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We study particle-hole symmetry at the integer quantum Hall plateau transition

using composite fermion mean-field theory. Because this theory implicitly includes

some electron-electron interactions, it also has applications to certain fractional

quantum Hall plateau transitions. Previous work [P. Kumar et al., Phys. Rev. B

100, 235124 (2019)] using this approach showed that the diffusive quantum critical-

ity of this transition is described by a nonlinear sigma model with topological θ = π

term. This result, which holds for both the Dirac and Halperin, Lee, and Read com-

posite fermion theories, signifies an emergent particle-hole (reflection) symmetry of

the integer (fractional) quantum Hall transition. Here we consider the stability of

this result to various particle-hole symmetry violating perturbations. In the pres-

ence of quenched disorder that preserves particle-hole symmetry, we find that finite

longitudinal conductivity at this transition requires the vanishing of a symmetry-

violating composite fermion effective mass, which if present would generally lead to

θ 6= π and a corresponding violation of particle-hole symmetric electrical transport

σxy 6= 1
2
e2

h . When the disorder does not preserve particle-hole symmetry, we find

that θ can vary continuously within the diffusive regime. Our results call for further

study of the universality of the quantum Hall plateau transition.



I. INTRODUCTION

A. Overview

Electrons in two spatial dimensions exhibit quantized Hall plateaus when their density

is comparable to the strength of a transverse magnetic field [1, 2]. Within the picture of

disordered noninteracting electrons—appropriate for the integer quantum Hall effect [3]—

these plateaus are due to the localization of all electronic states, except for those lying at a

single energy level within each Landau level [4]. An integer quantum Hall plateau transition

occurs as the electron chemical potential is tuned through this critical energy, typically

by varying the magnetic field at fixed electron density [5]. While accounting for the basic

phase structure, this description has some unsatisfactory features, in relation to the observed

quantum critical phenomena [6]. Because the set of delocalized states is of measure zero,

interactions must be included for nonzero finite-temperature longitudinal conductivity [7].

The numerically-calculated localization length critical exponent νcalc (varying from about

2.48 − 2.62 with the specific lattice model and calculation details [8–16]) do not appear to

lie within the error bars of the measured exponent ν ≈ 2.38 [17, 18]. (Some recent works

are critical of these theoretical results: inclusion of additional types of disorder may be

relevant [19] and/or the critical scaling regime may require significantly larger systems sizes

[20]; see also [21, 22].) Further, the difference of the calculated and measured dynamical

critical exponents zcalc − z ≈ 1 [23]. These disagreements are not entirely surprising since

the Coulomb interaction is expected to be a relevant perturbation of the noninteracting fixed

point [24, 25]. Thus, a faithful model of the integer quantum Hall transition is thought to

be interacting.

Composite fermions [26, 27] provide a powerful dual framework for the quantum Hall

effect. Intuitively, this duality proceeds by an exact transformation of the electron wave

function by “flux attachment” [28]. A (2 + 1)d effective field theory implementing this

transformation consists of a composite fermion coupled to a Chern-Simons gauge field whose

level is determined by the electron filling fraction [29–31]. A large variety of integer and

fractional quantum Hall effects can then be understood within a composite fermion mean-field

theory—in which fluctuations of this Chern-Simons gauge field and all other interactions are

ignored—as integer quantum Hall states of composite fermions. Although inadequate to fully

account for the effects of electron-electron interactions, e.g., νcalc ≈ 2.56 and zcalc = 2 [32],

semiclassical reasoning and numerical calculations suggest that composite fermion mean-

field theory provides a unified framework for the quantum Hall plateau transitions [33–35],

hosting delocalized states for a range of critical energies [36, 37].

This paper is concerned with an analytical description of the plateau transition using com-

posite fermions and, in particular, any symmetry it might exhibit. We focus on the integer
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quantum Hall transition, however, our results can be readily adapted to certain fractional

quantum Hall plateau transitions [38]. The relevant symmetry is therefore particle-hole

symmetry [39]; the generalization of this symmetry to appropriate fractional quantum Hall

transitions is known as reflection symmetry [38, 40–42]. In the limit of infinite cyclotron

frequency, the particle-hole symmetry transformation relates states at electron filling frac-

tions ν ↔ 1 − ν (in lowest Landau level). This symmetry is not present in the microscopic

electron Hamiltonian. Nevertheless, evidence for an emergent particle-hole symmetry is

seen in electrical transport measurements that find the dc Hall conductivity at ν = 1/2

to equal σxy = 1
2
e2

h
(see [43, 44] and references therein). In the composite fermion theory

of Halperin, Lee, and Read (HLR) [31], this electrical Hall conductivity requires [45] (and

occurs [37, 46–48] in the presence of weak disorder ρxx 6= 0) a composite fermion Hall con-

ductivity σcf
xy = −1

2
e2

h
[49]. From the point of view of composite fermion mean-field theory,

particle-hole symmetry helps to explain the diffusive quantum criticality of the plateau tran-

sition: Because localized free fermions necessarily exhibit integral Hall conductivity [3], the

half-integer value of σcf
xy (in units of e2/h) implies the critical states are delocalized [50].

