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Active acoustic metamaterials consisting of paired sensor-driver unit cells offer a promising path
towards the practical realization of exciting transformation acoustics devices. The design of these
cells is founded in a microscopic acoustic model that describes materials as collections of subwave-
length polarized sources which respond to the local conditions of pressure and particle velocity.
The current ability to express the polarizabilities that characterize these sources in terms of the
effective macroscopic acoustic properties is limited to only a few simple cases and is not applicable
to inhomogeneous bulk media of arbitrary geometries. Here, we address this challenge and derive
general closed-form expressions relating the bulk modulus to the monopole polarizability and the
mass density tensor to the dipole polarizability. Furthermore, we use these expressions to adapt
transformation acoustics to the microscopic model. We demonstrate the accuracy of our approach
by comparing the fields scattered by several devices, including cylindrical cloaks with steep prop-
erty gradients and anisotropy, with the fields scattered by the devices’ realizations with polarized
sources.

I. INTRODUCTION

Transformation acoustics has enabled the design of de-
vices that exhibit remarkable behavior, but in turn have
demanding material property requirements, such as steep
gradients and anisotropy [1–3]. The ability to physi-
cally realize these devices is limited, as the prescribed
property distributions cannot be obtained with conven-
tional materials. The development of passive metama-
terials, artificial materials composed of subwavelength
engineered unit cells, has expanded the accessible de-
sign space beyond what nature offers. Wide control over
the bulk modulus and mass density, even into the nega-
tive regime, has been demonstrated with passive acoustic
metamaterials composed of cavity resonators [4], tubes
with side holes [5], coated-beads [6, 7], membranes [8, 9],
and space-coiling structures [10, 11]. Anisotropy and
spatially varying properties can be achieved by tuning
the geometries of these components [12–15]. However,
most passive metamaterials require resonances to realize
the acoustic properties specified by transformation acous-
tics. Therefore, they are narrow band and unsuitable for
ubiquitous acoustics applications such as noise mitiga-
tion, sonar, and ultrasound imaging, which require the
manipulation of broadband sound. In addition, the re-
liance on resonance, undesirable coupling of properties,
and general challenges in manufacturing are substantial
obstacles to precise control of the properties and con-
strain the operating conditions [16–18].
The shortcomings of passive acoustic metamateri-

als are reflected in the transformation acoustic devices
demonstrated so far. Despite being one of the most
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sought after transformation acoustics structures, omni-
directional cloaking shells have only been accomplished
in cases of reduced geometric and material complexity, as
in carpet cloaks [19–21], and through approximations of
the prescribed material properties that are suitable only
for devices of less than several wavelengths in diameter
[14, 22, 23].

Active metamaterials, which feature a programmed re-
sponse dependent on the external conditions, may pro-
vide a path to overcome many of the inherent constraints
of passive structures. Particularly promising are unit
cells consisting of sensor-driver pairs, which were first
conceived for manipulating electromagnetic fields [24],
but were later applied to control acoustic and elastic
waves [25–36]. Sensor-driver cells sense the impinging
external field and generate a coherent acoustic field in
response. Consequently, it has been shown [33, 34] that
media based on these types of cells could be realized by
leveraging a microscopic model of matter or source-driven
homogenization theory [37–41]. In this model, the behav-
ior of a continuous material can be represented by the
collective response of numerous point-like sources placed
in a background medium and separated by significantly
subwavelength distances. These sources generate either
monopole or dipole fields and are characterized by their
polarizabilities, which relate the source amplitudes to the
local fields. In the case of acoustics of typical materials,
the monopole moment depends on the local acoustic pres-
sure and the dipole moment depends on the local particle
velocity. The polarizabilities of these sources depend on
the macroscopic acoustic properties of bulk modulus and
mass density respectively.

