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The Kondo effect refers to the screening of a spin-1/2 impurity by a cloud of conduction electrons,
then forming a many-body Fermi liquid ground state. Theoretical calculations suggest that the
Kondo resonance can interact with light and should give rise to a m-phase shift of the photon signal
in the case where the ground state is a Fermi liquid. This w-phase shift of light is driven from
the Korringa-Shiba relation of quantum impurity Fermi-liquid ground states. We report the first
observation of such a m-phase shift in a graphene double quantum dot within a circuit quantum
electrodynamics architecture where the microwave photons couple to the pseudo-spin or charge
degrees of freedom. We study the evolution of the m-phase shift as a function of temperature and
bias voltage. The observed Kondo temperature Tk ~ 550mK is in agreement with DC conductance
measurements. All our results support the formation of a Kondo resonance located above the Fermi
level of the electronic reservoirs with the occurrence of an SU(4) Fermi-liquid ground state. We
finally study how the Kondo-photon interaction can be tuned by inter-dot electron tunnel coupling
strengths. Our findings may contribute to a better understanding of many-body physics in hybrid
circuit systems, and open up applications in atomic thin materials from the light-matter interaction.

I. INTRODUCTION liquid [23, 24]. In this work, we report the observation
of such a 7 phase shift of light in a double quantum dot

A lot of efforts have been carried out to study Kondo  system (DQD), where the two dots are strongly capaci-
physics in quantum dot and mesoscopic geometries [1-8]. tiVel}f coupled, and we study the associated many-body
The occurrence of a Kondo resonance at the mesoscale physics.
produces a phase shift in the transmitted electronic wave
packet which depends on the symmetry and nature of the
many-body ground state [9-12]. Recently advances in
circuit quantum electrodynamics (cQED) architectures
have been used to detect charge or orbital degrees of
freedom and reveal the effect of charge fluctuations in
the Kondo effect [13—20], which offer an appealing plat-
form to study many-body physics and light-matter inter-
actions. Previous theory predicted that the Kondo effect
could be suppressed by irradiation [21]. Photon induced
Kondo satellites in a single electron transistor [22], mi-
crowave induced charge frozen at Kondo resonance [16]
and scaling laws of the Kondo problem at finite frequency
[20] have been reported. However, the backaction effect
of the Kondo correlation on the irradiation field, such
as the coupled microwave field, has not been yet demon-
strated. In particular, a Kondo effect is predicted to give
rise to a m-phase shift of the microwave photon signal at
resonance in the case where the ground state is a Fermi

Such a double quantum dot system has been predicted
to reveal SU(4) Kondo correlations with entangled spin
and charge degrees of freedom [25-28]. The occurrence of
the 7 phase shift of light can in fact be understood from
general arguments related to quantum impurity physics.
In the Kondo model, the spin or here the pseudo-spin
related to the charge or orbital degrees of freedom on the
two dots, is described by a dynamical susceptibility x(w)
which describes the response to an applied AC field. If
one fixes the frequency of the AC field to be close to the
resonance frequency of the many-body system wg such
that hwg = kT, with h and kg being the Planck and
the Boltzmann constants, then one obtains the impor-
tant equality J(wgk)x(wk) = —i (according to Eq. (1.1)
below) [23, 24] showing the Fermi liquid ground state for-
mation [27-29]. Here, J(w) represents the spectral func-
tion associated to the transmission channel which trans-
ports the microwave signal. This relation which holds
for w = wg implies a form of dynamical spin suscepti-
bility in agreement with the Korringa-Shiba relation of
quantum impurity Fermi liquid systems at low frequen-
* These two authors contributed equally. cies [30, 31]. This relation leads to important predictions
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quantum RC circuits at low frequencies [32-36]. Here, we
generalize the analysis to the regime w ~ wg by coupling
to the microwave channel or a transmission line. If we
couple directly the pseudo-spin to the transmission line,
the reflection coefficient of the microwave photon

Si1(w) = Ae'® =1 — 2iJ(w)x(w) (1.1)
shows a A¢ = 7 phase shift for the resonance condition
w = wg [23, 24, 37]. This 7 phase shift of microwave
photons should occur when fixing the photon frequency
w in resonance with the many-body frequency wg, as-
suming the ground state is a quantum-impurity Fermi
liquid system.

It is relevant to emphasize that for an open transmis-
sion line, A¢ = 0 [38]. This shows that many-body
physics is important in the present case and directly mea-
surable from the photon phase shift. This phase of the
reflected light signal is also different from the Friedels
phases 0 = 7/2 and 7 /4 which have been observed in the
DC electronic conductance (2¢2/h)sin?§ for the SU(2)
[1-3, 12] and SU(4) Kondo effects [4-7, 39], respectively.

Below, we precisely reveal the 7 phase shift of the pho-
ton signal by coupling a graphene DQD with a microwave
resonator. Our study of the microwave photon response
supported by DC conductance measurements across the
mesoscopic electron system agrees with an SU(4) Kondo
model which shows entangled spin and charge degrees
of freedom [25-28], and with a Kondo resonance located
above the Fermi energy evolving with temperature and
bias voltage. In Ref. [40], low-frequency measurements
of microwave light in carbon nanotube systems were per-
formed in accordance with theory, and the authors re-
ported a phase in radians which is not too small, still
measured away from resonance such that the m phase
value was not attained. It is also relevant to mention
here that a Kondo effect was measured in graphene with
point defects (vacancies) [41] and was not reported be-
fore in graphene quantum-dot systems [42, 43]. Our work
then shows the possibility of Kondo physics in graphene
quantum dots. Another very recent work has also re-
vealed Kondo physics in graphene quantum dots [44]. To
show the robustness of the results, we present two cool-
ing procedures and analyse different samples. We will
also study the effect of tuning (increasing) the tunneling
strength between the two dots.

To analyze the data, we build a microscopic model
describing the coupling of the mesoscopic DQD system
to the circuit Quantum Electrodynamics (cQED) archi-
tecture. This will then give rise to a quantized mode
model or an harmonic oscillator with a bare frequency wq
transporting the microwave power. The capacitive light-
matter coupling will result in a many-body shift of this
frequency wy, leading to a resonant condition called wyg
and englobing the formation of the Kondo resonance re-
lated to Tx. We will build a theory to show how the light
precisely develops a 7 phase shift at the frequency wyg
corresponding to this specific geometry. Regarding the
description of the electronic reservoirs, we consider that

the DQD size is much larger than the atomic distance
between neighboring sites in graphene, such that only
the symmetric wave function associated to sub-lattices
A and B points of the honeycomb lattice couple to the
mesoscopic system. This leads to a one-channel descrip-
tion in each electronic reservoir in addition to the spin
flavor, as in the SU(4) Kondo effect [25]. We assume
that the chemical potential does not lie at the neutrality
point, to have a finite density of states in the reservoirs,
enabling us to observe the Kondo effect [45].