Our interest in this paper is to better understand whether particle-hole symmetric σcf
xy is

necessary for the diffusive quantum criticality. In particular, how universal is particle-hole

symmetry to the integer quantum Hall plateau transition?

B. Detailed Summary

We now provide a more detailed overview of this paper. There are two types of composite

fermions theories for electrons at ν = 1/2: the HLR theory [31], which involves a nonrela-

tivistic composite fermion coupled to a Chern-Simons gauge field; and the Dirac composite

fermion theory, introduced by Son [46] and further developed in a number of subsequent

works [47, 51–53], in which the nonrelativistic composite fermion is replaced by a Dirac

fermion. Using a standard Dirac notation, the mean-field Lagrangians for HLR (η = 1) and

Dirac (η = 0) composite fermion theories can be expressed as (see §II)

L = Ψ̄
(

i/∂ + /a
)

Ψ−Ψ†P2

(

iη∂0 + a0
)

Ψ+m1Ψ
†Ψ+m2Ψ̄Ψ. (I.1)

Here, Ψ is a two-component Dirac fermion; a0(x) and aj(x) for j ∈ {1, 2} are possible

uncorrelated quenched scalar and vector potential disorders (probing electromagnetic fields

are set to zero); P2 projects onto the second component of Ψ; m1 is a chemical potential

that fixes the nonzero composite fermion density; and m2 is a possible mass term. In this

formulation (I.1), particle-hole symmetry acts as time-reversal invariance. Consequently,

the terms involving P2 and m2 violate particle-hole symmetry. The vector potential disorder

aj(x) preserves particle-hole symmetry for an appropriate choice of disorder ensemble (see

§IIA).
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The numerical works [36, 37] that found the HLR composite fermion mean-field theory to

exhibit an integer quantum Hall plateau transition with particle-hole symmetric transport at

ν = 1/2, assumed a particle-hole symmetric ensemble for aj(x) and set a0(x) to zero. Since

m2 is generally nonzero in the HLR theory, this result is consistent with an emergent particle-

hole symmetry. The Dirac composite fermion mean-field theory (I.1) manifestly has particle-

hole symmetry so long as time-reversal invariance is preserved. Significant progress towards

an analytical description of this transition was then made in [54], where it was shown that,

for particle-hole symmetric disorder and when m2 = 0, the dc zero-temperature electrical

conductivity of composite fermions is encoded in the nonlinear sigma model (NLSM),

SNLSM =

∫

d2x Tr
( 1

2g
(∂jQ)

2 + i
θ

16π
ǫijQ∂iQ∂jQ

)

, (I.2)

with θ = π. Here, the matrix boson Q ∈ U(2n)/U(n) × U(n) parameterizes composite

fermion charge density fluctuations with the replica limit n → 0 to be taken at the end of

any calculation using SNLSM. The marginally-relevant coupling [55] (in the renormalization

group sense), g ∝ 1/σcf
xx, characterizes the evolution from the ballistic to the diffusive regime

of finite (impurity-averaged) conductivity σcf
ij (henceforth measured in units of e2/h). If only

the first term in SNLSM is present, the marginal relevancy of g implies “weak” localization

σcf
xx → 0 in the thermodynamic limit. The topological θ term [56] is believed to prevent

this localization when θ = π and (if unrenormalized) thereby explain the quantum critical

diffusion [57–63]. As such, θ and σcf
xy are related [54, 57, 61]:

θ = π + 2π
(

σcf
xy −

η

2

)

mod 2π. (I.3)

Here, σcf
xy denotes either the HLR or Dirac dc composite fermion Hall conductivity, with

particle-hole symmetric values σcf
xy = −η

2
. Two features of this NLSM are worth emphasiz-

ing: first, it is identical in form to that argued by Pruisken et al. from the (dual) electron

perspective [57, 58]; second, θ = π regardless of whether or not η is nonzero. (Intuitively, this

occurs because the dependence on η drops out in the dc limit in which the time-derivative

in (I.1) can be ignored.) Thus, in the presence of particle-hole symmetric disorder, the HLR

and Dirac composite fermion mean-field theories are controlled by the same IR fixed point.