For application in active metamaterials, a sensor-driver
cell is equivalent to a polarized microscopic source, and
the electronic transfer function from the sensor input to
the driver output is proportional to the polarizability.
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In principle, the monopole and dipole transfer functions
of the active cell could be tuned independently to yield
desired macroscopic properties [33–36]. However, one
major obstacle here is that there is no general method
for determining the polarizabilities that correspond to a
given set of macroscopic material properties, especially
in scenarios involving inhomogeneous bulk media of ar-
bitrary geometries. Previous works have mostly focused
on Willis media, with analytical solutions only having
been found in a few limited cases, such as homogeneous
materials implemented with one-dimensional (1D) peri-
odic lattices [42], homogeneous one cell thick metasur-
faces [43], and subwavelength resonators [43, 44].
In this work, we address the challenge of obtaining

expressions for the polarizabilities necessary to model
bulk media of arbitrary geometry and macroscopic acous-
tic properties, in particular the inhomogeneous, highly
anisotropic media required by transformation acoustics.
While we are motivated by the physical realization of
active metamaterials, we focus here on establishing a
more general theory applicable to active and passive me-
dia rather than the specifics of such an implementation.
First, in Section II, we develop a model of a unit cell
composed of three collocated polarized sources and an-
alyze its interactions with the impinging local acoustic
field. Then, we relate the cell’s response to an external
plane wave with the scattered field from a subwavelength
anisotropic cylinder. This leads to expressions for the po-
larizabilities as functions of the macroscopic properties
of the cylinder and ultimately, the effective properties
of a homogenized metamaterial consisting of a lattice of
cylinders. Although the polarizability relationships we
obtained are for a two-dimensional (2D) space, the ex-
pressions in a three-dimensional (3D) space can be ob-
tained by substitution of the cylinder-based model with
a sphere-based one. Lastly, we write a system of equa-
tions to determine the source amplitudes of a lattice of
unit cells given the source polarizabilities and the ex-
ternal field. In Sec. III, we demonstrate the ability to
model a finite homogeneous slab of given bulk modulus
and isotropic mass density as a lattice of unit cells. The
results are validated through comparisons with finite el-
ement method (FEM) simulations using COMSOL Mul-
tiphysics. Finally, in Sec. IV, we adapt the transforma-
tion acoustics equations to directly provide closed-form
expressions for the polarizabilities and simulate several
omnidirectional free space cloaks, highlighting the capa-
bility to accurately represent the most challenging mate-
rial properties prescribed by transformation acoustics.

II. UNIT CELL MODEL

In the microscopic acoustic model [42], a material can
be represented as a lattice of subwavelength sources that
each generate a response to the local conditions based on
their polarizability. Here, we consider square and hexag-
onal lattices of unit cells in a 2D space, and define a single
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FIG. 1. A diagram of modeling a continuous material as a
lattice of unit cells. (a) The unit cells consist of three po-
larized sources, one monopole and two dipoles in each of the
Cartesian directions. (b) Each cell is equivalent to a subwave-
length anisotropic cylinder of uniform macroscopic bulk mod-
ulus κcyl and diagonal mass density tensor components ρcyl,v
with v ∈ {x, y}. (c) The array of cylinders and background
fluid are homogenized as a continuous block of material with
effective macroscopic properties. (d) The relationships of the
mass densities of (b) and (c) obtained in FEM simulations.

cell in an inviscid background fluid as a group of collo-
cated line sources whose amplitudes depend on the local
pressure and particle velocity. The sources include one
monopole and two dipoles aligned along the Cartesian
axes. The dipoles can be further decomposed as a pair of
fully out of phase monopoles separated by an infinitesi-
mal distance 2δ, as illustrated in Fig. 1(a). We will show
next that this cell structure can realize the most demand-
ing acoustic material parameters required by transforma-
tion acoustics including high mass anisotropy and large
gradient bulk modulus and density profiles.

The response of a unit cell is characterized by a scalar
monopole polarizability α(m) and tensor dipole polariz-
abilityα(d), which relate the amplitude of the acoustic re-
sponse to the local conditions of pressure ploc and particle
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velocity ūloc respectively. Works concerning Willis me-
dia include cross polarizabilities between the monopole
and dipole components, but we are only concerned with
typical media, so they will be neglected here. Addition-
ally, there are several normalizations of the monopole and
dipole moments that have been previously used, such as
by the macroscopic properties [42] or a unit volume [43],
but we simply consider amplitudes of line sources to be
defined later in Eqs. (3). We write the monopole ampli-

tude A(m) and dipole amplitudes A
(d)
x and A

(d)
y depen-

dent on the local conditions as

A(m) = α(m)ploc,

[

A
(d)
x

A
(d)
y

]

=

[

α
(d)
x 0

0 α
(d)
y

][

uloc,x

uloc,y

]

. (1)

As typically considered in the microscopic model, the lo-
cal conditions, ploc and ūloc, include the external fields
and acoustic responses of other cells, but not the response
of the cell for which Eqs. (1) are written. The dipole
polarizability tensor here is diagonal, indicating that a
dipole oriented along the v axis (where v is either x or y)
is sensitive to the particle velocity component along the
same v axis, namely the principal axes of the cell coincide

with the Cartesian axes. In the case where α
(d)
x 6= α

(d)
y ,

the cell is anisotropic. The non-diagonal α(d) will be
discussed in Section IV.

