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We study a model of N fermions in a quantum dot, coupled to M bosons by a disorder-induced
complex Yukawa coupling (Yukawa-SYK model), in order to explore the interplay between non-
Fermi liquid and superconductivity in a strongly coupled, (quantum-)critical environment. We
analyze the phase diagram of the model for an arbitrary complex interaction and arbitrary ratio of
N/M , with special focus on the two regimes of non-Fermi-liquid behavior: an SYK-like behavior with
a power-law frequency dependence of the fermionic self-energy and an impurity-like behavior with
frequency independent self-energy. We show that the crossover between the two. can be reached by
varying either the strength of the fermion-boson coupling or the ratio M/N . We next argue that in
both regimes the system is unstable to superconductivity if the strength of time-reversal-symmetry-
breaking disorder is below a certain threshold. We show how the corresponding onset temperatures
vary between the two regimes. We argue that the superconducting state is highly unconventional
with an infinite set of minima of the condensation energy at T = 0, corresponding to topologically
different gap functions. We discuss in detail similarities and differences between this model and
the model of dispersion-full fermions tuned to a metallic quantum-critical point, with an effective
singular dynamical interaction V (Ω) ∝ 1/|Ω|γ (the γ−model).

I. INTRODUCTION

The coupling of order-parameter fluctuations and elec-
tronic degrees of freedom in the vicinity of a quantum
critical point (QCP) yields a variety of fascinating phe-
nomena, which, as many believe, are responsible for the
complex phase diagram of several strongly correlated
electron systems [1–14]. At the heart of the complexity
lies the interplay of two competing effects. On the one
hand, critical order-parameter fluctuations make elec-
tronic excitations incoherent and give rise to non-Fermi-
liquid (NFL) behavior, while incoherent electrons, in
turn, modify the dynamics of the order-parameter excita-
tions. On the other hand, in most cases, order-parameter
fluctuations mediate a strong attractive pairing interac-
tion in at least one pairing channel. The formation of
Cooper pairs is hindered by the incoherence of electronic
states, but if the pairing develops, it gaps out low-energy
electronic modes and thereby reduces the tendency to
NFL behavior.

The competition between NFL and pairing has been
addressed within several models of fermions interacting
with their collective spin and charge excitations[15–49],
for generic models of fermions interacting with gapless
bosonic modes [50–72], for electron-phonon interaction
in the limit of vanishing dressed Debye frequency [73–
79], for fermions at a half-filled Landau level[80–85], and
even for quarks, interacting via a gluon exchange [86, 87].

In this communication, we analyze this competition
within a generalization of the Sachdev-Ye-Kitaev (SYK)
model [88–92]. An appeal of SYK-type models is that
they usually become exactly solvable in the limit of an
infinite number of relevant degrees of freedom [93–98].
They also allow one to understand quantum critical, NFL
behavior from a more generic perspective [99–102] by.
e.g., relating it to maximal quantum chaos[103–105]. The

SYK model can also be viewed as a toy model to study
the NFL behavior in a situation when the interaction is
larger than the electronic bandwidth.

The interplay between NFL and pairing has recently
been addressed for Yukawa-SYK (YSYK) models of N
dispersion-less fermions in a quantum dot, randomly cou-
pled by a complex interaction to M bosons that can
represent either Einstein phonons or collective electronic
excitations[106–112] (see also Refs. 113 and 114). In
these models, the random coupling between electrons and
bosons is responsible for incoherent NFL behavior and
electronic pairing, like in more conventional models of
dispersion-full electrons and non-random fermion-boson
coupling. However, in contrast to the conventional cases,
when the bare bosonic mass ω0 has to be tuned to a
QCP by an external parameter (magnetic field, pressure,
doping, etc), in the YSYK model this is not necessary.
The reason is that in the limit of zero bandwidth the
system undergoes a self-tuning to criticality through the
electron-boson interaction for any value of ω0, i.e., un-
der the condition of negligible dispersion no fine-tuning
is required to reach the critical state.

The outcome of the competition between NFL behav-
ior and pairing in YSYK models depends on the ratio
of the number of fermions and bosons, N/M , and the
strength and symmetry of the Yukawa coupling. In par-
ticular, by choosing real or complex Yukawa coupling,
one can model disorder that either preserves or breaks
time-reversal symmetry (TRS)[107]. Earlier works con-
sidered either a generic complex interaction, but with
N = M (Refs. 106 and 107) or an imaginary interaction
with arbitrary N/M (Ref. 108–112).

In this article, we extend previous works and consider
a generic complex interaction and arbitrary N/M . We
analyze in detail the emerging NFL behavior and pair-
ing instability, and reveal special features of the pairing
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mediated by dispersionless critical fluctuations. We re-
port three sets of results, which are based on our analy-
sis of coupled equations for the fermionic self-energy, the
bosonic polarization, and the pairing vertex. First, we
obtain the normal state phase diagram as a function of
temperature and fermion-boson coupling g0 for various
N/M . Refs. 106 and 107 have found that for N = M
there are two types of NFL behavior – an SYK-like one
at smaller temperatures or smaller g0, with characteris-
tic power-law fermionic and bosonic self-energies, and an
impurity-like one at higher temperatures and larger g0,
with a frequency-independent fermionic self-energy. We
show that these two regimes exist for all values of N/M .
We also argue that there is a range of T where fermions
and bosons behave as almost free quasiparticles, and that
at small N/M there are additional intermediate regimes.
Second, we obtain the onset temperature for the pairing,

T
(0)
c , as a function of three parameters: the coupling g0,

the ratio N/M , and the degree of TRS-breaking disorder
specified by a parameter α. We argue that the behavior

of T
(0)
c depends on out of which regime the pairing devel-

ops. At small to intermediate N/M and g0, the pairing
emerges at the boundary between the SYK regime and

the regime of free fermions (Fig. 2). Here, T
(0)
c scales

with g20 and gets suppressed by TRS-breaking disorder,
until it vanishes at α > αc. We find that the value of
αc is the largest for N �M and decreases with increas-
ing N/M . For larger N/M and/or larger g0, the pairing

emerges out of the impurity regime. Here, T
(0)
c is inde-

pendent of g0 for α = 0 and decreases with g0 at α 6= 0.
For N = M , our results agree with Ref. 107. Third, we
show that the pairing is by itself highly unconventional in

that T
(0)
c is the largest member of a family of onset tem-

peratures T
(n)
c for topologically different pairing states

with n zeros in the gap function ∆n(ωm) along the Mat-
subara axis. The condensation energy at T = 0 then has
an infinite set of discrete minima. The deepest one is for
the topologically trivial case n = 0, however the presence
of the other solutions enhances fluctuation effects at a fi-
nite T . We argue that all T

(n)
c emerge simultaneously at

α = αc.

We also present a detailed comparison between the
pairing of dispersion-less fermions in the YSYK model
and of dispersion-full fermions at a QCP with an ef-
fective, frequency-dependent interaction V (Ω) ∝ 1/|Ω|γ ,
where the value of the exponent γ is specific to the type
of a QCP (the γ model) [58–71]. We point out certain
similarities between the two models and demonstrate un-
der which circumstances they can be mapped onto each
other. In particular, we determine the exponent equiv-
alent to γ, which can be tuned by N/M . In both cases
there is also an infinite set of topologically distinct pair-

ing states, emerging at its own T
(n)
c . Important distinc-

tions come from different effects outside of the low-energy
regime, including effects due to the zero-bandwidth in the
YSYK model.

The structure of the paper is the following. In the next

section, we introduce the model and obtain the equations
for fermionic and bosonic self-energies and the pairing
vertex. In Sec. III, we present the results for the normal
state assuming a non-superconducting ground state. We
consider T = 0 in Sec. III A and a finite T in Sec. III B.
For the latter we analyze separately the SYK regime in
Sec. III B 1 and the impurity regime in Sec. III B 2, and
obtain the phase diagram for a generic M/N and T in
Sec. III B 4. In Sec. IV, we analyze the pairing insta-
bility. We first analyze in Sec. IV A the pairing out of
the regime of almost free fermions. Then, in Sec. IV B,
we obtain the condition for the pairing at T = 0 and
prove that the ground state is a superconductor if TRS-
breaking disorder is below a critical value. In Sec. IV C
we argue that there exists an infinite number of solutions
for the pairing gap, which differ in how many times the
gap function changes sign along the Matsubara axis. In
Sec. IV D, we consider finite T . We obtain the critical

temperatures T
(n)
c and analyze its behavior as function

of M/N , the coupling g0, and the TRS-breaking disorder
α. In Sec. V we present an in-depth comparison between
the YSYK model and the γ−model. We present our con-
clusions in Sec. VI. Some technical aspects are discussed
in the appendices.

II. MODEL

A. Yukawa-SYK Hamiltonian

We follow earlier works [106–108] and consider the
model of N dispersion-less electrons with spin σ and
zero chemical potential, randomly coupled to M bosons,
which represent, e.g., phonons or a scalar order-
parameter field. The Hamiltonian of the model is

H =
1

2

M∑
k=1

(
π2
k + ω2

0φ
2
k

)
+

1√
MN

N∑
i,j=1

M∑
k=1

gijkφkc
†
iσcjσ ,

(1)

where c
(†)
iσ are fermionic operators, and φk describe

bosons with canonical momentum πk and mass ω0. Elec-
trons and bosons are both dynamical degrees of freedom
with no spatial dependence. One can view Eq. 1 as a toy
model for strongly interacting fermions with negligible
bandwidth. The couplings gijk = g′ijk + ig′′ijk are gen-
erally complex and Gaussian-distributed with zero mean
value and the second moment given by

g′ijkg
′
i′j′k′ =

(
1− α

2

)
g2δk,k′(δi,i′δj,j′ + δi,j′δj,i′)

g′′ijkg
′′
i′j′k′ =

α

2
g2δk,k′(δi,i′δj,j′ − δi,j′δj,i′)

g′ijkg
′′
i′j′k′ = 0 . (2)

The dimensionless parameter α determines the strength
of TRS-breaking disorder and acts as pair breaking for
superconductivity.



3

One can also consider a non-random version of Eq. (1)
with two effective four-fermion interactions, mediated by
the propagator of φk, with the couplings set by Eq. (2).
In the one-loop approximation, the results for the non-
random model are the same as for the model of Eq. (1).

B. Eliashberg equations

We use the replica trick to perform the disorder average
and derive the set of coupled equations for fermionic self-
energy Σ(ωm), bosonic polarization Π(ωm), and the pair-
ing vertex Φ(ωm), as functions of Matsubara frequency
(see, e.g., the Appendix in Ref. 106 for a detailed deriva-
tion). Assuming replica-diagonal solutions, we obtain in
the limit N,M →∞

Σ(ωm) = iḡ2T
∑
ω′m

G(ω′m)D(ωm − ω′m)

Π(ωm) = 2ḡ2
N

M
T
∑
ω′m

[G(ω′m)G(ωm + ω′m)

−(1− α)F ∗(ω′m)F (ωm + ω′m)]

Φ(ωm) = −(1− α)ḡ2T
∑
ω′m

F (ωm)D(ωm − ω′m) . (3)

The functions G(ωm) and F (ωm) on the right hand side
of these equations are the dressed normal and anomalous
electron propagators G(ωm) = −i[ωm + Σ(ωm)]/[(ωm +

Σ(ωm))2 + |Φ(ωm)|2] and F (ωm) = −Φ(ωm)/[(ωm +

Σ(ωm))2 + |Φ(ω)m|2], and the function D(ωm) is the
dressed boson propagator D(ωm) = 1/[ω2

m+ω2
0+Π(ωm)].