In this paper, we generalize [54] to include uniform m2 and random a0(x). First for

vanishing a0(x) and when particle-hole symmetric disorder ai(x) is present, we find that

finite σcf
xx requires the renormalized m2 = 0. The resulting NSLM reduces to that found

in [54] in which a θ = π term appears. We interpret this as an emergent particle-hole

symmetry and the irrelevance of m2 near the diffusive quantum critical point. When a0(x)

is included, we find that the topological θ term varies continuously with the strength of

this particle-hole symmetry violating disorder, consistent with the simultaneous generation

of nonzero symmetry-violating m2. Because the NLSM formulation is controlled only for

σcf
xx ≫ 1 and the beta functions that determine the two-parameter flow of 1/g and θ are

3



nonperturbative [64], we are unable here to determine whether the ultimate low-energy fixed

point of the sigma model with θ 6= π is an insulator or a quantum critical metal with varying

Hall conductivity.

The remainder of this paper is organized as follows. In §II, we review the HLR and Dirac

composite fermion mean-field theories with the aim of deriving the mean-field Lagrangian

(I.1). In §IIIA, we construct the generating functional for disorder-averaged products of

retarded and advanced composite fermion Green’s functions. Encoded in this generating

functional are observables such as the composite fermion density of states and conductivity.

In §III B, we derive the NLSM for composite fermion mean-field theory, focusing on the topo-

logical θ term. This NLSM contains the effects of particle-hole preserving and particle-hole

breaking disorders. In §IV, we conclude with a discussion of our results and of possibilities for

future work. Appendices supplement arguments in the main text. Unless stated otherwise

we take e2 = ~ = 1.

II. COMPOSITE FERMION MEAN-FIELD THEORY

We begin with a derivation of the mean-field Lagrangian (I.1) for the HLR and Dirac

composite fermion theories.

A. HLR Mean-Field Theory

The HLR Lagrangian is [31]

LHLR = ψ†
(

i∂0 + A0 + V + a0 −

(

i∂j + Aj + aj
)2

2m

)

ψ +
ǫµνρ

8π
aµ∂νaρ + . . . . (II.1)

Here, ψ†(t,x) creates an HLR composite fermion; Aµ(t,x) is the external electromagnetic

field; aµ(t,x) is a dynamical (2+1)d Chern-Simons gauge field; m is an effective mass, ǫµνρ

with µ, ν, ρ ∈ {0, 1, 2} is the antisymmetric symbol with ǫ012 = 1; and the “. . .” include all

other possible couplings and interactions, which we set to zero in the remainder. A nonzero

uniform magnetic field ǫij∂iAj = B > 0 is assumed such that the electron filling fraction

ν = 1/2. Variation of LHLR with respect to A0 implies the electron and composite fermion

densities are equal. V (x) represents possible quenched electron scalar potential disorder. In

this paper, we assume that V (x) is particle-hole symmetric, i.e., the disorder ensemble for

V (x) has vanishing odd moments V (x1) · · ·V (x2p+1) = 0.

The mean-field approximation can be divided into two steps. The first is to impose the

a0 equation of motion, i.e., flux attachment,

ψ†ψ = −
1

4π
ǫij∂iaj . (II.2)
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This results in an effective magnetic field B+ ǫij∂iaj that vanishes on average at half-filling,

which we accommodate by shifting Ai + ai → ai. Flux attachment (II.2) also implies that

weak (electron) scalar potential disorder V (x) is realized as anticorrelated vector and scalar

potential randomness [48, 65]:

ǫij∂iaj(x) = −2mV (x). (II.3)

The second (and final) step of the mean-field approximation is to set all dynamical fluctua-

tions of aµ(t,x) to zero. Thus, aµ(x) is a background field in the mean-field approximation.

We choose a disorder ensemble for V (x) such that the resulting vector potential aj(x)

determined by (II.3) is a transverse Gaussian random variable with zero mean and variance

W > 0:

ai(x) = 0, ai(x)aj(x′) =Wδijδ(x− x′). (II.4)

Such delta-function correlated vector potentials (II.4) arise from power-law correlated scalar

potentials V (x)V (x′) ∝ |x − x′|−4 [66]. We remark that nonrelativistic fermions coupled

to power-law correlated vector potential disorder without any scalar potential disorder ob-

tain singular single-particle properties; two-particle properties remain regular and appear to

coincide with delta-function correlated vector potential disorder [67–69].

Quenched disorder satisfying (II.3) appears to be necessary for particle-hole symmetric

composite fermion Hall conductivity σcf
xy = −1/4π [36, 37, 48]. To further explore this, we’ll

include additional quenched disorder a0(x) coupling to ψ†ψ that’s independent of ai(x). For

simplicity, we’ll take a0(x) to be a Gaussian random variable with zero mean and variance

W0 > 0. We refer to a0(x) as particle-hole violating disorder; as we’ll see, this terminology is

justified in Dirac composite fermion mean-field theory and also in the nonlinear sigma model

associated to the HLR and Dirac composite fermion theories. How such disorder a0(x)

might arise if V (x) also violates particle-hole symmetry and/or when interactions ignored

in composite fermion mean-field theory are included are interesting questions we leave for

future work.

