
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Confined magnons
Seamus Beairsto, Maximilien Cazayous, Randy S. Fishman, and Rogério de Sousa

Phys. Rev. B 104, 134415 — Published 18 October 2021
DOI: 10.1103/PhysRevB.104.134415

https://dx.doi.org/10.1103/PhysRevB.104.134415


Confined Magnons

Seamus Beairsto,1, 2 Maximilien Cazayous,3 Randy S. Fishman,4 and Rogério de Sousa1, 2
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Magnetic structures are known to possess magnon excitations confined to their surfaces and in-
terfaces, but these spatially localized modes are often not resolved in spectroscopy experiments.
We develop a theory to calculate the confined magnon spectra and its associated spin scattering
function, which is the physical observable in neutron and electron scattering, and a proxy for pho-
ton spectroscopy based on X-ray, Raman and THz sources. We show that extra anisotropy at the
surface or interface plays a key role in magnon confinement. We obtain analytical expressions for
the confinement length scale, and show that it is qualitatively similar for ferromagnets and antifer-
romagnets in dimension d ≥ 2. For d = 1 we find remarkable differences between ferromagnetic and
antiferromagnetic models. The theory indicates the presence of several confined magnon resonances
in addition to the usual magnons thought to explain the excitations of magnetic nanostructures.
Detecting these modes may elucidate the impact of the interface on spin anisotropy and magnetic
order.

I. INTRODUCTION

The excitations of the magnetic state of large (bulk)
magnets are well understood to be collective delocal-
ized spin waves, whose quanta are called magnons.
These modes are described by continuous dispersion
relations that depend on the nature of the magnetic
state, i.e. whether the material is a ferromagnet or
antiferromagnet.1,2

In small systems such as e.g. molecular magnets with
N ∼ 10 spins, the magnon approach breaks down.3,4 This
raises the question whether magnons in larger “meso-
scopic” systems such as magnetic nanoparticles and few-
monolayer thin films can be fully described with the
magnon picture. Comparison between theory and ex-
periment in magnetic structures such as nanoparticles5–7

is quite difficult due to a variety of finite size effects in-
cluding large surface to volume ratio, lower symmetry,
and size/shape distribution.8,9 As a result, there is a no-
table gap in our understanding of magnetic excitations in
nanostructures and related confined magnetic systems.

The breakdown of space translational symmetry in fi-
nite magnets produces localized excitations concentrated
at the borders of the system, the so called magnon con-
finement phenomena.10–14 Confined magnons were tra-
ditionally described using macroscopic theory involv-
ing simultaneous solution of the Landau-Lifshitz and
Maxwell’s equations in the magnetostatic limit.11,12,15,16

This approach involves approximations that are known
to become invalid in the large energy and wavevec-
tor regime, when the magnon dispersion is domi-
nated by magnetocrystalline anisotropy and exchange
interactions.17 Moreover, the macroscopic treatment be-
comes questionable in the presence of discontinuities in
spin Hamiltonian parameters, e.g. when there is extra
magnetocrystalline anisotropy at the surface or interface.

This case is of importance to e.g. the research area
of magnonics, where one uses few monolayer nanostruc-
tures to engineer the desired magnon spectra.1,18 While
confined magnons are frequently observed in large ferro-
magnets with Brillouin spectroscopy,11,12 and in ultra-
thin films with spin-polarized electron energy loss spec-
troscopy (SPEELS),19–22 they are frequently ignored in a
wide variety of systems, most notably antiferromagnets.
To the best of our knowledge, there are no measurements
of confined magnons in antiferromagnets.

Here we formulate a theory of confined magnons and
their spectroscopy. We present exact analytical results
for infinite systems with borders to establish the condi-
tions for existence of confined magnons in simple ferro-
magnetic and antiferromagnetic models, and then move
on to present a general theory that allows the deter-
mination of the confined and deconfined spectrum for
all finite models. Our method allows explicit numerical
computations of the spin scattering function (also called
Bloch spectral function), which is directly measurable in
spin-polarized neutron23 and electron24 scattering exper-
iments, and is a proxy for photon spectroscopy based on
THz,23 Raman,9,25 and X-rays.26,27

A key result of our theory is the realization that extra
magnetocrystalline anisotropy at the surface or interface
plays a crucial role in magnon confinement.

As pointed out by Néel,28 magnetocrystalline
anisotropy for an ion at the surface is different from
an ion in the bulk because the former has lower point
group symmetry. This effect is specially important in
materials with low magnetocrystalline anisotropy in
bulk, such as ferromagnetic iron (Fe). While the bulk
anisotropy in Fe is quite low (2.1×10−3 meV per spin),29

measurements of the magnon dispersion for a single
Fe monolayer on W(110) have determined interface
anisotropy per spin to be equal to Ks = 2.3±1.3 meV,19
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FIG. 1. Depicts the top two monolayers of the bcc(110) sur-
face, normal to n̂ = (1, 1, 0)/

√
2. Unit vector ẑ′ represents

the easy axis direction for magnetocrystalline anisotropy. For
Fe(110) this is given by ẑ′ = (1,−1, 0)/

√
2. Unit vectors

x̂, ŷ, ẑ represent the usual cubic axes, and a′ is the separa-
tion between monolayers.

103 times larger than the bulk value. However, we
are not aware of measurements of surface/interface
anisotropy for antiferromagnets. Recently, the presence
of extra magnetic anisotropy in the surface of multifer-
roic nanoparticles was shown to have huge impact on its
antiferromagnetic-ferroelectric state. The nanoparticle
magnetic and ferroelectric moments become bistable,
enabling the design of ideal memory bits that can be
switched electrically and read out magnetically.30 While
surface anisotropy has been measured in ferromagnets
with scanning tunneling microscopy31 and Brillouin
spectroscopy,11 its impact on the magnetic excitations
of antiferromagnets has not been studied to date. It
is desirable to identify the spectroscopic signature
of surface/interface anisotropy so that the impact of
surrounding materials on the magnetic properties of
nanostructures can be understood.

We organize the article as follows. Section II
presents exact analytic theory for confined and prop-
agating magnons at the surface or interface of semi-
infinite systems with simple model Hamiltonians. We es-
tablish the conditions for existence of spatially-localized
modes and show that surface/interface anisotropy plays
a key role in determining their confinement length scale.
We also give estimates for a few common materials. Sec-
tion III presents a general theory applicable to arbi-
trary models that allows numerical determination of the
confined spectra and its associated spin-scattering func-
tion. We present explicit numerical calculations for one-
dimensional ferro and antiferro systems, allowing visual-
ization of the confined and deconfined spectra, and we
compare to analytic theory. Section V presents our con-
clusions.

II. CONFINED MAGNONS AT THE
SURFACE/INTERFACE OF SEMI-INFINITE

SYSTEMS

We focus on the model Hamiltonian

H =
J

2

∑
j

∑
vj

sj · sj+vj −
∑
j

Kj(sj · ẑ′)2, (1)

where J is the exchange interaction between nearest-
neighbor (n.n.) spins, and sj denotes a spin operator
in site j of a semi-infinite lattice where half the space
is empty or filled with a nonmagnetic material (i.e. the
system has a surface in the former case and an interface
in the latter). For compact notation we label each lattice
site by j = (j1, j2, j3). This corresponds to location rj =∑
i jiai in the lattice (e.g. a1 = ax̂,a2 = aŷ,a3 = aẑ for

the simple cubic lattice). For each j, the set of vectors
{vj} link the j-th spin to its n.n. spins; this set depends
on j because spins located at the surface or interface have
a reduced number of n.ns.

Model parameter Kj describes the magnetic
anisotropy with easy axis along unit vector ẑ′. In
this work we take each Kj to assume one of two possible
values. We asssume Kj = Ks for j ∈ In, where In
denotes an interface or surface normal to unit vector n̂.
For the other spins j 6∈ In we assume Kj = K. Note
that n̂ may not coincide with the easy axis direction
ẑ′. However, we assume the easy axis for spins at the
surface/interface to be the same as the easy axis for
spins in the bulk. Figure 1 illustrates the case of Fe(110).