The organization of the article is as follows. In Sec. II,
we introduce the device, its characterization and show
the appearence of the SU(4) Kondo effect at the charge
degeneracy points of the DQD from the formation of a
two-peak structure in electron transport across the meso-
scopic system at low temperature. We carefully analyze
the data to deduce microscopic parameters. Then, in Sec.
III, we demonstrate the quantization of the light phase
shift to the m value and analyze the light-matter cou-
pling properties. In particular, we also show that such a
7w phase shift progressively attenuates above the Kondo
temperature. To be sure of our findings, we show results
on different samples. In Sec. IV, we show how the data
can be fitted through a Kondo model with SU(4) sym-
metry. Although the 7 phase shift of light is a property
of Fermi liquid ground states and therefore can also occur
for SU(2) Kondo effects, here we show that the results
are in agreement with a Kondo resonance peaked above
the Fermi energy. The theory also shows from renor-
malization group arguments on interaction effects in the
Kondo resonance why the 7 shift of light is in fact ro-
bust up to energy scales larger than the Kondo energy
scale, i.e. here ~ 10 times the Kondo energy scale refer-
ring then to energies of the order of the charging energy.
This fact also justifies that the 7 phase shift of light could
not be explained through a non-interacting resonant level
model to describe the dynamics of the DQD. In Sec. V,
we study the effect of increasing the microwave power
in the Coulomb blockade regime and show that it can
restore the 7 phase shift of light, in accordance with the-
oretical predictions. In Sec. VI, we summarize our re-
sults and address final remarks. Appendices are devoted
to additional informations on the sample characteristics,
light-matter analysis and theoretical Kondo analysis.

II. SAMPLE CHARACTERIZATION AND
OBSERVATION OF KONDO EFFECT

The device shown in Fig. 1 (a) and (b) is mounted
in a dilution refrigerator, its base temperature is about
30mK.

Our previous works on graphene double quantum dots
were performed both in series [46] and in parallel [47]
shapes, allowing us to tune with precision the double
dot orbital levels with DC gates. Two DQDs, made of
few-layer etched graphene, are coupled to the resonator
through their sources [48], however, only one of them is
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Figure 1. (color online) Sample structure of the graphene
DQD and transport peaks at small bias voltages. (a) Micro-
graph of the DQD gate structure. (b) Sample structure of a
typical etched graphene DQD. The dc voltages used to control
the charge numbers in the DQD are applied via left and right
plunger (LP and RP) gates. A quantum point contact with a
source (SQ) and drain (DQ) channel and a tuning gate (Q) is
integrated near the DQD. (c) Schematics of the hybrid device.
The half-wavelength reflection line resonator is connected to
DQD’s left dot (LD) at one end of its two stripelines. The
right dot (RD) is connected to the drain. A microwave signal
is applied to the other end of the resonator, and the reflected
signal is detected using a network analyzer. (d) Charge stabil-
ity diagram of the DQD measured by dispersive readout with
the resonator. The gate lever arms are 10% in Fig. 9. (e)
Differential conductance at point A from panel (d), showing
two peaks at finite voltage Vsq ~ +£0.05mV.

used while the other is grounded throughout the course
of present experiment. Transport measurements are per-
formed through source and drain [Fig. 1 (b)], and the
charge stability diagram is achieved by adjusting the gate
voltages VLP and VRP [Fig. 1 (d)]. The electronic tem-
perature of the DQD at base temperature is estimated to
be about 100 mK, which has been reported by a tempera-
ture dependence experiment [49]. A vector network ana-
lyzer (VNA) is used to apply coherent microwave driving
tone and measure the reflection signal S1; [defined from
the scattering matrix, see Fig. 1 (c¢)]. The reflection
signal can be measured by its amplitude (A = |S1;1|) and
phase [¢ = arg(S11)] components through the VNA. The
resonance frequency of the resonator is 6.35 GHz, with
a quality factor of ~ 3000. Details of sample fabrication

and measurement setup are shown in Appendix A.

A dispersive readout measurement permits to obtain
the charge stability diagram of the DQD system [see Fig.
1 (d)] [49], which shows the equilibrium charge state of
the two dots as a function of the gate voltages VLP and
VRP. This diagram shows a typical hexagonal structure
[2]. At point D, the electronic configuration (N, M) cor-
responds to IV electrons in the left dot and M electrons in
the right dot. Along the grey lines (points A4, B and C),
two charge configurations are degenerate. By maintain-
ing the electrochemical potential of one dot, we establish
the Coulomb diamond of the other dot in Fig. 9 of Ap-
pendix A. From this method, we find the charging energy
of both dots to be Ec ~ 0.4meV, and from the charge
stability diagram the mutual capacitance between dots
is comparable to the single dot capacitances [48]. Note
that the gate lever arms are 10% in Fig. 9.

Below, we study in more detail the charge degeneracy
point A, where the pseudo-spin- will correspond to the
two degenerate charge states (N —1, M) and (N, M —1),
with one state on each quantum dot.

First, we show the occurence of Kondo physics in
electron transport across the mesoscopic system. We
measure the differential conductance dI/dV at point
A (as a function of source-drain voltage or bias volt-
age Vsq) which reveals two peaks at Vig ~ £0.05mV
[Fig. 1 (e) and Fig. (2) (a)]. From the Fermi-liquid
approach to the SU(4) Kondo effect, in the limit of
small bias voltages Vsq — 0 across the DQD with
e|Vsa| = hw, the conductance essentially takes the form
(262 /h)kpTip(hw = €[Vaal) (1F]/(ksTi))? [25] where
the factor (|t’|/(ksTk))> corresponds to the transmission
probability through the DQD and the electron spectral
function p englobes the formation of the Kondo resonance
in the density of states. The electron spectral function
p(w) at zero bias voltage and in the quantum limit reads

1 kpTx

7 (o —eo)? + (kpTw )2’ (2.1)

plw) =

where €q is the position of the Kondo resonance and Tk
the Kondo temperature. A peculiarity of the SU(4)
Kondo effect is that the Kondo resonance is located
above the Fermi energy at ¢y ~ kpTk such that p(0) ~
1/(27kpTk) in the limit of zero-frequency. The ad-
ditional factor 1/2 in the denominator of p(0) for the
SU(4) Kondo effect is in agreement with a § = 7/4
phase shift which then leads to G(0) = Gysin?¢§ with
Go = (2¢*/h)L (|t'|/(kpTk))® referring to the conduc-
tance value for an SU(2) Kondo effect with a 7/2 phase
shift. The data are in good agreement with the SU(4)
Kondo effect. From the low-temperature limit in Fig. 2
(a), we identify G(0)h/(2¢2) ~ 0.015 for kgT ~ 50mK
such that this formula gives ' ~ 0.3kgTk if we set
€0 ~ kpTx such that G(0) = (2€?/h)5- (1t'|/(ksTk))>.
This value of ¢’ is justified from the microwave response
[46]. To obtain the Kondo temperature Tk, we analyse
the data at finite voltages.