Having included these effects, we can write the mean-field Lagrangian in a Dirac form by

factorizing the spatial derivative terms as

Lmf
HLR = ψ†

(

i∂0 + EF − a0
)

ψ − ψ†iv(D1 + iD2)χ− χ†iv(D1 − iD2)ψ + 2mv2χ†χ (II.5)

using the auxiliary fermion [46],

χ =
i

2mv
(D1 − iD2)ψ, χ† = −

i

2mv
(D∗

1 + iD∗
2)ψ

†, (II.6)

where Dj = ∂j − iaj , the Fermi energy EF > 0 fixes ψ†ψ = B/4π on average, and aµ(x)

denotes the possible quenched randomness discussed above. We set the arbitrary velocity
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v > 0 to unity by rescaling χ. Notice that only ψ is dynamical in this Dirac formulation

of HLR mean-field theory; χ is nondynamical. Introducing Ψ =
(

ψ χ
)T

and the gamma

matrices (Γ0,Γ1,Γ2) = (σ3, iσ1, iσ2), where σi are the usual Pauli matrices, the resulting

mean-field Lagrangian is

Lmf
HLR = Ψ̄

(

i/∂ + /a
)

Ψ−Ψ†P2

(

i∂0 + a0
)

Ψ+
(EF

2
+m

)

Ψ†Ψ+
(EF

2
−m

)

Ψ̄Ψ, (II.7)

where Ψ̄ = Ψ†Γ0, i/∂ + /a = Γ0(i∂0 + a0) + Γj(i∂j + aj), and P2 =

(

0 0

0 1

)

projects onto the

second component of Ψ. This Lagrangian coincides with (I.1) at η = 1 upon identifying

m1 = EF/2 +m and m2 = EF/2−m.

B. Dirac Mean-Field Theory

The Dirac composite fermion Lagrangian is [46, 47, 51, 52]

LD = Ψ̄
(

i/∂ + /a
)

Ψ−mDΨ̄Ψ−
1

4π
ǫµνρAµ∂νaρ +

1

8π
ǫµνρAµ∂νAρ + . . . , (II.8)

where the Dirac notation is defined below (II.7); aµ(t,x) is a dynamical (2+1)d gauge field;

Aµ(t,x) is the external electromagnetic field; mD is a (2 + 1)d Dirac mass; and the “ . . . ”

refer to all other possible couplings and interactions that will be ignored. The Fermi velocity

has been set to unity. A uniform magnetic field ǫij∂iAj = B > 0 and an electron filling

fraction ν = 1/2 are assumed. Variation of LD with respect to A0 gives the electron density

ne =
B−ǫij∂iaj

4π
. Consequently, fluctuations about ν = 1/2 are controlled by ǫij∂iaj . In

particular, quenched electron scalar potential disorder induces randomness in the vector

potential ai. We’ll take this induced randomness in ai to be the same as in (II.4), i.e., aj
will be a transverse Gaussian random variable with zero mean and variance W > 0 in the

mean-field approximation.

Similar to the HLR theory, the mean-field approximation consists of first imposing the a0

equation of motion,

Ψ†Ψ =
B

4π
. (II.9)

Here we see that the composite fermion density is fixed, not by the electron density as is

the case in the HLR theory, but by the external magnetic field. While at half-filling, there

is no difference between the two, differences can appear when deviations from half-filling

are considered. After (II.9) is imposed, we then set all dynamical fluctuations of aµ(t,x) to

zero to achieve the mean-field approximation. In the remainder, aµ(x) is understood to be

a quenched random variable.
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An important distinction between the Dirac and HLR composite fermion Lagrangians is

that particle-hole symmetry has a simple implementation [70] in LD [46, 47]. In particular,

particle-hole symmetry acts as time-reversal invariance in Dirac composite fermion mean-

field theory: i→ −i, t → −t,Ψ → iσ2Ψ. (We see that the P2 term in the Dirac formulation

(II.7) of HLR mean-field theory explicitly violates this definition of particle-hole symmetry.)

As such, the Dirac composite fermion mass mD breaks particle-hole symmetry. Vector

potential disorder aj(x) satisfying (II.4) preserves particle-hole symmetry on average. As

in the HLR theory, we consider the effects of particle-hole violating disorder by including

quenched scalar potential randomness a0(x) that couples only to the top component of Ψ.

This term explicitly violates particle-hole symmetry. We’ll again take a0(x) to be a Gaussian

random variable with zero mean and variance W0 > 0.