Our analysis will pursue the following steps. First, as
an intermediary to determine the relationship between
the macroscopic properties and the microscopic polariz-
abilities, we will show that each unit cell scatters sound
identically, even in the near-field, to an acoustically small
cylinder of radius a ≪ λ, where λ is the wavelength. This
important observation will allow us to replace the cell
sources with a homogeneous cylinder with mass density
and bulk modulus expressed in terms of the source polar-
izabilities and lattice geometry. The equivalency of the
sources and cylinder is shown in Fig. 1(b) at both the
lattice and unit cell level. Second, using homogenization
techniques, we will relate the properties of cylinders in a
lattice surrounded by background fluid to the properties
of a continuous material, as in Fig. 1(c). Finally, we will
directly determine the polarizabilities from the effective
macroscopic properties.

To compare the behavior of a cell and cylinder, we
analyze the simple case of a plane wave of arbitrary di-
rection incident on a single unit cell. The relationship
found in this study should then be valid for any general
field, including the complex field scattered by a large lat-
tice of cells, because in linear acoustics all complex fields
can be decomposed into a superposition of plane waves.
Throughout this work we assume a harmonic regime and
ejωt time variation, where ω is the angular frequency.
The pressure pext and particle velocity ūext of an inci-
dent plane wave propagating at the angle ϕ relative to

the x axis are expressed as

pext = P0e
−jk0(x cosϕ+y sinϕ),

ūext = k̂
P0

z0
e−jk0(x cosϕ+y sinϕ),

(2)

where P0 is the pressure amplitude and z0 is the charac-
teristic impedance of the background fluid. The wavevec-
tor of this plane wave is determined by the background

fluid wavenumber k0 and the unit vector k̂ = x̂ cosϕ +
ŷ sinϕ, with x̂ and ŷ being the Cartesian basis vectors.
The general acoustic pressure expressions of the waves

launched by the monopole and dipole sources are written
in terms of Hankel functions [45],

p(m) = A(m)H
(2)
0 (k0r) ,

p(d)v =
A

(d)
v

k0δ

[

H
(2)
0 (k0rv+)−H

(2)
0 (k0rv−)

]

= A(d)
v (2 cos θv)H

(2)
1 (k0r) ,

(3)

where r and θv are the polar coordinates of the location
where the fields are evaluated relative to the center of
the cell. The angle θv is relative to the orientation of
the dipole pointing along the v axis with v ∈ {x, y} [see
Fig. 1(a)]. The acoustic pressure launched by the dipole
can be written as the summed pressures of two monopole
sources located at ±δ along the axis, shown in the sec-
ond line of Eq. (3), or as the simplified expression shown
beneath. Although the simplified version is enough for
the theoretical analysis of this section, the first form is
more useful in the numerical simulations and in view of
the physical realization of the dipoles. In the above ex-
pressions, the distances between the monopole sources
forming the dipole and the location where the fields are
evaluated are denoted rv+ and rv−.
The total pressure puc launched by the isolated unit

cell responding to the plane wave given in Eq. (2) can
then be written as the sum of the source components,

puc = p(m) + p(d)x + p(d)y , (4)

where the monopole and dipole acoustic pressures are

given by Eq. (3) in which A(m) and A
(d)
v are provided

by Eq. (1) with ploc = pext and ūloc = ūext. We pa-
rameterize θv in one variable θ such that θx = θ and
θy = θ − π

2 to obtain the expressions of the monopole
and dipole pressures appearing in the above equation as

p(m) = α(m)P0H
(2)
0 (k0r) ,

p(d)x = α(d)
x

P0

z0
cosϕ (2 cos θ)H

(2)
1 (k0r) ,

p(d)y = α(d)
y

P0

z0
sinϕ (2 sin θ)H

(2)
1 (k0r) .

