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Extreme near-field heat transfer between metallic surfaces is a subject of debate

as the state-of-the-art theory and experiments are in disagreement on the energy

carriers driving heat transport. In an effort to elucidate the physics of extreme near-

field heat transfer between metallic surfaces, this work presents a comprehensive

model combining radiation, acoustic phonon and electron transport across sub-10-

nm vacuum gaps. The results obtained for gold surfaces show that in the absence

of bias voltage, acoustic phonon transport is dominant for vacuum gaps smaller

than ∼2 nm. The application of a bias voltage significantly affects the dominant

energy carriers as it increases the phonon contribution mediated by the long-range

Coulomb force and the electron contribution due to a reduced potential barrier. For

a bias voltage of 0.6 V, acoustic phonon transport becomes dominant at a vacuum

gap of 5 nm, whereas electron tunneling dominates at sub-nm vacuum gaps. The

comparison of the theory against experimental data from the literature suggests that

well-controlled measurements between metallic surfaces are needed to quantify the
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contributions of acoustic phonon and electron as a function of the bias voltage.

I. INTRODUCTION

Radiative heat transfer between two surfaces separated by a sub-wavelength vacuum gap

can exceed the far-field blackbody limit by a few orders of magnitude owing to tunnel-

ing of evanescent electromagnetic waves [1]. Theoretical predictions of near-field radiative

heat transfer based on fluctuational electrodynamics [2] are well-established, and have been

experimentally validated in various configurations for nanosized vacuum gaps [3–18]. How-

ever, fluctuational electrodynamics may not be able to accurately describe heat transfer

in the extreme near-field regime, defined here as sub-10-nm vacuum gap distances, due to

its macroscopic nature involving local field averaging (i.e., local dielectric function) [19].

In addition, fluctuational electrodynamics solely accounts for electromagnetic waves (i.e.,

radiation), whereas acoustic phonons and electrons may also contribute to heat transport

between surfaces separated by single-digit nanometer vacuum gaps prior to contact. A few

theoretical works have investigated acoustic phonon transport across vacuum gaps [19–30],

and some have explicitly shown the inadequacy of fluctuational electrodynamics for modeling

heat transfer in the extreme near field [19, 21, 23–30].

Experimental measurements of extreme near-field heat transfer are scarce [31–36].

Jarzembski et al. [36] measured a thermal conductance exceeding fluctuational electro-

dynamics predictions by three orders of magnitude between a silicon tip and a platinum

nanoheater separated by sub-10-nm vacuum gaps down to contact. By considering all energy

carriers, it was shown quantitatively that heat transfer across nanometer-sized vacuum gaps

can be dominated by acoustic phonon transport mediated by van der Waals and Coulomb

forces. Extreme near-field heat transfer between metallic surfaces has also been measured,
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but drastically different results have been reported. Kim et al. [33] measured heat transfer

between a thermocouple-embedded tip fabricated at the free-end of a stiff cantilever and a

suspended resistive microheater at 305 K. Their measurements between a gold (Au)-coated

tip and an Au surface are in good agreement with fluctuational electrodynamics down to a

vacuum gap of ∼2 nm. On the other hand, Kloppstech et al. [34] reported the measurement

of heat transfer between an Au thermocouple-embedded scanning tunneling microscope tip

and a cryogenically-cooled Au surface, observing heat transfer largely exceeding fluctuational

electrodynamics for vacuum gaps from 7 nm down to 0.2 nm. However, no comprehensive

modeling was performed to quantitatively support their observation. Subsequently, Cui et

al. [35] measured heat transfer between an Au-coated tip and an Au surface, both subjected

to various surface-cleaning procedures, for vacuum gaps from 5 nm down to a few Å. They

hypothesized that the large heat transfer reported by Kloppstech et al. [34] may be due to

a low apparent potential barrier for electron tunneling mediated by surface contaminants

bridging the tip and the surface prior to bulk contact.

