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We show that two-dimensional non-Hermitian photonic crystals made of lossy material can ex-
hibit nontrivial point gap topology in terms of topological winding in its complex frequency band
structure. Such crystals can be either made of lossy isotropic media which is reciprocal, or lossy
magneto-optical media which is non-reciprocal. We discuss the effects of reciprocity on the prop-
erties of the point gap topology. We also show that such a nontrivial point gap topology leads
to non-Hermitian skin effect when the photonic crystal is truncated. In contrast to most previous
studies on point gap topology which used tight-binding models, our work indicates that such non-
Hermitian topology can studied in photonic crystals, which represent a more realistic system that
has technological significance.

I. INTRODUCTION

Topological band theory has played a central role in
the development of condensed matter physics in the past
two decades [1–5], and has received increased attention
in other areas such as photonics and acoustics [6, 7].
Topological band theory was initially developed for
Hermitian systems. However, in recent years there
have been growing interests in exploring topological
band theory of non-Hermitian systems [8–15]. Such
interests are in part motivated by the developments
in topological photonics, where non-Hermitian features
such as gain and loss are quite common and are essential
for a number of device applications such as lasers and
absorbers [16–19].

There are important connections as well as differences
between the topological band theory of Hermitian
and non-Hermitian systems [9, 14]. For topological
classifications of Hermitian systems, the presence of
gaps in the energy eigenvalue spectra plays an essential
role [2]. To classify the topology of non-Hermitian
systems, one needs to generalize the concept of the
energy gap. Since in a non-Hermitian system the energy
eigenvalues become complex, there are several different
generalizations, including the point gap [8, 9, 14], the
line gap [8, 9], and the separable band condition [9, 20].

In this work, we focus on the point-gap topology. An
energy band is said to have a point gap at a reference
energy if the reference energy does not lie on the energy
band [14]. For non-Hermitian systems, since the energy
eigenvalues are complex, an energy band can form a loop
in the complex energy plane. With respect to a reference
energy located inside the loop, the energy band can thus
acquire a non-zero winding number. Such a non-zero
winding number defines a nontrivial point-gap topology

∗ shanhui@stanford.edu

with respect to the reference energy. We note that the
point-gap topology is unique to non-Hermitian systems.
The winding number as defined above is exactly zero
for any Hermitian system. Also, the point-gap topology
classifies the topology of the energy eigenvalues. This
is in contrast to the topology of the Hermitian systems
which classifies the topology of the energy eigenstates [9].

The presence of nontrivial point-gap topology of an
infinite bulk media manifests as non-Hermitian skin
effect when the medium is truncated [14, 21–25]. For
a semi-infinite media with an open boundary condition
on one edge, all states become localized on the edge
and all of these states have energy lying inside the
loop, with the degeneracy of the edge state equal to the
winding number. The nontrivial point-gap topology also
manifests in the spectrum of a finite system with open
boundary condition on both edges [14, 21].

In this paper, we explore point-gap topology and
non-Hermitian skin effects in photonic crystal systems.
Previously these topological effects have been studied
both theoretically and experimentally in various plat-
forms such as optics [26–28], electrical circuits [29, 30],
mechanical systems [31], exciton-polaritons [32], ultra-
cold atoms [33] and acoustic crystals [34]. Exploring
these effects in photonic crystals allows one to demon-
strate non-Hermitian topology in a system that is of
significant technological relevance [35]. Moreover, in all
previous studies, the systems can be effectively mod-
elled using tight-binding Hamiltonians, which describe
the physics of the systems in terms of the coupling
between discrete lattice sites that are close to each
other. While the tight-binding approximation is valid
for approximately localized atomic orbitals for electrons
in solids, they are less applicable to media such as
photonic crystals, where the interactions can be highly
nonlocal [36–38]. Thus, the study of effects related to
point-gap topology in photonic crystals may bring new
insights into non-Hermitian topological physics. Also
related to our work here, complex band structures in
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non-Hermitian photonic crystals have been well studied,
particularly in work focusing on PT -symmetry, excep-
tional points and unidirectional transmission [39–41].
There have also been various studies on non-Hermitian
topological band structure in photonic crystals [42, 43]
but these studies focus only on line-gap topology. To
the best of our knowledge, no previous studies have
investigated non-Hermitian topological photonic crystals
from a point-gap topology perspective.

