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We theoretically study emergent edge/corner localized states in monolayer black phosphorene.
Using the tight-binding model based on the density functional theory, we find that the multi-
orbital band structure due to the non-planar puckered geometry plays an essential role in the
formation of the boundary localized modes. In particular, we demonstrate that edge states emerge
at a boundary along an arbitrary crystallographic direction, and it can be understood from the
fact that the Wannier orbitals associated with 3px, 3py, 3pz orbitals occupy all the bond centers of
phosphorene. At a corner where two edges intersect, we show that multiple corner-localized states
appear due to hybridization of higher-order topological corner state and the edge states nearby.
These characteristic properties of the edge and corner states can be intuitively explained by a
simple topologically-equivalent model where all the bond angles are deformed to 90◦.

I. INTRODUCTION

Black phosphorus is an allotrope of phosphorus with
a van der Waals layered structure, which was discovered
more than a century ago [1]. Its monolayer counterpart,
black phosphorere (hereafter just referred to as phospho-
rene) [2–22], have recently attracted considerable atten-
tion as a stable two-dimensional (2D) semiconductor with
potential applications for electronic devices [7, 8, 11, 20].
Phosphorene has a puckered honeycomb structure shown
in Fig. 1, which is in contrast to graphene with a flat hon-
eycomb lattice. There the formation of sp3 hybrids due
to the non-planar structure leads to a semiconducting
band structure with an energy gap.

A notable difference between the phosphorene and
graphene appears also in the edge states. In graphene,
edge states with a flat dispersion emerges at zigzag edges,
while not at armchair edges [23, 24]. For phosphorene,
on the other hand, the previous theoretical works showed
that the edge states emerge at both zigzag edges (along
y in Fig. 1) and armchair edges (along x) [25–32], and
the study was also extended to edges in diagonal direc-
tions [32]. It was also pointed out that the edge states
in phosphorene influence the electronic transport [33, 34]
and performance as a electrocatalyst for the hydrogen
evolution reaction [35].

Although the emergence of edge states in graphene was
explained in terms of Zak phase [36–38], those in phos-
phorene are not fully understood from a topological point
of view. For instance, the zigzag edge states of phospho-
rene was explained by the graphene-like minimal model
only considering pz orbital [27, 32], while the model does
not explain the armchair edge states. Interestingly, it
was also shown that phosphorene supports a corner state
at an intersection of different edges, within the same pz
minimal model calculation [39]. It was attributed to a
higher-order topological property, which ensures the ex-
istence of (D − 2)-dimensional boundary-localized state
in D-dimensional bulk system [39–57].

On the other hand, the phosphorene is essentially a
multi-orbital system, where the electronic bands around
Fermi energy are composed of 3s, 3px, 3py, 3pz orbitals
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FIG. 1: (a) Lattice structure of phosphorene. (b) The top
view. Gray (white) circles indicate atoms on the top (bottom)
layers, and the yellow square is the unit cell with A, B, A′,
and B′ sublattices.

hybridized by the puckered structure, similarly to other
non-planer 2D materials [58]. This is in sharp contrast
to graphene where the low-energy states are dominated
by pz orbital not participating in sp2 bonding. There-
fore, the edge / corner states of phosphorene and the
asscoiated topological nature should be considered in an
appropriate multi-orbital model.

In this paper, we study the edge and corner states of
phosphorene using a multi-orbital tight-binding model
based on the density functional theory (DFT). We find
that the multi-orbital nature of phohsphorene forces the
emergence of edge states in boundaries with any orienta-
tion: The zigzag edge states are mainly contriubted by pz
orbital consistently with the pz minimal model [27, 32],
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FIG. 2: (a) The first Brillouin zone of phosphorene and the band-calculation path. (b) Band structure of the original DFT
calculation (black curves) and that of the DFT-based tight-binding model (red). The red curves almost completely overlap
with the black curves in the low-energy region, leaving the free-electron bands in the high energy region. (c) Band structure
of the 90◦ model. In (c), the red curves are the bands of px′ and py′ (degenerate on the path), and the black and blue curves
are of s and pz , respectively. (d) Deformation of the band structures around Fermi energy from the 90◦ model (λ = 0) to the
DFT-based tight-binding model (λ = 1). The band gap does not close.

while the armchair edge states turn out to be coming
from px and py orbitals. We also consider different types
of edge terminations, and observe that the multi-orbital
nature gives extra edge states in addition to ones from
pz orbital [32].

The ubiquitous edge-state nature in phosphorene can
be understood in terms of the center position of the Wan-
nier orbital, which is a topological invariant. Here we
show that, in phosphorene, the Wannier orbital reside
in the middle of every single bond, and hence cutting
any bonds results in the half breaking of the Wannier
states and the emergence of the in-gap boundary states.
We also demonstrate that these characteristic properties
can be analytically understood by using a topologically-
equivalent 90◦ model, where all the bond angles are de-
formed to 90◦. There the edge states can be described as
topological zero-energy modes.

At a corner where two edges intersect, we find that the
higher-order-topological corner state is not stand-alone
but inevitably hybridized with the edge states around the
corner. As a result of hybridization of the edge and corner
orbitals, we have multiple corner-localized states com-
posed of different orbitals. These hybrid corner states
can be explained using an edge-corner composite model

only considering the unpaired edge and corner orbitals.
We conclude that the phosphorene is a unique material
where the edge states and the corner states coexist and
interact with each other.

The remaining sections are organized as follows. In
Sec. II, we perform the DFT calculation and derive the
multi-orbital tight-binding model of phosphorene. In ad-
dition, we introduce the 90◦ model and its detailed prop-
erties. In Sec. III, we reveal the existence of the edge
states in various types of edge termination, and corre-
spondence to the fractionalization of the Wannier orbital.
In Sec. IV, we consider a finite-sized phosphorene flake
and find the multiple corner states, and clarify their ori-
gin by the edge-corner composite model. Finally, we give
conclusions in Sec. V.