The equations for Σ(ωm) and Φ(ωm) have the same func-
tional form as the Eliashberg equations for an electron-
phonon interaction, and to shorten notations we will be
calling Eqs. (3) Eliashberg equations.

In the following we will be interested in the limit
Φ(ωm)→ 0, valid when the system is at the verge of de-
veloping a pairing instability. To leading order in Φ(ωm),
we obtain

Σ(ωn) = ḡ2T
∑
ωm

D(ωn − ωm)

ωm + Σ(ωm)
(4)

Π(ωn) = −2ḡ2
N

M
T
∑
ωm

1

ωm + Σ(ωm)

1

ωn + ωm + Σ(ωn + ωm)

(5)

Φ(ωn) = (1− α)ḡ2T
∑
ωm

Φ(ωm)

(ωm + Σ(ωm))2
D(ωn − ωm) .

(6)

At T = 0, the frequency sum is replaced by the integral
T
∑
ωm

=
∫
dω/(2π), and the equations become

Σ(ω) = ḡ2
∫
dω′

2π

D(ω − ω′)
ω′ + Σ(ω′)

(7)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2
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N
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FIG. 1. Relation between the ratio of electron and boson num-
bers N/M and the exponent η that characterizes the power-
law behavior in the SYK regime.

Π(ω) = −2ḡ2
N

M

∫
dω′

2π

1

ω′ + Σ(ω′)

1

ω + ω′ + Σ(ω + ω′)
(8)

Φ(ω) = (1− α)ḡ2
∫
dω′

2π

Φ(ω′)

(ω′ + Σ(ω′))2
D(ω − ω′) (9)

The equation for the pairing function Φ(ωm) can be re-
expressed as an equation for the gap function ∆(ωn) =
Φ(ωn)/(1 + Σ(ωn)/ωn)

∆(ωn) = ḡ2T
∑
m

D(ωn − ωm)

ωm + Σ(ωm)

[
(1− α)

∆m

ωm
− ∆n

ωn

]
.

(10)
At T = 0,

∆(ω) = ḡ2
∫
dω′

2π

D(ω − ω′)
ω′ + Σ(ω′)

[
(1− α)

∆(ω′)

ω′
− ∆

ω

]
(11)

In the rest of the paper, we analyze the solutions of the
Eliashberg equations at T = 0 and finite T for various
ratios of fermion and boson numbers N/M and different
ḡ. For the latter, it is convenient to introduce a dimen-
sionless coupling constant

g0 =
ḡ

ω
3/2
0

(12)

III. NORMAL STATE ANALYSIS

A. T = 0: SYK quantum criticality

We first analyze the solutions of the Eliashberg equa-
tions for Σ(ω) and Φ(ω) at T = 0. Earlier works [106,
108] demonstrated that boson and fermion fluctuations
balance each other, driving the system towards a critical
state with vanishing boson mass for any value of the bare
mass ω0. In the critical state, fermion and boson propa-
gators get strongly renormalized so that at low energies
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Σ(ω)� ω and Π(ω)� ω2. We search for self-consistent
solutions for Σ(ω) and Π(ω), subject to Π(0) = −ω2

0 . We
assume and then verify that the self-energy has a power-
law form

Σ(ω) = sgn(ω) ω̄(1+η)/2
η |ω|(1−η)/2 (13)

as long as Σ(ω) > ω. Substituting this form into Eq. (8)
and evaluating the frequency dependent part of Π(ω), we
obtain Π(ω) = −ω2

0 + δΠ(ω), where

δΠ(ω) = bηg
2
0

ω3
0

ω̄1+η
η

|ω|η (14)

with

bη = − 1

π2

η

1− η
sin(πη)Γ

(
1 + η

2

)
Γ(−η) . (15)

Substituting Σ(ω) and Π(ω) into Eq. (7), we find that
the the ansatz for the self-energy is reproduced if the
exponent η is related to N/M via

N

M
=

η

1− η
tan

(
π η2
)

tan
(
π 1+η

4

) . (16)

This equation is valid for any system parameters and
determines η as a universal function of N/M . We plot
η vs N/M in Fig. 1. The same relation was found for a
different type of Yukawa coupling in Ref. 108. For N =
M , η = 0.6815, consistent with Ref. 106. For M � N ,
η → 0, in the opposite limit M � N , η → 1.

The prefactor ω̄η in Eqs. (13) and (14) is then deter-
mined from the condition Π(0) = −ω2

0 . Substituting the
self-energy again into Eq. (8) and evaluating Π(0), we
obtain

ω̄η = a2/(1+η)η g20ω0 (17)

where

aη =

[
2

π

η

1 + η

tan πη
2

tan π(1+η)
4

Γ

(
2η

1 + η

)
Γ

(
3 + η

1 + η

)](1+η)/2
.

(18)
In fact, this last expression is only approximately correct
because the corresponding integral in Eq. (8) is deter-
mined by ω′ for which Σ(ω′) ∼ ω′, while we assumed
Σ(ω′) � ω′ in the calculation for Σ and δΠ. We will
neglect this subtlety and use Eq. (18) below. We present
the details of the derivation of Eqs. (16)-(18) in App. A 1.
For later reference, in the limits η → 0 (small N/M) and
η → 1 (large N/M)

aη
η→0−−−→ √η

bη
η→0−−−→ η

aη
η→1−−−→ 1 + η

2π(1− η)

bη
η→1−−−→ 1

π(1− η)

(19)

For intermediate values of η, aη and bη are numbers of
order one and ω̄η ∼ ω0g

2
0 .

B. Finite temperature

At finite temperature, additional thermal effects ap-
pear. It was shown in Ref. 106 that for N = M ,
the SYK solution, appropriately extended to include a
temperature-dependent mass in the boson propagator,
holds up to a certain temperature, determined by the in-
teraction. At larger T , the system crosses over to the
regime of almost free fermions at g0 < 1 and to another
universal regime at g0 > 1. In this last regime, dubbed
impurity-like NFL, Σ(ω) is still larger than ω, however,
the self-energy is frequency-independent. Here, we gen-
eralize the analysis of both SYK and impurity regimes
to arbitrary N/M . We show that the boson mass and
thermal self-energy depend on N/M and thus on η. As a
result, characteristic scales also vary with N/M , and the
phase diagram depends not only on the coupling, but also
on N/M . In particular, we demonstrate that for small
N/M , there is no direct cross-over from the SYK to the
impurity regime. Instead, intermediate regimes appear.
In the opposite limit of large N/M , the self-energies in
the SYK and in the impurity regimes have almost identi-
cal forms, and the system’s behavior in the two regimes
becomes indistinguishable.

1. SYK regime

We define the SYK regime at a finite T as the
one where the self-energy still has a power-law form,
Eq. (13), with continuous frequency ω replaced by dis-
crete fermionic Matsubara frequencies ωn = πT (2n+ 1),
i.e.,

Σ(ωn) = ωnaη

(
g20ω0

|ωn|

)(1+η)/2

(20)

Using this self-energy, we obtain the polarization op-
erator in the form: Π(ωn, T ) = Π(0, T ) + δΠ(ωn, T =

0)+ δ̂Π(ωn, T ), where δΠ(ωn, T = 0) is given by Eq. (14)
with ω replaced by bosonic ωn = 2πTn

δΠ(ωn) =
bη
a2η
ω2
0

(
|ωn|
g20ω0

)η
, (21)

and δ̂Π(ωn, T ) = ω2
0(T/g20ω0)ηpη(ωn/T ) (see App. B 1 for

details and the expression for pη(x)). Finally, Π(0, T ) =
−ω2

0 +m2(T ) with the temperature-dependent mass

m2(T ) = ω2
0

cη
a2η

(
T

g20ω0

)η
, (22)
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where

cη = − 4

π

N

M
cos
(πη

2

)
Γ(η)(21−η − 1)ζ(η) (23)

and ζ(z) denotes the zeta function. The limits are cη → η
for η → 0 and cη → ln 2 for η → 1.

To analyze how thermal effects influence the SYK so-
lution for various η, we rewrite Σ(ωn) by pulling out the
thermal contribution (the one with m = n in Eq. (4))

Σ(ωn) = ḡ2T
∑
m

D(ωn − ωm)

ωm + Σ(ωm)

=
g20ω

3
0T

m2(T )

1

ωn + Σ(ωn)

+
g20ω

3
0T

m2(T )

∑
m 6=n

1

ωm + Σ(ωm)

1

1 + p̄ (|ωm − ωn|/T )

(24)

where p̄(x) =
(
bηx

η + a2ηp(x)
)
/cη. For small or inter-

mediate η, the mass term remains finite and bη/cη ∼
a2η/cη ∼ 1, so that for relevant ω/T = O(1) the thermal
piece is of the same order as the terms in the sum over
m 6= n. The thermal piece then can be neglected in an
order-of-magnitude calculation. The rest gives the SYK
form of the self-energy, Eq. (13). However, when η tends
to one (N � M), the mass terms vanishes in compar-

ison to δΠ + δΠ̂, i.e. p̄(x ∼ 1) becomes large because
a2η/cη ∼ 1/(1 − η)2, and the thermal piece in Eq. (24)
becomes parametrically larger than the sum over m 6= n.
This implies that the system crosses over to a different
regime, in which thermal effects dominate. Following
Ref. 106 we call this an ”impurity” regime because the
thermal contribution to the self-energy mimics the one
for impurity scattering.

For a generic η, the system also crosses-over to the
impurity regime, but this happens at large enough g0.
The argument is that in Eq. (24) we neglected the bare
ω2 in the bosonic propagator. Keeping this term, we get
an extra (ωn−ωm)2/m2 in the bosonic propagator under
the

∑
n 6=m. For relevant |ωn − ωm| = O(T ), this last

term is of order g2η0 (T/ω0)2−η, and for large enough g0 it
necessary becomes larger than other terms in Π(ωm, T ).
Once this happens, the thermal piece in the self-energy
again becomes the dominant one.

The route to the impurity regime by increasing the
coupling has been discussed in Ref. 106 for M = N .
We emphasize that the impurity regime can be reached
already at weak coupling by varying the ratio of electron
and boson flavors towards M � N .

2. Impurity regime

We now search for the self-consistent solution of the
Eliashberg equations at a finite T , assuming that the
thermal piece dominates. We label the corresponding

variables with subindex i. We express all quantities in
terms of M/N instead of η, because the exponent η is
a characteristic of the power-law behavior of the self-
energy, which, as we will see, no longer holds in the im-
purity regime.