The rest of the paper is organized as follows: In Sec. II,
we describe the theoretical condition for achieving non-
trivial point-gap topology in photonic crystals. We show
that in one-dimensional systems nonreciprocity is es-
sential for achieving nontrivial point-gap topology. In
contrast, in two-dimensional systems, it is possible to
achieve nontrivial point-gap topology along various loops
inside the first Brillouin zone in a reciprocal system pro-
vided that certain spatial symmetry is broken. Motivated
by the theoretical conditions as discussed in Sec. II, in
Sec. III, we present numerical studies of nontrivial point-
gap topology and non-Hermitian skin effects in both re-
ciprocal and nonreciprocal photonic crystal structures.
We conclude in Sec. IV.

II. THEORETICAL BACKGROUND

FIG. 1. (a) Reciprocal complex band structures in 1D lead to
trivial windings while (b) nonreciprocal complex bands can
give rise to nontrivial windings.

The non-Hermitian point-gap topology for a single en-
ergy band in a 1D system corresponds to a closed loop
traced by the band structure ω(k) in the complex fre-
quency plane. The point-gap topology is characterised
by the winding number defined as:

W :=

∫ π/a

−π/a

dk

2π
∂k arg(ω(k)− ω0) , (1)

where ω is a normalized complex eigenfrequency, k ∈
[−π/a, π/a) is a wavevector in 1D with a being the peri-

odicity and ω0 ∈ C is a reference angular frequency which
can be freely chosen anywhere on the complex plane so
long as it does not lie on an energy band. In this paper,
for energy bands that form a closed loop with a nonzero
spectral area, we will take ω0 to be anywhere in the inte-
rior of the loop for calculations of W . In Eq. (1), W gives
the number of times the complex eigenfrequency winds
around ω0 as k varies across the first Brillouin zone. The
direction of winding gives the sign of W , with the clock-
wise (anticlockwise) direction corresponding to W = −1
(W = 1). For simplicity, in this paper we will only con-
sider complex loops made by a single band. However, the
complex loops could also in principle be made of multiple
bands for photonic crystals. In this case, for a structure
with N bands, one could replace Eq. (1) with

W :=

N∑
n=1

∫ π/a

−π/a

dk

2π
∂k (argωn(k)− ω0) . (2)

If a loop is made of m bands, one could also keep
only the m eigenvalues in the sum, which would be
computationally simpler.

In order to achieve a nontrivial winding in a 1D system,
a necessary condition is to ensure that ω(k) 6= ω(−k)
(Fig. 1(b)). If ω(k) = ω(−k) for all k, the band structure
always has trivial winding (a loop with no enclosed area),
as the band necessarily retraces itself in the complex
plane as k varies from one end of the Brillouin zone to
the other (Fig. 1(a)). Thus, the system cannot have
any spatial symmetry that maps between the states at
k and −k, such as spatial inversion or mirror symmetry.
Moreover, the system must break reciprocity, since in
a reciprocal system ω(k) = ω(−k) [44]. (We include
a proof of this fact for photonic crystals in the Appendix).

The winding number in Eq. (1) is defined for a 1D sys-
tem. For a 2D system with a band structure defined by
ω (kx, ky), we can assign a similar winding number for
any loop inside the first Brillouin zone. As a simple illus-
tration, in this paper, we only consider a square lattice
with a lattice constant a. At any given ky, the straight
path from

(
kx = −πa , ky

)
to (kx = π

a , ky) forms a closed
loop due to the periodic property of the first Brillouin
zone. Therefore, one can define a ky -dependent winding
number

W (ky) =

∫ π/a

−π/a

dkx
2π

∂kx arg (ω(kx, ky)− ω0) , (3)

as a straightforward generalization of the winding
number for 1D systems. Likewise, one can also define a
kx-dependent winding number by tracing out ky.