The presence of anomalies at Viq ~ +0.06mV also
agree with a spectral function p described by a resonance
at g = eVsq = kpTk above the Fermi energy of the reser-
voir electron leads, as predicted by the theory. These two
peaks in the dI/dV electronic transport response occur
for an electron energy eVyq ~ 50ueV, which corresponds
to a Kondo temperature Tx ~ 550mK. These two peaks
traduce the position of the Kondo resonance above the
Fermi energy. The SU(2) Kondo effect would show a
maximum at zero bias-voltage. We also verify the forma-
tion of the SU(4) Kondo effect through the linear increase
of the conductance at small voltages. We find that the
correction in the conductance from the zero-bias value
evolves as ~ 13T (eV,q/kpTk) in units of Go. This cor-
rection comes from the evolution of the Friedel’s phase
shift 6 = T + L27dw with A = a/(kpTk) and a is a
parameter of the order of unity in the quantum field the-
ory description of the Fermi liquid (see Appendix B of
Ref. [28] related to Ref. [50]) where we set w = eVyq
in G = Gysin?6. The order of magnitude of the cor-
rection predicted from the theory is in agreement with
data which show that the linear dI/dV increases rapidly
from 0 to kpTk roughly from a factor 10!, resulting in
G(eVsq ~ kpTx) ~ 0.1(2¢2/h). For a comparison, in
Fig. (2) (c), we show the conductance at point B in the
phase diagram. The conductance is zero at Viq = 0 and
the signal does not show satellite peaks.

We also study the temperature effects in Fig. 2 (a),
showing that the two-peak structure precisely forms at
the Kondo temperature scale. Here, we observe that the
conductance at low bias voltages remains almost identi-
cal for temperatures from 50mK to 400mK traducing a
robustness towards temperature effects. This is also in
agreement with the Fermi liquid theory applied to the
SU(4) Kondo effect which predicts (T/Tk)? corrections
for the conductance whereas the Kondo effect with SU(2)
symmetry would result in (T/Tk)? temperature correc-
tions [28].

The dI/dV characteristics is therefore useful to detect
the SU(4) Kondo effect because it reflects the spectral
function on the mesoscopic system which is known for
the SU(4) Kondo effect to show peaks not at the Fermi
level, but rather at the positions +kpTk in bias voltages
[28]. The mesoscopic system then behaves similarly as an
interacting resonant level system centered at the position
€0 = kpTk, with a width I' that will be studied below as a
function of bias voltage and temperature and which could
not be described in terms of a non-interacting resonant
level model.

III. OBSERVATION OF n-PHASE SHIFT OF
LIGHT

Here, we present the analysis for the light signal at
the point A. Fixing gate voltages at point A, we mea-
sure the microwave photon response as a function of the
source-drain voltage V4, in order to characterize the
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Figure 2. (color online) (a) Temperature profile of the dI/dV’
conductance In units of 2e?/h at the point A showing the
formation of a two-peak structure at an energy scale com-
parable to the the Kondo temperature Tx = 550mK. The
low-temperature properties are in agreement with the forma-
tion of an SU(4) Kondo effect [25, 28]. (b) and (c¢) For a
comparison, we show transport properties at point B for the
temperature T' = 30mK.

light-matter interaction.

In Figs. 3(a, c, e), we present the results for the mi-
crowave signal, showing a phase shift of the order of 7 for
a prominent window of bias voltages Vs, applied across
the mesoscopic electron system. In addition, the ampli-
tude of the signal also reveals two dips at low energy
scale, in agreement with that of Fig. 1(e). As shown
in Fig. 3(a), a very robust phase of 7 is observed from
Vsa = 0 to Vg = +0.4mV, above which the phase sud-
denly drops to zero. In Fig. 3(c) the amplitude (in dB)
shows also two pronounced dips around Vyg ~ +0.4mV.
We notice that these features in the experimental results
can be associated with an energy scale which is compa-
rable with the charging energy E¢.

For completness, we also show the light responses at
points B and C' in the charge stability diagram. See Fig.
4. The light signals for the phase do not saturate to the
quantized 7 value and the amplitude responses do not
show the low-energy structure related to the Fermi-liquid
ground state at the point A.

In the present geometry, the transmission line trans-
porting the microwave power is described by the spectral
function

J(w) = 2awe™/we, (3.1)
where the high-frequency cutoff w,. is considered large
compared to the driving frequency and the charging en-
ergy Ec. To fit the data, we assume that o ~ 1075; this
value of « can also account for other internal dissipation
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Figure 3. (color online) Microwave measurements and theo-
retical results. (a) Experimental result for the phase ¢(wg)
of the reflected signal Si1(wg) at point A and at resonance
w = w)(Vsq) and its evolution with respect to bias voltage.
(b) Theory result for the phase based on the effective quan-
tum impurity model. To fit the data, we obtain the light-
matter coupling from the frequency shift in Fig. 10, and find
M\ (hwg) = 1072 we test different values of the dissipation
parameter « and find that results are quite robust to differ-
ent values of o; we choose @ = 107°. The Kondo energy
scale Tk ~ 550mK is obtained from a fit of the low energy
features. We find ¢’ ~ 0.3kpTxk from the analysis of the DC
conductance and from the microwave response. The param-
eter I' is derived from the Fermi-liquid theory together with
Egs. (4.1). (c) and (e) Experimental results for the ampli-
tude A of the reflection coefficient Si1(wg) at point A, as a
function of the bias voltage; the zoom focuses on low-energy
features. (d) and (f) Theory results based on the effective
quantum impurity model.

(@100 )
Point B
g8 phase
3 s
S
0
4 05 0 05 1 1 05 0 05 1
Vsa (mV) Vsa (mV)
C
© Point C
< 80  phase
o
S,
= 40
ol
-1 05 0 05 1 4 05 0 05 1
Vsq (mV) Vsa (mV)
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sponses at points B and C, as a function of bias voltage.

effects [51, 52].