In this way ∆Ks ≡ (Ks −K) models the impact of a
nonmagnetic interface. We emphasize that |∆Ks/J | can
be quite large even for a surface, which corresponds to an
interface between vacuum and the magnetic system.31

We remark that Hamiltonian (1) does not include long
range dipolar interactions. This is not a problem for an-
tiferromagnets since dipolar interactions can be suitably
included as an additional contribution to bulk anisotropy
K, of the order of Kd = µ0 (gµB)

2
/v0 ∼ 0.1 meV, where

v0 is the unit cell volume and µB is the Bohr magneton.32

For ferromagnets, dipolar interactions become impor-
tant at the low energy and small wavevector regime.
Therefore, keep in mind that Hamiltonian (1) provides
a proper description of FMs only when either K & Kd

(lowest magnon has energy larger than dipolar), or qa >√
Kd/(z|J |) ∼ 0.01π (magnon dispersion dominated

by exchange).17 We remark that previous macroscopic
theories11,12,15,16 are not valid in this regime. The regime
of our theory allows the description of a large num-
ber of spectroscopy experiments, including electron,19

neutron,33 and X-ray27 scattering, as well as optical spec-
troscopy based on Raman technique9 and THz sources.23

In this section, we obtain magnon modes using the
method of the classical equations of motion.34 This is
done by defining a mean-field Hamiltonian HMF which
replaces sj in Eq. (1) by its average 〈sj〉, leading to the
system of N coupled equations of motion, one equation
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FIG. 2. The red (solid) and blue (solid, dashed) curves de-
pict the lowest magnon modes using the analytical dispersions
Eqs. (12) and (14) for the (110) interface of the bcc lattice,
as a function of q‖ = qzẑ. The choice of parameters describe

the Fe/W(110) interface: Ks = 2.3 meV,19 J = 20 meV,33

and K = 2.1 × 10−3 meV.29 The stars and circles were ob-
tained by exact diagonalization of Eqs. (6) for 21 monolayers.
These are seen to agree perfectly with the analytical disper-
sions for the confined magnon (red-solid, Eq. (12)) and bulk
magnon (blue-solid and dashed, Eq. (14)). This shows that
the exponential trial Eq. (8) for the confined magnon is ex-
act. Note how the confined magnon only exists in the range
0.30π < qza < 1.7π; outside this range its frequency merges
with the bulk modes and the inverse length scale κ⊥ becomes
negative, signaling the nonexistence of confined modes. For
comparison the black-dotted curve shows the dispersion of a
single Fe(110) monolayer with the same parameters.

for each j:

∂〈sj〉
∂t

=
1

~
∂HMF

∂〈sj〉
× 〈sj〉, (2)

where each spin precesses about its own local field given
by

∂HMF

∂〈sj〉
= J

∑
vj

〈sj+vj
〉 − 2Kj〈szj 〉ẑ′. (3)

The magnon frequencies in the classical method are iden-
tical to the ones obtained by the quantum Holstein-
Primmakoff method that we describe below for evalu-
ation of the spin scattering function, within the approxi-
mation of negligible magnon-magnon interactions. How-
ever, as we show here the classical method leads to exact
analytical solutions for confined and propagating magnon
modes in the presence of an interface.

A. Ferromagnetic models

For J = −|J | < 0 and K ≥ 0 the ground state
of Eq. (1) is a homogeneous ferromagnet (FM) with
〈sj〉 = Sẑ′ for all j, where S is the spin quantum number.
This is the case provided that the interface anisotropy
is not too negative, ∆Ks ≡ Ks − K ≥ ∆Kc where
∆Kc < 0 is a critical value to be determined below.
When ∆Ks < ∆Kc a spin-flip transition occurs leading
to interface spins pointing in a different direction than
bulk spins.35

The magnon modes are obtained by plugging 〈sj(t)〉 =
Sẑ′+δsje

−iωt into Eq. (2) with δsj ⊥ ẑ′. After lineariza-
tion and changing variables to δs+

j = (x̂′+iŷ′)·δsj , where

x̂′, ŷ′ forms a set of axes perpendicular to ẑ′ we get[
ω̃ − zj −

2Kj

|J |

]
δs+
j +

∑
vj

δs+
j+vj

= 0, (4)

where w̃ = ~ω/(|J |S), and zj =
∑

vj
(1) is the number of

n.ns. for spin j.
For simplicity we specialize to the case where In cor-

responds to a plane of inversion symmetry of the lattice,
so that for j ∈ In the the set of missing vj ’s is equal
to {−vj}. This case includes all high symmetry planes
of the sc (simple cubic), bcc (body-centered cubic), and
fcc (face-centered cubic) lattices. In all these lattices we
can choose primitive vectors a1,a2 in the plane so that it
is convenient to define mixed coordinates by taking the
Fourier transform over the spins in the planes parallel
to In,

δs+
q‖,j3

=
1√
N‖

∑
j1,j2

eiq‖·rjδs+
j , (5)

where q‖ is a real vector perpendicular to n̂, and j3 =
0, 1, . . . labels the number of monolayers away from the
interface. Equation (4) becomes{

ω̃ − z⊥ − z‖
[
1− γ‖(q‖)

]
− 2K

|J |

−
(

2∆Ks

|J |
− z⊥

2

)
δj3,0

}
δs+

q‖,j3

+
z⊥
2
γ⊥(q‖)

[
(1− δj3,0) δs+

q‖,j3−1 + δs+
q‖,j3+1

]
= 0. (6)

These equations are obtained by separating n.n. vec-
tors into two disjoint sets, {vj} = {vj‖} ∪ {vj⊥}, where
vj‖ · n̂ = 0 and vj⊥ · n̂ 6= 0. As a result we can write
zj3 = z‖ + (2 − δj3,0)z⊥/2, where z‖ =

∑
vj3‖

(1), and

z⊥ =
∑

vj3⊥
(1) are defined for j3 > 0 (outside In). This

separation naturally leads to two kinds of dispersion func-
tions,

γ‖(q‖) =
1

z‖

∑
vj‖

eiq‖·vj‖ , γ⊥(q‖) =
1

z⊥

∑
vj⊥

eiq‖·vj⊥ , (7)

again defined for j 6∈ In (See Table I).
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We now search for confined magnons in Eqs. (6) by
plugging the pure confined magnon trial solution

δs+
q‖,j3

= e(iQ⊥−κ⊥)a′j3δs+
q‖
, (8)

where Q⊥ and κ⊥ are real, a′ is the separation between
two monolayers along n̂, and δs+

q‖
is an arbitrary ampli-

tude. Note that in Eq. (8) κ⊥ plays the role of an inverse
length scale for confinement. We must have κ⊥ ≥ 0,
otherwise the modulus of Eq. (8) blows up at large j3.

The trial solution reduces the system of Eqs. (6) to
only two equations, one for j3 = 0 (j ∈ In) and another
for j3 6= 0:

ω̃ =
2Ks

|J |
+ z‖

[
1− γ‖(q‖)

]
+
z⊥
2

[
1− γ⊥(q‖)

× eiQ⊥a
′
e−κ⊥a

′
]
, (9a)

ω̃ =
2K

|J |
+ z‖

[
1− γ‖(q‖)

]
+ z⊥

[
1−

γ⊥(q‖)

2

×
(
eiQ⊥a

′
e−κ⊥a

′
+ e−iQ⊥a

′
eκ⊥a

′
)]
. (9b)

Subtracting Eq. (9b) from Eq. (9a) and simplifying we
get

κ⊥a
′ = ln

[
eiQ⊥a

′

γ⊥(q‖)

(
1− 4(∆Ks)

z⊥|J |

)]
. (10)

Confined magnons exist when Eq. (10) admits solutions
with κ⊥ > 0 (localized in space) and ω̃ ≥ 0 (no spin-flip
instability). For q‖ = 0, γ⊥ = 1. Hence, the modulus
of the argument of the ln is less than 1 whenever 0 ≤
∆Ks/|J | ≤ z⊥/2. In this case κ⊥ is necessarily negative,
so no confined magnon with q‖ = 0 exists for ∆Ks in
this range.