We still assume that Σ(ωm) � ωm. Keeping only the
thermal contribution in the Eliashberg equation for the
self-energy (the m = n term in the sum in Eq. (4)), we
obtain

Σi(ωn) ≈ g20ω
3
0T

m2
i (T )

1

Σi(ωn)
, (25)

The boson mass m2
i = D−1(0) is determined self-

consistently from Π(0, T ) = −ω2
0 + m2

i . Evaluating
Π(0, T ) with the self-energy from (25), we obtain

m2
i =

(
π

2

M

N

)2
ω0T

g20
. (26)

Substituting Eq. (26) into Eq. (25), we find that the self-
energy is independent of temperature

Σi(ωn) = sgn(ωn)
2g20
π

N

M
ω0 . (27)

Note that with such a self-energy in Eq. (4), correc-
tions to Σi from the sum over m 6= n vanish at the
first Matsubara frequencies ±πT [67]. Using this Σi,
we find that the full boson polarization is given by
Πi(ωm, T ) = −ω2

0 +m2
i + δΠi(ωm, T ), where

δΠi(ωm, T ) =
π

2g20

M

N
ω0 |ωm| (28)

Self-consistency in the impurity regime requires that
m2(T ) is smaller than δΠi(ωm)+ω2

m for relevant ωm ∼ T .
For N � M this holds for any g0. In the oppo-
site limit N � M , this holds for large enough g20 >
(M/N)2(ω0/T ). Because the limits N �M and N �M
correspond to η ≈ 1 and η � 1, these results are con-
sistent with the ones in Sec. III B 1. We address the
crossover between the SYK and the impurity regimes in
Sec. III B 4 below, when we discuss the phase diagram.

3. Regime of free fermions

A finite T also opens up a window in the parameter
range, where both fermionic and bosonic self-energies Σ
and Π are small compared to the bare ωn and the bare
ω2
0 + ω2

m in the inverse fermion and boson propagator,
respectively. Thus, fermions remain weakly interacting
quasiparticles, and bosons retain an excitation gap close
to the bare ω0. The appearance of a regime of free
fermions can be understood by comparing the SYK ex-
pressions for the self-energy, Eq. (20), and boson mass,
Eq. (22), with the bare ωn and the bare ω2

0 . For ωn ∼ T ,
free-fermion behavior holds as long as Σ(T ) ≤ T and
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T/ω0
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N ≪ M

1
II

I

N/M

(N/M)2g20

(M/N)2/g20

g20

N/Mg20

T/ω0
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Free fermions
Impurity
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N ≈ M

1
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1/g20
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1
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FIG. 2. Schematic phase diagrams if T ∼ ω and the dimensionless coupling g0 are varied for different ratios of fermion and
boson flavors N � M (left), N = M (middle) and N � M (right) assuming a non-superconducting ground state. Three
universal phases are present in all three cases: a regime of free fermions (blue), a NFL regime with impurity-like self-energy
(red) and a NFL SYK-like regime with power-law self-energy. Dashed lines represent crossovers between the regimes, white
boxes specify their functional form. For N � M , intermediate phases I-III appear (see text). For N � M , the spectral
properties of SYK and impurity regime are indistinguishable. Below the dotted line, the induced frequency dependence of the
polarization operator becomes larger than the bare frequency dependence δΠ > ω2.

m2(T ) ≈ ω2
0 . We find that these conditions are satisfied

for T ≥ a
2/(1+η)
η ω2

0g
2
0 . This becomes T ≥

√
N/Mω0g

2
0

for η ≈ 0, and T ≥ (N/M)ω0g
2
0 for η ≈ 1. For generic

0 < η < 1, i.e. M ≈ N , a
2/(1+η)
η is of order one, and the

condition simplifies to T ≥ ω0g
2
0 .

4. Phase diagram

We now discuss the phase diagram for a generic M/N
and T ∼ ω. It is instructive to separately consider the
cases N ≈ M , N � M and N � M . We sketch the
corresponding phase diagrams in Fig. 2.

The phase diagram for N ≈ M has been obtained
in Ref. 106. It contains the regime of free fermions up
to T/ω0 ∼ g20 , and a cross-over to the SYK (impurity)
regime occurs for small (large) temperatures T < ω0

(T > ω0).
For N � M (η ≈ 1), we found in Secs. III B 1, III B 2

that the impurity regime emerges already at small T and
g0. At the same time, we note that the forms of Σi and
mi in Eqs. (27), (26) differ from the corresponding ex-
pressions in the SYK regime, Eqs. (20), (22), only by
multiplicative factors O(1). This implies that the two
regimes are essentially indistinguishable. We use the la-
bel ”SYK∼impurity” in the right panel in Fig. 2 to re-
flect this. The crossover line in this panel is between the
SYK∼impurity regime and the regime of free fermions.
The crossover is at T/ω0 ∼ g20(N/M), where Σ ∼ T .
Right on the crossover line, m2/ω2

0 is still small by a fac-
tor M/N . However, to the left of this line, m rapidly

increases in a narrow range of g0 of order
√
M/N , and

approaches ω0. Simultaneously, the self-energy drops
and becomes smaller than ωn, i.e., the system almost
instantly crosses over to the the free fermion regime.

In the opposite limit N � M (η � 1), the forms
of the self-energy in the SYK and the impurity regimes

differ substantially. We argue that in this case the sys-
tem cannot cross-over directly from one regime to the
other. This can be seen by comparing the electronic self-
energies Σi and Σ(T ) at the lower boundary of the im-
purity regime at T/ω0 ∼ (M/N)2/g20 , where m2

i ∼ T 2.
For a direct cross-over, the two self-energies must be
of the same order. However, Σi ∼ ω0(N/M)g20 , while

Σ(T ) ∼ ω0(M/N)3/4g2η0 . Because Σi and Σ(T ) are so
different, an intermediate regime develops between the
SYK and the impurity regime (region III in Fig. 2), where
the mass and self-energy gradually evolve from their val-
ues in the impurity regime. For g0 � 1, such a regime
exists even for M ∼ N because at T ∼ ω0/g

2
0 , Σi ∼ g20ω0

is larger than Σ(T ) ∼ g2η0 ω0 by g
2(1−η)
0 . Similarly,

there is no direct crossover between the impurity regime
and free-fermion regime. Indeed, at the other bound-
ary of the impurity region, at T/ω0 ∼ (N/M)2g20 > 1,
where m2

i becomes of order ω2
0 , Σi still exceeds the bare

ωn ∼ T . This opens up intermediate region I in Fig. 2.
For a given T/ω0 > 1, this region holds between larger
g20 ∼ (T/ω0)(M/N)2 and smaller g20 ∼ (T/ω0). Within
this region, the bosonic propagator retains its bare value,
but the self-energy remains larger than T . It is still given
by the thermal contribution in the Eliashberg equation
as in the impurity regime but with the temperature-
independent, bare boson mass: ΣI ∼

√
g20ω0T . At

T/ω0 < 1 and g0 > 1, there is another intermediate re-
gion II between the intermediate region III and the free-
fermion region, where the thermal contribution to the
self-energy becomes comparable to the rest. In region
II, the bosonic propagator retains its bare value, like in
region I, and ΣII ∼ g0ωn > T .
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IV. SUPERCONDUCTIVITY

NFL behavior in the normal state is one effect of the
system’s self-tuning to criticality. Another one is the ap-
pearance of a singular pairing interaction mediated by
a gapless boson. In our YSYK model, this interaction
scales as (1− α) and is attractive for α < 1, see Eq. (6).
We recall that α is the strength of TRS-breaking disor-
der. The singular pairing interaction opens a possibility
that the NFL ground state is unstable towards binding
of fermions into pairs. To verify whether this is the case,
we study the gap equation and check whether it has a
solution below a certain Tc. To what extent pairing of
dispersion-less fermions leads to superconductivity is a
separate issue that we do not address in this paper. To
simplify the presentation, we just call a state below a
pairing instability a superconducting state.

A. Superconductivity in the regime of free
fermions

We begin by analyzing superconductivity in the range
of parameters where in the normal state the self-energy
for fermions and the polarization operator for bosons are
small compared with bare inverse fermionic and bosonic
propagators, i.e., both fermions and bosons can be ap-
proximated as free particles. This regime emerges most
naturally at finite temperature in the limit N � M
(η � 1) and g0 < 1. We assume and then verify that
in this regime a superconducting instability occurs at
Tc ∼ g20ω0, and relevant internal ωm and external ωn
in Eq. (6) for the pairing vertex are of order Tc. One
can easily verify that in this situation ω2

0 � |ωn − ωm|2,
hence, to first approximation, the bosonic propagator can
be viewed as frequency-independent. The pairing vertex
Φ(ωn) then also becomes frequency independent. Can-
celling Φ(ωm) = Φ in the r.h.s. and l.h.s. of Eq. (6), we
obtain the equation for Tc:

Tc = g20ω0
1− α
4π2

∑
m

1

(m+ 1/2)2
=

1− α
4

g20ω0 (29)

Note that the Matsubara sum converges because the pair-
ing kernel contains the square of the fermionic G(ωm).
The convergence justifies our assumption that typical
ωm ∼ Tc. Then, relevant ωn are also of order Tc.

We see from Eq. (29) that Tc depends quadratically
on the coupling constant and scales as 1 − α, i.e., Tc is
non-zero for all α < 1, where the pairing interaction is at-
tractive. We will see, however, that the actual situation is
more complex, and for any η > 0 there is a threshold for
superconductivity at αc < 1. The reason is that Eq. (29)
has been derived assuming that for relevant ωn ∼ T , the
self-energy is smaller than T . This holds for Tc ∼ g20ω0

at small/intermediate α, but not for Tc → 0 at α → 1.
We will also see that there exist other solutions for the
pairing, for which Φ(ωn) changes sign several times as a

α=0.0 α=0.3 α=0.6 α=0.9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

0.01 0.1 1 10 100

η

Im
(β
)

N/M

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
0.01 0.1 1 10 100

η
α
cr

N/M

FIG. 3. Top: Imaginary part of the exponent β = η/2 + iκ̄
of the pairing solution φ(ω) ∝ ωβ obtained from Eq. (31). It
vanishes above a critical αc. For α ≤ αc the solution of the
linear gap equation at zero temperature oscillates, which is
interpreted as a sign for a superconducting ground state. The
parameter α acts as pair breaking and prevents an oscillating
solution for α > αc. Bottom: Critical αc for different η.

function of Matsubara frequency. These solutions appear
at temperatures for which Σ(ωn ∼ T ) > T . To demon-
strate these results, in the next section we first analyze
the gap equation at T = 0 with fully dressed fermion and
boson propagators, and then extend the analysis to finite
T

B. Superconductivity from a NFL – zero
temperature

At T = 0, the ground state without superconductiv-
ity is the SYK-like NFL with scaling forms of fermionic
and bosonic propagators. We recall that Σ(ω) ∼
ω(1−η)/2ω̄

(1+η)/2
η . Consider first the linearized equation

for the pairing vertex Φ(ω) at ω � ω̄η, where Σ(ω)� ω.
We will see below that relevant internal ω′ in Eq. (9) are
comparable to ω. For such ω′ we can neglect the bare
ω′ in the fermionic propagator and keep only Σ(ω′). We
can also neglect ω2 in the bosonic propagator compared
to δΠ as long as g0 . 1, which we assume to hold. Sub-
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stituting the SYK forms of Σ and δΠ into Eq. (9), we
express it as

Φ(ω) =
1− α
2πbη

∫
dω′

Φ(ω′)

|ω′|1−η |ω − ω′|η
. (30)

The kernel of Eq. (30) is marginal (its scaling dimension
is -1), hence the solution is a power-law function Φ(ω) ∝
1/ωβ . Substituting into Eq. (30), we obtain the condition
for the exponent

1 =
1− α
2πbη

ψη(β) (31)

with ψη(β) = B(β, η− β) +B(1− η, β) +B(1− η, η− β)
and the beta function B(x, y) = Γ(x)Γ(y)/Γ(x + y). A
solution of Eq. (31) in the form β1,2 = η/2± κ exists for
any η (i.e., any N/M), but it changes qualitatively with
α: the exponent κ is real if α is larger than a certain
αc < 1 (defined in Eq. (32) below) and imaginary κ = iκ̄
if α ≤ αc. We argue below that this change implies that
superconductivity develops at α < αc, but not at α > αc.
We show Im(β) = κ̄ as a function of η for various α in
Fig. 3. The critical αc, which separates the power-law
behavior with real and complex exponent, depends on η
as

αc = 1− 2πbη

ψη
(
η
2

) , (32)

We plot αc as a function of η in Fig. 3. It is smaller
than 1 for all non-zero η. For M = N , η = 0.6815 and
αc = 0.6265, consistent with Ref. [107]. For η → 0, we
find

αc ≈ 1− π

4
η2 (33)

In the opposite limit η → 1, the critical αc tends to zero

αc ≈
1

2
(π + ln 16)(1− η) , (34)

We can see this analytically by expanding Eq. (31) in
1− η:

1 =
1− α

2
(1− η)

[
2

1− η
+

π

sin(πβ)
−Hβ−1 −H−β

]
+O

(
(1− η)2

)
(35)

where Hx is the harmonic number. This reproduces
Eq. (34) for β = η/2 ≈ 1/2. We note in this regard
that while αc → 0 at η → 1, the value of κ̄ remains fi-
nite at α = 0. Indeed, setting α = 0 in (35) and solving

π
sin(πβ) − Hβ−1 − H−β = 0, we obtain β = 1/2 ± 0.792i

in good agreement with the numerical solution in Fig. 3.