To evaluate the reflection coefficient S71, we attach
to the transmission line the cQED resonator (cavity),
which is described by the photon field & characterizing
the quantization of the electric field inside the cavity.
Here, we calibrate S1; in a form such that it agrees with
a zero phase for the light signal at w = wqg in the ab-
sence of any coupling with the mesoscopic electron sys-
tem. From standard input-output theory [53], we ob-
tain 11 (w, Veg) = —1+2iJ (w)xE, (w, Via), where the re-
tarded dynamical susceptibility x, associated with the
microwave field can be tuned as a function of the bias
voltage V4 applied across the mesoscopic electron system
and frequency of the microwave power. To agree with the
definition of S1; here, we write the general form:

R _ hao
Xow = (hw)2 = (hwo)? — haoTTR (w) + i (w)hwy

(3.2)

which includes the contributions coming from coupling
the cQED resonator with the electronic system through
17 = Re(IT®) — iIm(11%), (3.3)
and with the transmission line through J(w). In partic-
ular, II® will traduce the formation of the Kondo res-
onance between the DQD and the electronic reservoirs.
Through Eq. (3.2), the resonance condition for light is
defined as
(hw§ (Vaa))? = (hwo)? + hwoRe(TT? (Wi (V). (3.4)
We underline that the microwave results are obtained
at the renormalized resonance frequency wg(Vsq), which
is determined from the minimum of the amplitude A =
|S11] as a function of frequency (see Appendix B)[43].

Before describing in a quantitative manner the capac-
itive coupling between the resonator and the mesoscopic
electron circuit, we can pursue at a general level the theo-
retical discussion on the occurrence of the 7 phase shift.
More precisely, from Egs. (3.2) and (3.4), we deduce
that X2, (wg) (ImIT? (wg) + J(wg)) = —i, which is a gen-
eralization of the formula mentioned in the introduction
for the spin susceptibility. When TI#(w$) = 0 we check
that S;; = 1 in agreement with an open transmission
line. On the contrary, if dissipation effects on the cQED
resonator comes from the coupling with the mesoscopic
electron system forming the Kondo resonance, then the
condition ImIT®(wy) > J(wg) will result in a 7 phase
Shlft in Sll-

This phase shift is not yet a (complete) proof of the for-
mation of a many-body Kondo resonance because at this
stage this just traduces that the cQED system couples
more strongly with another medium than the transmis-
sion line, here the mesoscopic electron system, charac-
terized by a resonance with a Lorentzian form for the
electron spectral function. Then, in Fig. 5, we show
the temperature evolution of the amplitude and phase of
the microwave signal. Similarly as the dI/dV conduc-
tance, we verify that the 7 phase shift of light is formed
at the same Kondo temperature scale. The quantitative
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Figure 5. (color online) Amplitude in decibels (dB) and Phase
in degree of the microwave signal for the same temperatures
as in Fig. 2. We verify that the 7 phase shift of light smoothly
appears at the Kondo temperature scale Tx ~ 550mK.

analysis developed in Sec. IV taking into account the
renormalization effects in the width of this resonance, in
agreement with the formation of a many-body Fermi lig-
uid ground state, will justify the occurrence of such a m
phase shift of light until energies of the order of the charg-
ing energy. When increasing the bias voltage across the
mesoscopic system, interaction-interaction effects in the
Kondo resonance are well-known to produce decoherence
effects which then increase considerably the width of the
resonance with this bias voltage [54]. We will adapt this
calculation of the resonance width and position to our
system, showing that theory results of Figs. 3(b, d, f)
are in agreement with an SU(4) Kondo effect.

In Fig. 6, we show results for a different device,
referred to as device 2, with different tunnel coupling
strengths ¢’ for points A. Using similar methods as we
discussed previously in device 1 (referring to the sample
in the preceding Section), we estimate the temperature
scale T of device 2 to be ~ 600mK (corresponding to an
energy scale of ~ 12.2GHz). For points 1 and 2 in Fig.
6(a), essentially ¢ < kpTk, therefore we obtain similar
results as in Fig. 3 and Fig. 10 in Appendix B. In that
case, t' does not enter in the low-energy description (see
Appendix C). The phase shift observed in the microwave
measurement in Fig. 6(d) progressively decreases from
point 1 to point 3. For point 3, where t' > kpTk, the
two dots are strongly coupled and form a molecule (large
dot) which then enters in a strongly Coulomb blockaded
situation and almost decouple from the leads. The charge
on the DQD becomes fixed to an integer value and the
conductance through the DQD becomes zero in the limit
of Viq ~ 0. Equivalently, ¢’ acts as an orbital magnetic
field along X direction for the pseudo-spin (see Appendix
C), which gradually suppresses the Kondo effect.

IV. THEORETICAL KONDO MODEL

To build the precise Kondo model and our quantitative
analysis for the light-matter coupling, we introduce in
addition to the spin S, = £1/2 of an electron, the orbital
pseudospin quantum number T, = +1 associated with
the two degenerate charge states on the DQD at point
A. We first verify that the 4 quantum states on the DQD
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Figure 6. (color online) Evolution of the results with inter-dot
coupling strength ' for a second device. (a) Charge stabil-
ity diagram for device 2. Inter-dot tunnel coupling strengths
t' of point 1, 2 and 3 are fitted to be 5.8GHz, 8.4GHz and
15.6G H z, respectively, using a typical cavity response fitting
procedure [15, 49]. The point 4 shows a too large ¢’ param-
eter to be characterized by our cavity measurements. (b)
Electronic differential conductance across the DQD for points
1,2,3. (c) Amplitude and (d) phase response of the microwave
light signal as a function of the bias voltage V4 across the
mesoscopic electron system for the three points 1, 2, 3. We
observe that the phase shift of point 2 cannot reach 180 de-
gree. Curves at points 1 and 2 in (b) have an offset of 0.5 and
in (c) the offset is 10 dB.

coupled to the symmetric wavefunction made of the sub-
lattices (usually called A and B) in the graphene reservoir
leads produce an SU(4) Kondo model. See Appendix C
for further details on the theory.

Within this description of the electronic sector, the
light-matter coupling which describes the coupling be-
tween the resonator or cQED to the left lead in Fig. 1
can be written as a capacitive coupling to the orbital de-
gree of freedom AT,Z, where A quantifies the coupling
between the cavity or the resonator and the mesoscopic
electron system. Studying the evolution of wj with re-
spect to the driving frequency in Appendix B, we deduce
A (hwg) = 1072 and we adjust the value of wj for dif-
ferent voltages V4. To make a precise link with an in-
teracting resonant level, it is useful to refermionize the
pseudospin-1/2 particle: T, = 2(d'd — 1/2), T+ = df
and T~ = d, where the fermionic operators d and d' de-
scribe the orbital degrees of freedom on the DQD. For a
fixed value of the bias voltage V4, the associated spec-
tral function p to this d-particle takes the precise form
of Eq. (3.2) in Appendix C. A diagrammatic analysis
in Appendix C then leads to ImIT®(wg) ~ A2Imy(wp),
where x(w) is the spin susceptibility introduced earlier.
The Korringa-Shiba relation for x(w) then gives the es-
timate ImIT? (wg) ~ A% (hwg) /T% ~ 10~ 4wy which then



justifies that at low bias voltages ImII®(wg) > J(wg),
resulting in the m-phase shift of light.