However, for nonzero wavevectors in the range 0 <
qc1 < q‖ < qc2, γ⊥(q‖) < 1 becomes small enough so
that the modulus of the argument of the ln is greater
than 1 for any value of ∆Ks. This shows that confined
magnons may exist at nonzero wavevectors, even when
0 ≤ ∆Ks/|J | ≤ z⊥/2.

In contrast, for ∆Ks/|J | > z⊥/2 the choice Q⊥a
′ = π

makes κ⊥ and ω̃ always positive, so a confined magnon
solution exists for all q‖, including q‖ = 0. Also, when
∆Ks < 0 we can make κ⊥ > 0 by choosing Q⊥ = 0, but
here ω̃ can become negative if ∆Ks is too negative, so the
confined magnon will exist in the range ∆Kc ≤ ∆Ks < 0
for all q‖.

When it exists the confined magnon has inverse length
scale given by

κ⊥ =
1

a′
ln

∣∣∣∣ 1

γ⊥(q‖)

[
1− 4(∆Ks)

z⊥|J |

]∣∣∣∣, (11)

and plugging this into Eq. (9b) we get the confined

magnon frequency:

~ωFMcm (q‖)

|J |S
=

2K

|J |
+ z‖

[
1− γ‖(q‖)

]
+
z⊥
2


1−

(
4∆Ks

z⊥|J|

)2

−
[
γ⊥(q‖)

]2
1− 4∆Ks

z⊥|J|

 .(12)

We emphasize that no approximation was used to obtain
this expression; it followed from the trial solution Eq. (8).

In addition to confined modes, Eq. (6) also contains
solutions for propagating modes. These can be obtained
by plugging the pure bulk magnon trial solution

δs+
q‖,j3

= sin (Q⊥a
′j3 + φ)δs+

q‖
, (13)

with φ ∈ [0, π) a phase shift. This trial again reduces the
system Eq. (6) to only two equations; the one for j3 ≥
1 is the usual dispersion for a FM with full translation
invariance,36

~ωFMbulk(q)

|J |S
=

2K

|J |
+ z [1− γ(q)] , (14)

where z = z‖ + z⊥ is the number of n.ns. and γ(q) =
1
z

∑
v e

iq·v is the bulk dispersion function. The equation
for j3 = 0 determines the phase shift,

cot (φ) = −
1− 4(∆Ks)

z⊥|J| − γ⊥(q‖) cos (Q⊥a
′)

γ⊥(q‖) sin (Q⊥a′)
. (15)

Once again, these solutions are exact.

Rearrange Eq. (15) to get

sin (φ−Q⊥a′)
sin (φ)

=
1

γ⊥(q‖)

[
1− 4(∆Ks)

z⊥|J |

]
. (16)

When Q⊥ = 0 (π), the LHS equals +1 (−1) for all φ;
hence, when the confined mode exists (argument of ln
greater than 1 in Eq. (27)), a solution for φ can not be
found.

The confined magnon frequency Eq. (12) must be pos-
itive for the homogeneous FM state to be stable; the
criteria can be found by setting q‖ = 0 and ωFMcm = 0 in
Eq. (12) and solving for ∆Ks:

∆Ks ≥ ∆Kc = −K
2

(
1 +

√
1 +

z⊥|J |
K

)
. (17)

For ∆Ks < ∆Kc interface spins point in a different
direction than interior spins. The spin order becomes
noncollinear;35 confined magnons will be present but
their frequency is no longer described by Eq. (12).
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TABLE I. Parameters used to describe cubic lattices with high-symmetry interfaces In. Note that a spin j ∈ In has zj =
z‖ + z⊥/2 n.n., while a spin j 6∈ In has zj = z‖ + z⊥. Parameter a′ is the separation between monolayers.

Lattice(n̂) z‖ z⊥ a′ γ‖(q‖) γ⊥(q‖)

sc(001) 4 2 a 1
2

[cos (qxa) + cos (qya)] 1

bcc(001) 0 8 a/2 0 cos
(
qx

a
2

)
cos

(
qy

a
2

)
bcc(110) 4 4 a/

√
2 cos

[
(qx − qy) a

2

]
cos

(
qz

a
2

)
cos

(
qz

a
2

)
fcc(001) 4 8 a/2 cos

(
qx

a
2

)
cos

(
qy

a
2

)
1
2

[
cos

(
qx

a
2

)
+ cos

(
qy

a
2

)]
sq(01) 2 2 a cos (qxa) 1

chain(edge) 0 2 a 0 1

TABLE II. Predicted values for the lowest (q = 0) bulk and confined magnon energies for {100} interfaces and q‖ = 0, for

antiferromagnets MnF2 and FeF2
32, and for BiFeO3 nanoparticles assuming homogeneous AFM order.9,37,38 In the absence of

measurements of Ks we chose Ks = K − εJ with εJ � 1.

Latt. S J (meV) K (meV) ~ωAFM
bulk (meV) ~ωAFM

cm (meV)

MnF2 bcc 5/2 0.30 0.0184 1.06 0.092

FeF2 bcc 2 0.45 0.623 6.49 2.49

BiFeO3 sc 5/2 6.48 0.0035 1.85 1.51

Figure 2 presents a comparison between the analytic
results of Eqs. (12) and (14) and exact numerical di-
agonalization of Eqs. (6) for N⊥ = 21 monolayers. It
shows that the trial solution Eq. (8) used to obtain
Eq. (12) provides the exact solution for the confined
magnon in a semi-infinite system. The calculation is
done for the Fe/W(110) interface, assuming easy axis

ẑ′ = (1,−1, 0)/
√

2 as shown in Fig. 1 and the value
Ks = 2.3 meV measured with SPEELS,19 J = 20 meV
from neutron scattering,33 and K = 0 due to the symme-
try of Fe’s bcc lattice (in bulk Fe the anisotropy is quartic
in the spin operators). For each q‖ = (0, 0, qz), the circles
and stars show the two lowest frequency magnons ob-
tained by exact diagonalization. These are seen to agree
with the analytic expressions for the confined magnon
Eq. (12) and for the usual bulk mode in three dimensions
Eq. (14). Notably, the confined magnon only exists in
the range 0.30π < qza < 1.7π, when κ⊥ > 0 (red curve).
The confined mode ceases to exist when its frequency be-
comes greater than either the lowest bulk mode, set by
ω̃bulk(0, 0, qz) or ω̃bulk(π, π, qz) = 2K/|J |+ z.

For comparison we also present the d = 2 (110) mono-
layer dispersion,

~ωFM2d (q‖)

|J |S
=

2Ks

|J |
+ z‖

[
1− γ‖(q‖)

]
, (18)

assuming the same Ks, J as in the d = 3 case above. Note
how the confined magnon dispersion lies in-between the
bulk and monolayer dispersions. Figure 2 is in quali-
tative agreement with Fig. 3 of Ref. 19 which claimed
measurements for the Fe(110)/vaccum confined magnon

FIG. 3. Dispersion for ferromagnetic confined magnons
[Eq. (12)] for the family of {100} interfaces of three differ-
ent cubic lattices (face-centered, body-centered, simple cu-
bic), and q‖ = (qx, 0). (a) K/|J | = 0.2 and ∆Ks/|J | = −0.28;
(b) K/|J | = 0.2 and ∆Ks/|J | = 4.1.

(24 monolayer sample) together with a single monolayer
of Fe/W(110).

Figure 3 shows the confined magnon dispersion
Eq. (12) for the family of {100} interfaces in the three
cubic lattices calculated with parameters from Table I.
Figure 3(a) with K/|J | = 0.2, ∆Ks/|J | = −0.28, and
Fig. 3(b) withK/|J | = 0.2, ∆Ks/|J | = 4.1. For ∆Ks < 0
the confined magnon is a low-frequency “acoustic mode”;
in contrast, when ∆Ks/|J | > z⊥/2 it becomes instead a
high-frequency “optical mode”. For the bcc lattice the
lowest optical mode occurs away from the q‖ = 0 zone
center.