We now associate αc with the critical point of super-
conductivity. We argue, following Ref. [59], that a so-
lution of the non-linear gap equation can be found for
0 < α < αc, but not for αc < α < 1.

For α > αc, the normalized power-law solution of the
linearized gap equation corresponds to β = η/2 − |κ|,
and this solution can be obtained perturbatively, starting
from an infinitesimally small frequency-independent Φ0

(see Ref. [59]). However, the perturbative solution does
not yield a divergent pairing susceptibility [115] This in-
dicates that the non-superconducting, NFL ground state
is stable against pairing. The result is expected as TRS
pairing breaking disorder acts against superconductivity
even when the pairing interaction is attractive.

At α = αc, the two exponents β1,2 = η/2 coincide. A
more careful analysis shows that at this α,

Φ(ω) ∝ 1− c log |ω|
|ω|η/2

(36)

where c is arbitrary. For α < αc, β1,2 = η/2 ± iκ̄ are
complex, and Φ(ω) oscillates as a function of frequency

Φ(ω) ∝ 1

|ω|η/2
cos

(
κ̄ log

ω0

|ω|
+ φ

)
(37)

These oscillations cannot be obtained perturbatively
starting from Φ0 because the kernel in (30) is entirely pos-
itive so that an initially positive function cannot change
sign in perturbation theory. The emergence of an oscil-
latory solution enables the construction of a solution of
the non-linear gap equation using the same reasoning as
in BCS/Eliashberg theory that one can approximate the
solution of the non-linear gap equation Φnl(ω) by some
constant Φnl(0) up to ω ∼ Φnl(0), and by the solution
of the linear gap equation at higher frequencies. This
introduces a boundary condition at ω ∼ Φnl(0), which
in our case can be satisfied by choosing Φnl(0) to match
the extrema of Φ(ω) (see next Section). This suggests
that the NFL ground state may now be unstable against
pairing.

To show that this is indeed the case, i.e., that αc is
a critical strength of TRS-breaking disorder which sepa-
rates superconducting and NFL ground states, we need
to show that at α = αc, the linear equation for Φ(ω)
has a non-trivial solution for all ω, not only for ω < ω̄η,
which we considered so far. Such a solution, if it exists,
should match Eq. (36) at ω � ω̄η. Keeping ω′ along with
Σ(ω′), we express Eq. (9) as

Φ(ω) = (1− αc)
ω̄1+η
η

2πbη

∫ ∞
0

dω′
Φ(ω′)(

ω′ + ω̄
(1+η)/2
η ω′(1−η)/2

)2
×
[

1

|ω − ω′|η
+

1

|ω + ω′|η
]
.

(38)

For convenience, we restricted the integral to positive
frequencies. At large ω � ω̄η, Φ(ω) must decay as 1/|ω|η,
as one can verify by direct substitution of this form into
Eq. (38).

To proceed further, we convert Eq. (38) into an ap-
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proximate differential equation. For this, we assume that
η is small, in which case the largest contributions to the
r.h.s. come from either ω′ � ω or from ω′ � ω. Then∫∞
0
dω′f(ω′)(1/|ω − ω′|η + 1/|ω + ω′|η) can be approxi-

mated by 2/|ω|η
∫ |ω|
0

dω′f(ω′) + 2
∫∞
|ω| dω

′f(ω′)/ω′
η
. Us-

ing this in Eq. (38), we convert the integral equation for
Φ(ω) into

d

dω

[(
ω

ω̄η

)1+η
d

dω
Φ(ω)

]

= −(1− αc)
η

πbη

Φ(ω)(
ω + ω̄

(1+η)/2
η ω(1−η)/2

)2 . (39)

Eq. (39) has two independent solutions Φ1,2(ω), i.e.,
Φ(ω) = c1Φ1(ω) + c2Φ2(ω). The overall factor is irrele-
vant for the linearized gap equation, so there is in fact
one parameter c1/c2. We have found the solutions Φ1,2

analytically in terms of hypergeometric functions. The
expressions are rather complex and we present them in
App. A 2. At ω � ω̄η, we use the expansion of a hyper-
geometric function at large argument and obtain

Φ(ω)→
( ω̄η
ω

)η
+ const. (40)

The constant is cancelled out by choosing a particular
ratio of c2/c1. With this choice, we recover the required
high-frequency behavior Φ(ω) ∝ 1/|ω|η. In the low-
frequency limit, we recover Eq. (36) with c related to
c1/c2. The crossover between Eq. (36) and the 1/|ω|η

decay is at ω ∼ ω̄η/bη ∼ (a
2/(1+η)
η /bη)g20ω0. For small η

this scale is g20ω0. We emphasize that the crossover scale
remains finite at η → 0 despite that the pairing inter-
action becomes almost a constant in this limit, and the
theory has no external cutoff. The reason is the same
as we named in the last section: we do not get an un-
constrained BCS equation at η → 0 because the kernel
of the gap equation contains the square of the electron
propagator instead of the first power. We plot Φ(ω) at
α = αc in Fig. 4. The 1/ωη behavior indeed holds down
to ω ∼ ω0g

2
0 .

We see therefore that the linearized gap equation does
have a non-trivial solution at α = αc. This is consis-
tent with the idea that αc is the critical value of TRS-
breaking disorder, separating a NFL ground state at
αc < α < 1 and a superconducting ground state at
α < αc. Ref. 107 reached a similar conclusion by re-
quiring the low-frequency solution of the gap equation,
Eq. (36), to vanish at a particular ω ∼ g20ω0 and choos-
ing c to impose this condition. We also note that at
ω ∼ g20ω0, δΠ ∼ ω2

0 is larger than (g20ω0)2, as long as
g0 � 1. This justifies our assumption that the bare ω2

term in the bosonic propagator can be neglected. At
g0 = O(1) this assumption is still valid for qualitative
reasoning, but ω2 should be kept in D(ω) in numerical
calculations.

10-5 10-3 10-1 1 10

0.5
1

5
10 ω-η

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ω/(g02ω0)

Φ

FIG. 4. The pairing vertex Φ(ω) obtained from the differen-
tial equation (39) at α = αc for η = 0.3. Its low-frequency
behavior follows Eq. (36). At larger frequencies, it decays as
ω−η as shown in the double logarithmic plot in the inset.

C. An infinite number of solutions for the pairing

We now consider the case α ≤ αc when we expect
the ground state to be a superconductor in more detail.
A naive expectation would be that for these α, the so-
lution of the linearized gap equation disappears, and a
finite Φnl(ω) emerges as the solution of the non-linear
gap equation. In our case, this is partly true. Namely, a
finite Φnl(ω) does appear, however the solution of the lin-
earized gap equation does not disappear. To see this, we
keep η � 1 and analyze the linearized gap equation (39)
for α < αc. Applying the same reasoning as before, we
again find the normalized Φ(ω) as the sum of the two hy-
pergeometric functions, Φ(ω) = c1Φ1(ω) + c2Φ2(ω). The
boundary condition at high frequencies, Φ(ω) ∝ 1/|ω|η,
is satisfied if we choose a particular c1/c2 (which depends
on α) to cancel out a parasitic constant. At small ω, Φ(ω)
oscillates in the same way as we found in the previous
section

Φ(ω)→ 1

|ω|η/2
cos

(
κ̄ log

ω0

|ω|
+ φ

)
, (41)

where φ is expressed via c2/c1 [116].
We now argue that the solution of the linearized gap

equation is the end point of an infinite set of solutions
of the non-linear gap equation. For this, we recall the
reasoning in the previous section that one can construct
an approximate solution of the non-linear gap equation
by setting Φnl(ω) to be some constant Φnl(0) up to a
boundary frequency ω ∼ Φnl(0), taking Φnl(ω) to be
proportional to Φ(ω) at higher frequencies. The con-
stant Φnl(0) has to be chosen such that Φnl(ω) is smooth
at the boundary. In our case, a natural candidate for
the boundary frequency is the position of an extrema in
Φ(ω). However, because of the oscillatory behavior of
Φ(ω), there is a set of extrema at ω∗n ∝ exp(−πn/κ̄).
Following this logic, we obtain not one but an infinite
set of candidate solutions of the non-linear gap equation
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with gap amplitudes Φ
(n)
nl (0) ∼ ω∗n. The function Φ

(0)
nl (ω)

is sign-preserving, Φ
(1)
nl (ω) changes sign one time, and so

on. In this nomenclature, the solution of the linearized

equation Φ(ω) = Φ
(∞)
nl (ω). Each zero of Φn(ω) on the

Matsubara axis is a center of a vortex in the complex
frequency plane [62]. Thus, the solutions with different n
have different number of vortices in the upper half-plane
of frequency and are therefore topologically distinct.

For α slightly below αc and small η we find

κ̄ =
√

(αc − α)/π, hence Φ
(n)
nl (0) ∝ exp[−(nπ −

φ)
√
π/(αc − α)] are exponentially small. At smaller α,

κ̄ = O(1), and the magnitudes of the candidate so-

lutions Φ
(n)
nl (0) are set by characteristic scales in the

problem. Analyzing the analytical solution of the lin-
earized gap equation at small η and a generic α < αc,
we find two such scales. One is ω ∼ g20ω0, where Φ(ω)
reaches a first maximum upon decreasing ω. The sec-
ond is ω ∼ ω̄η ≈ ηg20ω0, below which Φ(ω) displays log-
oscillations. We plot Φ(ω) in Fig. 5 for α = 0 and several
small η. We mark the positions of the largest maximum
and the onset of log-oscillations (the largest minimum).
We clearly see that their difference increases as η. This
means that the magnitude of the n = 0 candidate solu-

tion of the non-linear equation is Φ
(0)
nl (0) ∼ g20ω0, while

the magnitudes of the other solutions with n ≥ 1 are

Φ
(n)
nl (0) ∼ ηg20ω0 exp[−πn/κ̄]. Thus, in the limit η → 0,

ΦNL
(0) remains finite, consistent with Eq. (29), but all

other Φn vanish.