Within the same diagrammatic approach, we evalu-
ate the bias-dependent resonant level width, and demon-
strate in Appendix C that the formulas in Ref. [54]

I'=kpTk for eVyy < kpTk
Vs

T~ 2e—d

ln (e‘/sd/kBTK)

(4.1)

for eVyy > kpTk,

are valid for an SU(4) Kondo effect. See Egs. (3.7) in
Appendix C for a precision on the prefactors. At large
bias voltages, the current enlarges the typical width of
the Kondo resonance, which produces the robustness of
the phase shift. Using this form of I', with a Kondo tem-
perature Tk = 550mK and a position ¢y ~ kpTk of
the Kondo resonance, we can explain (almost quantita-
tively) the experimental observations; see Figs. 3(b, d,
f). The low bias features in the amplitude signal can
also be accounted for by our model. Note that the low
bias anomaly observed in the phase response in Fig. 3
a) is beyond the scope of our present Fermi-liquid analy-
sis. Increasing the bias voltage such that eVyy > kpTk,
the logarithmic renormalization factors in Eq. (4.1) then
contribute to maintain important dissipation effects un-
til T' > e|Viq|. Using results of Fig. 10 of Appendix
C and Egs. (4.1) above, then we predict that the m-
phase shift in the reflected light signal subsists until
€|Vsa| ~ 10kpTk which means roughly the charging en-
ergy Ec. For larger bias voltages, when e|Vyq| > T, we
check that ImIT#(wg) ~ 0, justifying that the phase shift
then smoothly drops to zero in the very high-bias regime.
A similar renormalization group argument can be for-
mulated as a function of temperature showing that the =
phase shift should indeed disappear when 1" ~ T . A de-
tailed microscopic model of the experimental set up, the
construction of the effective SU(4) Kondo model and its
coupling to the photon field together with few relevant
calculations are included in Appendix C; where we also
show that a bias-independent resonant level model (mod-
eling the two degenerate charge states) would not explain
the data, showing that many-body effects through the
formation of a Kondo resonance cannot be ignored.

V. COULOMB BLOCKADE REGIME AND
MICROWAVE POWER

We now study the power (P) dependence of the res-
onator response as a function of the bias voltage at point
D. We verify that the electron transport at this point
D in the charge stability diagram is now blockaded at
low-energy. Our goal is to demonstrate experimentally
here that the effect of the microwave power on the light
response plays a similar role as moving along a line re-
lating the point D to a charge degeneracy point, and
therefore restoring the same light responses as for point
A. For the theoretical description, we will apply the two
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Figure 7. (color online) Amplitude (a) and phase (b) response
as functions of the bias voltage for the point D. Same results
when increasing the microwave power (c) and (d).

unitary transformations in Eq. (2.3) and Eq. (2.8) of
Appendix B.

Fixing the driving frequency at resonance w = wj(Vsa),
we show the amplitude response (Figs. 7(a) and (c)) and
the phase response (Figs. 7(b) and (d)) for two different
values of the power. Figures 7(a) and (b) show the phase
and amplitude response at weak power. A phase shift is
confirmed from bias voltage Vg = 0 to Vyq ~ +£0.5mV.
The amplitude sharply goes down for about —15dB from
Via = 0 to Vi ~ £0.1mV, and two side peaks ap-
pear around V4 ~ £0.15mV. Then, it continues to go
down and two dips appear around V4 ~ +0.4mV, which
are again consistent with the charging energy E¢ of the
quantum dots measured by the Coulomb diamond. At
small V4, this confirms that the Coulomb blockade phe-
nomenon pins the charge fluctuations on the DQD and as
a result the photon field is weakly affected by the mat-
ter. When the bias voltage increases and compensates
the charging energy, there is a revival of charge fluctua-
tions on the DQD. It is important to note that the cavity
is only coupled to the orbital degree of freedom, leading
to a phase of zero when Vg4 — 0. As a result, it is not
sensitive to an eventual spin Kondo effect where the spin
and orbital degrees of freedom are decoupled (resulting
from the system composed of the left dot and the left
lead alone). A more refined theoretical analysis would
be necessary to describe quantitatively the crossover with
voltage and to include the charging energy effects.

We see that the phase response is drastically modified
as the power changes. At high power the amplitude and
phase response are close to the ones obtained at point A.
This observation can be explained by the fact that the
photonic interaction acts as an artificial chemical poten-
tial at high drive powers, bringing the system from the
Coulomb blockade regime to the resonant regime. More
precisely, in the large drive regime, we can decompose
the photon field as the sum of its mean value plus quan-



tum fluctuations. This leads to a rewriting of the photon
annihilation operator as a = {(a) + a. The first part (a)
is determined by the strength of the drive field and the
damping rate, and we suppose that steady state of the
cavity is a coherent state. The constant semi-classical

J

1 1
pr(Np,Ng) = (NL 5~ Aa + aT>> Ec, + NrEc,, —

where Eg, is the charging energy of the individual dot
j, Ec,, is the electrostatic coupling energy, C; (Cy;) is
the capacitance coupling the dot j to the neighboring
lead (gate), and C,, is the capacitance which couples
the dots together. The Left and Right gate voltages are
denoted by Vi p and Vrp. The effect of the driving can
be absorbed into the definition of new gates voltages V]
and Vi p,

Ma + at)le
Vip=Vip— < >|Elc (5.3)
Co (o, — 322)
Ma + at)|e]
VII%P = VRP - Eo Eo . (5.4)
Con (B, — "5450%)

Driving the system at high power allows to move the state
of the system on the honeycomb phase diagram along a
line characterized by the equations (5.3) and (5.4). This
corresponds to

OVrp _ CgL ECm
Vip  Cyr Ec,,’

(5.5)

Such a line has a slope which is the opposite of the line
of degeneracy between the states (N, M —1) and (N, M)
(the line where lies the point B).

We can see from Fig. 8 that driving the cavity may
bring the system at resonance. We can estimate the in-
put power that allows to make this transition from the
Coulomb Blockade regime to the resonant regime. In the
steady state, the input-output theory allows to relate the
drive power to the number of photons in the cavity and
ultimately to (a+a'). We have P = (hwn/4){aa), where
7 is the decay rate of the photons in the leads (assumed to
be independent over the range of frequencies relevant to
the cavity in the Markov approximation). If we suppose
that the steady state of the cavity is a coherent state, we
have

(5.6)

1 1
ur(Np, Ng) = <NR - 2> Ec, + NpLE¢c,, —

part of the drive (a + a) acts as a chemical potential
on the Left dot. Following Ref. [2] the chemical poten-
tials of the two dots uy and pg read as a function of the
number of electrons on the dots (N, and Ng),

(CyrVipEc, + CyrVrpPEc,,)
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Figure 8. (color online) Effect of the driving on the state of
the system. The full red line shows the shift in the phase
diagram induced by the drive at point D.