II. MODEL

A. DFT-based tight-binding model

Phosphorene is a puckered honeycomb lattice of phos-
phorus atoms [Fig. 1]. The primitive lattice vectors are
given by a1 = (a, 0, 0) and a2 = (0, b, 0) with the lat-
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tice constants a = 4.476 Å and b = 3.314 Å. A unit cell
consists of four phosphorus atoms labeled by A, B, A′,
and B′, which are located at τA = [(1/2 − u)a, b/2, c],
τB = (ua, 0, c), τA′ = −τB, and τB′ = −τA + a2, respec-
tively, with respect to the midpoint of the A′B bond.
Here we defined u = 0.08056 and c = 1.0654 Å [59]. The
structure belongs to the non-symmorphic space group
Pmna, which is generated by spatial inversion about the
mid point of A′B, a twofold rotation along y-axis, and the
glide operation, i.e., the combination of half translation
t = (a1 + a2)/2 and mirror reflection with respect to xy
plane.

We calculate the electronic band structure by using ab
initio density functional theory (DFT) implemented in
the quantum-ESPRESSO package. We employ the ul-
trasoft pseudopotentials with Perdew-Zunger selfinterac-
tion corrected density functional, the cutoff energy of the
plane-wave basis 30 Ry, and the convergence criterion of
10−10 Ry in 12 × 12 × 1 k-points mesh. The black curves
in Fig. 2(b) show the resulting band structure along the
high symmetry lines of the first Brilloiuin zone [Fig.1(a)],
where the Fermi energy is E = 0. The valence band edge
is located at Γ point where the band gap is 0.645 eV.
All bands along Y M and M X paths (Brillouin zone edge)
two-fold degenerate (per spin) because of the glide sym-
metry.

We derive a tight-binding model based on the DFT
band structure. Since the energy bands near the Fermi
energy are dominated by the 3s and 3p electrons of phos-
phorus, we take into account the s, px , py, and pz or-
bitals at each of four atomic sites in the unit cell, giving
16 orbitals in total. Here we use the Wannier90 pack-
age [60] and obtain the localized Wannier wave func-
tions and the associated hopping parameters (see, Ap-
pendix A and suplemental data [61]). The band struc-
ture of the derived tight-binding model is shown as red
lines in Fig. 2(b), which precisely reproduces the original
DFT energy bands.

B. 90◦ model

We introduce a simplified model which is topologi-
cally equivalent to the DFT-based tight-binding model
for phosphorene. The model is defined by deforming the
angle between bonds θ1 ≈ 103◦ and θ2 ≈ 98◦ [Fig. 3(a)]
to 90◦ [Fig. 3(b)], so that A and B (A and B) are ver-
tically aligned. We also neglect all the further hoppings
other than the nearest neighbor hoppings indicated by
the bond lines in Fig. 3(b). Note that all the crystalline
symmetries inherent to the phosphorene, including glide,
are preserved.

The resulting model (referred to as the 90◦ model here-
after) is much simpler than the original model. Here we
set the x ′ and y′ axes parallel to the bond directions by
rotating x and y axes by 45◦, and take px′ and py′ as
the basis of in-plane p orbitals [Fig. 3(c)]. In this basis,
hopping between different p-orbitals (px′, py′, pz) becomes

exactly zero, due to the orthogonality of the p orbital ori-
entations. We also neglect the hopping between s and p
orbitals, because the energy bands originating from s-
orbitals are located far below in energy and the coupling
hardly affect the states at the Fermi energy.

Then the Hamiltonian matrix (16 × 16) is written in a
block diagonal form,

H90◦ (k) = diag[Hs(k),Hx′(k),Hy′(k),Hz(k)], (1)

where the subscripts s, x ′, y′, z stand for s, px′, py′, pz-
orbitals, respectively. The 4 × 4 block matrix Hi(k) (i =
s, x ′, y′, z) is written in the basis of A, B, A′, and B′ as

Hi(k) =
©­­­«

0 hi(k) 0 ti,z
h∗i (k) 0 ti,z 0

0 ti,z 0 hi(k)
ti,z 0 h∗i (k) 0

ª®®®¬ + εi, (2)

with

hi(k) = tix′eik ·∆rx′ + tiy′eik ·∆ry′, (3)

ti j =

{
ts (i = s)
δi j tσ + (1 − δi j)tπ (i = x ′, y′, z).

(4)

Here ts = 1.5 eV is the hopping parameter for s-orbital,
tσ = 3 and tπ = 1 are those for σ and π bonds of p-
orbitals, respectively, and ∆r x′ = a′ex′ , ∆ry′ = a′ey′ , with
a′ being the interatomic distance between A and B sites.
In the second term of Eq. (2), εs = −11 eV and εp(=
εx′ = εy′ = εz) = 0 are the relative onsite potentials for
s and p orbitals, respectively. The band parameters ti, εi
are determined so as to reproduce the approximate band
structure of phosphorene.

The effective Hamiltonian Eq. (2) is analytically solv-
able with the help of the glide symmetry

GiHi(k)G
†

i = Hi(k), (5)

with the glide operator

Gi = ηi

©­­­«
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

ª®®®¬ , (6)

where ηs = ηx′ = ηy′ = 1 and ηz = −1 stand for the
mirror eigenvalues of the corresponding orbitals, with re-
spect to x ′y′ plane. The symmetry Eq. (5) decouples the
Hamiltonian into two sectors with different eigenvalues
of glide operator as UiHi(k)U

†

i = diag(Hi,+,Hi,−), where
Ui is unitary matrix diagonalizing Gi. Hamiltonian for
each sector is given by

Hi,±(k) =

(
0 hi(k) ± ηiti,z

h∗i (k) ± ηiti,z 0

)
+ εi, (7)

where ± is the eigenvalue of glide operator. The eigen
energies are given by

Ei,±,s = s |hi(k) ± ηiti,z | + εi, (8)
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FIG. 3: Atomic structure of (a) the original phosphorene and
(b) 90◦ model. The three-dimensional angle between bonds,
θ1 ≈ 103◦ and θ2 ≈ 98◦ in (a) are deformed to 90◦ in (b). (c)
Orbital bases of pz , px′ , and py′ in the 90◦ model, and the cor-
responding anisotropic honeycomb lattices where thick bonds
indicate stronger hopping. (d)The Wanier orbitals associated
with pz , px′ , and py′ .

where s = ± are the electron and hole branches, respec-
tively. The band structure of Eq. (8) is shown in Fig. 2(c),
where the red curves are the energy bands from px′ and
py′ orbitals, and the black and blue curves are from s and
pz , respectively. Here all the bands on the zone boundary
Y M X are doubly degenerate due to the glide mirror sym-
metry just as in the original phosphorene. In Fig. 2(c),
we see that the red lines (px′, py′) are degenerate also in
ΓX and YΓ, but it is an artifact of the 90◦ model which
lacks mixing of px′ and py′ orbitals. It is understood by
considering that Hx′ and Hy′ have the same eigen ener-
gies because px′ and py′ are interchanged by the twofold
rotation around y axis and mirror reflection with respect
to zx plane.