(5)

We will now compare puc with the scattered field from
the plane wave of Eq. (2) incident on an anisotropic cylin-
der of radius a, relative bulk modulus κcyl, and relative
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mass density tensor ρcyl. In this work, the relative ma-
terial properties are normalized to the properties of the
background fluid. It has recently been shown that the
acoustic pressure scattered by this anisotropic cylinder
can be written as an infinite sum of Bessel-like functions
[46]. For acoustically small cylinders, where a ≪ λ, only
the first three terms corresponding to the monopole and
dipole moments dominate and the scattered pressure field
assumes the closed-form expression,

pcyl =B0P0H
(2)
0 (k0r) +

B1,xP0 cosϕ (2 cos θ)H
(2)
1 (k0r) +

B1,yP0 sinϕ (2 sin θ)H
(2)
1 (k0r) ,

(6)

where

B0 = j (k0a)
2 π

4

[

1−
1

κcyl

]

,

B1,v = (k0a)
2 π

4

[

1− ρcyl,v
1 + ρcyl,v

]

.

(7)

Remarkably, the expressions of the coefficients B0, B1,x,
and B1,y for the acoustically small anisotropic cylinder
assume the same exact form as for an acoustically small
isotropic cylinder [47]. In fact, when ρcyl,x = ρcyl,y,
Eqs. (6) and (7) reduce to the expression derived for
an isotropic cylinder [47].
By comparing the scattered field expressions for the

unit cell in Eqs. (4) and (5) and subwavelength
anisotropic cylinder in Eq. (6), we can relate the po-
larizabilities to the coefficients B0 and B1,v,

α(m) = B0,

α(d)
v = z0B1,v,

(8)

giving us a direct relationship between the polarizabilities
and the macroscopic cylinder properties.
We have now established that a subwavelength cylin-

der can serve as an analogue of the unit cell formed by
polarized sources shown in Fig. 1(a). Therefore, an ar-
ray of these cells scatters sound like an array of cylinders
[Fig. 1(b)]. Because the cylinders are highly subwave-
length, the first order approximation presented in Eq.
(6) is sufficient to characterize their response regardless
of their orientation and proximity in an array. Next, we
homogenize the lattice of cylinders and background fluid
such that it is equivalent to a continuous material of rel-
ative effective properties κeff and ρeff,v, as shown in Fig.
1(c).
Since the compliance of mixes of two fluids is the aver-

age of the fluid compliances [46], we obtain a closed-form
relationship between κeff and κcyl, namely

κ−1
cyl = f−1

(

κ−1
eff − 1

)

+ 1, (9)

where f is the filling fraction. Homogenizing the mass
density is more involved. One standard approach is to
send plane waves in the x and y directions through a

lattice of cylinders and to obtain the effective densities
along these axes from reflection and transmission coeffi-
cient simulations [13, 48]. This numerical method pro-
duces the mapping between the effective and cylinder
mass densities along the x and y axes.

ρcyl,v = g(ρeff,v), (10)

where v represents any of the Cartesian axes x or y. The
mapping g is shown in Fig. 1(d) with solid lines for two
cylinder lattices (square and hexagonal). We conducted
the simulation in COMSOL with highly subwavelength
cylinders packed at a maximum density in the specified
arrangement. This simulation approach has been de-
scribed in detail in [13] and has been used successfully
to design and characterize various metamaterial devices
[15, 20, 29]. A closed-form expression of the mapping in
Eq. (10) can be obtained by fitting the numerically sim-
ulated g [49]. The result is independent of the cylinder
radius, given that the unit cells are subwavelength and
the filling fraction is fixed.
We note that the component ρcyl,v depends only on

ρeff,v and not on the mass density component in the di-
rection perpendicular to v. This can be explained by Eqs.
(7), where it is evident that the strength of the dipole
along the direction v for an acoustically small anisotropic
cylinder depends only on the mass density component
along v.
Combining Eqs. (7) to (10), we can finally write

the polarizabilities directly as functions of the effective
macroscopic properties,

α(m) = jf−1 (k0a)
2 π

4

(

1−
1

κeff

)

,

α(d)
v = z0(k0a)

2π

4

[

1− g(ρeff,v)

1 + g(ρeff,v)

]

.