For the ferromagnetic models, the confined magnon be-
haves similarly in all dimensions d = 1, 2, 3, apart from
obvious differences in the dispersion functions Eq. (7).
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As we shall see, the situation is quite different for anti-
ferromagnetic models.

B. Antiferromagnetic models in two and three
dimensions

For J > 0 Hamiltonian (1) leads to the homogeneous
“G-type” antiferromagnetic state

〈sj〉 = (−1)
∑

i jiSẑ′, (19)

provided that K ≥ 0 and ∆Ks is not too negative. As-
sume 〈sj(t)〉 = 〈sj〉 + δsje

−iωt with δsj ⊥ ẑ′ and plug
into Eq. (2) to obtain

[
ω̃(−1)

∑
i ji − zj −

2Kj

J

]
δs+
j −

∑
vj

δs+
j+vj

= 0. (20)

To proceed we again define mixed δs+
q‖,j3

coordinates

by Fourier transformation on j1, j2. Equation (20) be-
comes

ω̃(−1)j3δs+
q‖+Q‖,j3

−
(
zj +

2Kj

J

)
δs+

q‖,j3

−
∑
vj3

e−iq‖·vj3 δs+
q‖,j3

= 0, (21)

where eiQ‖·rj = (−1)j1+j2 , e.g. Q‖ = (π, π, 0) for sc and
bcc lattices, Q‖ = (2π, 0, 0) for fcc.

We propose the confined magnon trial solution

δs+
q‖,j3

= e−κ⊥a
′j3δs+

q‖,A
for j3 even, (22a)

δs+
q‖,j3

= e−κ⊥a
′j3δs+

q‖,B
for j3 odd, (22b)

with different amplitudes δs+
q‖,A

, δs+
q‖,B

for monolayers

with j3 even and odd, respectively. Plug this into
Eqs. (21) and this time they get reduced to three equa-
tions for j3 = 0, 1, 2:

w̃δs+
q‖+Q‖,A

=

(
z − z⊥

2
+

2Ks

J
+ z‖γ‖(q‖)

)
δs+

q‖,A
+
z⊥
2
γ⊥(q‖)e

−κ⊥a′δs+
q‖,B

, (23a)

−w̃δs+
q‖+Q‖,B

=

(
z +

2K

J
+ z‖γ‖(q‖)

)
δs+

q‖,B
+ z⊥γ⊥(q‖) cosh (κ⊥a

′)δs+
q‖,A

, (23b)

w̃δs+
q‖+Q‖,A

=

(
z +

2K

J
+ z‖γ‖(q‖)

)
δs+

q‖,A
+ z⊥γ⊥(q‖) cosh (κ⊥a

′)δs+
q‖,B

, (23c)

where γ‖,⊥(q‖) are defined in Eq. (7).
Subtract Eq. (23a) from (23c) to get

δs+
q‖,A

δs+
q‖,B

= −
γ⊥(q‖)e

κ⊥a
′

1− 4∆Ks

z⊥J

= −
δs+

q‖+Q‖,A

δs+
q‖+Q‖,B

, (24)

where in the last identity we used γ⊥(q‖ + Q‖) =
−γ⊥(q‖). Use Eq. (24) to convert the last term in

Eq. (23b) into δs+
q‖,B

, and plug q‖ → q‖ + Q‖ to ob-

tain a pair of equations coupling δs+
q‖+Q‖,B

to δs+
q‖,B

.

The zero determinant condition then leads to

ω̃2 =

z +
2K

J
−
z⊥[γ⊥(q‖)]

2
(

1 + e2κ⊥a
′
)

2
(

1− 4∆Ks

z⊥J

)


2

−
[
z‖γ‖(q‖)

]2
. (25)

Similarly, convert Eq. (23c) into two equations coupling
the A sublattice amplitudes and get

ω̃2 =

{
z +

2K

J
− z⊥

2

(
1− 4∆Ks

z⊥J

)(
1 + e−2κ⊥a

′
)}2

−
[
z‖γ‖(q‖)

]2
. (26)

Equations (25) and (26) are equal to each other when κ⊥
is given by

κ⊥ =
1

a′
ln

∣∣∣∣ 1

γ⊥(q‖)

[
1− 4(∆Ks)

z⊥|J |

]∣∣∣∣, (27)

the same found for FMs (see Eq. (11)). Plug this back
into Eq. (26) and we get the AFM confined magnon fre-
quency,

~ωAFMcm (q‖)

JS
=

√√√√√
z +

2K

J
− z⊥

2

(
1− 4∆Ks

z⊥J

)
−

z⊥[γ⊥(q‖)]2

2
(

1− 4∆Ks

z⊥J

)


2

−
[
z‖γ‖(q‖)

]2
. (28)
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FIG. 4. Dispersion for antiferromagnetic confined magnons
[Eq. (28)] for the family of {100} interfaces of three different
cubic lattices (face-centered, body-centered, simple cubic),
and q‖ = (qx, 0). (a) K/|J | = 0.2 and ∆Ks/|J | = −0.28;
(b) K/|J | = 0.2 and ∆Ks/|J | = 4.1.

The argument of the square root is positive provided that
∆Ks ≥ ∆Kc with ∆Kc given by Eq. (17). This shows
that the critical value for interface spin-flip transition in
AFMs is the same as in FMs.

Equation (28) should be compared to the well-known
bulk result:

~ωAFMbulk (q)

JS
= z

√(
1 +

2K

zJ

)2

− [γ(q)]
2
. (29)

When Ks = K − εJ where ε is small, a confined magnon
exists for q‖ = 0. The ratio of its frequency to the lowest
bulk magnon in the limit ε→ 0+ is given by

ωAFMcm (q‖ = 0+)

ωAFMbulk (q = 0)
=

√
z‖J +K

zJ +K
. (30)

Since z‖ < z for all cubic lattices, this confined magnon
is well separated from the lowest bulk mode and should
be easy to observe for simple antiferromagnets, provided
that Ks is lower than K.

Table II shows our predicted frequencies for three ex-
ample antiferromagnets. In the absence of measurements
of Ks for these materials we assumed Ks = K − εJ with
εJ � 1.

Figure 4 shows the AFM confined magnon dispersion
for the family of {100} interfaces in the three cubic lat-
tices (face-centered, body-centered, simple cubic), for (a)
K/|J | = 0.2, ∆Ks/|J | = −0.28, and (b) K/|J | = 0.2,
∆Ks/|J | = 4.1. The behaviour is similar to FMs in that
for ∆Ks < 0 the confined magnon is a low-frequency
“acoustic mode”; in contrast, when ∆Ks > z⊥/2 it be-
comes instead a high-frequency “optical mode”. The low-
est optical mode occurs away from the q‖ = 0 zone center
for both the bcc and fcc lattices.

We showed that the confined AFM modes, like the un-
confined ones, arise from to the coupling of oscillations at
wavevectors q‖ and q‖ + Q‖. The next section examines
what happens in one dimension when these modes do not
exist.

C. Antiferromagnetic models in one dimension:
Special “edge” magnon

So far we showed that the phenomena of magnon con-
finement is qualitatively similar for FMs in dimensions
d = 1, 2, 3 and AFMs in d = 2, 3, in that their inverse
length scale Eq. (11) is identical. We now show that
the edge mode occurring in d = 1 AFMs is qualitatively
different.