The 90◦ model [Fig. 2(c)] and of phosphorene
[Fig. 2(b)] are topologically equivalent, in that the Hamil-
tonian can be continuously deformed from one to another

without closing the energy gap at the Fermi energy. To
demonstrate it, we define the deformation of Hamiltonian
as,

Hλ(k) = (1 − λ)H90◦ (k) + λHblack(k), (9)

where H90◦ and Hblack represent 90◦ model and the DFT-
based model, respectively, and 0 ≤ λ ≤ 1 is the tun-
ing parameter. Fig. 2(d) presents the band structure
in changing λ, where we see that energy gap does not
close between λ = 0 (90◦ model) and λ = 1 (DFT-based
model), i.e., there are no topological phase transition.

A topological invariant which is relevant in the current
problem is the center position of the Wannier orbitals,
which is rigorously fixed in a continuous deformation of
the system [43, 62–65]. The Wannier orbital center of the
90◦ model can be easily identified by the following argu-
ment. The decoupled px′ , py′ , and pz blocks in Eq. (2) can
be mapped to anisotropic honeycomb lattices as shown
in Fig. 3(c). For instance, the pz orbital [the leftmost
panel] forms σ bonds along z direction while π bonds on
xy plane. As the hopping integral is larger for σ bonds
than for π bonds (tσ > tπ), the system is mathematically
equivalent to a single-orbital tight-binding model on a
flat honeycomb lattice, where the hopping is stronger in
one direction (tσ) than the other two directions (tπ), as
indicated as thick and thin bonds in the lower-left panel
of Fig. 3(c). Likewise, the px′ and py′ blocks can also
be mapped to anisotropic honeycomb models, where the
strongest bonds appear in different directions.

As a whole, the strong bonds from three different p or-
bitals cover all the three inequivalent bonds in the hon-
eycomb lattice. For an anisotropic honeycomb model,
generally, the energy spectrum is gapped when tσ > 2tπ
(which is true in our case), and then the Wannier center
of the valence and conduction bands are located at the
center of the strongest bond [66]. In the 90◦ model as
a whole, therefore, a Wannier orbital center is located
at the midpoint of every single bond, and different or-
bitals characters correspond to different bond directions
as shown in Fig. 3(d). Because the 90◦ model and phos-
phorene are topologically equivalent, we conclude that
the phosphorene also has the Wannier centers in the mid-
dle of all the bonds. Alternatively, we can also uniquely
identify the Wannier center positions from the irreducible
representations at the symmetric points in the Brillouin
zone, leading to the same result (see, Appendix B).

A class of materials where the Wannier orbital centers
are not located at atomic sites (but at the bond center,
for example) is referred to the obstructed atomic insula-
tor (OAI) [63–65]. In OAI, edge-localized modes emerge
when the system is terminated at a boundary cutting
though the Wannier orbital center. If the Wannier or-
bital localizes at the corner of the system, particularly,
the system has a zero-dimensional corner state, which is
regarded as a higher-order topological state in a 2D sys-
tem [39, 45–48, 51–57]. According to the above discus-
sion, the phosphorene is an OAI where the three orbital
sectors have Wannier centers at all different bond centers.
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(a) zigzag-1 (b) zigzag-2

(c) armchair-1 (d) armchair-2

FIG. 4: Four types of nanoribbons considered in this work.
The yellow region represents the ribbon, and the blue paral-
lelogram is the super unit cell of the ribbon.

In the following sections, we will show that various edge
and corner states emerge in the phosphorene depending
on the boundary configuration, where the multi-orbital
nature plays a crucial role.

III. EDGE STATES

In this section, we calculate the energy band struc-
tures of phosphorene nanoribbons with various edge ter-
minations. We consider four different edge structures,
zigzag-1, zigzag-2, armchair-1, armchair-2 illustrated in
Fig. 4(a) to 4(d), respectively, which are parallel to a2,
a1 +a2, a2, and a1 + 3a2, respectively. In the figure, the
yellow region represents the ribbon, and the blue paral-
lelogram is the super unit cell for the ribbon. These four
cases were previously studied in a minimal model only
including pz orbital [27, 32], where the edge states are
found only in the zigzag-1 and armchair-2 edges. In the
first principles study, on the other hand, the edge state
was also found in the armchair-1 edges [25–31], while its
origin is not well understood. Below we systematically
study all the types of edges, and relate the emergence of
the edge states to the Wannier orbital position argued in
the previous section. We will see that the multi-orbital
nature of the band structure gives rise to extra edge states
missing in the pz-only model.

We numerically calculate the band structures of
the phosphorene nanoribbons using DFT-based tight-
binding model introduced in Sec. II. Note that the sys-

tems actually considered are much wider than the illus-
tration in Fig. 4, including 960 atomic sites per super unit
cell for (a)-(c) and 1920 sites for (d). The band struc-
tures of the four types of nanoribbons are displayed in the
left columns of Figs. 5(a)-(d). The black and red curves
represent bulk states and edge states, respectively. Here
the edge states are identified by the condition that more
than 80% of the total amplitude is concentrated within
the width of a single bulk unit cell from the edge. We see
that the edge states are not generally isolated from the
bulk bands in energy but partially overlap with the bulk
bands.