Similar to 1D systems, in order to achieve a non-zero
winding number W (ky) for a given ky, the structure can-
not have any symmetry that maps between the states at
(kx, ky) and (−kx, ky), which implies a necessity to break
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mirror symmetry with respect to the kx = 0 axis. There-
fore, the photonic crystal cannot have a mirror plane per-
pendicular to the x direction in real space as this would
imply mirror symmetry about the kx = 0 axis. For re-
ciprocal systems, as proved in the Appendix, the band
structure in addition satisfies

ω (kx, ky) = ω (−kx,−ky) , (4)

Therefore, if ky and −ky differ by a reciprocal lattice
vector, W (ky) has to vanish. Thus, for the square lattice
case, by reciprocity we must also have

W (ky = 0) = W
(
ky =

π

a

)
= 0. (5)

At ky = 0 obviously ky = −ky. At ky = π/a, we note
that −ky = −π/a differ from π/a by a reciprocal lattice
vector of 2π/a ŷ, where ŷ is the unit vector along the y
direction. On the other hand, away from these special
ky points, W (ky) can be nonzero even for a reciprocal
system. Thus, in a reciprocal 2D system, it is possible
to achieve nontrivial winding. Moreover, Eq. (4) implies
that

W (ky) = −W (−ky) . (6)

In Sec. III A, we will show an example of a reciprocal
photonic crystal design with nontrivial W (ky). For
a nonreciprocal 2D system, on the other hand, the
constraint of Eq. (4) is no longer applicable. Thus,
provided that the relevant spatial symmetries are also
broken, we can have nonzero W (ky) at ky = 0 and ±πa
and we no longer require W (ky) = −W (−ky). We will
give an example of such a nonreciprocal photonic crystal
structure in Sec. III B.

As was noted in Ref. [14], for a one-dimensional
system, the winding number of the bulk band structure
is directly connected to the behavior of the edge states
when the structure is truncated. In particular, for a
semi-infinite system with an edge on the left (right)
side, there are localized edge states at every complex
energy inside the loop with a positive (negative) winding
number. The degeneracy at each of these complex
energy is equal to the winding number. For finite sys-
tems truncated with open boundary conditions on both
edges, the energy spectrum of the edge states in general
forms lines inside the loop. These edge-state behaviors
are commonly referred to as the non-Hermitian skin
effect [21]. For the two-dimensional system as considered
here, at each fixed ky the system is one dimensional.
Therefore, to probe non-Hermitian skin effects, we
can consider a stripe geometry, in which the system is
periodic along the y-direction and truncated along the
x-direction. With such a stripe geometry, the winding
number behaviors discussed above should manifest in
the non-Hermitian skin effects of the corresponding
semi-infinite and finite systems.

Based on the theoretical discussion above, in the next
section we present numerical results for both reciprocal
and nonreciprocal photonic crystal structures. We
consider both the point-gap topology of the bulk bands,
as well as the corresponding edge state behaviors.

III. NUMERICAL RESULTS

A. Reciprocal 2D photonic crystal

FIG. 2. (a) Unit cell of photonic crystal where the lattice
periodicity is a. Here, the background is air and the triangle
has refractive index ntri = 2− 1i. (b) The lowest three bands
of the real part of the eigenfrequences in the first Brillouin
zone for the photonic crystal geometry in (a). The dashed
black lines at fixed ky = −2π

3a
, 0 and 2π

3a
indicate the path

traced for the reduced 1D kx-space band diagrams plotted in
Fig. 3. (c) Finite stripe geometry that is periodic along y and
has finite N = 20 unit cells in the x direction. The ends in
the x-direction have perfectly matched layers (PML) that are
matched to air.

In this section, we consider a 2D square-lattice pho-
tonic crystal with lattice periodicity a. Each unit cell
(Fig. 2(a)) consists of an isosceles right-angle triangle
where the two legs have length 0.6a. The geometry of
the unit cell is chosen such that both mirror symmetries
in the x and y directions are broken. The triangle region
consists of dielectric material with refractive index
n = 2− i and is surrounded by air (n = 1). Throughout
the paper, we use the eiωt convention. Thus, a negative
imaginary refractive index component means that the
material inside the triangle is lossy and the structure is
non-Hermitian.