Consider a spin chain with rj = jax̂ for j = 0, 1, 2, . . .,
and open boundary condition (b.c.) so that vj = +ax̂
for j = 0 and vj = ±ax̂ for j ≥ 1. Plug the following
trial solution into Eqs. (20):

δs+
j = e−αjδs+

A for j even, (31a)

δs+
j = e−αjδs+

B for j odd, (31b)

where α = (−iQ⊥+ κ⊥)a is a complex number (we shall
see that this time Q⊥ may assume values other than 0
and π). This leads to three coupled equations:(

ω̃ − 1− 2Ks

J

)
δs+
A − e

−αδs+
B = 0, (32a)(

−ω̃ − 2− 2K

J

)
δs+
B − 2 cosh (α)δs+

A = 0, (32b)(
ω̃ − 2− 2K

J

)
δs+
A − 2 cosh (α)δs+

B = 0. (32c)

The last two give rise to the characteristic equation

4

(
1 +

K

J

)2

− ω̃2 − 4 cosh2 (α) = 0. (33)

Subtract Eq. (32c) from Eq. (32a) to get δs+
B/δs

+
A, and

equate to Eq. (32b). This leads to

e−α =
2 cosh (α)

(
1− 2∆Ks

J

)−1

ω̃ + 2
(
1 + K

J

) . (34)

Note that the fraction 2∆Ks/J is the same as the one
appearing in Eq. (10) for a spin chain with z⊥ = 2. Now
add this equation to its inverse and the terms with α
cancel out, leading to a quadratic equation for ω̃. The
candidate confined magnon is the positive root with fre-
quency given by

~ωAFMcm,1d

JS
=

1

2

[(
1− 2

∆Ks

J

)−1

−
(

1− 2
∆Ks

J

)]

+
2

J

√[
∆K2

s

J − 2∆Ks
−K

] [
∆K2

s

J − 2∆Ks
−K − J

]
.(35)

For this to correspond to a valid confined magnon solu-
tion, it must lead to |e−α| < 1 or <(α) = κ⊥a > 0. Plug
cosh (α) from Eq. (33) into Eq. (34) to get

e−α =
1(

1− 2∆Ks

J

)√ 2(1 + K
J )− ω̃

2
(
1 + K

J

)
+ ω̃

, (36)
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and plug Eq.(35) to check whether |e−α| < 1. With
numerical calculations we find that Eq. (35) is indeed
a confined magnon when ∆Kc ≤ ∆Ks ≤ ∆Kc2, and
∆Ks ≥ J/2. Here ∆Kc is identical to the result obtained
for FM and other AFM cases (Eq. (17)), but now a new
critical value 0 < ∆Kc2 < J/2 appears. We could not
determine the value of ∆Kc2 analytically but numerical
calculations indicate that it increases with increasing K.

Apart from the ∆Kc this confined “edge” magnon is
quite different from the FM and AFM cases described
previously. To see this, solve the ∆Ks = 0 explic-
itly: Eq. (35) leads to ω̃cm = 2

√
(K/J)(1 +K/J), and

Eq. (36) to

κ⊥ =
1

2a
ln

(√
J +K +

√
K

√
J +K −

√
K

)
. (37)

These should be compared to the results of section II B
with parameters appropriate for a spin chain, z⊥ =
2, z‖ = 0, q‖ = 0. According to Eqs. (27) and (28) we
would get ω̃cm = 2K/J and κperp = 0, i.e. no confined
magnon exists for ∆Ks = 0. In contrast, Eq. (37) shows
that in fact the confined “edge” magnon does exist for
∆Ks = 0 and K > 0 with

ωAFMcm,1d

ωAFMbulk,1d(q = 0)
=

√
J +K

2J +K
< 1. (38)

This shows that the ∆Ks = 0 confined magnon is well
separated from the bulk magnons, even when K/J is
quite small.

This confined excitation was not apparent in previ-
ous studies in finite spin chains, because only quite low
values K/J = 0.001 were considered, making the con-
fined magnon length scale (37) comparable to the system
size.14

III. GENERAL THEORY FOR CONFINED
MAGNONS IN FINITE SYSTEMS AND THEIR

SPIN-SCATTERING FUNCTION

We now describe a general theory applicable to finite
systems with arbitrary model Hamiltonian. Our goal is
to evaluate the spin-scattering function,

Sαβ(q, ω) =
1

2πN

∑
j,k

∫
dte−iωte−iq·(rj−rk)

〈
sαj (0)sβk(t)

〉
T
,

(39)
and access the observability of the confined magnon ex-
citations predicted in Section II above.

Here N is the number of magnetic ions (spins), sαj (t)
denotes the α = x′, y′, z′ component of the Heisenberg
representation for the dimensionless spin operator de-
scribing the magnetic ion located at position rj , and
〈·〉T denotes a quantum and thermal average at temper-
ature T . Defined this way, Eq. (39) displays resonances
when ω and q match the dispersion relation for magnon

propagation, along with much more information on non-
dispersive (confined) modes and off-resonant excitations.

The spin scattering function (39) at q ≈ ω/c ≈ 0
(with c the speed of light) also describes the spectral
weight for inelastic spin excitations that satisfy the en-
ergy and momentum conservation constraints character-
istic of all photon scattering experiments. Different ex-
periments (X-ray, Raman, THz spectroscopy) have addi-
tional selection rules that are usually accounted for using
symmetry-based approaches.25 Therefore, we can inter-
pret Sα,β(q = 0, w) as a proxy for the strength of pho-
ton resonances that can occur, but one should keep in
mind that which resonances get activated depend on the
type of experiment and underlying symmetry of the ma-
terial.

In contrast to Section II, evaluating Eq. (39) requires a
full quantum approach based on the Holstein-Primakoff
representation.39 The method we present here is an adap-
tation to non-translation invariant systems of the frame-
work for evaluating the scattering function presented in
23.

A. Formal diagonalization and magnon frequencies

We start by using the Holstein-Primakoff
transformation39 to represent spin operators as Bosonic

creation and destruction operators, a†j and aj , respec-
tively, where j again labels the lattice site. For spins
with quantum number S we get

sx
′

j =

√
2S − a†jaj aj + a†j

√
2S − a†jaj

2
, (40a)

sy
′

j =

√
2S − a†jaj aj − a

†
j

√
2S − a†jaj

2j
, (40b)

sz
′

j = (S − a†jaj). (40c)

It is easy to check that the Bosonic commutation relation

[ai, a
†
j ] = δij implies [sαi , s

β
j ] = iεαβγs

γ
i δij for the spin op-

erators. The sz
′

j eigenstates |S,mj〉 with mj = −S,−S+

1, . . . , S are relabeled as
∣∣m′j〉 with m′j = S − mj =

0, 1, . . . , 2S denoting the number of “spin-flip” excita-

tions in each site. They satisfy aj
∣∣m′j〉 =

√
m′j
∣∣m′j − 1

〉
for 0 ≤ m′j ≤ 2S, and a†j

∣∣m′j〉 =
√
m′j + 1

∣∣m′j + 1
〉

for

0 ≤ m′j ≤ 2S − 1. Note that mj = 0 corresponds to the
“vacuum” of Holstein-Primakoff excitations, which pos-
sesses the maximum spin. In a simple FM model this
will be the ground state; in contrast, for AFM models
we will have to define a set of Holstein-Primakoff opera-
tors for each sublattice of the system, so that the vaccum
state is the maximum spin state mj = S in one sublattice
together with the minimum spin state mj = −S in the
other. From here, we limit ourselves to a small number of
excitations m′j � 2S, which is always a good approxima-
tion at low T and large S � 1. This allows us to approx-
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imate Eqs. (40a) and (40b) as s+
j = sx

′

j + isy
′

j ≈
√

2Saj ,

and s−j = sx
′

j − is
y′

j ≈
√

2Sa†j .

Plugging Eqs. (40a)–(40c) into the interacting spin
Hamiltonian H leads to three contributions that scale
as different powers of spin S,

H = H0(S2) +H1(S1) +H2(S0). (41)

Here H0 is the ground state energy of the system, a con-
stant proportional to S2 which does not contain any aj
or a†j terms, so it can be dropped. The next contribu-

tion H1 is linear in S, and quadratic in aj and a†j ; this
is the magnon Hamiltonian. The last contribution H2 is
independent of S, and contains quartic and higher order

terms such as a†iaja
†
kal. It describes the mutual interac-

tion between magnons in the system. H2 does not play
a role at low T when the number of thermally activated
magnons is small. For this reason, we are not considering
H2 and focus entirely on H1. We note that if we divide
Eq. (41) by S2, it becomes an expansion in powers of
1/S. Therefore, keeping H1 and neglecting H2 is equiva-
lent to keeping a 1/S contribution and dropping a 1/S2

correction. Evidently this becomes a good approximation
in the limit S � 1.