The edge states are more clearly distinguished in the
90◦ model introduced in Sec. II B. The right panels in
Fig. 5(a)-(d) plot the energy bands of the 90◦ model coun-
terparts of the same nanoribbons, and the middle pan-
els show a continuous deformation from the 90◦ model
(λ = 0) to the original DFT-based model (λ = 1). In the
90◦ limit, we see that the edge state bands around the
central gap all converge to E = 0. This is caused by the
chiral symmetry of the 90◦ Hamiltonian,

ρ3[Hi(k) − εi]ρ3 = −[Hi(k) − εi], (10)

where ρ3 = diag(1,−1, 1,−1). Under the chiral symmetry,
the energy spectrum for i = s, x ′, y′, and z sectors are
symmetric with respect to E = εi as observed in the
right columns of Fig. 5(a)-(d). The edge states at zero
energy are the chiral zero modes (eigenstates of ρ3) [38]
of the p-orbital sectors, and therefore they are fixed to
εp(= 0), and necessarily isolated from the bulk bands.
The number of edge state bands, Ne, does not change
during the deformation 0 ≤ λ ≤ 1, and it can be easily
obtained by counting the number of zero energy levels
at the 90◦ model. We find Ne = 1, 2, 2, 4 for zigzag-1,
zigzag-2, armchair-1, and armchair-2 edges, respectively.

The emergence of the edge states can be intuitively un-
derstood from the fractionalization of the localized Wan-
nier orbital, in an analogous manner to the Su-Schrieffer-
Heeger (SSH) model in one-dimension [67]. As discussed
in Sec. II B, every single bond in the phosphorene lat-
tice is associated with the center of a single Wannier or-
bital. In the zigzag-1 edge, for instance, the edge line
cuts the Wannier orbitals of the pz sector as illustrated
in Fig. 6. Then the remaining uncoupled orbitals, in-
dicated by dashed circles in Fig. 6, form edge-localized
states in the energy region outside the bulk bands. This
is actually the origin of the edge states of the zigzag-1,
and the number of the uncoupled orbital per super unit
cell coincides with the number of the edge states, Ne = 1.
The Wannier orbital located at an interatomic bond cor-
responds to a covalent bond in chemistry, and its broken
half is nothing but a dangling bond.

The same analysis is applicable to the other edge struc-
tures as summarized in Fig. 7. For the zigzag-2 nanorib-
bon [Fig. 7(b)], we expect the two edge states since the
edge line cuts the two Wannier functions of px′ orbital
per super unit cell. In the same manner, the armchair-1
[Fig. 7(c)] yields two edge states from px′ and py′ orbital,
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(a) zigzag-1 (b) zigzag-2

(c) armchair-1 (d) armchair-2

FIG. 5: Band structures of four types of nanoribbons. In each figure, the left and right panels are the band structures of the
DFT-based tight-binding model (λ = 1) and the 90◦ model (λ = 0) , respectively. The middle row shows the evolution of the
low-energy part in a continuous deformation from λ = 0 to 1. The edge states are connected to the chiral zero states in the 90◦

model.

and the armchair-2 [Fig. 7(d)] yields four edge states from
px′ and pz orbitals. The results are all consistent with
the number of edge state bands Ne in Fig. 5(a)-(d), and
also with the actual orbital character of the edge state
wavefunctions.

In systems with time-reversal and space-inversion sym-
metries, the edge states originating from half-broken
Wannier orbitals can also be characterized by non-trivial
Zak phase, which represents the charge polarization in
the unit cell [38, 52, 68–75]. Note that, however, the
Zak phase only gives the parity of the number of edge

states as it is Z2 valued, so that the zigzag-2, armchair-1
and armchair-2 cases in our problem are all classified to
Z2-trivial. On the other hand, the complete information
of the Wannier orbital center unambiguously specifies the
number of the edge states as well as their orbital charac-
ters as shown above.

It is also worth noting that, in Fig. 5, the edge-state
bands in the zigzag-2 and armchair-2 cases always stick
together at the Brillouin zone boundary (k = ±π). This
property is characterisic to the Möbius twisted edge
states protected by Z2 invariant, which emerge in an
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FIG. 6: The Wannier states associated with pz in zigzag-1
termination (vertical dashed line). Paired (Unpaired) orbitals
are indicated by blue ellipse (red dashed circles).

edge-terminated system with glide symmetry [76, 77].
Note that the zigzag-2 and armchair-2 ribbons are glide
symmetric because the edge direction is parallel to the
half-integer translation in the bulk glide operation. On
the other hand, the glide symmetry is lost in the zigzag-
1 and armchair-1 termination, and the band sticking is
absent accordingly.

In the zigzag-1/zigzag-2 ribbons [Fig. 5(a) and (b)], we
also notice some edge states in E < −10 eV far below the
Fermi energy, which are originating from s-orbital bands.
Similarly to the pz orbital of the graphene, the s-orbitals
in the puckered honeycomb lattice form the Dirac cones
as seen in Fig. 2(b) (at E ∼ −11.48 eV on the ΓY line)
and the zigzag edge states emerge between the two Dirac
points just like in graphene [24].

We expect that our tight-binding model captures the
qualitative features such as the existence of the edge
modes and its orbital character, which are the main
scope of the paper. We note that the band dispersion of
the edge-state band of zigzag-1 [Fig. 5(a)] in our model
qualitatively agrees with the results of full DFT calcula-
tions [25, 26, 28]. In particular, if we calculate the energy
bands of a narrower ribbon (. 30 nm), we reproduce a
small split of the edge-state bands at k = 0 caused by the
coupling of the two edges, which is also present in the
DFT calculation. For the armchair-1 ribbon [Fig. 5(b)],
our model is good enough to see the existence of the edge
states, while we see some difference in the detailed band
structure from the DFT results. We presume that the
difference originates from a significant lattice relaxation
at the armchair edge, which flattens the edge atoms in
the puckered structure [25, 26, 28]. We leave further
discussion on these effects to future study.