We conclude that, at a mean field level, driving the sys-
tem indeed allows to move the state of the system on the
honeycomb phase diagram, as the mean field contribution
can shift the left chemical potential. In the steady state,
the input-output theory allows to relate the drive power
to the number of photons in the cavity and ultimately
to (a + a') if we suppose that the steady state of the
cavity is a coherent state. Following Ref. [38], we have
pP= hw%(aTa), where 7 is the frequency-independent de-
cay rate of the photons in the leads. For a coherent state
in the cavity this allows to write (a! + a) ~ \/P/(hwn).
We can then estimate the critical power P. needed to
compensate Ec. We have Ec = 04meV, w = TGHz,
and we take A ~ 0.15GHz and n ~ 0.1GHz. This fi-
nally gives P. ~ 10719V = —70dBm, which is consistent
with the experimental observations. We note that the
high-power responses at small biases differ slightly from
those at point A. This may be linked to additional non-
equilibrium effects arising at high power.



VI. CONCLUSION

We have shown how the Kondo resonance can inter-
act with the microwave photon field, producing a -
phase shift of light at low temperatures. The microwave
frequency is adjusted carefully at the many-body light
resonance frequency corresponding to the minimum of
the amplitude of the light response, revealing important
many-body dissipation effects. Applying the Korringa-
Shiba relation of quantum impurity Fermi liquid Kondo
models and renormalization group arguments to include
bias voltage effects in the Kondo resonance and in the
spectral function on the DQD, then we have shown how
such a w-phase shift of light can subsist until energies
larger than the Kondo scale, roughly around the charging
energy of the mesoscopic system. Our findings are also
in agreement with a many-body electronic spectral func-
tion which is located above the Fermi energy according
to an SU(4) symmetry in the Fermi-liquid description.
It is important to highlight here that the m phase shift
is an intrinsic property of Fermi liquid impurity mod-
els and could also be observed for Kondo systems with
SU(2) symmetry assuming the light is at the right reso-
nance condition. Our work shows how microwave spec-
troscopy can probe the dynamical properties of the cor-
related electron system when the microwave frequency is
synchronized with the typical frequency scale associated
with the correlated phenomenon. Similar to three-lead or
four-lead geometries [8], the microwave resonator allows
then to study important features of the spectral func-
tion on the mesoscopic system. We have quantitatively
described photon-electron many-body effects in our de-
vice and our work opens up new possibilities for fun-
damental and practical applications in many-body light-
matter systems. An analogous microwave signature of
charge Kondo effect could be observed in a hybrid metal-
semiconductor implementation of a single-electron tran-
sistor [55]. Light may also give further information on
the microwave response of a two-impurity model in the
double-dot geometries [56]. We also anticipate that light
may probe topological phenomena associated to the ocur-
rence of 7 Berry phases [57].
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Figure 9. (color online) Coulomb diamond of the quantum dot
measured by transport experiment and revealing the charging
energy Ec. We use a single charging energy in agreement with
previous measurements [48, 49]. The charging energies of the
two dots are measured to be almost identical, and we find
that the mutual capacitance is of the order of the single dot
capacitances. All microwave and DC transport measurements
support this argument.

Appendix A: Samples

The samples are fabricated as follows. First, we me-
chanically exfoliated the graphene from its bulk, KISH
graphite (Kyocera. Inc), to an undoped silicon chip with
285 nm oxide. In this experiment, we need two pieces of
few-layer graphene with proper distance between 20 to
80 um, and we selected those that met this requirement.
Second, electron beam lithography (EBL) was employed
several times, starting with the fabrication of alignment
marks, then plasma-etching masks and electrode pat-
terns. The EBL resists used were PMMA 950k A4 for the
first step and double-layered PMMA 950k A2 for the lat-
ter two steps. We developed the sub-micrometer patterns
under 0 to establish a better control of the device specifi-
cations. Through etching out all the undesired part of the
graphene sheet to realize the designed device, we strove
for the all-metal-side-gated configuration as described in
Ref. [58], to avoid unstable gate terminals. This etch-
ing was carried out by inductively-coupled plasma (ICP),
using a 4:1 gas mixture of Oxygen to Argon. For marks
and electrodes, we deposited 5 nm Ti and 45 nm Au with
an electron-beam evaporator. Finally, the resonator was
fabricated by optical lithography followed by metal de-
position in a thermal evaporator. The metal used was
200-nm-thick Al.

The microwave response was measured using a network
analyzer (NA). The input and output ports of the NA
were connected to the resonator via a circulator and a 180
degree hybrid, which splits the reflected signal back to the



NA. Two 30 dB attenuators were connected between the
NA output port and the circulator, reducing the power
applied to the resonator down to lower than —130dBm.
The reflected signal was amplified first at 4K and then
at room temperature, producing an additional gain of 60
dB, and an isolator was used to prevent noise from the
amplifiers and the environment from reaching the sample.
The direct transport current was amplified by a low-noise
current pre-amplifier, before being measured by a digital
multimeter.

The Coulomb diamond can be measured by transport

J
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experiment and revealing the charging energy E¢, as
shown in Fig. 9. We emphasize here that gate lever arms
are ~ 10% by using a typical calculation method [59],
such that we obtain a charging energy Ec ~ 0.4meV.

Appendix B: Graphene DQD and light-matter
coupling

The Hamiltonian of a double dot setup takes the form
[2, 60] H,=Hp + Hgr + Hp + Hp, where

Hp = Z Z(‘Epld;lgdpm) +yenr(ng —1) +yrnr(nr — 1) + yunrng

l=L,Rpi,0

Hr = Z Zz(t’mzclaldpm +h.c.) + Z (tprRdI,LadpRg + h.c.).

I=L,R k,oc

The first line describes the electrons in the Left (L)
and Right (R) leads (respectively source and drain).

Ckol (czol) is the annihilation (creation) operator of
an electron of spin o and energy €, and in the lead
[, on which we apply a voltage V;. Vg = Vp — Vg
denotes the bias voltage applied across the device.
The term Hp describes the two dots: dp,o (df ) is
the annihilation (creation) operator of an electron of
spin ¢ in the dot I = L, R and at the energy level p;.
Here the coefficients = are functions of the capacitances
of the tunnel junctions and n; = ) o Qoo de-
notes the number of electrons in the cfot l. The part
H7 accounts for lead-dot and inter-dots tunneling events.

The model presented here can be explicitly refined
to incorporate the precise geometry of the graphene
lattice (leads) [61], and consider the two sub-lattices A
and B of the honeycomb lattice. Since the DQD size
(of the order of a few hundred nanometers) is much
larger than the atomic distance between neighboring
sites in graphene, we can assume that the tunneling
probability from the leads in a given quantum dot is
independent of the sub-lattice. In Eq. (2.1), Hp can
then be written as a function of the symmetric operator
1/vV2(crota + croi) in a given lead I. The kinetic term
leading to a Dirac type linear dispersion can also be
diagonalized in this basis if we assume a symmetric
configuration for the A and B sites with respect to the
direction of the tunneling. The use of either open or
periodic boundary conditions in the orthogonal direction
then lead to a one-dimensional kinetic Hamiltonian
along the direction of the tunneling, which is diagonal
in this symmetric/anti-symmetric basis [62, 63]. With

PLPRO

(

these arguments, Hamiltonian (2.1) remains valid with
the electronic operators referring to the symmetric
operator (between sub-lattices A and B) in a given
lead. Notice that k formally refers to the wave-vector
along the direction of propagation across the mesoscopic
system.