(11)

Now, we develop a method for finding the amplitudes
of the numerous interacting sources in the lattice that
represents a continuous material. The response of a single
source is derived from both the external waves and the
contributions of all of the other sources. The amplitudes
of the sources in the ith unit cell in a set of N total cells
can be written as

A
(m)
i = α

(m)
i






pext +

N
∑

n=1
n6=i

(

p(m)
n + p(d)n,x + p(d)n,y

)






,

A
(d)
i,v = α

(d)
i,v






uext,v +

N
∑

n=1
n6=i

(

u(m)
n,v + u(d)

n,xv + u(d)
n,yv

)






,

(12)

where p
(m)
n , p

(d)
n,x, and p

(d)
n,y are the acoustic pressures pro-

duced by the monopole and dipoles oriented along the x
and y directions of the n-th cell at the position of the i-th
cell. They are given by Eqs. (3), in which r is the distance
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between the centers of the i-th and n-th cell. Similarly,

u
(m)
n,v represents the v component of the particle velocities

produced by the monopole source, and u
(d)
n,wv represents

the v component of the particle velocity produced by the
dipole oriented along the w axis of the n-th cell at the
position of the i-th cell. Here, both v and w can be either
of the x and y axes. The expressions of these velocities
are given below,

u(m)
n,v =

A
(m)
n

jz0

(

r̂ · v̂
)

H
(2)
1 (k0r),

u(d)
n,wv =

jA
(d)
n,w

k0z0

{

(

r̂ · v̂
)

k0 cos θw

[

H
(2)
0 (k0r) −H

(2)
2 (k0r)

]

−
(

θ̂w · v̂
) 2

r
sin θw

[

H
(2)
1 (k0r)

]

}

,

(13)

In these equations, the v component of the particle ve-
locity is found from the dot product of the Cartesian
basis vector v̂ with the source velocity vector, which is

expressed using the polar basis vectors r̂ and θ̂w.

This allows for a system of equations to be written,
from which all of the source amplitudes can be solved
for given their polarizabilities and the external impinging
field. A general expression of this system is

Ek =
3N
∑

j=1

CkjAj , (14)

where Ckj is a square matrix of dimension 3N that en-
compasses the source interactions, Ek is a column matrix
of the external field sensed at each source, and Aj is a
column matrix of the source amplitudes we want to de-
termine. The source amplitudes are ordered such that
every set of three (one monopole and two dipoles) corre-
sponds to the same unit cell. Consequently, 3 × 3 sub-
matrices along the diagonal of Ckj represent interactions
of sources within the same unit cell. In our model, we
assume that there is no intra-cell feedback, or in other
words, the response of a cell is not coupled with its own
field. As a result, these submatrices will each be set as
the identity matrix.

In summary, a continuous material of arbitrary geome-
try with effective properties κeff and ρeff can be modeled
by an array of subwavelength-spaced unit cells. Once the
appropriate polarizabilities are calculated via Eqs. (11),
the system of equations shown in Eq. (14) can be solved
to determine the response to a given external field. Our
demonstrations of this approach will utilize both square
and hexagonal lattices of cells, but any unit cell with
sufficiently subwavelength dimension is viable. We will
demonstrate the modeling of continuous media with rect-
angular and circular geometries.

III. HOMOGENEOUS ISOTROPIC SLAB

To evaluate our source model and the relationship
we found between their polarizabilities and macroscopic
acoustic properties, we compared our simulations of scat-
tered pressure fields using an array of unit cells to FEM
simulations of a continuous material. For the source
model, the scattered field is the sum of all the source
responses with amplitudes found from solving the sys-
tem in Eq. (14). In the FEM simulation, it is simply the
total field subtracted by the incident field.
Our first demonstration is a plane wave incident on

a homogeneous isotropic slab. Oblique incidence of 30◦

was chosen so that both dipole orientations would be ex-
cited and the relative material properties κeff = 3 and
ρeff = 2 were selected to produce significant reflected
and transmitted waves. The geometry was defined in
terms of the wavelength λ of the plane wave in the back-
ground fluid. We examined two slab geometries, both
of width w = 0.6λ, but differing heights of h = 2λ and
h = 8λ so that scattering dominated by diffraction/edge
effects could be compared to more uniform scattering.
The slabs were modeled by cells with highly subwave-
length spacing of λ/50 in a square array. Because the
slab is homogeneous, all of the unit cells share the same
set of polarizabilities, and because the mass density is

isotropic, α
(d)
x = α

(d)
y .