The resulting mean-field Lagrangian is

Lmf
D = Ψ̄

(

i/∂ + /a
)

Ψ−Ψ†P2a0Ψ+ EFΨ
†Ψ−mDΨ̄Ψ, (II.10)

where EF > 0 fixes (II.9) on average and P2 =

(

0 0

0 1

)

. Notice that in contrast to the HLR

theory, (II.9) involves both components of Ψ and so EF fixes the total Dirac fermion density;

further comparing (II.7) with (II.10), both components of Ψ are dynamical in Lmf
D . We

recover the general composite-fermion mean-field Lagrangian (I.1) at η = 0 upon identifying

m1 = EF and m2 = −mD.

III. EFFECTIVE ACTION FOR CHARGE DIFFUSION

In this section, we first construct the generating functional for disorder-averaged com-

posite fermion Green’s functions for the mean-field Lagrangian (I.1). We then derive the

NLSM for composite fermion charge diffusion in the presence of particle-hole symmetric and

particle-hole violating disorders.

A. Generating Functional

The generating functional of disorder-averaged products of retarded/advanced composite

fermion Green’s functions (that determine observables such as the conductivity) is a Eu-

clidean 2d field theory. This is a 2d rather than 3d field theory because, in the absence of

inelastic scattering, each frequency component of the composite fermion evolves indepen-

dently. Within the replica approach (see, e.g., [71, 72]), this generating functional is

Z =
1

N

∫

D[Ψ]D[Ψ†]D[aµ] e
−S, (III.1)
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with action S = Sf + Sa,

Sf =

∫

d2x Ψ†
(

γ5γjDj −
1− γ5

2
a0 −M1 −M2γ

5
)

Ψ, (III.2)

Sa =

∫

d2x
( 1

2W0

a20 +
1

2W
a2i

)

, (III.3)

and normalization N . Here, Sf takes the form of an Euclidean 2d action [73] for 2n Dirac

fermions,

ΨI =

(

ψI

χI

)

, Ψ†
I =

(

ψ†
I χ

†
I

)

, (III.4)

where I ∈ {1, . . . , n} indexes the n replicas of retarded fermions and I ∈ {n + 1, . . . , 2n}

indexes the n replicas of advanced fermions. The gamma matrices are

γ1 = σ2 ⊗ τ 0, γ2 = σ1 ⊗ τ 0, γ5 = −σ3 ⊗ τ 0, (III.5)

where σj are the usual Pauli matrices that act on the spinor indices and τ 0 is the 2n × 2n

identity matrix acting on the replica indices. The replica limit n → 0 is to be taken at the

end of any calculation using Z [74]. Up to an overall sign, Sf coincides with 2n copies of the

(spatial integral of the) composite fermion mean-field Lagrangian (I.1) with the replacements

Ψ(t,x) → ΨI(ω,x) and i∂t → EF ± (ω + iǫ), where the ± sign distinguishes between

retarded/advanced fermions. The mass matrices depend on the specific composite fermion

theory: in the HLR composite fermion theory,

M1 =
(EF

2
+m

)

τ 0 +
ω + iǫ

2
τ 3, M2 = −

(EF

2
−m

)

τ 0 +
ω + iǫ

2
τ 3; (III.6)

in the Dirac composite fermion theory,

M1 = EF τ
0 +

(

ω + iǫ
)

τ 3, M2 = mDτ
0. (III.7)

The diagonal matrix τ 3IJ = δIJ for I, J ∈ {1, . . . , n} and τ 3IJ = −δIJ for I, J ∈ {n+1, . . . , 2n};

the mass matrices are diagonal in the gamma matrix indices. The Fermi energy EF and

frequency ω carried by Ψ enterM1 andM2 differently in the HLR and Dirac theories because

only the top component of Ψ is dynamical in the HLR theory. The frequency of the composite

fermion is merely a parameter in this 2d theory. We will set ω = 0 henceforth to focus on

the dc conductivity. We identify

m1 =
1

2n
TrM1, m2 = −

1

2n
TrM2. (III.8)

Sf has a UR(n) × UA(n) ⊂ U(2n) symmetry with the infinitesimal ǫ > 0 distinguishing

between retarded and advanced fermions.
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Sa defines the Gaussian ensembles for the independent random variables a0(x) and ai(x).

The interaction between aµ and Ψ in this 2d theory is responsible for the diffusion of compos-

ite fermions. Analyzing this interaction is the subject of the next section. We will assume a

regularization preserving the U(2n) vector symmetry (present at ω = ǫ = 0) that identically

rotates the top ψ = 1
2
(1− γ5)Ψ and bottom χ = 1

2
(1 + γ5)Ψ spinor components of Ψ.

B. NLSM Derivation

From the generating functional (III.1), we now derive the NLSM for composite fermion

dc charge diffusion, focusing on the θ term and its physical interpretation. The derivation

of the leading non-topological term in this NLSM and additional details for the calculation

of the topological term can be found in Appendix B.