D. Superconductivity from a NFL - the onset
temperatures

As a next step, we verify our reasoning for multiple
solutions by extending the analysis of the gap equation

to finite T . If the candidate Φ
(n)
nl (ω) exist, they must

give rise to a set of critical temperatures T
(n)
c ∝ Φ

(n)
nl (0),

which all must emerge simultaneously once α becomes
smaller than αc. We illustrate this in Fig. 6. Below we
present strong numerical evidence that for any finite η

there indeed exists a set of T
(n)
c . We obtain these temper-

atures by solving the gap equation Eq. (11) as an eigen-
value problem utilizing the hybrid-frequency technique
introduced in Ref. 117 to perform the Matsubara sum
down to very low T. As an input for these calculations,
we use the expressions for the electron self-energy and
boson polarization that we have determined in Sec. III.
As we have noted previously, the explicit appearance of
the self-energy is special to the YSYK model and rooted
in its zero-dimensionality. We consider separately the
pairing out of the SYK regime and out of the impurity

regime, and obtain the first few T
(n)
c as a function of

M/N and the coupling g0.

η=10-3

η=10-2

η=10-1

10-7 0.001 10
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

ω/(g0
2ω0)

Φ
/Φ
0

FIG. 5. The pairing vertex Φ(ω) obtained from the differential
equation Eq. (39) for α < αc. Φ oscillates at low frequencies
on an exponential scale. One can approximately identify the

extrema ω∗n with the set of onset temperatures for pairing T
(n)
c

(see discussion below Eq. (41) and Sec. IV D). For η → 0, the
largest ω∗0 behaves qualitatively different from the rest: ω∗0
tends to a constant ∼ ωog

2
0 , while all other ω∗n with n ≥ 1

vanish with η. This can be clearly seen in the figure, where w∗0
and ω∗1 are marked by vertical lines. For a better comparison,
Φ(ω) is rescaled by Φ0 = Φ(ω∗0).
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Tc
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...
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(n
)
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FIG. 6. Sketch of the infinite set of critical temperatures
Tc(1) > Tc(2) > Tc(3) . . . as a function of the pair-breaking
parameter α that all vanish in the same critical αc.

1. Pairing in the SYK regime

We start with the analysis of the gap equation (10)
in the SYK regime for various values of η (M/N). We
use Eq. (20) for the electron self-energy and Eqs. (21)
and (22) for the boson propagator. In explicit form the
equation for ∆(ωn) = ∆n is

∆n ≈
1

πt
1+η
2

∑
m

sgn(ωm)

|2m+ 1|πt 1+η
2 + aη(|2m+ 1|π)

1−η
2

×
a2η

cη + bη(2π)η |n−m|η
[
(1− α)

∆m

2m+ 1
− ∆n

2n+ 1

]
.

(42)

where t = T/(ω0g
2
0).
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FIG. 7. The two largest critical temperatures T
(0)
c (red) and

T
(1)
c (rose) for η = 0.68 (M ≈ N), see App. B 2 for other

values of η. The gray symbol marks the critical αc ≈ 0.63,

where we expect T
(n)
c to vanish. It is not reached completely

due to numerical restrictions. Inset shows the same data on a
logarithmic scale. We show the corresponding gap functions
for α = 0 in Fig. 8.

We solve this equation numerically and indeed find a

hierarchy of critical onset temperatures T
(0)
c > T

(1)
c >

T
(1)
c > . . . for given α and η. We show T

(0)
c and T

(1)
c

as function of α for an exemplary value of η in Fig. 7
(see App. B 2 for other η). The critical temperatures are
suppressed when α increases and within our numerical
accuracy all vanish at αc, in agreement with our analyt-
ical analysis at T = 0. The computational requirements

to reach T
(n)
c ∝ exp(−

√
πn/
√
αc − α) near αc drastically

increase as an exponentially large number of Matsubara

points mmax & ω0/T
(n)
c needs to be kept [117]. Although

the existence of αc is a zero-temperature result, the very

suppression of T
(n)
c with α can be traced to the term

with ωn = ωm in Eq. (42). This term cancels out in
the r.h.s. of Eq. (10) at α = 0, but does not cancel at
α 6= 0. Because α measures the strength of the disorder
that breaks time-reversal symmetry, the suppression of

T
(n)
c with α in the YSYK model at α 6= 0 can be con-

sidered a NFL counterpart of the suppression of Tc by
pair-breaking magnetic impurities in Abrikosov-Gor’kov
theory of pairing in a dirty Fermi liquid [118]

In Fig. 8, we show the gap functions ∆n with n =
0, 1, 2, corresponding to the three largest onset temper-
atures. We see that ∆n changes sign n times as a func-
tion of Matsubara frequency, again in agreement with our
zero-temperature analysis.

Further, it follows from Eq. (42) that the onset tem-
peratures in the SYK regime scale with ω0g

2
0 , as only the

combination t = T/(ω0g
2
0) appears, i.e.,

T (n)
c = fn(η)ω0g

2
0 (43)

where fn(η) does not depend on the coupling. The cor-
rections to Eq. (43) come from the bare ω2

m-term in the
boson propagator, which we neglected in Eq. (42). For
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FIG. 8. The eigenfunction ∆(ωn) corresponding to the

three largest T
(n)
c for η = 0.68 (M ≈ N) and α = 0

(T
(0)
c ≈ 5.835 × 10−2g20ω0, T

(1)
c ≈ 0.994 × 10−3g20ω0 and

T
(2)
c ≈ 1.79×10−5g20ω0). It is obtained at discrete Matsubara

frequencies, lines are guides to the eye. The number of zeros
increases for the different gap functions from zero to three.

small η, this approximation is justified (see Sec. III B 1),
but for larger η (or large couplings), the bare ω2

m-term
cannot be neglected. In Fig. 9, we show our numerical so-
lution of the linearized gap equation with the full bosonic
propagator for η = 0.3. We clearly see the quadratic de-
pendence on the coupling as in Eq. (43). In Fig. 10, we

show T
(n)
c /(ω0g

2
0) along with fn(η) for n = 0, 1. We see

that for small η, T
(n)
c follows Eq. (43), but for larger η

the critical temperature deviates.

We also see from Fig. 10 that for small and intermedi-

ate η, T
(0)
c and T

(1)
c behave differently as functions of η:

T
(0)
c ∼ ω0g

2
0 is almost independent on η and remains fi-

nite at η = 0, while T
(1)
c decreases approximately linearly
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FIG. 9. The largest onset temperature T
(0)
c for pairing out

of the SYK regime for η = 0.3 and small α. It follows a
quadratic dependence on the coupling g0.

with η. This agrees with our zero-temperature analysis,
where we argued that the characteristic scale for ∆n=0

is independent on η while for ∆n=1 the corresponding
scale is proportional to η. Note that the prefactor in

T
(0)
c ∼ ω0g

2
0 at small η, obtained using Eq. (42), is cor-

rect only by order of magnitude as at such temperature

the system is in the free-fermion regime, where T
(0)
c is

given by Eq. (29). The temperature T
(1)
c and all other

T
(n)
c with n ≥ 2 remain inside the SYK regime. We em-

phasize that the vanishing of all T
(n)
c with n ≥ 1 at η = 0

implies the necessity of a dynamical pairing interaction
in order to get an infinite set of pairing solutions.

2. Pairing in the impurity regime

Next, we analyze the gap equation using as input the
expressions for the self-energy and the bosonic polar-
ization in the impurity regime, Eqs. (26)-(28). As we
demonstrated in Sec. III B 2, the impurity regime appears
at large coupling g0 and/or at large N/M . The linearized
gap equation in the impurity regime has the form

∆(ωn) = g20ω
3
0T
∑
m

[
(1− α)

∆m

ωm
− ∆n

ωn

]
sgn(ωm)

|ωm|+ 2
π
N
M g20ω0

× 1

(ωn − ωm)2 + π
2
M
N
ω0

g20
|ωn − ωm|+

(
π
2
M
N

)2 ω0

g20
T

(44)

We first recall that we found in Sec. III B 2 that at large
N/M , the critical behavior in the impurity regime is
almost indistinguishable from that in the SYK regime.
Hence, Tc, obtained using Eqs. (42) and (44) must co-

incide. In Fig. 11, we compare T
(0)
c and T

(1)
c obtained

from Eqs. (42) and (44). We see that for both n = 0
and n = 1, the critical temperatures obtained from the
two gap equations approach each other for η → 1, which,
we remind, corresponds to large N/M ≈ 1/(1 − η). We
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FIG. 10. The largest T
(0)
c (top) and second largest T

(1)
c (bot-

tom) critical temperature for α = 0 and varying η in the SYK

regime, where T
(n)
c = fn(η)ω0g

2
0 (see Eq. (43)) as long as the

bare Ω2-term in the boson propagator is negligible. For larger

g0 or η → 1, T
(n)
c starts to deviate.

emphasize that a set of T
(n)
c emerges in both SYK and

impurity regimes.

Next, we analyze the form of T
(0)
c in the impurity

regime in more detail. For simplicity, we call this tem-
perature simply Tc. Deep in the impurity regime, at
Ng20/M � 1, we assume and then verify that for relevant
ωn, ωm ∼ Tc, the fermionic self-energy is much larger
than the bare ωm, and the (ωn−ωm)2 term is the largest
in the bosonic propagator. Keeping only these terms, we
reduce the gap equation (44) to

∆(ωn)

≈ 1

8π2

M

N

ω2
0

T 2
c

∑
m

[
(1− α)

∆m

2m+ 1
− ∆n

2n+ 1

]
sgn(ωm)

(n−m)2
.

(45)

For α = 0, Eq. (45) yields

Tc ∼ ω0

√
M/N (46)

independent of the coupling constant g0, i.e. Tc is solely
determined by the ratio of electron and boson flavors.
In the limit N/M � 1, this result can be equivalently
expressed as Tc ∼ ω0

√
1− η. Our numerical calculations
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using the full gap equation confirm these findings. Fig. 11
shows that Tc drops at η → 1, and Fig. 12 shows that Tc
becomes independent on g0 at large g0 and fixed N/M .
Using the explicit form of Tc, we can also verify that the
assumptions that led to Eq. (45) are valid. On a more
careful look, we find that the coupling-independent be-
havior of Tc is rooted in the electronic self-energy growing
large when g20N/M � 1. We recall that such self-energy
is generated by the thermal piece in the self-energy equa-
tion.

For α 6= 0, Tc extracted from (45) vanishes as the pair-
breaking n = m contribution diverges. Keeping the sub-
leading term in the bosonic propagator in (44) to reg-
ularize the divergence, we obtain a more accurate gap
equation in the form

∆(ωn) ≈
1

8π2

M

N

ω2
0

T 2

∑
m 6=n

[
(1− α)

∆m

2m+ 1
− ∆n

2n+ 1

]
sgn(ωm)

(n−m)2

− 2

π2
α
N

M
g20
ω0

T

∆n

|2n+ 1|
(47)

Expanding in α, we find that α reintroduces the depen-
dence on the coupling and suppresses the critical temper-
ature by

δTc/Tc ∝ αg20(N/M)3/2 . (48)

For g0 = O(1), the corrections due to α are amplified
by large (N/M)3/2. We compare Tc for α = 0 and a
representative α 6= 0 in Fig. 12. We clearly see that for
α = 0, Tc saturates at large g0, while for α 6= 0, Tc
decreases with increasing g0, in line with our analytical
reasoning.