IV. CORNER STATES

Now we consider a finite-sized phosphorene nanoflake
to study the emergent corner states. We employ the same
strategy as for the edge states in the previous sections.
We calculate the energy spectrum and the eigenstates of

(a) zigzag-1 (𝑵𝒆 = 𝟏)

(c) armchair-1 (𝑵𝒆 = 𝟐) (d) armchair-2 (𝑵𝒆 = 𝟒)

(b) zigzag-2 (𝑵𝒆 = 𝟐)

FIG. 7: Schematic illustration of the broken Wannier state for
the four types of edge termination. Orange, red and blue ovals
represent the broken Wannier states of px′ , py′ and pz sectors,
respectively. The number of edge levels in the band calcula-
tion, Ne, coincides with the number of the broken Wannier
states per a unit period of the ribbon.

a nanoflake under the continuous deformation from the
90◦ model (λ = 0) to the DFT-based model (λ = 1), and
clarify the physical origin of the obtained corner states.

To be specific, we consider a phosphorene nanoflake as
shown in Fig. 8(a), which includes 880 atoms. Each cor-
ner is regarded as an intersection of two zigzag-2 edges,
and the left/right corners and the top/bottom corners
have inequivalent structures with different intersecting
angles. Figure 8(b) plots the energy spectrum of the flake
as a function of λ, where the right panel is the enlarged
plot around the zero energy. Here the blue (green) points
indicate the left/right (top/bottom) corner states, which
have more than 60% of the total amplitude within three
unit cells from the corner site. The red dots represent
the edge states, which have more than 60% amplitude
within a unit cell from the boundary (and which are not
corner states). The rest gray dots are the bulk states.
For the 90◦ model (λ = 0), all the edge and corner states
are degenerate at E = 0 because of the chiral symmetry,
Eq. (10). With increasing λ, the degeneracy is lifted by
breaking the chiral symmetry, and the corner states and
edge states are resolved.

We first focus on the left/right corner states (blue dots)
at λ = 0.4. As seen in Fig. 8(b), there are three branches
of left/right corner levels, which are labeled as A, B, and
C. In increasing λ, the level C eventually hybridizes with
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FIG. 8: (a) Atomic structure of a phosphrene flake considered
in this work. (b) The evolution of the energy spectrum from
the 90◦ model (λ = 0) to the DFT-based tight-binding model
(λ = 1) with the right panel showing the enlarged plot around
the zero energy. Blue (green) points indicate the left/right
(top/bottom) corner states, red points are the edge states,
and gray dots are the bulk states.

the bulk states, while the level A and B survive up to
λ = 1. Here we consider λ = 0.4, because the origin of
the corner states can be argued without suffering from
the complexity due to the hybridization with the bulk
states.

The presence of multiple corner states can only be ex-
plained by the multi-orbital picture. Figure 9(a) illus-
trates the schematic picture for the Wannier orbitals of
px′ , py′ and pz sectors in the 90◦ model (λ = 0). The
dashed circles represent uncoupled orbitals which give
the zero energy levels. Here we notice that the pz sector
has only a single uncoupled orbital at the corner, while
the px′ and py′ sectors have ones at all the outermost
sites (hereafter referred to as edge sites) along the two
edge lines. In the minimal model only considering pz , a
single corner orbital leads to a single corner state [39].
It is regarded as a higher-order topological insulator in
that it has obstructed corner orbitals while not edge or-
bitals [39–41, 44–57]. In the present multi-orbital phos-
phorene model, on the other hand, the pz corner state
is hybridized with the edge zero modes of px′ and py′

𝑡

𝑡′

𝑡

𝑡′𝑡!!

	𝑗 = −3

	𝑗 = −2

	𝑗 = −1

	𝑗 = 3

	𝑗 = 2

	𝑗 = 1

	𝑗 = 0

(b) (a) 

𝑝!!

𝑝"!

p#

FIG. 9: (a) Schematic illustration of Wannier orbital originat-
ing from the px , py , and pz orbitals near the right corner of
the phosphorene flake. The unpaired orbitals are marked by
the red dashed circles. (b) Edge-corner composite model near
the right corner, which is composed of the unpaired orbitals
in (a).

when λ is switched on, resulting in three corner states in
total. Figure 10(a) shows the wavefunctions of these cor-
ner states at λ = 0.4, where we actually see that the wave
amplitudes are mainly concentrated on those uncoupled
orbitals.

To qualitatively understand the emergence of the mul-
tiple corner states, we introduce an effective edge-corner
composite model which takes account of only the un-
coupled orbitals. We label the edge and corner sites by
j = 0,±1,±2 · · · as in Fig. 9(b), where j = 0 represents the
pz orbital at the corner site, and the positive (negative)
j’s correspond to px′ (py′) orbitals at the lower (upper)
edge. We consider a one dimensional tight-binding model
of these boundary orbitals to describe the in-gap states.
The Hamiltonian is explicitly written as

HEC =

(
∞∑

j=−∞

−tj+1, jc
†

j+1cj +H.c

)
− t ′′(c†1c−1 +H.c) (11)

with

tj+1, j =
{

t ( j ≤ −2, j ≥ 1),
t ′ ( j = −1, 0),

where c†j and cj are the electron creation and annihilation

operators at site j, respectively, t is the hopping between
the neighboring edge sites, t ′ is that between the edge site
and the corner site, and t ′′ is the second-nearest neighbor
hopping between the edge site j = ±1. Here the corner
site j = 0 works as an impurity in a one-dimensional
tight-binding chain of the edge sites.