1. Saddle-point Analysis

Performing the Gaussian integrals over a0 and ai, we obtain the “disorder-averaged action”

S = S
(1)

+ S
(2)

+ S
(3)
:

S
(1)

=

∫

d2x Ψ†
(

γ5γj∂j −M1 −M2γ
5
)

Ψ, (III.9)

S
(2)

=
W

2

∫

d2x
(

Ψ†γ5γjΨ
)(

Ψ†γ5γjΨ
)

, (III.10)

S
(3)

= −
W0

2

∫

d2x
(

Ψ† 1− γ5

2
Ψ
)(

Ψ†1− γ5

2
Ψ
)

. (III.11)

The parentheses around fermion bilinears in S
(2)

and S
(3)

indicate contraction of the spinor

and replica indices, e.g.,
(

Ψ†γ5γjΨ
)

≡ Ψ†
a,Iγ

5
abγ

j
bcΨc,I for a, b, c ∈ {1, 2} and I ∈ {1, . . . , 2n}.

The “disorder-averaged action” has the form of a massive SU(2n) Thirring model [26] (with

coupling −W ) plus an additional chiral interaction S
(3)
. This interacting Euclidean 2d theory

is translated to Minkowski signature in Appendix A.

We perform a semiclassical analysis of the interactions in S. To this end, we first rewrite

S
(2)

as

S
(2)

=
W

2

∫

d2x
(

(

Ψ†
IΨJ

)(

Ψ†
JΨI

)

−
(

Ψ†
Iγ

5ΨJ

)(

Ψ†
Jγ

5ΨI

)

)

(III.12)

and then we decouple each of the interactions using the Hubbard-Stratonovich fields XIJ ,

YIJ , and ZIJ as

e−S
(2)

−S
(3)

=

∫

D[X ]D[Y ]D[Z]e
−
∫
d2x

(

1
2W

Tr
(

X2+Y 2
)

+ 1
2W0

TrZ2−i
(

XIJ+
ZIJ
2

)

Ψ†
J
ΨI−
(

YIJ−i
ZIJ
2

)

Ψ†
J
γ5ΨI

)

,

(III.13)
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where TrX2 ≡ XJIXIJ , TrY
2 ≡ YJIYIJ , and TrZ2 ≡ ZJIZIJ . Each of the fields XIJ , YIJ ,

and ZIJ transform in the adjoint rep of U(2n). Next, we look for solutions to the saddle-point

equations (at ǫ = 0) for 〈XIJ〉, 〈YIJ〉, and 〈ZIJ〉:

X =
W

2
Trσ

(

∫

d2k

(2π)2
i

iγ5γjkj − (M1 + iX + iZ
2
)− (M2 + Y − iZ

2
)γ5

)

, (III.14)

Y =
W

2
Trσ

(

∫

d2k

(2π)2
γ5

iγ5γjkj − (M1 + iX + iZ
2
)− (M2 + Y − iZ

2
)γ5

)

, (III.15)

Z =
W0

4
Trσ

(

∫

d2k

(2π)2
1− γ5

iγ5γjkj − (M1 + iX + iZ
2
)− (M2 + Y − iZ

2
)γ5

)

, (III.16)

where the trace Trσ is only taken over the spinor indices; and we write X for 〈XIJ〉 and

similarly for Y and Z. We consider the UR(n)× UA(n)-preserving ansatz:

〈X〉 = (Γ+ + Γ−)τ
3 + iX0τ

0, (III.17)

〈Y 〉 = Y0τ
0, (III.18)

〈Z〉 = −2Γ−τ
3 + iZ0τ

0, (III.19)

where Γ±, X0, Y0, and Z0 are real. Γ± parameterize nonzero scattering rates of the composite

fermions, while X0, Y0, and Z0 parameterize possible renormalization of m1 and m2 (recall

(III.8)). We’ve set to zero a possible term in the ansatz for 〈Y 〉 proportional to τ 3 that

appears to prevent a UR(n) × UA(n)-preserving solution to these equations; preliminary

analysis indicates that such a term requires a more general ansatz that only preserves a

subgroup of UR(n)× UA(n).

We next present the detailed solution to these equations that results from the ansatz

above. The conclusion from this analysis will be that the composite fermions obtain the

renormalized mass matrix,

(

(

mR
1 +mR

2

)

τ 0 + i
(

ΓR
+ − ΓR

−

)

τ 3 0

0
(

mR
1 −mR

2

)

τ 0 + i
(

ΓR
+ + ΓR

−

)

τ 3

)

. (III.20)

Here, the R superscript (dropped in the next section) indicates renormalized parameters.

We’ll find that the saddle-point solutions allow nonzero mR
2 and unequal scattering rates

ΓR
− 6= 0 for the two components of Ψ only when particle-hole violating disorder is present

(W0 6= 0).