We note that for α = 0, the gap equation (47), or,
equivalently (45), is the same as for the well-studied case
of electron-phonon pairing in the limit of vanishing Debye
frequency. We discuss this case further in Sec. V below
in light of the comparison with the γ-model. In this case,
the set of solutions ∆n becomes continuous and strong
fluctuations are expected.

3. Phase diagram including superconductivity

Combining the results of the previous sections, we ob-
tain how the onset temperature of pairing evolves as func-
tion of temperature and coupling for different N/M . We

focus on the largest T
(0)
c = Tc and consider the evolution

of Tc in the three exemplary cases N �M , N ≈M and
N � M . We show the results in Fig. 13. The behavior
for N ≈ M (the middle panel in Fig. 13) is consistent
with Ref. 107.

Let us first discuss the common features for very small
or very large g0. Generally, for small g0 and α = 0,
we have found that Tc increases as ω0g

2
0 . At α 6= 0,

the initial slope is reduced by 1 − α. This is true when
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FIG. 11. The largest (top) and second largest (bottom) crit-
ical temperature for α = 0 and varying η obtained with the
SYK (filled symbols) and impurity (open symbols) self-energy
for different g0 (bare Ω2-term included).

superconductivity develops out of the free-fermion or out
of the SYK regime. The combination of our analytical
and numerical results shows that for N �M , Tc is inside
the free-fermion regime, for N ≈M , Tc is parameter-wise
at the boundary between the free-fermion and the SYK
regimes, but numerically well inside the SYK regime, and
for N �M , Tc is deep inside the SYK∼impurity regime.

For very large g0, pairing always develops out of the
impurity regime. In this case, the onset temperature
Tc ∼ ω0

√
M/N saturates at a coupling-independent

value if α = 0. The ratio Tc/ω0 is parametrically large
for N � M and small for N � M . If α 6= 0, Tc is
reduced by a correction that scales as αg20 .

The behavior at intermediate couplings changes qual-
itatively depending on N/M . For N ≈ M , the change
from small- to large- coupling behavior occurs around
g0 ≈ 1, when the SYK regime crosses over to the im-
purity regime. For N � M , where SYK and impurity
regimes are indistinguishable, it occurs around smaller
g0 ≈ (M/N)1/4 when δΠ(Ω) ∼ Ω2. For N � M , the
evolution of Tc depends on α. For α = 0, Tc passes
through the intermediate range I, where it increases from
Tc ∼ ω0 at g0 = O(1) to Tc ∼

√
M/Nω0 � ω0 at

the boundary of the impurity regime at g0 ∼ (M/N)3/4.

The form of Tc in regime I roughly follows Tc ∼ ω0g
2/5
0 .
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FIG. 12. The largest critical temperature T
(0)
c as function of

the coupling strength g0 for η = 0.8 (N/M ≈ 2). The data
is obtained using the SYK expressions as input in the gap
equation. However, the expressions of the impurity regime are
comparable for this η (see Fig. 11 and Sec. III B 2). For small

g0, T
(0)
c increases quadratically. For large g0, the behavior

depends on the presence of pair-breaking disorder. If α = 0,

T
(0)
c keeps increasing and then saturates, if α 6= 0 it rapidly

drops down.

For α 6= 0, pair-breaking effects reduce Tc for g0 > 1

to Tc ∼ ω0/
√
αf(αg

4/5
0 ), where f(x � 1) ∼

√
x and

f(x� 1) is finite. In this case, Tc passes through regime
II before entering the impurity regime.

Finally, let us note that, even if the largest onset tem-

perature Tc = T
(0)
c is outside of the SYK regime, the T

(n)
c

of other pairing states are much smaller and can remain

within the SYK regime. When α approaches αc, all T
(n)
c

emerge out of the SYK regime.

V. A COMPARISON WITH THE γ MODEL

It is instructive to compare the results that we obtained
for the YSYK model with the ones for a set of models of
dispersion-full fermions with a large bandwidth brought
to a QCP by some external parameter (see e.g., the list
of literature in Ref. [59]). Like in YSYK models, it is
assumed that the same interaction, mediated by a soft
critical boson, gives rise to a NFL and to pairing with
spatial symmetry specific to a given QCP (e.g., a d−wave
at an antiferromagnetic QCP).

For a subset of such models, it is further assumed that
bosons are slow modes compared to fermions, for one
reason or the other. In this situation, one can neglect
vertex corrections and obtain the set of closed equations
for the fermionic self-energy, the pairing vertex, and the
bosonic polarization operator, similar to Eqs. (3), but
with additional integrals over momentum:

Σ(ωm, k) = iT ḡ2
∑
ω′m

∫
d2k′

(2π)2
G(ω′m, k

′)D(ωm − ω′m, k − k′)

Π(Ωm, q) = 2ḡ2T
∑
ω′m

∫
d2k′

(2π)2
[G(ω′m, k

′)G(ωm + ω′m, k + k′)

−F ∗(ω′m, k′)F (ωm + ω′m, k + k′)]

Φ(ωm, k) =

− ḡ2T
∑
ω′m

∫
d2k′

(2π)2
F (ω′m, k

′)D(ωm − ω′m, k − k′)

(49)

where G(ωm, k) = −(i(ωm + Σ(ωm) + εk)/[(ωm +

Σ(ωm))2 + |Φ(ωm)|2 + ε2k], F (ωm, k) = −Φ(ωm)/[(ωm +

Σ(ωm))2 + |Φ(ω)m|2 + ε2k], and D(ωm, k) = 1/(ω2
m +

ω2
0 + (k − k0)2 + Π(ωm, k)). In these expressions εk is a

fermionic dispersion and k0 is the momentum with which
density or spin order develops. For a metallic QCP, low-
energy physics comes from fermions near the Fermi sur-
face, for which εk = vF (k − kF ), and the dominant con-
tribution to Π(ωm, k) comes from Landau damping of a
boson into a particle-hole pair. There is no self-consistent
tuning to a QCP, i.e., the dressed mass vanishes only for
a certain bare ω0.

The condition that bosons are slow compared to
fermions further allows one to compute Π(ωm, k), sub-
stitute it into the two other equations, select the pairing
channel, and integrate over momentum components by
factorizing this integration into integration over the com-
ponent transverse to the Fermi surface (i.e., over εk) in
the fermionic propagator and over the component along
the Fermi surface in the bosonic propagator, whose mo-
mentum is confined to be between points on the Fermi
surface. This gives rise to a set of two coupled equations
for the ”local” fermionic self-energy Σ(ω) and the ”lo-
cal” pairing vertex Φ(ω). The resulting local theory is
not exact as in several cases momentum dependence can
be integrated out only if one neglects logarithmic cor-
rections [119–122], but it captures power-law frequency
scaling in the normal state and the interplay between
NFL and superconductivity.

The equations for Σ(ω) and Φ(ω) have the same form
for different metallic models and differ only in the form
of an effective dynamical interaction between fermions
V (Ωn). At a QCP, V (Ωn) is singular at T = 0 and
scales as 1/|Ωn|γ , where the value of γ is model-specific,
e,g., γ = 1/2 for an antiferromagnetic QCP, γ = 2/3
at a QCP towards Ising-nematic order, and so on (see
Ref. [59] for the list of γ for different models). This set
of models has been nicknamed ”the γ-model”. We use
this abbreviation and label the corresponding self-energy
and pairing vertex as Σγ and Φγ . Note that there is no
N/M ratio in (49), hence no analog of Eq. (16). Instead,
different values of the exponent γ come from different
underlying microscopic models.

In the normal state, the equation for the self-energy in
the γ−model takes the form

Σγ(ωn) = gγπT
∑
m

sgn(ωm)(
|ωn − ωm|2 +m2

γ(T )
)γ/2 (50)
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FIG. 13. Schematic phase diagrams for N � M (left), N = M (middle) and N � M (right) including superconductivity.
The background coloring corresponds to the normal-state phase diagrams in Fig. 2. The dark red line marks the largest onset
temperature for pairing without (solid) and with (dashed) TRS-breaking disorder. Below this line, a pairing state replaces the
different NFL phases of the normal-state phase diagram. We do not address here the if the pairing of dispersion-less fermions
leads to a superconducting condensate.

where mγ(0) = 0 and g is the effective fermion-boson
coupling (gγ ∝ ḡ2). It is similar to the correspond-
ing Eq. (4) in the YSYK model, modulo a different
definition of mγ , but without the electron propagator
G(ω′) = [ω′m + Σ(ω′)]−1 in the r.h.s. of (50). The dif-
ference can be traced back to additional integration over
spatial momenta in the γ-model. Despite the difference,
the self-energy Σγ at T = 0 has a power-law frequency
dependence, Σγ(ω) ∝ sgn(ω)|ω|1−γ , like in YSYK mod-
els. Furthermore, at a finite T and larger coupling g,
thermal fluctuations become dominant and the system
also crosses over to the impurity regime. The thermal
self-energy in this impurity regime becomes similar to
the one in the YSYK model in a parameter range where
one has to abandon the factorization of momentum in-
tegration for the thermal piece and integrate over both
components of momentum k in the bosonic propagator.

Our goal in this section is to compare the onset of
pairing in the two models. For this purpose, it is in-
structive to compare the YSYK model with the extended
γ−model, in which the interaction in the particle-particle
channel has an extra factor 1/N compared to that in the
particle-hole channel. [123] The linearized gap equation
in the extended γ-model takes the form

Φγ(ωn) =

gγ

N
πT
∑
m

Φγ(ωm)

|ωm + Σγ(ωm)|
1[

(ωn − ωm)2 +m2
γ(T )

]γ/2
(51)

or, equivalently,

∆γ(ωn) =
gγ

N
πT
∑
m

[
∆γ(ωm)

ωm
−N∆γ(ωn)

ωn

]
× sgn(ωm)[

(ωn − ωm)2 +m2
γ(T )

]γ/2 . (52)

We first discuss the T = 0 case, where the equation on

Φγ(ω) becomes

Φγ(ω) =
1− γ
2N

∫
dω′

Φγ(ω′)

|ω′|1−γ |ω − ω′|γ
1

1 + (|ω|/ω0γ)γ
,

(53)

where ω0γ = g/(1−γ)1/γ . At small frequencies ω � ω0γ ,
this equation has the same form as Eq. (30). In the
limit η → 1 when 1/(πbη) → (1 − η), we can even ex-
actly identify η with γ and (1 − α) with 1/N . The
general solution of Eq. (53) at small frequencies is a
combination of two power-laws with complex exponents
Φγ(ω) ∝ (1/|ω|γ/2) cos (κ̄γ |ω|/ω0γ + φγ), similar to Eq.
(41) of the YSYK model for α < αc. The parameter κ̄γ
is real for γ > 0 (up to γ ≈ 2.8 for N = 1). Like for
the YSYK model, the appearance of an oscillating solu-
tion implies that the ground state is a superconductor.
The effect of N 6= 1 mimics the one from a finite α in
the YSYK model. Namely, the oscillating solution for
Φγ(ω), which we associate with superconductivity, holds
only for N < Ncr, while for larger N , the system remains
in a NFL state. In this respect, Ncr plays the same role
as αc.