The three hopping parameters t, t ′, and t ′′ in HEC is
determined by the second-order perturbation theory as
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FIG. 10: Energy levels and wavefunctions of the right-corner states A, B, and C [Fig. 8(b)] in the phosphorene flake with
λ = 0.4, obtained from (a) the original tight-binding model Hflake

λ [Eq. 12] and (b) the corresponding edge-corner composite
model HEC [Eq. 11]. The radius and color of circles (red/blue) in the wavefunction indicate the amplitudes and phase (red /
blue for plus / minus) of the wavefunction.

follows. First, we write the Hamiltonian of the phospho-
rene nanoflake (parameterized by λ) in a block form,

Hflake
λ =

(
H0 U
U† Hbulk

)
(12)

where H0 is the Hamiltonian projected on the edge and
corner orbitals, Hbulk is that on the remaining orbitals,
and U is the coupling between them. In the projection
to H0, we take px′ and py′ on the edge sites to be parallel
to the in-plane bonds of the real phosphorene, where the
relative angle of px′ and py′ is θ2 = 98◦. By treating U
as a perturbation, the effective Hamiltonian for the edge
and corner orbitals is obtained by

Heff = H0 +U†
1

E − Hbulk
U, (13)

where we take E to be the average of eigenvalues of H0.
Finally, t, t ′, and t ′′ can be extracted from the corre-
sponding matrix elements of Heff . For example, the pa-
rameters for λ = 0.4 are t = 0.060 eV, t ′ = 0.15 eV, and
t ′′ = 0.24 eV.

Figure 10(b) presents the energy spectrum and the
wavefunctions of the corner states in the edge-corner
composite model at λ = 0.4. In the calculation, we as-
sumed a closed ring geometry by connecting the upper
and lower edge sites in a far away point, where the num-
ber of the total sites is 82. We see that this simple model
qualitatively reproduces the energy spectrum and wave

function of the DFT-based model in Fig. 10(a). The three
eigenstates of HEC marked as A, B, and C are localized
near the corner, and the wavefunctions and their spa-
tial symmetry agree with the corresponding states of the
original model. Therefore, the multiple corner states of
phosphorene can be understood as a result of hybridiza-
tion of the uncoupled edge and corner orbitals, where the
multi-orbital property is essential.

The interpretation using the effective edge-corner
model is applicable also to the top/bottom corner states.
In the energy spectrum of Fig. 8(b), there are four
branches of top/bottom corner states (green dots) at

	𝑙 = 1

	𝑙 = 2

	𝑙 = 3

	𝑙 = −1

	𝑙 = −2

	𝑙 = −3

𝑡𝑡

𝑡′

𝑡!!

FIG. 11: Edge-corner composite model near the top corner
of the flake. Uncoupled px′ , py′ orbitals at the boundary are
shown in yellow, and red respectively, and are labeled by l.
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FIG. 12: Plots similar to Fig. 10 for the top-corner states D, E, F and G [Fig. 8(b)].

λ = 0.4, which we label D, E, F, and G in descending
order of energy. Figure 11 illustrates the uncoupled or-
bitals around the top corner. Now we have px′ and py′
orbitals along the two edges, while the corner-isolated or-
bital, like pz for the right corner, is absent in this case.
We label the px′ orbitals as l = −1,−2,−3, · · · and the py′
orbitals as l = 1, 2, 3, · · · , where the site l = 0 is missing.
The effective edge-site model is written as,

H ′EC =

[
∞∑
l=1

−t(c†
l+1

cl + c†
−(l+1)

c−l) +H.c

]
− t ′(c†1c−1 +H.c.) − t ′′(c†1c−2 + c†

−1c2 +H.c) (14)

where c†
l

and cl are the electron creation and annihilation
operators at site l, respectively, t is the hopping between
the neighboring edge sites, t ′ is that between the two
neighboring sites at the corner, l = ±1, and t ′′ is the
second-nearest neighbor hopping between (l, l ′) = (2,−1)
and (1,−2). By using a similar procedure to Eqs. (12)
and (13), we obtain the hopping parameters, t = 0.060
eV, t ′ = 0.074 eV, and t ′′ = 0.114 eV.

Figure 12 shows the energy spectrum and the wave-
functions of the corner states obtained from (a) the DFT-
based full tight binding model, and from (b) the effective
edge-site model. We can see that the corner states are
well reproduced by the effective model. Here it should be
noted that the corner states emerge just by connecting
px′ and py′ edge modes, without the aid of the corner-
isolated orbitals (pz for the right corner).

V. CONCLUSION

In this paper, we have investigated edge and cor-
ner states in monolayer black phosphorene, and shown
that the multi-orbital band structure under a non-planer
puckered structure forces the emergence of the edge
states at a boundary along an aribtary crystallographic
directions. There the presence of three p orbitals causes
formation of a Wannier orbital at every bond center, and
hence cutting any bonds always results in in-gap states
through a half breaking of the Wannier orbital. At a cor-
ner where two edges intersect, we find that unexpected
multiple corner states appear due to unavoidable hy-
bridization of the higher-order topological corner state
and the edge states. These characteristic properties are
intuitively understood using a topologically-equivalent,
analytically-solvable model where all the bond angles in
the phosphrene are deformed to 90◦. We expect that
the analysis also applies to different materials having a
similar puckered honeycomb lattice, such as GaSe, GaS,
SnSe, and PbS [78].
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Appendix A: Details of DFT-based tight-binding
model

In this appendix, we present the details of the DFT-
based tight binding model obtained from the Wannier90
package [60]. In the calculation demonstrated in the main
text, we take into account the hopping within the range
of distance 6a1 (∼ 180 nm), which strongly decay with
the relative distance between the atoms. Complete sets
of the hopping parameters are given in the supplemental
data [61]. In the Table I, we provide the representa-
tive parameters for onsite potential and hopping for the
A site and hopping between nearest A′B, AB, AA, and
AA′ sites [Fig. 13]. For each pair of the atomic sites, 16
components of hopping parameters describing hopping
between the four orbitals are assigned. Every hopping
integrals are real valued, due to the time-reversal sym-
metry. These values are consistent with the orbital prop-
erty and geometrical locations. For instance, for a pair
of sites A′ and B shown in Fig.1(b), hopping integal be-
tween pz orbitals is strongest with t ∼ 2.5 eV, since these
sites are almost vertically aligned in z direction and pz
orbitals form the σ bonds. The hopping integrals for
AB′, A′B′, A′A′, BB, B′B′ and BB′ and onsite potential
and hopping for B′, A′, and B sites are generated from
the Table I by symmetry operations.