A few theoretical works have analyzed extreme near-field heat transfer between Au sur-

faces [23, 25–30]. Using a surface perturbation approach, Pendry et al. [23] predicted that

the heat transfer coefficient due to acoustic phonons exceeds that obtained with fluctua-

tional electrodynamics for vacuum gaps smaller than 0.4 nm. Similar results were obtained

by Volokitin [28]. Alkurdi et al. [27] compared the contributions of radiation, phonons and

electrons to heat transfer between Au surfaces separated by vacuum gaps varying from 1.5 nm

down to 0.2 nm. Using a three-dimensional (3D) lattice dynamics framework, it was found

that acoustic phonon transport exceeds radiation for all vacuum gaps considered, whereas

electron tunneling slightly surpasses the phonon contribution for vacuum gaps smaller than

0.4 nm. In stark contrast, Messina et al. [26] predicted that acoustic phonon transport does
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not play any role in extreme near-field heat transfer between Au surfaces. Their results

indicated that for vacuum gaps smaller than ∼1 nm, electron tunneling largely dominates

heat transfer, whether or not a bias voltage is applied between the two surfaces. Volokitin

showed that surface charges induced by a bias voltage [28, 29] and the electrical double layer

effect [30] between Au surfaces increase the contribution of TM-polarized electromagnetic

waves in the extreme near field.

Despite these experimental and theoretical efforts, the mechanisms driving heat transfer

between metallic surfaces separated by sub-10-nm vacuum gaps are not well understood. The

objective of this work is to elucidate the physics underlying extreme near-field heat transfer

between Au surfaces, and to determine vacuum gap ranges in which radiation, phonon, and

electron are the dominant carriers. This is achieved by implementing a comprehensive model

that accounts for all energy carriers, and by comparing theoretical predictions against the

experimental data from Refs. [26, 33, 34]. It is shown that in the absence of bias voltage,

heat transfer is mediated by acoustic phonon transport for vacuum gaps smaller than ∼2

nm. In addition, applying a bias voltage between Au surfaces enhances the contributions

of acoustic phonon and electron tunneling owing to the long-range Coulomb force and the

lower potential barrier, respectively.

II. DESCRIPTION OF THE MODEL

To compare the theory against experimental results, the thermal conductance G between

a tip and a surface separated by a vacuum gap d is calculated from local heat transfer coef-

ficients h between two parallel surfaces, modeled as semi-infinite layers, using the Derjaguin
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approximation [3, 37]:

G =

∫ rtip

0

drh(d̃)2πr (1)

where r is the radial direction, rtip is the tip radius, and d̃ = d + rtip −
√
rtip2 − r2 is the

vacuum gap distance between the surfaces: see Fig. 1. The heat transfer coefficient in Eq.

(1) is the sum of contributions from radiation, phonon, and electron, as detailed hereafter.

A. Radiation transport

The heat transfer coefficient due to radiation between two parallel surfaces (media L and

R) separated by a vacuum gap of thickness d̃ (medium 0) is calculated using fluctuational

electrodynamics to account for the near-field effects [1]:

hrad =
1

π2(TL − TR)

∫ ∞
0

dω [Θ (ω, TL)−Θ (ω, TR)]

∫ ∞
0

dkρkρ
∑

γ=TE,TM

T γrad (ω, kρ) (2)

where ω is the angular frequency, kρ is the component of the wavevector parallel to

an interface, and Θ(ω, T ) is the mean energy of an electromagnetic state calculated as

~ω/[exp(~ω/kbT ) − 1]. The transmission functions in polarization state γ for propagating

(kρ < k0) and evanescent (kρ > k0) electromagnetic waves in vacuum are respectively given

by:

T γrad,prop (ω, kρ) =

(
1− |rγ0L|

2
)(

1− |rγ0R|
2
)

4
∣∣1− rγ0Lrγ0Re2iRe(kz0)d̃

∣∣2 (3)