Furthermore, at small γ, one can reduce the integral
equation (53) to a differential equation and solve it for all
ω [59], like we did in Sec. IV B. This equation has a nor-
malized solution, which behaves properly at large ω. Like
for the YSYK model, this implies that there exists an infi-
nite set of topologically different pairing states, specified
by the number of vortices on the Matsubara axis. For the
γ-model, this reasoning is corroborated by the finding of
the exact solution of the original, integral linearized gap
equation [59] and by the detection of an infinite set of
solutions of a non-linear differential equation [64].

At finite T , the linearized gap equation for the γ-model

has a solution at a discrete set of T
(n)
c , very similar to

what we found for the YSYK model[60]. A distinction be-
tween the two models arises at γ → 0, where the γ-model

reduces to the unconstrained BCS model and T
(0)
c tends
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to infinity, while in the YSYK model, T
(0)
c remains finite

at η → 0 due to the additional 1/ω′ from the fermion
propagator in the r.h.s. of the gap equation (10), which
ensures the convergence of the frequency sum.

The relation between N and α is a bit more tricky at
T 6= 0 than at T = 0 and depends on how the extension
to N 6= 1 is made. On a surface, 1/N still plays the same
role as 1 − α, i.e., the thermal m = n contribution to
the gap equation (52) in the γ-model vanishes at N = 1
due to vanishing of the numerator, and does not vanish
at N 6= 1. Beneath the surface, there is a difference: α
in the YSYK model is a physically-relevant parameter,
which measures the magnitude of TRS-breaking disor-
der, while in the γ−model, the extension to N 6= 1 is
a mathematical trick, and there are two points of view
on how to treat the extension. The authors of Refs. 68–
71 treated N as potentially physically-relevant parame-
ter and used the extended γ-model with N 6= 1 as the
point of departure for a finite-T analysis. In this case,
the onset temperature for the pairing includes the con-
tribution from thermal fluctuations, and it is essential
to keep the mass term mγ(T ) in the bosonic propaga-
tor. Then 1/N and 1 − α play the same role, and the
YSYK and the extended γ model are very similar also
at finite T . The authors of Refs. 59–67 argued that the
known physical QCP models with different γ correspond
to N = 1, even when the pairing is in a non-s-wave chan-
nel [124, 125], and one should extend to N 6= 1 in a way
that does not introduce new physics, not present in the
N = 1 model. These authors then departed from the
original model with N = 1, re-expressed the gap equa-
tion by eliminating the m = n term in the frequency sum
in Eq. (52), and only then extended the model to N 6= 1.
In this case, there is no thermal contribution to Tc, and
one can neglect the mass term in the bosonic propaga-
tor. For this last extension of the γ−model, a finite-T
analysis differs from the one in the YSYK model in that

the largest T
(0)
c remains finite for any N , and in partic-

ular, does not disappear at Ncr with the smaller T
(n)
c .

The reason is that in the γ−model, Σγ(ωn) vanishes at
Matsubara frequencies ωm = ±πT . This numerically en-

hances T
(0)
c , but not the other T

(n)
c . In the YSYK model,

there is no such effect as Σ(±πT ) remains finite due to
presence of the fermionic propagator in the r.h.s. of the
equation for Σ(ωn). This difference persists even between
the models with N = 1 and α = 0 as it is a consequence
of different NFL behavior in the normal state (where α
and N do not appear in the Eliashberg equations).

Finally, we note that for α = 0, the gap equation in the
YSYK model in the impurity regime Eq. (45) is equiv-
alent to the gap equation in the γ-model for γ = 2 and
N = 1. For this model, the highest onset temperature

of pairing T
(0)
c is finite, yet at T = 0 the set of gap

functions ∆n(ωm) becomes continuous rather than dis-
crete [63] (more explicitly all ∆n(ωm) with finite n col-
lapse into one gap function for any non-zero ω, while the
gap functions with n → ∞ form a continuous set). The

authors of Ref. 63 argued that in this case fluctuations
between different solutions destroy a superconducting or-

der down to T = 0, and at 0 < T < T
(0)
c the systems

displays pseudogap behavior associated with preformed
pairs.

VI. CONCLUSIONS

In this communication we have addressed the inter-
play between fermionic incoherence and pairing in the
YSYK model consisting of N fermions in a quantum dot,
randomly coupled to M bosons via a disorder-induced
complex interaction. Such a system can be viewed as
a toy model to study quantum-critical phenomena in
fermionic systems with a bandwidth that is smaller than
the strength of the interaction. In the YSYK model, the
same coupling is responsible for NFL behavior and an
attractive pairing interaction, similar to what happens
in a conventional metal with finite bandwidth brought
to a QCP by pressure, magnetic field, etc. In contrast
to conventional scenarios, the bandwidth is set to zero
in the YSYK model. In this limit, the system under-
goes a self-tuning to quantum criticality for any value of
a bare bosonic ”Debye frequency” ω0. We have shown
that the interplay between NFL behavior and supercon-
ductivity sensitively depends on the ratio of fermion and
boson flavors N/M , the (dimensionless) fermion-boson
coupling g0 (which depends on ω0), and the strength of
TRS-breaking disorder α.

The starting point of our analysis is a set of cou-
pled equations for the electron and boson self-energy,
and the pairing vertex (Eliashberg equations). These
equations are obtained through disorder averaging, as-
suming replica-diagonal solutions, and become exact in
the limit N,M → ∞. We found and analyzed the
solutions of these equations for arbitrary N/M , ex-
tending earlier results for N = M , and uncovered a
rich normal-state phase diagram with several strongly-
correlated regimes, some of which are not present at
N = M . At small temperatures and couplings, the
self-consistent solution displays characteristic power-
law frequency dependence in fermion and boson self-

energies, |Σ| = aηg
1+η
0 ω

(1+η)/2
0 |ω|(1−η)/2 and δΠ =

(bη/a
2
η)g−2η0 ω2−η

0 |ω|η, similar to the behavior in the orig-
inal SYK model with random four-fermion interaction.
The exponent η is uniquely determined by the ratio N/M
with η → 0 for N/M → 0 and η → 1 for N/M → ∞.
At larger temperatures and/or couplings, thermal contri-
butions induce another self-consistent, impurity-like so-
lution with frequency-independent fermionic self-energy
|Σi| ∼ ω0g

2
0N/M , which in turn gives rise to a term

linear in frequency in the bosonic propagator δΠi ∼
M/(g20N)ω0|Ω|. The SYK and the impurity regimes have
been detected in the earlier study of the case N = M in
Ref. 106. We found new physics for N 6= M , which be-
comes most revealing when either N � M or M � N .
For N �M , we found that SYK and impurity phases be-
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come almost identical (i.e., the fermionic self-energy has
almost identical form in the two regimes). For M � N ,
we found additional intermediate regimes between the
SYK, the impurity, and the free-fermion regime (in which
fermionic and bosonic propagators are close to their bare
values).

As a next step, we obtained the onset temperature
for superconductivity, Tc, that develops out of the SYK
or the impurity regime and investigated the impact of
TRS-breaking disorder on Tc. At smaller values of the
coupling, superconductivity sets in at the boundary be-
tween the SYK and the free-fermion regime, while for
larger g0, it develops out of the impurity regime. In the
first case, the onset temperature increases quadratically
as function of g0, and the prefactor depends on η (and
thus N/M) and on the strength of TRS-breaking disor-
der α. The η-dependence is such that onset temperature
remains finite at η → 0 (N �M) and vanishes at η → 1
(N � M). TRS-breaking disorder suppresses the onset
temperature, and it vanishes at a critical αc. We have
shown that αc monotonically decreases with increasing η
(increasing N/M). This means that the superconduct-
ing state becomes fragile for large N/M . When super-
conductivity develops out of the impurity regime, Tc is
independent of the coupling for TRS-preserving disorder
(α = 0) and scales with

√
M/N . A finite α again sup-

presses Tc and reintroduces the dependence on g0 so that
Tc decreases for larger couplings. Generally, the super-
conducting state seems to be more robust (larger Tc and
larger αc) when it develops out of the SYK rather than
the impurity regime.

We also found that the superconducting state is highly
unconventional in that there is an infinite, discrete set of

topologically different gap functions with n sign changes
on the Matsubara axis. They give rise to a set of onset

temperatures T
(n)
c , which all emerge at the same criti-

cal αc in an infinite-order BKT-transition. The different
gap functions exist as long as the pairing interaction is
dynamical.

Finally, we presented a detailed comparison of the
YSYK model and the γ-model of dynamically interacting
dispersion-full fermions near a conventional QCP. We fo-
cused on the pairing behavior and argued that it is very
similar in the two models. In particular, the infinite set
of topologically different pairing solutions arises in both
models. Subtle distinctions appear outside of the low-
energy regime due to a different role of bandwidth and
of pair breaking. Overall, this comparison reveals that
the deep relation between the YSYK model and quan-
tum critical behavior of interacting fermionic systems ex-
tends beyond the NFL behavior in the normal state and
involves superconducting properties.
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Appendix A: T=0 analysis

1. Self-consistent solution in the normal state

We start with the ansatz Σ = A sgn(ω) |ω|(1−η)/2, which we use to calculate δΠ(ω) = Π(ω)−Π(0)

δΠ(ω) = −2ḡ2
N

M

∫
dω′

2π

1

Σ(ω′)

[
1

Σ(ω + ω′)
− 1

Σ(ω′)

]
=
ḡ2

A2
bη |ω|η (A1)

with

bη = − 4

π2

N

M
cos2

(
π

1− η
4

)
cos
(
π
η

2

)
Γ

(
1 + η

2

)
Γ(−η) . (A2)

Using this in the equation for Σ yields

Σ(ω) = ḡ2
∫
dω′

2π

1

Σ(ω′)

1

δΠ(ω − ω′)
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=
η

1− η
M

N

tan
(
π η2
)

tan
(
π 1+η

4

)A sgn(ω) |ω|(1−η)/2 , (A3)

where we have also assumed that the phonon mass is renormalized to zero by Π(0). Under this assumption, which we
confirm below, we indeed find a self-consistent solution if

1 =
η

1− η
M

N

tan
(
π η2
)

tan
(
π 1+η

4

) . (A4)

Next, we have to ensure that Π(0) cancels ω2
0 in the phonon propagator. We find

Π(0) = −2ḡ2
N

M

∫
dω′

2π

1

(ω′ + Σ(ω′))2

= − 2

π
ḡ2
N

M
Γ

(
2η

1 + η

)
Γ

(
3 + η

1 + η

)
A−2/(1+η) , (A5)

and from the condition ω2
0 + Π(0) = 0, we obtain the coefficient A

A = aη

(
ḡ2

ω2
0

)(1+η)/2

(A6)

with

aη =

[
2

π

N

M
Γ

(
2η

1 + η

)
Γ

(
3 + η

1 + η

)](1+η)/2
. (A7)

To calculate Π(0), we have to keep the bare ω in the electron propagator to avoid a UV divergence. In summary,
Eqs. (A1)-(A7) yield a self-consistent solution of the non-superconducting Eliashberg equations.