In all cases we can write H1 in matrix form,

H1 = v† ·L · v, (42)

where v† =
(
a†1, a

†
2, . . . , a

†
N |a1, a2, . . . , aN

)
, and L is an

Hermitian 2N×2N matrix with the following block struc-
ture:

L =

[
P Q

Q∗ P ∗

]
, (43)

where P = P † and Q = QT are N ×N matrices.
It is now time to make our first deviation from the

conventional bulk approach.23 In the bulk approach, at
this point, we would apply a space Fourier transform to
v, so that L is reduced to a 2u × 2u matrix where u
is the number of sites in the magnetic unit cell. For a
finite system with open boundary condition (b.c.) this
approach is no longer useful and we instead diagonalize L
numerically. The structure of Eq. (43) is due to particle-
hole symmetry and implies the set of eigenvalues:

εn =

{
~ωn/2 if n ∈ [0, N − 1)

~ωn−N/2 if n ∈ [N, 2N − 1].
(44)

We diagonalize L using unitary transformation L′ =
ULU †, with the columns of U † being the eigenvectors
of L. We diagonalize H1 by transforming it via,

H1 = v†U †ULU †Uv = w†L′w, (45)

where

w† = v†U † =
(
α†0, α

†
1, . . . , α

†
N−1|α0, α1, . . . , αN−1

)
(46)

is the vector of bosonic operators that describe the
normal modes of the system (a new set of cre-

ation/annihilation operators satisfying [αn, α
†
n′ ] = δn,n′).

Expanding H1 on this new basis, we get

H1 =

N−1∑
n=0

~ωn
2

(
α†nαn + αnα

†
n

)
=

N−1∑
n=0

~ωn(α†nαn +
1

2
).

(47)
Therefore, α†n and αn create and annihilate oscillating
collective excitations with energy ~ωn, i.e., they describe
magnon excitations. In the presence of periodic b.c.,
these excitations are superpositions of forward and back-
ward propagating waves, leading to sinusoidal (standing)
spin waves. As we shall see in the solution for the FM and
AFM chains with open b.c., the standing modes become
anharmonic.

B. Calculation of the Scattering Function

Our method allows the evaluation of Eq. (39),
Sαβ(q, ω), for any α and β. However, without adding
simplifying assumptions to the system, we must repeat
the process for each unique combination of α and β.
Therefore, we limit ourselves to collinear systems such
as a Heisenberg FM or AFM with single ion anisotropy
where the spins are aligned along ±z′, and the total
spin along z′ is a constant of motion. This restric-
tion means Sαβ(q, ω) = 0 for α 6= β, Sz′z′(q, ω) = 0,
and Sx′x′(q, ω) = Sy′y′(q, ω) 6= 0. Below we focus on
Sx′x′(q, ω) as it gives a complete description of collinear
systems.

From v = U †w we get

aj =

N−1∑
n=0

(
U†j,nαn + U†j,n+Nα

†
n

)
, (48a)

a†j =

N−1∑
n=0

(
U†j+N,nαn + U†j+N,n+Nα

†
n

)
, (48b)

which allows expressing sx
′

j (t) in terms of normal mode

operators αn(t) = e−iωntαn,

sx
′

j (t) ≈
√

2S

2
[aj(t) + a†j(t)]

=

√
S

2

N−1∑
n=0

[
e−iωntαnXj,n + H.c.

]
, (49)

where

Xj,n = U†j,n + U†j+N,n. (50a)

Pluging Eq. (49) into the spin-spin correlation func-

tion and noting that
〈
α†nα

†
n′

〉
T

= 〈αnαn′〉T = 0, and〈
α†nαn′

〉
T

= nB(ωn)δnn′ , where nB(ωn) is the Bose func-
tion,

nB(ωn) =
1

e~ωn/kBT − 1
, (51)
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we get〈
sx
′

i (0)sx
′

j (t)
〉
T

=
S

2

N−1∑
n=0

{
X∗i,nXj,nnB(ωn)e−iωnt

+Xi,nX
∗
j,n[nB(ωn) + 1]eiωnt

}
.(52)

Finally, taking the Fourier transform and noting that
δ(ω + ωn) is always zero for ω > 0 we get our explicit
expression for the spin-scattering function,

Sx′x′(q, ω) =
S

2N

N−1∑
n=0

∣∣∣∣∣∣
∑
j

e−iq·rjXj,n

∣∣∣∣∣∣
2

[nB(ωn) + 1]

×δ(ω − ωn). (53)

Below we replace the delta functions δ(ω − ωn) by a
smooth Gaussian with broadening set by the energy res-
olution of the measurements involved:

δ(ω − ωn) =
1√

2π∆2
e−

(ω−ωn)2

2∆2 . (54)

For definiteness we use ∆ = 0.02|J |S for our numerical
calculations.

IV. APPLICATION TO ONE-DIMENSIONAL
MODELS

In d = 1 Hamiltonian (1) becomes

H = J

N−2∑
j=0

sj · sj+1 + bJsN−1 · s0

−K
N−2∑
j=1

(sz
′

j )2 −Ks0

(
sz
′

0

)2

−KsN−1

(
sz
′

N−1

)2

,(55)

where parameter b describes the choice of b.c.. We set
either b = 1 for periodic b.c. or b = 0 for open b.c.. Our
results below are independent of the relative orientation
between easy axis ẑ′ and the spin chain direction, which
can be taken as arbitrary.

A. Ferromagnet

For J < 0 and uniform FM ground state the matrix L
of Eq. (43) is given by

P =
1

2
|J |S



1 + b+ 2Ks0

|J| −1 0 0 . . . −b
−1 2

(
1 + K

|J|

)
−1 0 . . . 0

0 −1 2
(

1 + K
|J|

)
−1 . . . 0

...
...

...
. . . . . .

...

0 0 0 −1 2
(

1 + K
|J|

)
−1

−b 0 0 0 −1 1 + b+ 2KsN−1

|J|


, and Q = 0. (56)

We diagonalize this matrix numerically, and use the re-
sulting eigenvalues and eigenvectors to compute the scat-
tering function explicitly using Eq. (53).

Figures 5(a, b) shows the ω vs. q heatmap for the spin
scattering function for (a) periodic and (b) open b.c.,
and K = Ks = 0 (no magnetic anisotropy). In both
cases Sx′x′(q, ω) is sharply peaked at the d = 1 bulk FM
dispersion Eq. (14),

~ωFMbulk(q)

|J |S
=

2K

|J |
+ 4 sin2

(qa
2

)
, (57)

with no noticeable modifications to the dispersion due to
open b.c. (Note the logarithmic scale for the color code).

The granularity seen in the heat maps is a consequence
of quantization of magnon frequencies and quasimomenta
in a finite system. A noticeable difference is that fre-
quency quantization in Fig. 5(a) (periodic b.c.) is twice
as large as in Fig. 5(b) (open b.c.). This occurs be-
cause for periodic b.c. the modes are two-fold degen-
erate. These can be chosen to have sx

′

j (t) ∝ sin (Qrj) or

cos (Qrj) for a single wavevector Q. Hence, for periodic
b.c. all modes with Q 6= 0, π/a are two-fold degenerate.
In contrast, under open b.c. these modes become anhar-
monic (see below) and are no longer degenerate because
they cause different fluctuations at the edges.