Appendix B: Symmetry representation and Wannier
center for black phosphorene

As discussed in the main text, the central position of
the Wannier orbital plays a key role in the emergence
of the edge and corner states of black phosphorene. In
Sec. II B, we identified these positions by using an ef-
fective 90◦ model which is topologically equivalent to
phosphorene. On the other hand, there is an alterna-
tive generic scheme to obtain the Wannier center by us-
ing the spacial symmetry and the irreducible representa-
tion [43, 62–64, 79]. In this appendix, we apply the lat-
ter scheme to black phosphorene with space group Pmna,
and obtain the consistent result with the main text.

In general, a set of bands is characterized by the ir-
reducible representations (irreps) at high symmetry mo-
menta. In the spece group Pmna, specifically, we have

𝑡!!" 𝑡!!

𝑡!!!
𝑡!"

𝐴

𝐵
𝐴′
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𝒂#

𝒂$

FIG. 13: Typical nearest hopping between A′A, BA, AA, and
AA′ sites.

irreps at Γ, X, Y , and M points summarized in Table II.
By using these irreps, we can describe character of the
occupied bands below the gap by a single vector

b = (γ1g, · · · , γ4g; γ1u, · · · , γ4u; ξ1, ξ2; η1, η2; µg, µu), (B1)

where γjs, ξj , ηj , and µs ( j = 1, 2, · · · and s = u, g) is the
number of irreps Γjs, Xi, Yi, and Ms, respectively, in the

TABLE I: Typical onsite potential and hopping integral
〈R, S2,m2 |H |0, S1,m1〉 in the unit of eV, where |R, S,m〉 indi-
cates the basis of the orbital m = s, px, py, pz at the sublattice
S = A, B′, A′, B in the unit cell located at R. The unit cell
is defined as in Fig. 13. Labels of column (row) in the table
stand for the orbital m1 (m2). Onsite potential and hopping
is for the A-site. The hopping parameter between nearest A′

and B, A and B, A and A′ with R = 0, and between A and
A with R = −a2 are presented.

Onsite s px py pz

s −11.687197 −0.040782 0 0.036646

px −0.040782 −4.225991 0 −0.125509

py 0 0 −4.140375 0

pz 0.036646 −0.125509 0 −4.256935

tA′B s px py pz

s −1.690771 −0.816721 0 −2.437822

px 0.816721 −0.536829 0 1.325923

py 0 0 −1.10449 0

pz 2.437822 1.325923 0 2.507026

tAB s px py pz

s −1.778623 1.827083 1.953456 −0.008235

px −1.827083 0.683126 1.977488 0.000059

py −1.953456 1.977488 1.344737 0.016749

pz −0.008235 −0.000059 −0.016749 −1.179879

tAA s px py pz

s 0.030988 −0.078703 0.116371 −0.01095

px −0.078703 −0.319182 0.306764 −0.019294

py −0.116371 −0.306764 0.598276 0.006828

pz −0.01095 −0.019294 −0.006828 −0.006613

tAA′ s px py pz

s 0.008801 0.021139 0.004026 −0.072713

px 0.060405 0.165221 0.061229 0.107306

py −0.039265 −0.096533 −0.03637 −0.318646

pz −0.046967 0.074745 −0.092788 −0.091795
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FIG. 14: (a) Irreducible representation of occupied bands in
the DFT-based tight-binding model of phosphorene, which
include 3p and 3s orbital [corresponding to the E < 0 region
of Fig. 2(b)]. E = 0 is the Fermi energy. (b) Irreducible
representation of the 3s-orbital-only model [E < −5 eV region
of Fig. 2(c)].

occupied bands. Considering the symmetry of the wave
functions obtained from the DFT-based tight-binding
model in Sec. II A, we identify the irreps of the occu-
pied bands as shown in Fig. 14(a). The vector Eq. (B1)
for the occupied bands in the cluster of 3s+3p orbital is

b3s+3p = (3, 0, 2, 1; 2, 0, 1, 1; 8, 2; 6, 4; 6, 4). (B2)

It is clear that 3s bands are located far below the Fermi
energy, and hence we can separate 3s bands from 3p
bands by continuously shifting the 3s cluster to lower
energy without topological change (gap closing) at the
Fermi energy. The band representation of 3p bands,
which of our interest, can be obtained just by subtracting
the irreps of 3s bands from 3s+3p. The irreps of 3s can be
obtained by an arbitrary tight-binding model having only
s-orbitals at phosphorus sites. For example, Figure 14(b)
shows the irreps of s-orbital sector of 90◦ model [Eq. (1)],
giving b3s = (1, 0, 1, 0; 1, 0, 1, 0; 4, 0; 2, 2; 2, 2). Therefore,
the band representation of remaining 3p bands is

b3p = b3s+3p − b3s = (2, 0, 1, 1; 1, 0, 0, 1; 4, 2; 4, 2; 4, 2).(B3)

The numbers γjs, ξj , ηj , and µs in Eq. (B1) are not
independent but related by the following compatibility

TABLE II: Irreducible representation of space group Pmna.
Γjs, Xi , Yi , and Ms are irreps at Γ, X, Y , M points in the
Brillouin zone, respectively. Symmetry index is listed from
2nd to 5th column. C2y is the 180◦ rotation along y axis, My is

the mirror reflection with respect to xz plane, {Mz |
1
2

1
2 } is the

glide mirror reflection, i.e., the combination of half translation
t = (a1+a2)/2 and mirror reflection with respect to xy plane,
and P is inversion.