T γrad,evan (ω, kρ) = e−2Im(kz0)d̃
Im (rγ0L) Im (rγ0R)∣∣1− rγ0Lrγ0Re−2Im(kz0)d̃

∣∣2 (4)

where kz0 is the component of the vacuum wavevector perpendicular to an interface, and

rγ0j (j = L,R) is the Fresnel reflection coefficient [38]. The frequency-dependent dielectric

function of Au is calculated using the Drude model provided in Ref. [39].
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FIG. 1: The thermal conductance between a tip and a surface separated by a vacuum gap d is calculated

from the heat transfer coefficients between two parallel surfaces, modeled as semi-infinite layers, separated

by a vacuum gap d̃ using the Derjaguin approximation. Top-most atoms are located at the Au-vacuum

interfaces. The interatomic vacuum distance d′ used for predicting acoustic phonon transport is the same

as the vacuum gap thickness d̃ used for radiation and electron tunneling calculations. The left (L) and right

(R) semi-infinite layers are assumed to be at constant and uniform temperatures TL and TR.



7

B. Acoustic phonon transport

Acoustic phonons can tunnel across vacuum gaps via force interactions. Acoustic phonon

transport is modeled using the one-dimensional (1D) atomistic Green’s function (AGF)

method [40, 41]. The heat transfer coefficient due to acoustic phonon transport across an

interatomic vacuum distance d′ for a 1D atomic chain is written as:

hph =
1

A(TL − TR)

∫ ∞
0

dω
~ω
2π
Tph(ω)[N(ω, TL)−N(ω, TR)] (5)

where N = 1/[exp(~ω/kbT ) − 1] is the Bose-Einstein distribution function and A is the

cross-sectional area of an atom. The atomic radius of Au is taken as 1.740 Å [42]. The top-

most atoms are located at the Au-vacuum interfaces [43], such that the interatomic vacuum

distance d′ is the same as the vacuum gap thickness d̃ used for radiation and electron

transport calculations (see Fig. 1). Note that the lattice constant of Au (4.065 Å) is used as

the criterion for bulk contact. The minimum distance at which the heat transfer coefficient

is calculated is therefore 4.065 Å. The phonon transmission function is given by the Caroli

formula [44]:

Tph(ω) = Trace[ΓLGdΓRG
†
d] (6)

where the superscript † denotes conjugate transpose, ΓL,R is the escape rate of phonons from

the device region to the semi-infinite layers, and Gd is the Green’s function of the device

region. In the present study, the device region encompasses the vacuum gap and five atoms

in each of the semi-infinite layers. Increasing the number of atoms in the device region does

not affect the phonon transmission function. Details about the 1D AGF method have been

provided in Refs. [36, 40, 41].

Short- and long-range force interactions are considered for modeling acoustic phonon

transport across vacuum gaps. For the short-range interactions, the Lennard-Jones model
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is used to account for the van der Waals force and overlapping electron cloud repulsive force

[45–47]. The Lennard-Jones model is provided in Sec. S1 of the Supplemental Material [48].

When there is a bias voltage, the induced surface charges generate long-range capacitance

and Coulomb forces [49–52]. The capacitance force between Au atoms is derived from the

capacitance force between a tip and a surface [48]:

FCapacitance =
ε0V

2
bias

2

A

d′2
(7)

where ε0 is the permittivity of free space and Vbias is the bias voltage. Similarly, the Coulomb

force between Au atoms is calculated from the Coulomb force due to surface charges between

a tip and a surface [48]:

FCoulomb =
QsQt

4πε0d
′2

A

Atip

(8)

where Atip is the tip surface, Qs is the surface charge, and Qt is the tip charge defined as Qt =