We numerically determine the photonic band structure
of the photonic crystal system shown in Fig. 2(a) using
COMSOL Multiphysics, which employs finite-element
methods to numerically solve Maxwell’s equations. Here,
we consider TE waves which have their magnetic field



4

FIG. 3. The lower part of each panel shows the band structure of the infinite 2D photonic crystal, plotted on the complex
frequency plane, as well as the spectra of the finite stripe geometry. The band structure is plotted in black and the arrows give
the direction of winding as kx varies parametrically from kx = −π/a to π/a. Clockwise winding corresponds to W = −1 and
the enclosed area is shaded red whereas anti-clockwise winding corresponds to W = 1 and the enclosed area is shaded blue.
The eigenfrequencies of the finite stripe geometry is colored by mean |E(x, y)| field position, where red signifies an electric field
distribution localized at the right edge and blue signifies electric field localization localized at the left edge. The upper panels
represent the electric field distribution of the eigenmodes of the stripe geometry at various complex frequencies indicated in the
bottom panel. (a), (b) and (c) correspond to ky = −2π

3a
, 0 and ky = 2π

3a
respectively and A-I are the normalized electric field

eigenstates.

in the xy-plane. Since the material in the triangle is
lossy for a given k = (kx, ky), the eigenvalues of the
energy are in general complex. The real part of the
frequency eigenvalues Re(ω) as a function of wavevector
k in the first Brillouin zone is plotted in Fig. 2(b) for
the three photonic bands with lowest Re(ω). Where it
is unambiguous in the plot, we will refer to the band
with the lowest Re(ω) band as the first band, the second
lowest as the second band, etc.

In the bottom panels of Fig. 3, we plot the same
band structure ω (kx, ky) as shown in Fig. 2(b), along
various lines in the first Brillouin zone at fixed ky, with
ky = 0,± 2π

3a . At each fixed ky, we vary kx from −πa
to π

a and plot the corresponding complex frequency
eigenvalues in the complex frequency plane. Since
kx = −πa and kx = π

a are equivalent, the frequencies of
the bands form loops in the complex frequency plane.
At ky = 0, all bands exhibit trivial point-gap topology,
which is consistent with Eq. (5). As kx varies, the
frequency in each band traces along a curve segment and
eventually returns to the starting point. The resulting
loop does not enclose any interior points. At ky = ± 2π

3a ,
the second and third bands exhibit nontrivial point-gap
topology. Each forms a loop that encloses an area in
the complex frequency plane. The frequency eigenvalues
wind nontrivially around any frequency value within the
area, and so the winding number is nonzero when the
reference frequency ω0 is chosen to be in the interior

of the loop. Such nontrivial winding is consistent with
the theoretical discussion above. Also, for the same
band the directions of winding change sign between
ky = ± 2π

3a . This is a consequence of reciprocity as noted
in Eq. (6). Thus, the results here provide an illustration
of the theory as discussed in the previous section. We
also note that the first band does not seem to exhibit
any nontrivial point-gap topology at ky = ± 2π

3a . This
may be because for the first band, the structure behaves
as an effective uniform medium since the corresponding
wavelength is significantly larger than the periodicity for
most of the first Brillouin zone.

In the band theory for one-dimensional non-Hermitian
systems, nontrivial point-gap topology of bulk system
manifests in the edge state behavior as manifested by
the non-Hermitian skin effect. In a corresponding finite
system truncated by open boundary conditions, all
eigenstates are localized at the edge. Moreover, the
eigenfrequency spectra of the edge states fall within
the areas enclosed by the bulk bands [9, 14, 21]. The
non-Hermitian skin effects however are typically stud-
ied within tight-binding models. Here we show that
such non-Hermitian skin effects manifest in the two-
dimensional photonic crystal systems. For this purpose,
we consider a structure shown in Fig. 2(c), which is pe-
riodic along the y-direction, and contains 20 unit cells in
the x-direction. In the x-direction, outside the structure
we include perfectly matched layers [45] (PML) that
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are matched to air. We have chosen to use PML at the
boundaries as PML allows us to simulate air outside the
photonic crystal, which is more realistic. We note that
this boundary condition imposed on the edges of the
photonic crystal is not the same as the open boundary
condition commonly used in the tight-binding model [46].