Irrep C2y My {Mz |
1
2

1
2 } P

Γ1g +1 +1 +1 +1

Γ2g −1 −1 −1 +1

Γ3g +1 +1 −1 +1

Γ4g −1 −1 +1 +1

Γ1u −1 +1 −1 −1

Γ2u +1 −1 +1 −1

Γ3u −1 +1 +1 −1

Γ4u +1 −1 −1 −1

X1 0 +2 0 0

X2 0 −2 0 0

Y1 +2 0 0 0

Y2 −2 0 0 0

Mg 0 0 0 +2

Mu 0 0 0 −2

conditions,

γ1g+γ2u+γ3u+γ4g=γ1u+γ2g+γ3g+γ4u≡M, (B4)

ξ1 = γ1g + γ3g + γ1u + γ3u, (B5)

η1 = γ1g + γ2u + γ3g + γ4u, (B6)

ξ1 + ξ2 = 2M, (B7)

η1 + η2 = 2M, (B8)

µg + µu = 2M, (B9)

which guarantee the existence of the band gap between
the occupied and unoccupied bands. In fact, conditions
Eq. (B4)-(B6) forbid the band crossing of opposite-parity
states under the glide mirror reflection {Mz |

1
2

1
2 }, mirror

reflection My, and twofold rotation C2y, respectively. In
addition, the conditions Eqs. (B7)-(B9) make the total
number of occupied bands constant 2M for each k points.
The conditions Eq. (B4)-(B9) reduce the 14 component
degrees of freedom for the vector in Eq. (B1) to 8 com-
ponent,

b̃ = (γ1g, γ2g, γ3g, γ4g; γ1u, γ2u, γ3u; µg) (B10)

The specific value for the black phosphorene is

b̃3p = (2, 0, 1, 1; 1, 0, 0; 4). (B11)

As a next step, we list the band character Eq. (B10) for
all possible elementary bands allowed in the space group
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FIG. 15: Wyckoff position (red dots) of space group Pmna.
Position 4 f and 4h can move on red thick lines, and 8i is
general position. Large and small dots (in 4g, 4h, 8i) indicate
the height of +z and −z, respectively, and the middle dots (in
2a, 2b, 4 f ) are at z = 0. Gray rectangle is a unit cell, and gray
lines represent the atomic bonds of phosphorene.

Pmna. The elementary band is the band structure ob-
tained from a possible arrangement of atomic orbitals lo-
cated at a Wyckoff position (WP). Figure 15 summarizes
all the possible WPs for Pmna. The WPs are classified
by site symmetry group (SSG), or the symmetry group
which keeps the WP invariant. For example, the char-
acterisitic SSG for the WP 2a is C2h, which is generated
by inversion about the unit cell center (the center of the
gray rectangle in Fig. 15) and two fold rotation around y
axis. The SSG for each WP are presented in the second
column of the Table III.

An array of atomic orbitals at WP should be an irrep of
the corresponding SSG, where different symmetries of the
atomic orbital (e.g., s-like, px-like) give different irreps.
In Table III, we list all the possible irreps for each WP,
and label them with a serial number χ = 1 to 15. In the
same manner as Eq. (B10), elementary bands of χ are
described as

b̃χ = (γ
(χ)
1g , γ

(χ)
2g , γ

(χ)
3g , γ

(χ)
4g ; γ

(χ)
1u , γ

(χ)
2u , γ

(χ)
3u ; µ

(χ)
g ), (B12)

which are listed in the Table III. Actually, the vector
b̃ in Eq. (B10) for any atomic insulator are always de-
composed to a linear combination of bχ. The Wannier
orbitals and their center position of the system can be
obtained by such a decomposition.

In phosphorene, the decomposition into the elementary
bands is written as

b̃3p =
∑
χ

nχb̃χ, (B13)

where b̃3p is given by Eq. (B11), and nχ must be 0 or a
positive integer. Here we have a unique solution,

nχ =
{

1 (χ = 1, 11),
0 (otherwise).

(B14)

Because b1 and b11 are s-like orbitals at the Wyckoff
positions 1a and 4g respectively, we conclude that the

TABLE III: Elementary band representations for the space
group Pmna. The low with χ is the label of representations.
The index of Eq. (B12) are listed from 5th-12nd column.

WP SSG irreps χ γ1g γ2g γ3g γ4g γ1u γ2u γ3u µg

2a C2h Ag 1 1 0 1 0 0 0 0 2

Au 2 0 0 0 0 1 0 1 0

Bg 3 0 1 0 1 0 0 0 2

Bu 4 0 0 0 0 0 1 0 0

2b C2h Ag 5 1 0 1 0 0 0 0 0

Au 6 0 0 0 0 1 0 1 2

Bg 7 0 1 0 1 0 0 0 0

Bg 8 0 0 0 0 0 1 0 2

4e C1h A 9 1 0 1 0 0 1 0 2

B 10 0 1 0 1 1 0 1 2

4g C2z A 11 1 0 0 1 1 0 0 2

B 12 0 1 1 0 0 1 1 2

4h C2y A 13 1 0 1 0 1 0 1 2

B 14 0 1 0 1 0 1 0 2

8i C1 A 15 1 1 1 1 1 1 1 4

Wannier centers for the phosphorene are located at the
every midpoint of the nearest neighboring atoms. This is
consistent with the results from the 90◦ in the main text.
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66 G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Go-
erbig, Phys. Rev. B 80, 153412 (2009).

67 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.
Lett. 42, 1698 (1979).

68 F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803



15

(2017).
69 T. L. Hughes, E. Prodan, and B. A. Bernevig, Phys. Rev.

B 83, 245132 (2011).
70 A. Alexandradinata, T. L. Hughes, and B. A. Bernevig,

Phys. Rev. B 84, 195103 (2011).
71 T. Kariyado and Y. Hatsugai, Phys. Rev. B 88, 245126

(2013).
72 J.-W. Rhim, J. Behrends, and J. H. Bardarson, Phys. Rev.

B 95, 035421 (2017).
73 G. van Miert and C. Ortix, Phys. Rev. B 96, 235130

(2017).
74 M. Pletyukhov, D. M. Kennes, J. Klinovaja, D. Loss, and

H. Schoeller, Phys. Rev. B 101, 161106 (2020).
75 Y. Aihara, M. Hirayama, and S. Murakami, Phys. Rev.

Research 2, 033224 (2020).
76 K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 91,

155120 (2015).
77 K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 93,

195413 (2016).
78 S. Barraza-Lopez, B. M. Fregoso, J. W. Villanova, S. S. P.

Parkin, and K. Chang, Rev. Mod. Phys. 93, 011001 (2021).
79 H. C. Po, A. Vishwanath, and H. Watanabe, Nature Com-

munications 8, 50 (2017).