The scattered fields in a 6λ by 6λ region found from
both simulation methods are shown on the left in Fig.
2. The scattered fields generated by the source model
closely match those found through the FEM solution of
the wave equation for both geometries. This indicates
that the dimension of the unit cell was sufficiently small
to model the geometry and physics, and that the polariz-
abilities were accurate representations of the macroscopic
properties. The error is quantified in the rightmost plots
of Fig. 2, shown as the difference in the pressure ampli-
tudes of the FEM and source model results relative to
the maximum amplitude in the domain. The high er-
ror points within the slab are a result of samples very
near to the sources, where the pressure approaches infin-
ity. Other error can be attributed to the approximations
made when deriving the scattering by a cylinder from
an incident plane wave. Namely, the response was as-
sumed to be first order and for a highly subwavelength
cylinder. While the tested unit cell dimension of λ/50
is subwavelength, it is not small enough for there to be
no noticeable mismatch between the actual and approxi-
mated fields, especially when the error is compounded by
the interactions among all of the cells. Nevertheless, the
difference manifests in amplitude but not in phase and it
is expected to be much smaller than the differences im-
posed by typical fabrication tolerances. Another way to
view the error is by checking for the conservation of en-
ergy. We calculated the difference between the acoustic
power entering and leaving the source model simulation
domain relative to the incident power. The short slab
had a 1.7% gain in power and the tall slab had a 3.2%
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FIG. 2. The scattering from a plane wave obliquely incident on acoustically short and tall slabs (outlined in black) of κeff = 3
and ρeff = 2 is compared between an FEM and source model simulation. The amplitudes of the sources in the cell lattice are
shown for slab sections of equal dimension. The error of the source model scattered field amplitude is plotted relative to the
maximum pressure in the simulated region.

gain. This clarifies that there is indeed inaccuracy due
to the approximated scattered fields rather than wrongly
chosen polarizabilities for the desired macroscopic acous-
tic properties. Even so, with the intent of engineering
application and physical realization, the approximations
that were made and the chosen cell dimension are still a
strong demonstration of the model’s capabilities.
In the middle of Fig. 2 are plots of the source ampli-

tudes in the center 2λ tall sections of both slabs. Each
pixel represents a single source, with its position in the
cell lattice defined by its row and column. The amplitude
distributions help to visualize how the acoustic behavior
is dominated by edge effects in the shorter slab, but ap-
proaching uniformity in the center of the taller slab.
While the results shown in this section are for only

one set of material properties in the vicinity of the back-
ground fluid, this is not the limit of the capability of the
source model. The scattered fields can be solved for more
complex property distributions, as will be demonstrated
for an acoustic cloak in the following section.

IV. TRANSFORMATION ACOUSTICS AND

CLOAKING

Transformation acoustics enables the derivation of the
bulk modulus and mass density distributions necessary
to physically replicate the effects of a desired coordinate

transformation. In view of the emerging active metama-
terials with sensor-driver unit cells, it is useful to develop
an adaptation of transformation acoustics to directly
solve for the polarizabilities, rather than the macroscopic
acoustic properties. We start with a general coordinate
transformation given as

(x′, y′, z′) = (x′(x, y, z), y′(x, y, z), z′(x, y, z)),

J =







∂x′

∂x
∂x′

∂y
∂x′

∂z
∂y′

∂x
∂y′

∂y
∂y′

∂z
∂z′

∂x
∂z′

∂y
∂z′

∂z






,

(15)

where the new primed coordinates are functions of the
original non-primed coordinates and J is the Jacobian
matrix of the transformation. Using the linear acoustic
constitutive relations for an inviscid fluid, we can then
solve for the bulk modulus and mass density tensor nec-
essary to replicate this transformation in the original co-
ordinate system as

κ′ = |J|
−1

κ,

ρ
′ = |J|

−1
JT

ρJ,
(16)

where |J| is the determinant of the Jacobian and JT is
its transpose [50]. For the source model, we assume an
isotropic background fluid. Therefore, the mass density
before transformation is simply ρ = ρ0I, where I is the
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identity matrix. Eq. (16) can now be rewritten in terms
of the relative effective properties as

κ′
eff = |J|

−1
,

ρ
′
eff = |J|

−1
JTJ = Ĵ,

(17)

with Ĵ being defined for conciseness. Finally, we express
these effective material properties in the principal axes,
such that the mass density and Jacobian tensors are di-
agonal. Employing the superscript star (∗) to represent
a tensor evaluated in a coordinate system in which the
tensor is diagonal (i.e. the principal axis system), we
use Eqs. (11) to substitute the polarizabilities for the
macroscopic properties. Consequently, the transforma-
tion acoustics expressions become

α(m) = jf−1 (k0a)
2 π

4
(1− |J|) ,

α(d)
v = z0 (k0a)