−(Qs +Qe). The induced capacitive charge is given by Qe = CVbias, where C (= ε0Atip/d) is

the parallel plate capacitance [53]. At the onset of contact, the Coulomb force vanishes due to

charge neutralization [54]. The reduction of the surface charge density (Qs/Atip) with respect

to the vacuum gap separating a tip and a surface has been previously predicted [55, 56]. In

addition, an experimental effort has demonstrated a vanishing capacitance between a tip and

a substrate with the reduction of the vacuum gap distance [57]. As such, the surface charge

density should ideally be treated as a function of the interatomic distance [56]. However,

since it is challenging to develop a distance-dependent surface charge density model, Qs/Atip

is treated here as a constant value, which is a reasonable assumption for gap distances of a

few nanometers [55], that vanishes below a cut-off vacuum distance [58]. The cut-off value

is approximated as the interatomic vacuum distance for which electron tunneling becomes

significant, corresponding to d
′ ≈ 7 Å [59]. Jarzembski et al. [36] estimated the surface
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charge density of a biased platinum surface based on their experimental conditions. A

surface charge density of 8× 10−4 C/m2 was estimated for a bias voltage of 0.8 V. In the

present work, a value of 6× 10−4 C/m2 is used for Vbias = 0.6 V under the assumption that

the surface charge density varies linearly with the bias voltage [60, 61].

The validity of the capacitance and Coulomb force models at nanosized vacuum gaps is

justified as follows. The capacitance force model based on Eq. (7) has been validated down

to a vacuum gap of ∼10 nm via force microscopy between a nickel probe and a PMMA

surface [62] and down to ∼5 nm via atomic force microscopy (AFM) between a tungsten

tip and a silicon surface [63]. In addition, El Khoury et al. [64] measured force gradients

between an AFM probe and epoxy surfaces, and found an excellent agreement between

experiments and theory based on the capacitance and Coulomb force models given by Eqs.

(7) and (8) down to a vacuum gap of 10 nm.

For the vacuum gap distances considered in this work, the Coulomb force largely exceeds

the capacitance force (see Fig. S1 of Sec. 2 of the Supplemental Material [48]). Therefore, the

total force driving acoustic phonon transport across vacuum gaps between two Au surfaces is

given as the sum of the Lennard-Jones force model (FL−J) and the Coulomb force (FCoulomb):

Ftotal = FL−J + FCoulomb (9)

The inputs for AGF calculations are the force constants, which are obtained by taking the

absolute values of the first order derivative of Ftotal with respect to d
′

(i.e.,
∣∣∂Ftotal/∂d

′∣∣)
[21].
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C. Electron transport

Electrons can contribute to heat transfer across vacuum gaps via tunneling and thermionic

emission. Owing to the low temperatures considered (∼300 K), thermionic emission is

negligible. The heat transfer coefficient due to electron tunneling across a vacuum gap can

be written as [65–67]:

hel =
1

(TL − TR)

∫ Wmax

−∞
dEz[ (Ez + kbTL)NL (Ez, TL)

− (Ez + kbTR)NR (Ez − eVbias, TR)]Tel (Ez)
(10)

where e = 1.602×10−19 C is the electron charge, Ez is the electron energy perpendicular to

the surfaces, and Wmax is the maximum potential barrier. The term Nj(Ez, Tj), denoting

the number of electrons at energy level Ez per unit area and per unit time, is calculated as

[65]:

Nj (Ez, Tj) =
mekbTj
2π2~3

ln

[
1 + exp

(
−Ez − EF,j

kbTj

)]
(11)

where me = 9.109× 10−31 kg is the electron mass, and EF,j is the Fermi level used as a

reference for computing the electron energy [65]. The electron transmission function is

calculated using the Wentzel-Kramers-Brillouin (WKB) approximation [68]:

Tel (Ez) = exp

[
−
√

8me

~

∫ z2

z1

dz
√
W (z)− Ez

]
(12)

where W (z) is the potential barrier profile in the vacuum gap, while z1 and z2 are the roots

of W (z)− Ez = 0 delimiting the width of the electron tunneling barrier Ez. The potential

barrier profile can be expressed as [65]:

W (z) = Wid(z) +Wic(z) (13)

Note that the space-charge effect is assumed to be fully suppressed for sub-10-nm vacuum

gaps [67]. The ideal barrier profile [67] and image-charge perturbation [69] are respectively
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calculated as:

Wid(z) = ΦL − (ΦL − ΦR − eVbias)
(
z

d̃

)
(14)

Wic(z) =
e2

16πε0d

[
−2Ψ (1) + Ψ

(
z

d̃

)
+ Ψ

(
1− z

d̃

)]
(15)

where ΦL,R = 5.10 eV is the work function of Au [70] and Ψ is the digamma function.