In finite systems with periodic b.c. the spin-spin cor-
relation is sinusoidal, i.e. sx

′

j (0)sx
′

k (t) is a linear com-

bination of eiQa(j−k) and e−iQa(j−k) with wavevector Q
assuming one of the N special points inside the first Bril-
louin zone (Q = 2πmQ/N for integers mQ = −N/2 +
1, . . . , N/2). In this case Eq. (39) is a linear combination
of

1

N

∑
j,k

e−i(q−Q)a(j−k) =
1

N

sin2
[

(q−Q)aN
2

]
sin2

[
(q−Q)a

2

] , (58)

and the same expression for Q → −Q. This function is
maximum (∝ N) when q = Q+ 2πn for arbitrary integer
n, and is exactly equal to zero when q is a special point
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FIG. 5. Spin scattering function Sx′x′(ω, q) [Eq. (53)] for
the FM model with N = 30 spins. (a) K = Ks = 0
and periodic b.c.; (b) K = Ks = 0 and open b.c.; (c)
K/|J | = 0.2,∆Ks/|J | = −0.28, open b.c.; (d) K/|J | =
0.2,∆Ks/|J | = 1.4, open b.c.. The plot is a logarithmic heat
map of Sx′x′(ω, q) as a function of frequency ω and wavevec-
tor q along the spin chain direction. In all cases Sx′x′(q, ω)
has resonances at the usual FM magnon dispersion relation.
The granularity of the heat map reflects quantization of the
spin wave frequencies and quasimomenta. In (c) the red ar-
row points to an acoustic resonance (the confined magnon) at
low frequencies. In (d) we chose a quite high value of edge
anisotropy ∆Ks/|J | = 1.4 to show that the confined magnon
becomes a high frequency “optical” resonance.

FIG. 6. Spin scattering function Sx′x′(q = 0, ω) (proxy for
optical experiments) of the d = 1 FM model for K/|J | = 0.2
and various ∆Ks. The large peak at w̃ ≈ 0.4 is the bulk
q = 0 magnon; smaller resonances (see arrows) are acoustic
confined magnons.

that is different than Q (i.e., q = 2πm/N with m 6= mQ).
However, Eq. (58) is nonzero when q falls outside one of
the N special points. It is this effect that gives rise to
several nonresonant peaks appearing for arbitrary q in
Fig. 5.

When N → ∞, Eq. (58) becomes proportional to
δ(q−Q), because the amplitude of the nonresonant peaks
are negligibly small in comparison to the resonances that
occur when q, ω matches the FM dispersion relation.
The presence of several weaker resonances away from the
magnon dispersion relation is a distinctive feature of fi-
nite systems.40

For periodic b.c. the weak resonances are equally
spaced along the q axis, because each mode is charac-
terized by a single wavevector Q. This is in contrast to
the open b.c. case where we see the weak resonances
expelled from the q ≈ 0 region, signalling mode anhar-
monicity (i.e., each mode is no longer characterized by a
singleQ). Similar plots for largerN (not shown) are iden-
tical to Fig. 5(a, b) but with a larger density of grains.
It should be emphasized that for the case of open b.c., q
cannot be strictly be interpreted as momentum. It takes
the role of a bookkeeping parameter, that is only inter-
preted as momentum when N →∞.

When K = Ks > 0, a gap opens at low frequencies.
With ∆Ks = 0 the FM model shows no noticeable differ-
ence for the periodic and open b.c. cases, apart from the
shifted weak resonances. This is in agreement with Sec-
tion II A in that no confined magnon exists for ∆Ks = 0
and q‖ = 0.

However, when ∆Ks < 0 the edge spins at j = 0, N−1
are softened, leading to the formation of a confined
magnon at the edges. Figure 5(c) shows the case K/|J | =
0.2 with ∆Ks/|J | = −0.28: The confined magnon res-
onance (shown by a red arrow) is at ω̃cm = 0.20, in
the middle of the anisotropy gap – this is the acous-
tic confined magnon and its frequency is in close agree-
ment with Eq. (12) for z‖ = 0, z⊥ = 2 and q‖ = 0. In
contrast, Fig. 5(d) shows what happens when the edge
spins are hardened by a large easy-axis surface anisotropy
K/|J | = 0.2,∆Ks/|J | = 1.4: This induces the formation
of an optical confined magnon at ω̃cm = 4.76, again in
close agreement with Eq. (12). For the optical confined
magnon to be visible in spectroscopy its frequency has
to be above the bulk zone-edge magnon at q = π/a. We
find that this only happens for quite high ∆Ks as shown
in Fig. 5(d).

Figure 6 plots the proxy for photon spectroscopy
Sx′x′(q = 0, ω) as a function of ω, for K/|J | = 0.2 and
various ∆Ks. At ∆Ks = 0 we see only the main bulk
peak at ω̃ ≈ 0.4; however, as ∆Ks becomes negative the
confined magnon peak is formed, taking spectral weight
out of the bulk peak. For ∆Ks & 0 the confined magnon
is a small shoulder next to the bulk peak (blue arrow).
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B. Antiferromagnet

Model Hamiltonian (55) with J > 0 and homogeneous
AFM state (19) requires a minor change to the definition

of the magnon operators: aj , a
†
j for even j are defined in

the same way as for the FM. For odd j their definition is

changed to sz
′

j = (−S + a†jaj) and s+
j =

√
2Sa†j . The L

matrix is now given by

P =
JS

2


1 + b+ 2Ks0

J 0 0 · · · 0

0 2
(
1 + K

J

)
0 · · · 0

...
. . .

...

0 · · · 0 2
(
1 + K

J

)
0

0 · · · 0 0 1 + b+ 2KsN−1

J

 and Q =
JS

2


0 1 0 · · · b

1 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 0 1

b 0 · · · 1 0

 . (59)

Once again this is diagonalized numerically and the
eigenvalues/eigenvectors are plugged into Eq. (53) to
determine the spin scattering function explicitly. Fig-
ures 7(a, b) show the K = Ks = 0 cases with periodic
and open b.c., respectively. Similar to the FM case both
heatmaps show strong resonances at the d = 1 bulk AFM
magnon dispersion Eq. (29),

~ωAFMbulk (q)

JS
= 2

√(
1 +

K

J

)2

− cos2 (qa), (60)

which is now linear in q for K = 0 and small q (long wave-
length). Like the FM case, the magnon frequencies are
doubly degenerate for periodic b.c., and this degeneracy
is lifted for open b.c.

Figures 7(c, d) shows what happens when we turn on
bulk anisotropy K = Ks > 0 in the periodic and open
b.c. cases. This time there is a remarkable difference.
While the periodic b.c. displays the usual gapped bulk
spectra with no confined mode (Fig. 7(c)), the open b.c.
now has in addition a strong confined acoustic “edge”
magnon at ω̃ = 0.46 (Fig. 7(d)). Its frequency is in close
agreement with Eq. (35) for ∆Ks = 0.

The confined magnon energy is visibly separated from
the lowest bulk mode in Fig. 7(d) and should be visible
in spectroscopy. As already mentioned in Section II C
this confined magnon was not apparent in previous stud-
ies in finite spin chains, because only quite low values
K/J = 0.001 were considered, making its length scale
comparable to the system size.14

Figure 7(e) shows that adding ∆Ks < 0 lowers the
frequency of the acoustic confined magnon. This makes
sense since the confined magnon is localized at one of the
edges (See Fig. 8(a)), and the ∆Ks < 0 softens the spin
at both edges.

In contrast, Fig. 7(f) shows that a large ∆Ks > 0 in-
creases the confined magnon resonance to the point that
it becomes an optical mode (above the bulk zone edge
magnon frequency). This is consistent with what we
found for d = 2, 3 in Eq. (28): ∆Ks/|J | > z⊥/2 leads
to a high-frequency “optical” confined magnon.

In order to illustrate the sensitivity of the acoustic con-
fined magnon to the environment at the edges, we set

∆Ks at spin j = 0 different from ∆Ks at spin j = N −1.
By making the j = 0 edge harder and the j = N − 1
softer, the confined magnon is split into two resonances.
The lower frequency one is dominated by spin oscillations
at the softer edge, while the higher frequency one con-
tains spin oscillations concentrated at the harder edge.
This situation should be quite common in nanoparticles
on top of a substrate, or thin films sandwiched between
two different materials. Since the confined magnon peaks
are clearly separated from the bulk q = 0 mode (large
peak at ω̃ ≈ 0.65, they are clearly detectable by pho-
ton spectroscopy.