Our finite stripe geometry is still periodic along y and
so we can plot the eigenvalues corresponding to specific
ky. In the bottom panels of Fig. 3, we plot the eigen-
frequencies of such a finite stripe for ky = −2π

3a , 0 and
2π
3a as colored dots. Here, the color represents the mean
position x̄ of the electric field norm |E(x, y)| defined as

x̄ =

∫ a
0
dy
∫ Na
0

dx|E(x, y)|x∫ a
0
dy
∫ Na
0

dx|E(x, y)|
. (7)

where N is the number of unit cells in the x direction.
The colorscale is chosen such that eigenstates with
electric field localized at the left edge of the stripe
(x = 0) are colored blue, and eigenstates with field
localized at the right edge (x = 20a) are colored red.
Delocalized eigenstates have a fairly central x̄ and are
colored grey. In panels A-I, we plot the corresponding
eigenstates of the electric field norm |E| corresponding
to various eigenfrequencies labelled in the bottom panels
of Fig. 3.

For the bands that exhibit trivial point-gap topology,
(i.e. all three bands at ky = 0, as well as the first bands
at ky = ± 2π

3a ), the corresponding eigenfrequencies of
the finite stripe overlap with the bands of the infinite
structure with only slight differences due to finite size
effects of the stripe geometry. The overlap between
the finite stripe and the bands becomes closer with
increasing number of unit cells, N . The eigenstates
corresponding to trivial bands (panel C for ky = − 2π

3a ,

panels D,E,F for ky = 0, and panel I for ky = 2π
3a ) are

delocalized inside the stripe. For the bands that exhibit
nontrivial point-gap topology (i.e. the top two bands at
ky = ± 2π

3a ), the corresponding eigenfrequencies of the
finite stripe lie in the areas enclosed by the bands. The
corresponding eigenstates (panel A and B for ky = − 2π

3a ,

panels G and H for ky = 2π
3a ) are localized on the edges.

Moreover, for these two ky values, the eigenstates of
the stripe are localized at opposite edges, in consistency
with the theoretical studies of non-Hermitian skin effects
which correlate the edge where the state is localized
with the direction of the winding of a bulk band [14].
For our setup, a winding number of −1 (1) corresponds
to localisation on the right (left) edge of the finite
stripe. The numerical results here indeed indicate that
the non-Hermitian skin effect can be studied in the
photonic crystal system, in spite of the use of a typical
interface between photonic crystal and air which is not
the same as the open boundary condition assumed in
many previous theoretical tight-binding studies.

For the stripe structure, in addition to the states
associated with the bulk bands, there are also additional
discrete edge states with frequencies significantly outside
either the bulk band or the encircled regions associated
with them. These appear to occur as pairs in Fig. 3(a-c,
bottom), where one is localized at the left (colored blue)
and the other is localized at the right (colored red).
These states are the edge states associated with the
presence of the line gap and in our system may or may
not have a topological origin. The may also be trivial
defect edge states or edge states corresponding to the
PML. The number of these states does not increase as
the number of unit cell increases and the frequencies of
these states are located at isolated points. In contrast,
the number of the localized edge states associated
with the bulk band, as arised from the non-Hermitian
skin effects, does increase as the number of unit cell
increases. And the frequencies of these states form
essentially continuous lines in the complex frequency
plane in the limit of large number of unit cells.

FIG. 4. Same as Fig. 3, except with ky = −0.36π/a, and at a
range of real part of frequencies that are higher as compared
with Fig. 3(a). Point B is the Bloch point.

In our system, we can also find more complicated
winding patterns, such as a figure eight (or twisted
loop [34]) winding, depicted in Fig. 4. Here, we use the
same parameters as Fig. 3 but consider the system at
ky = −0.36π

a . A bulk band exhibits a loop that winds
around two separate regions with opposite winding
directions. For the finite stripe structure as shown in
Fig. 2(c), the eigenstates associated with this band have
their frequencies forming in a line in these two regions.
The eigenstates in these two regions are localized on
opposite edges as shown in Fig. 4, panel A and C, in
consistency with the correlations between the winding
direction of the bulk band and the localization behavior
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as commented previously. The bulk band self intersects
at the Bloch point [47, 48] (Point B in Fig. 4). Corre-
sponding to the Bloch point of the bulk band, the finite
stripe has an eigenstate that is delocalized and with its
eigenfrequency very close to the Bloch point, as shown
in panel B of Fig. 4. Bloch points are interesting because
they signify an unusual topological phase transition
between two class of edge states localized on the opposite
ends of the stripe. For this reason, the Bloch point has
been said to correspond to a ‘bipolar skin effect [47].’
Delocalized eigenstates at discrete points are unique
to non-Hermitian systems and may have applications
such as in extended laser modes [47]. Bloch points were
recently experimentally demonstrated in topological
acoustic crystals for a tight-binding system [34]. Here
we show that they can be realized in reciprocal photonic
crystal structures.