The WKB approximation may lead to an overestimation of the electron heat trans-

fer coefficient below vacuum gaps of ∼0.5 nm [66, 71]. As such, for small vacuum gaps,

the electron heat transfer coefficient is also calculated via the 1D non-equilibrium Green’s

function (NEGF) approach described in Ref. [66]. In the NEGF framework, the electron

transmission function is given by:

Tel(Ez) = Trace[ΓLG
RΓR

(
GR
)†

], (16)

where ΓL,R is the energy broadening matrix, whereas GR is the retarded Green’s function.

III. RESULTS

The heat transfer coefficients between two Au surfaces due to radiation, acoustic phonon

transport, and electron tunneling are presented in Fig. 2(a) for the experimental conditions

taken from Kim et al. [33], where TL = 305 K, TR = 300 K, and Vbias = 0 V. The Au-vacuum

interfaces support surface plasmon polaritons at a high frequency (∼ 1.2× 1016 rad/s) that

cannot be thermally excited at room temperature. As such, the radiation heat transfer

coefficient, dominated by TE-polarized electromagnetic waves, saturates as the vacuum gap

decreases. It should be noted that while fluctuational electrodynamics is not expected to

be valid for sub-2-nm vacuum gaps owing to non-local effects [39], radiation predictions

below 2 nm vacuum gaps are shown throughout the paper for reference. In addition, the



12

FIG. 2: (a) Heat transfer coefficients due to radiation, phonon, and electron between two Au surfaces

separated by a vacuum gap d̃ (TL = 305 K, TR = 300 K, Vbias = 0 V). The electron heat transfer coefficient

is calculated via the WKB approximation and the NEGF. The phonon heat transfer coefficient predicted via

the 1D AGF method is compared against the 3D lattice dynamics results of Alkurdi et al. [27]. (b) Thermal

conductance between a 450-nm-radius tip (300 K) and a surface (305 K), both made of Au, separated by

a vacuum gap d. The total conductance is calculated using the electron heat transfer coefficient from the

WKB approximation. The predicted conductance is compared against the experimental results of Kim et

al. [33].
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enhancement of TM-polarized electromagnetic waves mediated by the electrical double layer

effect (no bias voltage) [30] and by surface charges induced by a bias voltage [28, 29] is not

taken into account in the radiation model. As explained hereafter, these effects have no

impact on the calculated thermal conductance.

In the absence of bias voltage, only the van der Waals and overlapping electron cloud

forces, represented by the Lennard-Jones model, contribute to acoustic phonon transport.

The phonon heat transfer coefficient exceeds that of radiation for a vacuum gap smaller

than ∼2 nm. This result contrasts with the results of Refs. [23, 28] where acoustic phonon

transport exceeds radiation transfer for vacuum gaps smaller than ∼0.4 nm. This discrep-

ancy can be explained by the different descriptions of the force interactions and phonon

transmission in Refs. [23, 28]. It is worth noting that the accuracy of the 1D AGF approach

used in this work is verified in Fig. 2(a) by comparison against the results obtained from

a 3D lattice dynamics framework [27]. The electron heat transfer coefficient exceeds the

radiation heat transfer coefficient for a vacuum gap smaller than ∼1 nm. Provided that

the NEGF calculates the electron transmission function more accurately than the WKB

approximation for vacuum gaps smaller than ∼0.5 nm [66, 71], the results indicate that

the phonon contribution always exceed that of the electron for sub-2-nm vacuum gaps near

room temperature.