The interaction between microwave photons and the
electronic degrees of freedom is often approximated by
a dipolar coupling [48, 64—66]. The authors provided a
general description in the case of a nano-circuit embed-
ded inside the cavity. In our setup, the electrons of the
left lead couple to the electric field at the extremity of a
superconducting microwave resonator, as shown in Fig.
1(c). The total Hamiltonian of the coupled light-matter
system becomes H = Hy + Hs with

A
Hy = hwoa'a + —=(a +a') ZCLJLCIWL . (2.2
\/5 ko

To study the effect of the light degrees of freedom onto
the Kondo model, we apply one first unitary transforma-
tion on the Hamiltonian H and define H' = UTHU. We
have:

U =exp |"i9 (Z CLJLCkgL>] , (2.3)

ko

Aa—a®)
VT We can

transformed Hamiltonian H’ thanks to the DBaker-
Campbell-Haussdorff formula eXYe X =Y + [X,Y] +
7 [X XY+ 3 [X,[X,[X,Y]]] + ... . We then get

where 6 = compute the
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Assuming small fluctuations concerning the total number
of conduction electrons, the right hand side of Eq. (2.6)

Hp =Y (ipChordpoe™ +he) + D (tippchordpno + hoc) +
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Figure 10. (color online) Amplitude response A as a function
of the driving frequency w, for various bias voltages (0, 0.5,
0.6, 0.7, 0.8, 1 mV) at point A. The red dashed line shows the
fitted resonance frequency, shifted by the electron transport.
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is almost a constant, so that the resulting Hamiltonian
reads H' = Hy + Hg + Hp + H} + hwoa'a, where we
have

> (tprprdh, olpro + hoc.). (2.7)

PLPRO
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This unitary transformation has suppressed the explicit
coupling between the source lead and the resonator.
The tunneling terms from the source lead to the left dot
have moreover acquired a phase which depends on the
state of the resonator.

We apply then a second unitary transformation H =

VIH'V, with
= exp [20 <Z LG pw)] .
pLo

After similar calculations, the resulting Hamiltonian
reads H = H, + H; + HD + HT + hwoaTa where we
have

(2.8)

HD—HD—T (l"‘CL <Z pLo PLO'>

pLo

I_irT = Z Z Z(tkPLCLUZdPlU + h'c') +

l=L,R ko pi

In this final form, the mode of the resonator is coupled
to the energy levels of the Left dot. Additionally, the
tunneling term between the dots has acquired a phase
which depends on the p operator of the mode. In the
article, the & field (describing the quantization of the

Z (tPLPRd;LgdpRaeiw + h.C.).

PLPRO

(2.9)

[
electric field in the cavity) is related to (a + af).
We can characterize the effect of the DQD on the

resonator at point A by measuring the amplitude re-
sponse as a function of the driving frequency, for various



bias voltages, as shown in Fig. 10. The coupling to the
electronic system leads to a renormalization of the bare
resonator frequency wg to a voltage-dependent value
w§(Vsa), which can be seen in the amplitude response of
the cavity (and associated with the red dashed line in
Fig. 10) [37].

Appendix C: Description of the SU(4) Kondo Model

The low-energy theory of the electronic degrees of free-
dom at point A can be built in perturbation theory, by
restricting the electron dynamics on the dot to the two
allowed states (N — 1, M) and (N, M —1). We can then
introduce a pseudo-spin degree of freedom T to describe
the two charge states by analogy with a double-well prob-

J
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lem, assuming the limit of small quantum dots [25]. The
spin S of electrons will couple to the pseudo-spin degrees
of freedom when taking into account second-order tun-
neling processes.

1. SU(4) Kondo Model

As a result of second-order tunneling processes, the
electron leads are coupled through the Hamiltonian H; =
Hpin + Hrondo + Hassist + Horbital [25} Here, Hyin Tep-
resents the kinetic energy in the two leads. Second-order
tunneling processes are classified through purely Kondo
terms involving spin flips, orbital contributions changing
the lead index from say | = L (Left) to I = R (Right)
and flipping the charge state on the DQD, and assisted
tunneling processes entangling the charge and spin:

(3.1)

Horpitar = % (VT 2 + Vo (T 7y + hee))),

where 1),; is the Fourier transform of cj,; which refers to
an electron operator with spin ¢ in lead [. Here, S corre-
sponds to the spin operator of the electron delocalized on
the DQD, T to the pseudo-spin associated to the charge
dynamics on the DQD, ¢ and 7 act on the spin space and
orbital (lead) space of the electron operators. The cou-
plings above can be written in terms of the tunneling rate
to the right/left lead T'y and the charging energy E. of
the DQD respectively as [25] J = Q, = (T +T'_)/4FE.,

QL=V. =T I_/E..

To generalize this Hamiltonian in graphene, we assume
that an electron in graphene leads, has an equal proba-
bility to hop onto the DQD when belonging to sub-lattice
A or sub-lattice B. In this sense, the c-operator corre-
sponds to the symmetric combination of A and B sub-
lattice electron operators in graphene. A small asymme-
try between these tunneling elements (smaller than the
Kondo energy scale) should not affect the results in the
article. We argue that a small geometrical asymmetry of
the tunneling between the two graphene sub-lattices is
unimportant, as the symmetric term would dominate in
the renormalization procedure of Ref. [25].

It should also be noted that the tunneling term be-
tween the two dots also involve the phase (operator) 6
after the unitary transformation done above. Therefore,
the coupling between the two dots gives rise to an orbital
magnetic field ¢’ exp(—if)TT + h.c.. When focusing on
DC transport we redefine ¢’ — t' exp(—i6). The impor-
tant point is that, in contrast to a macroscopic environ-
ment which may suppress the DC conductance [26], the
coupling with a single mode resonator should not affect

(

the transmission between the two dots in the limit of zero
frequency. The main process for DC conductance should
not be accompanied by the emission of a (single) photon.