2 π

4

[

1− g(Ĵ∗
v )

1 + g(Ĵ∗
v )

]

.
(18)

Therefore, each diagonal element of the dipole polariz-
ability tensor indexed by v is solved for independently.
A free space cylindrical cloaking shell is a good trans-

formation acoustics device to demonstrate the capabil-
ity of microscopic modeling, as steep property gradients
and anisotropy are required. One set of solutions can
be found from a coordinate transformation in the radial
direction from r to r′ [2],

r′ =
R2 −R1

R2
r +R1, φ′ = φ (19)

where R1 is the inner radius and R2 is the outer radius
of the shell. The resultant radially varying mass density
and inverse bulk modulus are according to Eq. (16) and
[2]

ρ′r =
r′

r′ −R1
, ρ′φ =

r′ −R1

r′
,

(κ′)−1 =

(

R2

R2 −R1

)2
r′ −R1

r′
.

(20)

The density is anisotropic, with principal components ρ′r
in the radial direction and ρ′φ in the tangential direction.
Since these material properties are already determined

in the principal axes, we can directly apply Eqs. (18)
to obtain the polarizabilities along the principal axes in
which |J | = (κ′)−1, Ĵ∗

r = ρ′r, and Ĵ∗
φ = ρ′φ according to

Eq. (17).
In view of the numerical simulations that follow, we

express the dipole polarizability tensor in a Cartesian
system of coordinates (x′, y′) by properly rotating the
polar coordinates by angle φ [51, 52]. We obtain the
non-diagonal dipole polarizability tensor

α̂
(d) = Q−1

α
(d)Q, Q =

[

cosφ sinφ
− sinφ cosφ

]

, (21)

where Q is the rotation matrix. The physical signifi-
cance of the non-diagonal elements of α̂

(d) is that the
dipoles are not aligned along the principal directions of
anisotropy and must be sensitive to the particle velocity
in all directions, not just along their axes.

The acoustic cloak was simulated using the same
source model as the slab simulation of the previous sec-
tion, but with anisotropic and spatially varying polariz-
abilities. The chosen geometry was a scatterer of radius
R1 = 0.6λ encapsulated by a cloak of radius R2 = 2R1,
both modeled with hexagonally packed source cells [see
Fig. 1(a)] spaced λ/50 apart. This packing method was
employed to better approximate the curved geometry. A
scatterer with κeff = 50 and ρeff = 50 was selected so
that there would be high contrast between the cloaked
and uncloaked pressure fields. The position of the source
cells used to model the scatterer (blue) and cloak (red)
are shown with solid circles in Figs. 3(a) and (b).

The results of the simulation for an incident plane wave
in the x-direction are displayed in Figs. 3(c)-(f). In Fig.
3(c), the total pressure field for the uncloaked scatterer is
shown. A high amplitude reflection region and low am-
plitude transmission region are clearly visible, with radial
scattering above and below. In contrast, only the back-
ground plane wave is present outside the cloaking shell in
Fig. 3(b). The absence of scattering indicates that the
prescribed anisotropy and steep material gradients were
accurately represented. Also supporting this is the high
curvature of the waves around the inner cloak boundary,
which should be expected for the density approaching in-
finity. In Fig. 3(e) and (f), the normalized amplitudes
of just the scattered fields are plotted to highlight the
effectiveness of the cloak.

It should be expected that the performance deterio-
rates as the lattice period of the source cell medium
and/or the material parameter gradients increase with
respect to the wavelength of the external field. This ef-
fect was assessed by varying the cloak thickness and unit
cell dimension. The results are shown in Fig. 4 as polar
plots of the scattered field amplitudes at r = 20λ. De-
creasing the thickness of the cloak steepens the property
gradients and reduces the number of cells if spacing is
held constant. This results in a highly discretized prop-
erty curve and a less effective cloak, as shown by the
scattered pressure trend in Fig. 4(a). Additionally, a
thin cloak may be more heavily impacted by boundary
effects, as seen in other homogenized media such as wired
electromagnetic metamaterials [53, 54]. The polarizabil-
ities of the sources on the boundaries of the structure
could potentially be adjusted to account for this and bet-
ter match the desired material properties. The number of
unit cells can be reduced directly by increasing the unit
cell dimension, with similar effect on the performance, as
shown in Fig. 4(b). The relationships used to calculate
the polarizabilities will lose accuracy as the dimension
approaches the scale of the wavelength.