Figure 2(b) shows the predicted thermal conductance between a 450-nm-radius Au tip

at 300 K and an Au surface at 305 K by applying the Derjaguin approximation with the

heat transfer coefficients shown in Fig. 2(a). These predictions are compared against the

conductance measured in Ref. [33] for vacuum gaps down to ∼2 nm. Clearly, for vacuum

gaps larger than ∼1.5 nm, heat transfer is mediated by radiation. The calculated total

conductance is in good agreement with the experimental data of Ref. [33]. The results
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from the comprehensive model presented in this work therefore support the conclusions

of Kim et al. [33]. Vacuum gaps approximately equal to or smaller than 1 nm would

have been required to observe a significant enhancement of the conductance mediated by

acoustic phonon transport. Note that including the electrical double layer effect [30] in the

radiation transport model does not impact the thermal conductance in the vacuum gap

range considered in Kim et al. [33]: see Sec. 3 of the Supplemental Material [48].

Figure 3(a) presents the heat transfer coefficients between two Au surfaces due to ra-

diation, acoustic phonon transport, and electron tunneling for the experimental conditions

taken from Kloppstech et al. [34], where TL = 280 K, TR = 120 K, and Vbias = 0.6 V.

The phonon heat transfer coefficient is calculated with and without bias voltage, and the

shaded area in Fig. 3(a) shows its possible values. Owing to the long-range Coulomb force

mediated by the bias voltage, the phonon heat transfer coefficient exceeds that of radiation

for vacuum gaps smaller than ∼5 nm. The Coulomb force, however, has a low impact on

the phonon heat transfer coefficient for vacuum gaps smaller than 1 nm. Note that these

predictions are significantly larger than the acoustic phonon transport results under the

electrostatic force for Vbias = 1 V reported in Refs. [23, 28]. This is explained by the fact

that Refs. [23, 28] only take into account the capacitance force, which is significantly smaller

than the Coulomb force. The electron heat transfer coefficient is enhanced due to the bias

voltage that lowers the potential barrier for tunneling. The WKB approximation suggests

that electron-mediated heat transfer exceeds acoustic phonon transport for vacuum gaps

smaller than 1 nm. The NEGF also suggests that the electron heat transfer coefficient is

slightly larger than that of phonon, but for sub-0.5-nm vacuum gaps.

The thermal conductance calculated between a 30-nm-radius Au tip and an Au surface

is shown in Fig. 3(b) under the same experimental conditions as in Fig. 3(a) (temperatures
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FIG. 3: (a) Heat transfer coefficients due to radiation, phonon, and electron between two Au surfaces

separated by a vacuum gap d̃ (TL = 280 K, TR = 120 K, Vbias = 0.6 V). The electron heat transfer coefficient

is calculated via the WKB approximation and the NEGF. The phonon heat transfer coefficient is calculated

both with and without bias voltage. (b) Thermal conductance between a 30-nm-radius tip (280 K) and a

surface (120 K), both made of Au, separated by a vacuum gap d. The total conductance is calculated using

the electron heat transfer coefficient from the WKB approximation. The predicted conductance is compared

against the experimental results of Kloppstech et al. [34] and Messina et al. [26].
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of 280 and 120 K, Vbias = 0.6 V). The results are compared against the experimental data

of Kloppstech et al. [34], in addition to a more recent set of data from the same group [26].

Note that the most recent experimental data were obtained for surface and tip temperatures

of respectively 195 K and 295 K. These slight temperature differences have no noticeable

impact on the heat transfer coefficients: see Sec. S4 of the Supplemental Material [48]. The

total conductance, which include the radiation, phonon, and electron contributions, display

three distinct regimes. For vacuum gaps larger than 5 nm, radiation transport via evanescent

electromagnetic waves drives heat transfer. For vacuum gaps from 5 nm down to ∼1.5 nm,

radiation transitions to acoustic phonon-mediated heat transfer. Acoustic phonon transport

becomes dominant between vacuum gaps of 1.5 nm and 0.9 nm. For vacuum gaps smaller

than 0.9 nm, electron tunneling drives heat transfer owing to the applied bias voltage.