2. Fermi liquid picture

The starting point of our analysis is that the sys-
tem flows to a Kondo-Fermi-liquid fixed point [25, 27—
29, 50, 67, 68], which is quite robust to (charge) noise
effects [26]. Experiments have reported the possible oc-
currence of an emergent SU(4) symmetry at the low-
energy fixed point, in similar geometries, due to the en-
tanglement between spin and orbital degrees of freedom
[4, 5,7, 39, 69]. The remarkable fact is that the bare pa-
rameters of the model are replaced by a single parameter
describing the low-energy fixed point, namely the Kondo
energy scale kT . In this description the spectral func-
tion of the DQD can be modeled by an effective resonant
level model [28], associated with spinless fermionic oper-
ators d and d' defined in the article and describing the
two macroscopic charge states on the DQD. These op-
erators d and d' are defined in correspondence with the
processes involving the orbital operators T~ and T'F re-
spectively. This spinless description is legitimate as the
two spin components add up in the conductance, and
the cavity only couples to the orbital degree of freedom.
We highlight that even though we describe the effective
resonant level with spinless operators, the spin of the
electrons is a highly relevant quantity: the joint effect of
the orbital and spin degrees of freedom lead to a SU(4)



Kondo resonance at eg of the order of kgTk, above the
Fermi surface.

In this regime, the system can then be treated by anal-
ogy with the case of one single dot studied in Ref. [37],
the only difference being that the position ¢y and the
width T'(Visq) of the electronic level are determined by
the SU(4) fixed point, leading to a the spectral function
of the form :

_ 1 I'(Vsa)
plw) == (hw — €0)2 + D(Vaa)?’

(3.2)

where the position of the resonance ¢ is of the order of
kpTk [27, 28]. We take a bias dependent width I'(Vyg)
for the pseudo-fermion d to account for dissipation
effects at large voltages, see below.

3. Voltage dependent level width

We estimate perturbatively the decoherence rate I' at
large bias voltages, adopting the pseudo-fermion d and
d' resonance description (related to the orbital degrees
of freedom T~ and T respectively). The decoherence
channels on the Kondo effect at large bias voltages will
be provided by the terms involving 7~ and T, namely
Vi and @, . It is quite straightforward to compute the
imaginary-part of the self energy of the d fermion to
second order in V| and @, .

For the V| channel, by analogy with the SU(2) Kondo
effect [54], we find

D=2 [ @VE) Lo (L= o) (33)

To simplify, here we set A = 1. In this expression, the
factor 2 comes from the two spin polarizations of an
electron, f is the Fermi distribution and puy; and pg
are the chemical potentials in the two leads. Since we
consider high frequency scales of the order of w’ ~ eVyqy
or short time scales smaller than 1/(kpTk), for the
pseudo-fermion d evolution in time, we have replaced
exp(—iept) by one since ¢y ~ Tk.

In a similar way, for the @), channel, we find

Lo =1 [ A/ Q@) furm (1~ o). (30
The factor 4 encodes all the spin possibilities allowed

by the @, channel. The total decoherence rate is
="y +71s.

To find Eq. (4.1) at large bias voltages in the article we
proceed as follows. First, based on the renormalization
group equations of the SU(4) Kondo model [67], we can
approximate V| (w) ~ Q1 (w) = J(w). This leads to the
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Figure 11. (color online) Evolution of I'/Tx with respect

to eVsq/Tk (here kg = 1). At low bias voltages, we have
I'/Txk ~ 1, while I' ~ Vy4/ [ln(Vsd/TK)]2 for large biases
€Vsa/Tr > 1 (full red line). This expression is valid asymp-
totically and for I' < V,q [54]. We use a polynomial (here de-
gree 6) interpolation between these two limits (full magenta
line). The vertical dotted blue line shows the value of the
charging energy Ec.

following equation for w’ ~ eVyq > kpTk:

1 ~lo eVSd
47w "8\ kpTw )

where we have used the definition of the SU(4) Kondo
energy scale

(3.5)

kpTx = Dexp(—1/4J(D)), (3.6)
where D is an ultraviolet cutoff, essentially E. in the
present case. Extending this form of solutions in all the
frequency window set by eV then leads to

I' = kpTk for eVyqg < kpTk,
6 eVsa

P O g eV > kpTk,
16 1n%(eV,q /kpTx) @7 RBIR

(3.7)

by analogy with the SU(2) Kondo effect [54].

At large bias voltages, the current produces dissipa-
tion and decoherence effects on the Kondo resonance. A
polynomial interpolation is performed between small and
large biases, and the resulting behavior is shown in Fig.
11. As can be seen in this figure, (I'(Vsq) — eViq) (given
by the space between the magenta line and the dashed
black line) initially decreases until e|Vy4| ~ kpTk, which
is responsible for the low-energy features in the ampli-
tude. For e|Viq| > kpTk, we still observe a robust =
phase in the reflected signal. At e|Vi4|/kpTKk ~ 10, the
quantity I'(Vsq) becomes smaller than V4, leading to a
drop of the phase shift from 7 to 0. Above e|Vyy| ~ E.
(vertical dotted blue line) the model is not valid as we
should take into account other energy levels.



As Tk can be estimated from DC transport measure-
ments (see Fig. 2 in the article), we only use one fitting
parameter to obtain Fig. 11: the proportionality coeffi-
cient on the right hand side of Eq. (3.7); we also check
that changing the dissipation strength « does not affect

J

ImIT? (wg) = A2 fr(wp) Z a arctan

a,a== I

where fr(wg) = I'/(47°T? + 7?h?wf). In addition, p, =
aeVid/2 are the chemical potentials associated with each
lead, where formally a = +1 for left (L) lead and a = —1
for right (R) lead. Formally, this form of ImIT#(wg) is ob-
tained by considering the limit |¢'|\/w§ < A. The phase
and amplitude of transmitted photons are then directly
obtained from ImIT#(wy) in the article. Corresponding
results are shown in Fig. 3.

4. Comparison with a non-interacting Resonant
level Model

We now argue that the experimental results in Fig. 3
are not compatible with a simple analysis of the elec-
tronic system (biased leads plus double quantum dots)

(ua — €0 + alwg
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much the results (in the weak-dissipation regime). This
particular evolution of the resonance width I" determines
the electron-induced photon lifetime, ImHR(w(()Vsd)). Us-
ing the Fermi liquid picture then gives [37]:

>+/\frw0 Z FO ( (€°+°‘Z‘”3) +F2> (3.8)

Ha _50) +17?

(

based on a resonant level model as was done in Ref. [37].
Indeed in this picture the electronic lifetime would be es-
sentially bias independent and set by the width of the
resonance I'. Results of Fig. 3 in the article would then
suggest I' ~ E, = 0.4 meV. Such a large value of I seems
unphysical (in the context of a DQD weakly coupled to
graphene leads). Moreover, the electronic levels in the
Coulomb diamond would not be well defined. This is
also in contradiction with the presence of two distinct
energy scales in the amplitude of the reflected microwave
signal. In contrast, we attribute the robustness of the
7 phase and the low bias features of the amplitude re-
sponse to a formation of a bound state between light and
matter in the Kondo regime, leading to a strong voltage
dependence for T'.
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