To this end, we begin by defining the real parameters J1 and J2:

iJ1τ
3 + J2τ

0 ≡

∫

d2k

(2π)2
1

k2 + (M1 + iX + iZ
2
)2 + (M2 + Y − iZ

2
)2
. (III.21)
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By direct evaluation, we find

J1 =
sign(Γ−m̃2 − Γ+m̃1)

8π

(

π − 2 arctan
(m̃2

2 − m̃2
1 − Γ2

− + Γ2
+

2|Γ−m̃2 − Γ+m̃1|

))

, (III.22)

J2 = −
1

8π
log
( Λ4

(

(Γ+ + Γ−)2 + (m̃1 + m̃2)2
)(

(Γ+ − Γ−)2 + (m̃1 − m̃2)2
)

)

, (III.23)

Here we’ve introduced the shifted masses

m̃1 = m1 −X0 − Z0, (III.24)

m̃2 = −m2 − Y0, (III.25)

and UV cutoff Λ. We search for a self-consistent solution when |Γ±/m̃1| ≪ 1 and |m̃2/m̃1| ≪

1: this corresponds to the small scattering rate limit Γ±/EF ≪ 1 with approximate particle-

hole symmetry. In this regime, J1 ≈ −1/4π and J2 ≈ 1
2π

log(|m̃1|/Λ). Written in terms of

these parameters the saddle-point equations (III.14) - (III.16) become

2Γ− =W0

(

J1(m̃1 + m̃2) + J2(Γ+ + Γ−)
)

, (III.26)

Z0 = −W0

(

J1(Γ+ + Γ−)− J2(m̃1 + m̃2)
)

, (III.27)

Γ+ + Γ− = −W
(

J1m̃1 + J2Γ+

)

, (III.28)

X0 = −W
(

J1Γ+ − J2m̃1

)

, (III.29)

0 =W
(

J1m̃2 + J2 Γ−

)

, (III.30)

Y0 = −W
(

J1 Γ− + J2m̃2

)

. (III.31)

We solve these equations for X0, Y0, Z0,Γ±, and m2:

m2 =
m1W0

(

J2 +W (J2
1 + J2

2 )
)

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2 )
, (III.32)

Y0 =
−m1W0W (J2

1 + J2
2 )

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2 )
, (III.33)

Γ− =
m1W0J1

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2 )
, (III.34)

Γ+ + Γ− =
−2m1WJ1

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2 )
, (III.35)

Z0 =
2m1W0

(

J2 +W (J2
1 + J2

2 )
)

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2 )
, (III.36)

X0 =
m1W

(

2J2 +
(

W0 + 2W )(J2
1 + J2

2 )
)

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2 )
. (III.37)

Notice that Y0,Γ−, Z0, and m2 vanish as W0 → 0. We treat m2 as a variable in order to

avoid an overly constrained set of equations; our interpretation is that W0 and W disorders
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cause m2 to renormalize to a value determined by the saddle-point equations. To ensure the

scattering rates Γ+ ± Γ− ≥ 0 of 1±γ5

2
Ψ are nonnegative, we require

J1

(

2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2
1 + J2

2

)

≤ 0. (III.38)

.

The retarded/advanced 2d Euclidean fermion Green’s function that obtains from this

saddle-point solution is

gR/A(ω,x,x
′) = 〈x|

1

iσ1∂1 − iσ2∂2 +
(

m1 −X0 − Z0 + ω ± iΓ+

)

+
(

m2 + Y0 + ω ∓ iΓ−

)

σ3
|x′〉.

(III.39)

We’ve included nonzero ω, parameterizing deviations about the Fermi energy. This Green’s

function suggests how to absorb the logarithmic divergence J2 into renormalized parameters.

We first introduce the renormalization factors,

ZR ≡
2 + J2(3W0 + 4W ) +W (3W0 + 2W ) (J2

1 + J2
2 )

(2 +W0 J2 + 2WJ2)
, (III.40)

ZL ≡
J2 +W (J2

1 + J2
2 )

J2
. (III.41)

Then, the renormalized m1,2 and Γ± are

mR
1 = m1 −X0 − Z0 =

m1

ZR
, (III.42)

mR
2 = m2 + Y0 =

m2

ZL
, (III.43)

ΓR
− =W0

mR
1 J1

2 + (W0 + 2W )J2
, (III.44)

ΓR
+ = −

(

W0 + 2W
) mR

1 J1
2 + (W0 + 2W )J2

. (III.45)

The condition (III.38) ensures the renormalized ΓR
+ ± ΓR

− are nonnegative. Notice that X0

and Z0 are absorbed into a renormalization of m1, while Y0 is a renormalization of m2. We

use these renormalized parameters in the remainder without the R superscript to determine

the θ angle.