The magnitude of the experimental and theoretical data are quite different. Nevertheless,

a power law analysis may enable determining the energy carriers driving heat transport in

the experiments of Refs. [26, 34]. In the vacuum gap range of 1 nm to 1.5 nm where acoustic

phonon transport is dominant, the predicted total conductance follows a d−3.2 power law.

Within that range, the data of Messina et al. [26] vary as d−2.9, which is close to the

theory. This regime arises due to the Coulomb force induced by the bias voltage. For

vacuum gaps smaller than 0.9 nm where electron tunneling dominates heat transport, the

total conductance follows a d−12.6 power law. Interestingly, a similar trend is observed in the

experimental data of Kloppstech et al. [34] but at much larger vacuum gaps (d & 5 nm).

It is worth noting that the enhancement of radiation transfer in TM polarization mediated

by surface charges induced by a bias voltage, discussed in Refs. [28, 29], has no impact on

the thermal conductance shown in Fig. 3(b). Indeed, for Vbias = 1 V, the TM component of

the radiation heat transfer coefficient exceeds the TE contribution for vacuum gaps smaller
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than ∼0.18 nm [28, 29]. Additionally, the radiation heat transfer coefficient that includes

the electrical double layer effect [30] never exceeds the phonon heat transfer coefficient for

Vbias = 0.6 V reported in Fig. 3(a). As such, the electrical double layer effect has no impact

on the thermal conductance shown in Fig. 3(b).

It has been hypothesized that contaminants bridging the tip and the surface prior to bulk

contact may lower the potential barrier for electron tunneling [35]. Using their measured

tunneling current, Messina et al. [26] estimated an apparent potential barrier of 1 eV, which

induces an enhancement of the electron heat transfer coefficient. Fig. 4 shows the thermal

conductance predicted by considering a simple potential barrier of 1 eV for electron tunnel-

ing. As expected, electron tunneling for that case becomes dominant at a larger vacuum

gap (∼1.5 nm). The magnitude of the total conductance is closer to the experimental data

of Messina et al. [26], but the trends are different. Electron-mediated heat transport follows

a d−10.2 power law, which is not experimentally observed. In the gap range between 1.5

nm and 2 nm where all energy carriers contribute to the conductance, a d−2.7 power law is

predicted. This is again close to the d−2.9 power law of Messina et al. [26] which however

arises in a slightly different vacuum gap range (1 nm to 1.5 nm). It is concluded that the

measured conductance reported by Messina et al. [26] is not solely due to electron tunnel-

ing. Rather, heat transport for this case is likely to be a combination of acoustic phonon

transport, enhanced via the bias voltage, and electron tunneling possibly enhanced by the

low apparent potential barrier mediated by contaminants. It has been pointed out that the

data of Kloppstech et al. [34] were obtained at different apparent potential barrier heights

[26], which make their interpretation challenging. Yet, the variation of the conductance with

respect to the vacuum gap suggests electron-mediated heat transfer.
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FIG. 4: Thermal conductance between a 30-nm-radius tip (280 K) and a surface (120 K), both made

of Au, separated by a vacuum gap d. The electron heat transfer coefficient is calculated with the WKB

approximation using an apparent potential barrier of 1 eV. The phonon heat transfer coefficient is calculated

with a bias voltage of 0.6 V. The predicted conductance is compared against the experimental results of

Messina et al. [26].
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IV. CONCLUSIONS