FIG. 5. Real part of the eigenfrequencies as a function of ky
for the finite stripe geometry shown in Fig. 2(c), where the
triangle consists of a reciprocal material. The color indicates
the mean position of the electric field for each eigenmodes.

In Fig. 5, we represent the bandstructure of the
stripe geometry by plotting the real part of the eigen-
frequencies as a function of ky for the stripe geometry
shown in Fig. 2(c). We use the same color scheme as
used in Fig. 3 to represent the mean position x̄ of the
eigenstate. The specific ky values that are considered in
Figs. 3 and 4 are denoted using vertical lines. We note
that with the exception of the first band, significant
part of all the upper bands are localized on either
edges, in consistency with the results that we show in
Figs. 3 and 4 for the cases of specific ky values. Also,
the bandstructure is symmetric around ky = 0. And
two states at ky and −ky are localized at opposite
edges, in consistency with the theoretical discussions
in Sec. II. Another interesting observation is that we
can have point-gap topological transitions at nonzero
ky. An example is the second band between −2π

3a and
−0.36π

a . When a point-gap topological transition occurs
at nonzero ky, it often corresponds to a figure eight loop

being formed during the transition, as the band does
not necessarily return to a perfectly trivial loop during
the transition. Finally, since the states at ky = 0 are
extended, the band structure in Fig. 5 shows that at
the same frequency there can be states that are either
localized or extended, but these states have different
ky’s. For a perfect periodic system, these states do
not couple with each other since ky is a good quantum
number. In the presence of disorder, however, the lo-
calized and the extended states may couple, which may
reduce the strength of localization in the localized states.

To summarize this section, we show that both the non-
trivial point-gap topology, and the non-Hermitian skin
effects, can be seen in a two dimensional photonic crys-
tal made of reciprocal lossy materials.

B. Nonreciprocal 2D photonic crystal

In the previous section we have discussed aspects of
non-Hermitian topology in a reciprocal two-dimensional
photonic crystal. In this section, to highlight the impact
of reciprocity on non-Hermitian topology, we consider a
2D photonic crystal with the same geometry as Fig. 2(a)
but where the triangle structure is made of magneto-
optical material. We choose the magnetization direction
of the magneto-optical material to be parallel to the z
axis, and the relative permittivity tensor is then [49,
Sec. 2.2]:

ε =

 εd −iεa 0
iεa εd 0
0 0 εz

 . (8)

In Eq. (8), εa controls the strength of the nonreciprocity
as resulting from the magnetization of the material.
Here, we choose εd = 4.2− 0.6i and εa = 5. We consider
a TM-polarized wave propagating in the xy-plane with
magnetic field in the z direction and electric field in the
xy-plane. For such a wave, the value of εz does not
affect its properties. Nonreciprocity of such a strength,
as measured by the ratio εa/εd, can be achieved in
magnetic Weyl semimetals in the mid-infrared [50].
Alternatively, similar strength of nonreciprocity can be
realized in the magnetic permeability tensor of ferrite
materials in the microwave frequency range [51, Sec.
9.1]. To utilize such nonreciprocity one can consider the
TE polarization for a 2D photonic crystal [52, 53].

In the bottom panel of Fig. 6(a), we plot the band-
structure for this nonreciprocal case for fixed ky = 0 as
we vary kx from −πa to π

a . Unlike the reciprocal case
in Fig. 3(c), here at ky = 0 the band forms loops and
exhibits nontrivial point-gap topology. The first two
bands have W = −1 and the third band has W = 1.
Nontrivial loops can be achieved because nonreciprocity
breaks the condition in Eq. (4) and so Eq. (5) no longer
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applies. In the bottom panel of Fig. 6(a), we also plot
the eigenvalues of the stripe geometry in Fig. 2(c) for the
nonreciprocal case as coloured dots using the same color
code as Fig. 3. Eigenstates corresponding to negative
winding are localized at the right (panel B and C)
and eigenstates corresponding to positive winding are
localized at the left (panel A) which is consistent with
the correspondence found in the reciprocal case.