2. Gap equation as differential equation

The gap equation reads

Φ(ω) = (1− α)
a2η

2πbη
ω̄1+η

∫ ∞
0

dω′
Φ(ω′)(

ω′ + aηω̄ω′
(1−η)/2

)2 [ 1

|ω − ω′|η
+

1

|ω + ω′|η
]

(A8)

where we restricted the integral to positive frequencies and defined ω̄ = ḡ2/ω2
0 . We rewrite it approximately as a

differential equation using the limits ω � ω′ and ω � ω′. The result is valid for η � 1 when the contribution ω ∼ ω′
can be neglected. We write approximately

Φ(ω) ≈ (1− α)fηω̄
1+η

[∫ ω

0

dω′
Φ(ω′)(

ω′ + aηω̄(1+η)/2ω′(1−η)/2
)2 2

ωη
+

∫ ∞
ω

dω′
Φ(ω′)(

ω′ + aηω̄(1+η)/2ω′(1−η)/2
)2 2

ω′η

]
(A9)

with fη = a2η/(2πbη). We then obtain for the derivative

d

dω

[(ω
ω̄

)1+η d

dω
Φ(ω)

]
= −2(1− α)ηfη

Φ(ω)(
ω + aηω̄(1+η)/2ω(1−η)/2

)2 . (A10)

We rewrite the differential equation in terms of z = ω(1+η)/2 (analogous for z̄)

(z + aη z̄)
2
[
(η + 1)z2Φ′′(z) + (3η + 1)zΦ′(z)

]
+

4ηa2η
(η + 1)πbη

(1− α)z̄2Φ(z) = 0 . (A11)
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The solution of this equation is of the form

Φ(z) = C1(z + aη z̄)
1+η−b
2(1+η) z−

η+a
1+η

2F1

(
1− η − 2a− b

1(1 + η)
,

1 + 3η − 2a− b
1(1 + η)

, 1− 2a

1 + η
,− z

aη z̄

)
+ C2(z + aη z̄)

1+η+b
2(1+η) z−

η−a
1+η

2F1

(
1− η + 2a+ b

1(1 + η)
,

1 + 3η + 2a+ b

1(1 + η)
, 1 +

2a

1 + η
,− z

aη z̄

)
(A12)

with the hypergeometric function 2F1 and we defined a =
√
η(η − 4(1− α)/(πbη)) and b =√

(1 + η)2 − 16η(1− α)/(πbη). Note that b → −b in the expression Φ(z) is also a solution (but not linearly

independent). If z � aη z̄ or ω � a
2/1(+η)
η ω̄, we recover the power law that we found in our analysis of the gap

equation for small frequencies in the the main text

Φ(ω)→ C1a
1+η−b
2(1+η)
η ω̄

1+η−b
4 ω−

η+a
2 + C2a

1+η+b
2(1+η)
η ω̄

1+η+b
4 ω−

η−a
2 . (A13)

For large frequencies, we see that the gap equations yields Φ(ω) ∝ ω−η. The leading term of the solution obtained
from the differential equation for z � aη z̄ is a constant and we request it to vanish, which leads to a condition for
C1, C2

C1(aη z̄)
1−η−2a−b

2(1+η)

Γ
(

2η
1+η

)
Γ
(

1− 2a
1+η

)
Γ
(

1+3η−2a+b
2(1+η)

)
Γ
(

1+3η−2a−b
2(1+η)

) + C2(aη z̄)
1−η+2a+b

2(1+η)

Γ
(

2η
1+η

)
Γ
(

1 + 2a
1+η

)
Γ
(

1+3η+2a+b
2(1+η)

)
Γ
(

1+3η+2a−b
2(1+η)

) = 0 . (A14)

The next-to-leading term is then proportional to ω−η

Φ(z)→

C1(aη z̄)
1−η−2a−b

2(1+η)

Γ
(
− 2η

1+η

)
Γ
(

1− 2a
1+η

)
Γ
(

1−η−2a+b
2(1+η)

)
Γ
(

1−η−2a−b
2(1+η)

) + C2(aη z̄)
1−η+2a+b

2(1+η)

Γ
(
− 2η

1+η

)
Γ
(

1 + 2a
1+η

)
Γ
(

1−η+2a+b
2(1+η)

)
Γ
(

1−η+2a−b
2(1+η)

)
(aηω̄

ω

)η
(A15)

in agreement with our expectation based on the integral gap equation.

Appendix B: Finite temperature

1. Temperature-dependent mass

The thermal contribution does not lead to a divergence, because the phonon propagator develops a temperature-
dependent mass as shown in Ref. 106. The temperature- and frequency-dependent polarization operator in the SYK
regime is given by

Π(ωn, T ) = −2ḡ2
N

M

∑
m

1

Σ(ωm)Σ(ωm + ωn)

= −2ḡ2
N

M

∑
k

eiπk
∫
dω′

2π

e−ikω
′/T

Σ(ω′)Σ(ω′ + ωn)

= Π(ωn, T = 0)− 2ḡ2
N

M

∑
k 6=0

eiπk
∫
dω′

2π

e−ikω
′/T

Σ(ω′)Σ(ω′ + ωn)

= δΠ(ωn, T = 0) + Π(0, 0) + ΠT (ωn, T ) , (B1)

where we have made use of the Poisson summation formula. With its help we can separate the contribution to the
polarization operator that we found at zero temperature. We can simplify the thermal contribution further

ΠT (ωn, T ) = −2ḡ2
N

M

∑
k 6=0

eiπk
∫
dω′

2π

e−ikω
′/T

Σ(ω′)Σ(ω′ + ωn)
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= −2ḡ2
N

M

∑
k 6=0

eiπk
∫
dτ

e−iωnτ

Σ(τ + k/T )Σ(−τ)

= 2ḡ2
N

M

∑
k 6=0

eiπk
Γ2
(
1+η
2

)
cos2

(
π 1−η

4

)
π2A2

∫
dτe−iωnτ

sgn(τ + k/T )sgn(−τ)

|τ + k/T | 1+η2 |τ | 1+η2

= −4ḡ2
N

M

Γ2
(
1+η
2

)
cos2

(
π 1−η

4

)
π2A2

∞∑
k=1

∫ ∞
0

dτ
(−1)k cos(ωnτ)

τ
1+η
2

[
1

(τ + k
T )

1+η
2

+
sgn(τ − k

T )

(τ − k
T )

1+η
2

]

= −4ω2
0

N

M

Γ2
(
1+η
2

)
cos2

(
π 1−η

4

)
π2a2ηg

2η
0 ωη0

×
∞∑
k=1

(−1)k
(
T

k

)η [∫ ∞
0

dτ
cos
(
kτ ωnT

)
τ

1+η
2 (τ + 1)

1+η
2

−
∫ 1

0

dτ
cos
(
kτ ωnT

)
τ

1+η
2 (1− τ)

1+η
2

+

∫ ∞
1

dτ
cos
(
kτ ωnT

)
τ

1+η
2 (τ − 1)

1+η
2

]
(B2)

where we have first used Fourier transformation, then rewritten the sum and integral over positive k and τ , and finally
rescaled τ → kτ/T . If the sum and integral commute, we can perform the summation and obtain

ΠT (ωn, T ) = −4ω2
0

N

M

Γ2
(
1+η
2

)
cos2

(
π 1−η

4

)
π2a2ηg

2η
0 ωη0

T η

2

×

[∫ ∞
0

dτ
Liη(−e−i ωT τ ) + Liη(−e−i ωT τ )

τ
1+η
2 (τ + 1)

1+η
2

−
∫ 1

0

dτ
Liη(−e−i ωT τ ) + Liη(−e−i ωT τ )

τ
1+η
2 (1− τ)

1+η
2

+

∫ ∞
1

dτ
Liη(−e−i ωT τ ) + Liη(−e−i ωT τ )

τ
1+η
2 (τ − 1)

1+η
2

]
(B3)

with the polylogarithm Liη(z), which takes special forms for η = 0 or η = 1, Li0(z) = z/(1−z) and Li1(z) = − ln(1−z).

In Eqs. (B2) and (B3), it is obvious that ΠT (ωn, T ) is a function of ωn/T multiplied by ω2
0(T/g20ω0)η, as we stated

in the main text. We also separate the frequency-independent part ΠT (ωn, T ) = ΠT (0, T ) + δΠ̂(ωn, T ), so that we
can write

δΠ̂(ωn, T ) = ΠT (ωn, T )−ΠT (0, T ) = ω2
0

(
T

g20ω0

)η
pη

(ωn
T

)
(B4)

This defines the function pη. In summary, we can write the polarization operator as Π(ωn, T ) = Π(0, T )+ δΠ(ωn, 0)+

δΠ̂(ωn, T ) with Π(0, T ) = Π(0, 0) + ΠT (0, T ), which we used in the main text. The frequency-independent part adds
a temperature-dependent mass to the propagator Π(0, T ) = −ω2

0 = m2(T ), which we can calculate analytically

m2(T ) := ΠT (0, T ) =
cη

a2ηg
2η
0

ω2
0

(
T

ω0

)η
(B5)

with cη = −4 cos(πη/2)Γ(η)(21−η − 1)ζ(η)N/(πM) and the zeta function ζ.

δΠ̂ describes the thermal corrections added to the frequency-dependent zero-temperature expressions and the
temperature-dependent mass. We can get an estimate for the temperature dependence by expanding δΠ̂ for ωn � T .
The leading order in the expansion is given by

δΠ̂(ωn, T ) = dη

(
T

ω0

)η
ω2
n

T 2
ω2
0 +O

((ωn
T

)3)
(B6)

with

dη = −2
N

M

Γ2
(
1+η
2

)
cos2

(
π 1−η

4

)
π2a2ηg

2η
0

(1− 23−η)ζ(η − 2)

[
B(

5− η
2

,−2 + η)−B(
5− η

2
,

1− η
2

) +B(
1− η

2
,−2 + η)

]
(B7)

For η → 0 and finite T , the corrections vanish dη = O(η). With the help of Eq. (B3), we can even show that
ΠT (ωn, T ) = m2(T ) exactly for η = 0 without expanding in ωn/T . However, for η → 1, m2 → 0 and corrections are
of order one. In summary, for small to moderate η, we can approximate the boson propagator in the SYK regime
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FIG. 14. Left: the largest two onset temperatures for varying α and η = 0.3 (top) or η = 0.9 (bottom). The gray symbol

marks the critical αc, where we expect T
(n)
c to vanish from our zero-temperature analysis. It is not reached completely due to

numerical restrictions. Insets show the same data on a logarithmic scale. Right: for comparison to the γ-model, we show the

same data plotted as 1/(1− α) for varying T
(n)
c . As we explained in Sec. V, we can approximately identify 1/(1− α) with N .

Data points with 1/(1− α) < 1 do not correspond to a physical solution, i.e. no superconductivity develops in this region.

including leading thermal corrections as

D−1(ωn, T ) = ω2
n + δΠ(ωn) +m2(T ) . (B8)

This expression is exact for η → 0. Let us also note that it was shown in Ref. 106 that the T = 0 SYK-like expressions
plus the thermal mass m2(T ) fit well to the numerical solution at finite, small temperatures for M = N (η ≈ 0.68). In
addition, the Monte-Carlo computations in Ref. [109] demonstrated critical SYK-like scaling for finite temperatures
and finite N,M for a similar YSYK model.

2. Superconductivity

As described in the main text, we have determined the critical temperature for superconductivity based on the
linearized gap equation Eq. (10). If superconductivity develops out of the SYK or impurity regime, there is an infinite

number of solutions of the gap equation with decreasing critical temperatures T
(0)
c > T 1

c > . . . that correspond to

different eigenvalues of the gap equation. In the main text, we have shown the numerically determined T
(0)
c and T

(1)
c

for η = 0.68. Here, we also plot T
(n)
c for η = 0.3 and η = 0.9 in Fig. 14.
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