In summary, a comprehensive model combining fluctuational electrodynamics for radia-

tion, the AGF method for phonon, and the WKB approximation in addition to the NEGF

approach for electron has been implemented to analyze extreme near-field heat transfer be-

tween Au surfaces. In the absence of bias voltage and near room temperature, heat transfer

is mediated by radiation through evanescent electromagnetic waves down to a vacuum gap

of ∼2 nm, below which acoustic phonon transport is the dominant energy carrier. It was

shown that the application of a bias voltage increases not only electron tunneling, but also

acoustic phonon transport mediated by the long-range Coulomb force. As a result, for a

bias voltage of 0.6 V, acoustic phonon transport can affect heat transfer for vacuum gaps

from 5 nm down to ∼1 nm, and electron tunneling should be a responsible heat transfer

mechanism below 1 nm. However, comparison of the comprehensive model against state-of-

the-art measurements [26, 33, 34] reveals that additional data are needed to experimentally

quantify the contributions of acoustic phonons and electrons as a function of the bias voltage

in the heat transfer between Au surfaces separated by sub-10-nm vacuum gaps.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (grants CBET-1605584

and CBET-1952210). T.T. also appreciate the financial support by the Yamada Science

Foundation and the Fujikura Foundation.

∗ Electronic address: kpark@mech.utah.edu



20

† Electronic address: mfrancoeur@mech.utah.edu

[1] D. Polder and M. Van Hove, Phys. Rev. B 4, 3303 (1971).

[2] S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. 3

Elements of Random Fields (Springer, New York, 1989).

[3] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, Nat.

Photonics 3, 514 (2009).

[4] S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909 (2009).

[5] B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J.

Garcia-Vidal, J. C. Cuevas, P. Reddy, et al., Nat. Nanotechnol. 10, 253 (2015).

[6] B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, Nat. Nanotechnol.

11, 509 (2016).

[7] R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, Nat. Nanotechnol. 11, 515 (2016).

[8] M. P. Bernardi, D. Milovich, and M. Francoeur, Nat. Commun. 7, 12900 (2016).

[9] J. I. Watjen, B. Zhao, and Z. M. Zhang, Appl. Phys. Lett. 109, 203112 (2016).

[10] K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, Nano Lett. 17, 4347 (2017).

[11] A. Fiorino, D. Thompson, L. Zhu, B. Song, P. Reddy, and E. Meyhofer, Nano Lett. 18, 3711

(2018).

[12] M. Lim, J. Song, S. S. Lee, and B. J. Lee, Nat. Commun. 9, 4302 (2018).

[13] M. Ghashami, H. Geng, T. Kim, N. Iacopino, S. K. Cho, and K. Park, Phys. Rev. Lett. 120,

175901 (2018).

[14] J. DeSutter, L. Tang, and M. Francoeur, Nat. Nanotechnol. 14, 751 (2019).

[15] K. Shi, Y. Sun, Z. Chen, N. He, F. Bao, J. Evans, and S. He, Nano Lett. 19, 8082 (2019).

[16] L. Tang, J. DeSutter, and M. Francoeur, ACS Photonics 7, 1304 (2020).



21

[17] X. Ying, P. Sabbaghi, N. Sluder, and L. Wang, ACS Photonics 7, 190 (2020).

[18] H. Salihoglu, W. Nam, L. Traverso, M. Segovia, P. K. Venuthurumilli, W. Liu, Y. Wei, W. Li,

and X. Xu, Nano Lett. 20, 6091 (2020).

[19] V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, Nat. Commun. 6, 6755 (2015).

[20] M. Prunnila and J. Meltaus, Phys. Rev. Lett. 105, 125501 (2010).

[21] Y. Ezzahri and K. Joulain, Phys. Rev. B 90, 115433 (2014).

[22] S. Xiong, K. Yang, Y. A. Kosevich, Y. Chalopin, R. D’Agosta, P. Cortona, and S. Volz, Phys.

Rev. Lett. 112, 114301 (2014).

[23] J. B. Pendry, K. Sasihithlu, and R. V. Craster, Phys. Rev. B 94, 075414 (2016).

[24] K. Sasihithlu, J. B. Pendry, and R. V. Craster, Z. Naturforsch. A 72, 181 (2017).
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