The sensitivity to different edges is further illustrated
by considering the difference between compensated (zero
magnetization) and uncompensated AFMs. The former
does not have inversion symmetry, while the latter has
an inversion center at the middle spin. The edge modes
reflect this symmetry, as illustrated in Fig. 9.

V. CONCLUSIONS

We presented a theory for spatial confinement of
magnons in ferro and antiferromagnetic systems of di-
mension d = 1, 2, 3. For semi-infinite systems with
a surface or interface with a nonmagnetic material we
obtained exact analytical expressions for the confined
magnon frequency and length scale. These show that
extra anisotropy at the surface plays a crucial role in
confining magnons, and that confinement only occurs for
a certain range of interface anisotropy and in-plane (per-
pendicular to interface) propagation wavevector q‖.

Our theory for semi-infinite systems was based on ex-
act analytical solution of the classical equations of mo-
tion (2). We achieved this by using trial solutions of two
types. The ones that decay exponentially as a function of
the distance from the interface allowed us to predict the
existence of confined magnons. In contrast, trial solu-
tions that are phase-shifted standing waves allowed us to
understand the impact of the interface on the propagat-
ing (bulk) magnons. The techniques developed here are
generally applicable to other confinement mechanisms
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FIG. 7. Spin scattering function for the AFM model with
N = 30. (a) K = Ks = 0 and periodic b.c.; (b) K = Ks = 0
and open b.c.; (c) K/|J | = 0.05, ∆Ks = 0 and periodic b.c.;
(d) K/|J | = 0.05, ∆Ks = 0 and open b.c.; (e) K/|J | = 0.05,
∆Ks = −0.05 and open b.c.; (f)K/|J | = 0.05, ∆Ks = 0.8 and
open b.c. In all cases Sx′x′(q, ω) has resonances at the usual
AFM magnon dispersion relation. However, the impact of
nonzero anisotropy is dramatically different. In (d) it is seen
that an acoustic confined magnon arises even when ∆Ks = 0
(note that this mode is absent when the b.c. is periodic, case
(c)). When ∆Ks 6= 0 the confined magnon frequency shifts:
It decreases when the edge spin is softened (case (e) with
∆Ks < 0) and it increases when it is hardened (case (f) with
∆Ks > 0). For large ∆Ks/|J | = 2.8 shown in (f) the confined
magnon becomes an optical mode.

FIG. 8. Spin scattering function Sx′x′(q = 0, ω) at q = 0
for the AFM model with K/J = 0.05 and ∆Ks different for
edges j = 0 and j = N−1. The asymmetry splits the acoustic
confined magnon resonance into two peaks, which are clearly
visible as smaller resonances next to large bulk q = 0 mode
at ω̃ = 0.65.

FIG. 9. Visualizing the acoustic confined magnon for (a) com-
pensated and (b) uncompensated AFMs. The plots depict
the eigenvector of L (see Eq. (43)) associated to the confined
magnon appearing for K/|J | = 0.05,∆Ks = 0 in the d = 1
AFM. The compensated AFM has equal numbers of up and
down spins in its ground state, so it can not have a center of
inversion symmetry. This lack of inversion symmetry results
in two degenerate acoustic confined magnons, one that mod-
ulates spin in the left edge (shown) and the other in the right
(not shown). In contrast, uncompensated AFM can have an
inversion center at the middle spin. This leads to confined
magnons that are either symmetric (shown) or antisymmetric
(not shown) with respect to inversion at the middle spin.

such as defect centers and other types of interfaces such
as the ones between two different magnetic materials.
They also allow the prediction of scattering properties of
propagating magnons, e.g. their reflectivity and trans-
missivity when they scatter off interfaces.

Analytic theory was complemented by exact numeri-
cal calculations of the spin-scattering function for finite
systems, using the quantum Holstein-Primakoff represen-
tation (40). For large N both methods gave identical
results for the magnon modes, demonstrating that our
analytical expressions are indeed exact for semi-infinite
systems.

Apart from expected differences in dispersion, the phe-
nomena of magnon confinement is quite similar for FMs
in d = 1, 2, 3 and AFMs in d = 2, 3, in that their length
scale for confinement Eq. (11) is identical. Surprisingly,
the AFMs in d = 1 have much stronger magnon confine-
ment at the edges. Confined states appear even when
∆Ks = 0, a regime that generates no confined states for
FMs in d = 1. The length scale for confinement is sub-
stantially different in d = 1 AFMs (see e.g. Eq. (37)).
The presence of a confined mode in these systems was
not apparent in previous calculations.14,41 The impact of
dimensionality in AFM models is related to the nonexis-
tence of a wavevector Q‖ describing the staggered ground
state in d = 1 (see text below Eq. (21)).

Confined magnons have been detected in ferromagnetic
Fe on W(110) using SPEELS.19 Since electron scatter-
ing only penetrates a few monolayers it enables measure-
ments of the confined surface magnon for Fe/vacuum (24
monolayer sample in Fig. 3 of Ref. 19) and for a single Fe
monolayer on W(110). The latter yields ∆Ks/|J | ≈ 0.1.
Our Fig. 2 shows that our theory is in good agreement
with these experiments, leading to the surprising predic-
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tion that the surface magnon actually only exists for a
finite range of parameters dictated by the regime where
Eq. (11) is positive. In Fig. 2 this corresponded to a finite
wavevector range, 0.30π < qza < 1.7π.

In contrast, we are not aware of experiments detecting
confined magnons in antiferromagnets. Table II gives
numerical estimates for the bulk and confined magnon
resonances for antiferromagnets MnF2 and FeF2, and for
nanoparticles of room temperature multiferroic BiFeO3

(assuming the AFM order is homogeneous instead of
cycloidal).9,30 The confined magnons are well below the
bulk modes in all these cases so they should be observable
with spectroscopic probes in the THz frequency range.

Measurements of Ks are not available for antiferromag-
nets, so Table II assumes K ≈ Ks. Based on symmetry
and microscopic calculations of single ion anisotropy42 we
expect ∆Ks/J to be sizable for these materials. As we
show here the confined magnon frequency is quite sen-
sitive to the value of ∆Ks = Ks − K, so its detection
enables characterization of this hard-to-measure quan-
tity.

Confined magnons also shed light on the spin order of
surfaces, interfaces, and nanostructures in general.35 As
we show here, when ∆Ks < ∆Kc (Eq. (17)) the confined
magnon frequency goes to zero and the interface under-
goes a “spin-flip” phase transition. The characteristic
length scale for the interface spin texture is expected to
be of the same order of magnitude as the magnon con-
finement length scale κ−1

⊥ , see Eq. (11).
We also presented a numerical method to compute the

confined spectrum for finite systems with arbitrary spin
ordering. We presented explicit numerical calculations
of the spin-scattering function in simple d = 1 models to
show whether and how confined magnons can be observed

with spectroscopy methods.

While it is known that localized spin waves (solitons)
are present in infinite antiferromagnets when the spin ex-
citations have large amplitude,43 the presence of confined
modes in the low energy regime relevant for spectroscopy
has not been discussed in the literature.

When Ks < K the interface spins are “softened” and
in this regime the associated confined magnon lies well
below the lowest bulk mode. We predict these confined
magnons should be easily detectable by optical probes
for both FMs and AFMs as shown in Figs. 6 and 8.

For nanostructures with large surface to volume ratio
the confined magnon resonance will be a sizable fraction
of the bulk q = 0 peak, even for spatially uniform probes
of the spin-scattering function. As shown in Fig. 8 its
frequency and spectral weight are quite sensitive to the
value of ∆Ks, showing that photon scattering experi-
ments may successfully probe interface spin anisotropy.

In conclusion, our work established the crucial role of
surface/interface spin anisotropy on driving the emer-
gence of confined magnons. It shows that nanostructures
will have several confined magnon resonances in addition
to the usual bulk modes often invoked to interpret their
magnetic excitations.
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