In Fig. 6(b), we plot the bandstructure of the stripe
geometry for the nonreciprocal case by plotting the real
part of the eigenfrequencies as a function of ky, where we
again use the same color code as Fig. 3. Here, ky = 0
(Fig. 6(a)) is denoted using a vertical line. We note that
unlike the reciprocal case in Fig. 5, the bandstructure is
not symmetric about ky = 0 and we can also have non-
trivial loops at ky = 0,±πa , which shows that Eq. (4) to
Eq. (6) do not apply for nonreciprocal media as expected.

FIG. 6. (a) Same as Fig. 3(b), except with a non-reciprocal
photonic crystal. (b) Real part of the eigenfrequencies as a
function of ky for the finite stripe geometry shown in Fig. 2(c),
where the triangle consists of a non-reciprocal material. The
color indicates the mean position of the electric field for each
eigenmodes.

IV. CONCLUSION

In summary, we have shown that various aspects of
non-Hermitian point-gap topology, including band wind-
ing in complex frequency plane, and the non-Hermitian
skin effect, can be realized in two-dimensional lossy pho-
tonic crystals that are either reciprocal or non-reciprocal.
We also demonstrate some of the qualitative differ-
ences in non-Hermitian topology between Hermitian and
non-Hermitian systems. While our calculations are for
two-dimensional systems, we expect that similar effects
should be seen in photonic crystal slab system where light
experiences a two-dimensional in-plane periodicity and is
confined in the third dimensions by various light guiding
mechanisms [54]. Our work shows that non-Hermitian
point-gap topology can be explored in photonic crys-
tals being a technological relevant platform, without the
need of relying on systems described by the tight-binding
model.
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Appendix: Reciprocity leads to symmetric band
structures

The photonic band structure for any photonic crystals
consisting of periodic dielectric variations can be deter-
mined using the following master equation derived from
Maxwell’s equations [55]:

∇×
(
ε−1∇×Hk

)
=

(
ω(k)

c

)2

Hk . (A.1)

where Hk is the magnetic field at a wavevector k, ω(k)
is the eigenfrequency, ε is the permittivity tensor and c is
the speed of light. For a reciprocal system ε(r) = εT (r).
We shall use Bloch’s theorem for the magnetic field

Hk = e−ik·ruk(r). (A.2)

With this, Eq. (A.1) becomes

(−ik +∇)× ε−1(−ik +∇)×︸ ︷︷ ︸
Ak

uk =

(
ω(k)

c

)2

uk, (A.3)

where Ak is an operator.

We now prove that

ω(k) = ω(−k) (A.4)
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provided that ε is a symmetric tensor, i.e. ε = εT . For
this proof, we use the fact that Ak and its transpose AT

k
have the same spectrum since for any operator A

det(λI−A) = det
(
λI−AT

)
, (A.5)

where I is the identity matrix. Thus to prove Eq. (A.4)
it is sufficient to prove

Ak = AT
−k (A.6)

for reciprocal systems.

To prove Eq. (A.6), we notice that

(k×)T = −(k×) (A.7)

as can be seen using the vector identity C · (k × D) =
−(k×C) ·D where C and D are arbitrary 3-vectors. We

also note that

(∇×)T = ∇× (A.8)

as can be seen from ∇·(C×D) = (∇×C)·D−(∇×D)·C,
where C and D are vector fields. Therefore,

AT
k = (−ik×+∇×)T

(
ε−1
)T

(−ik×+∇×)T (A.9)

= (ik +∇)× ε−1(ik +∇)× (A.10)

= A−k. (A.11)

which proves Eq. (A.4). For one dimension, Eq. (A.4) is
equivalent to ω(k) = ω(−k) and for two dimensions, it is
equivalent to ω (kx, ky) = ω (−kx,−ky).
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