lett. 118, 107205 (2017).

[38] T. Wolz, A. Stehli, A. Schneider, I. Boventer, R. Macêdo,
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