An alternate method of studying the effects of the
source model is to design a cloak for a single incident
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c d

e f

a b

FIG. 3. Demonstration of the source modeling of a cloaked
scatterer in a background plane wave in the x-direction. The
cloak and scatterer are represented as source cells represented
at solid circles with spacing of λ/50 for (a) the full geometry
and (b) a zoomed in view. The total pressure is shown for
(c) the scatterer and (d) the cloaked scatterer. The normal-
ized scattered pressure magnitude is also shown for (e) the
scatterer and (f) the cloaked scatterer.

b

FIG. 4. Polar plots of the scattered pressure from a cloaked
scatterer at a radius of 20λ for varying (a) cloak thickness
and (b) unit cell dimension.
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FIG. 5. The cloak performance, quantified by the cloaked
scattered power relative to the uncloaked scattered power, is
plotted as a function of the frequency of the incident plane
wave. The cloak geometry was fixed, but the polarizabilities
were either constant or varying with frequency.

wave frequency f0 and then evaluate its performance over
a frequency range. We used the geometry shown in Fig.
3 and as a performance metric chose the ratio of the scat-
tered power with the cloak Pcloaked to that without the
cloak P0. While the macroscopic material properties are
independent of the incident frequency (assuming no dis-
persion), the source polarizability amplitudes are not, as
their calculation in Eq. (11) includes a k0 term. We ex-
amined cloak performance for both the cases of constant
polarizabilities designed for f0 and varying, frequency de-
pendent polarizabilities. The results are plotted in Fig.
5. It is clear from the steep increase in scattering that
for a cloak to operate outside a very narrow frequency
band, it is necessary for the polarizabilities to vary, as
their amplitude must depend on frequency. When this
is true, the performance approaches the ideal zero scat-
tering as the unit cell dimension becomes increasingly
small compared to the wavelength and the first order ap-
proximation employed in our derivations becomes more
accurate. It should also be noted that the frequency
independence of the required polarizability phases vio-
lates causality and practical implementation will be con-
strained to some bandwidth. In general, the parametric
studies shown in Figs. (4) and (5) provide useful guide-
lines for the physical realization of such a cloak with ac-
tive unit cells and insight into how the performance will
compare to the ideal continuous design.

V. CONCLUSION

We derived an analytical method to relate the polar-
izabilities of media composed of polarized sources sep-
arated by significantly subwavelength distances to the
macroscopic acoustic properties of acoustically equiva-
lent continuous materials. We considered bulk trans-
formation acoustic media in which the high mass den-
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sity anisotropy and the steep gradients of bulk modulus
and mass density are accurately modeled by collections
of unit cells composed of one monopole and two dipole
sources whose amplitude and phase is determined by the
local acoustic pressure and particle velocity. The polariz-
abilities of a single cell were first solved for in terms of the
relative bulk modulus κcyl and mass density ρcyl of a sub-
wavelength cylinder by equating the expressions for the
scattered fields from an incident plane wave. The cylin-
der properties necessary for the desired effective proper-
ties κeff and ρeff were then found from the homogeniza-
tion of an array of cylinders placed in a background fluid.
Finally, the set of polarizabilities could be determined di-
rectly from the effective properties.

Remarkably, the source polarizabilities inside each cell
are related through closed-form expressions to the local
effective macroscopic material properties in the equiva-
lent continuous medium. This enabled the application of
the source model to transformation acoustics and deriva-
tions of the source polarizabilities directly from the un-
derlying coordinate transformations.

The source model was validated by comparing the
acoustic fields scattered by several continuous homoge-
neous and inhomogeneous media and obtained in numer-

ical simulations performed with COMSOL Multiphysics
with the fields scattered by the media realizations with
source lattices. In particular, a free space cloak was mod-
eled to exhibit the ability to accurately represent steep
material property gradients and anisotropy. The simu-
lated cloak produced almost no scattered field, indicat-
ing that the material properties and geometry were ac-
curately represented.
The relationships between the polarizabilities and

macroscopic acoustic properties presented in this work
will help to enable the development of new active meta-
materials using the sensor-driver architecture. With a
suitable physical implementation, the effective bulk mod-
ulus and mass density tensor should be independently
controllable in each unit cell across 2D and 3D bulk ge-
ometries. Ultimately, this would provide a path towards
realizing general reconfigurable acoustic devices and ex-
citing applications of transformation acoustics such as
cloaking.
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