2. θ Term

The saddle-point solutions for 〈X〉 and 〈Z〉—in particular, the nonzero scattering rates

Γ±—spontaneously break the U(2n) symmetry (present at ǫ = 0) to U(n)R × U(n)A. We

consider the fluctuations about this saddle-point by writing Q1(x) ≡ (X(x) + Z(x))/(Γ+ −

12



Γ−) = U1(x)τ
3U †

1 (x) and Q2(x) ≡ X(x)/(Γ+ + Γ−) = U2(x)τ
3U †

2 (x) where U1(x), U2(x) ∈

U(2n). This parameterization ensures that Q1,2(x) satisfy Q
2
1,2(x) = 1. Since Q1,2(x) = τ 3

for U1,2(x) ∈ UR(n)×UA(n), the target manifold of Q1,2(x) is U(2n)/UR(n)×UA(n). Recall

that 〈Y 〉 has been absorbed into a renormalized m2 after which 〈Y 〉 = 0. Consequently,

fluctuations about 〈Y 〉 are massive and will not be considered further. Since the action is

only invariant under global vector U(2n) rotations (under which 1−γ5

2
Ψ and 1+γ5

2
Ψ transform

identically), the gapless Goldstone bosons correspond to those fluctuations of Q1 and Q2 for

which U1 = U2; the “axial” fluctuations Q1 6= Q2 are massive (see Appendix B 2 for an

explicit demonstration) and can be neglected at low energies. Thus, we have a single light

matrix boson Q = Q1 = Q2 ∈ U(2n)/UR(n) × UA(n) that we parameterize as Q(x) =

U(x)τ 3U †(x) with U(x) ∈ U(2n).

The NLSM (I.2) for Q is obtained by integrating out the fermions,

e−SNLSM =

∫

DΨDΨ†e
−
∫
d2x Ψ†

(

γ5γj∂j−(M1+iΓ+Q)−(M2+iΓ−Q)γ5

)

Ψ
. (III.46)

The real part of SNLSM, which describes the longitudinal conductivity of the system 1/g ∝

W ≫ 1, is calculated in Appendix B 3. The imaginary part of SNLSM is the topological θ

term,

Stop = i
θ

16π

∫

d2x Tr
(

ǫijQ∂iQ∂jQ
)

. (III.47)

This term weights Q configurations by the second homotopy group Π2

(

U(2n)/UR(n) ×

UA(n)
)

= Z. Since this classification is independent of the replica index for any positive

integer n, we set n = 1 and so Q(x) = U(x)τ 3U †(x) ∈ U(2)/UR(1)× UA(1) = SU(2)/U(1)

with U(x) ∈ SU(2). Further, since the classification of Q configurations by Z arises from

the relative U(1) subgroup of UR(n)×UA(n), the result we find for θ should continue to hold

in the replica limit n→ 0 [58].

To extract the topological term, it’s convenient to perform the gauge transformation

Ψ → U(x)Ψ before integrating out the fermions. This allows us to interpret the fluctuations

of Q in terms of the SU(2) gauge field,

Aj = iU †∂jU. (III.48)

(Note that Aj here and below is not the electromagnetic vector potential, despite our use of

the same symbol.) Thus, we compute

e−SNLSM =

∫

DΨDΨ†e
−

∫
d2x Ψ†

(

γ5γj(∂j−iAj)−ϕ1−ϕ2γ5

)

Ψ
, (III.49)

where

ϕ1 = m1τ
0 + iΓ+τ

3, ϕ2 = −m2τ
0 + iΓ−τ

3. (III.50)

13



It is sufficient to determine SNLSM to quadratic order in Ai to obtain the topological term,

which is cubic in Q. Using (III.48) to relate Q to Aj and the identity ǫjk∂jAk = iǫjkAjAk

for a pure gauge potential, the topological θ term,

Stop =
1

4π

∫

d2x Tr
(

τ 3ǫjk
(

θI∂jAk + iθIIAjAk

)

)

, (III.51)

and the θ angle,

θ = θI + θII . (III.52)

θII and θI are associated to the “classical” and “quantum” contributions to the Hall con-

ductivity of the system [75].

We’ll now calculate each of these contributions to θ (see Appendix B 4 for additional

details). We’ll combine a result of Goldstone and Wilczek [76], familiar from work on topo-

logical insulators [77], with a direct evaluation; a similar argument in this context can be

found in [61].

Because θI in (III.51) is only sensitive to the Abelian subgroup of SU(2) generated by

τ 3, we can simplify its determination by focusing on the associated Abelian gauge field
1
2
Tr(τ 3Aj) under which the retarded and advanced components of Ψ carry opposite charge.

We’ll furthermore treat ϕ1 and ϕ2 in (III.50) as smoothly varying complex fields that assume

their fixed values at the end of this calculation. Writing ϕ1,2 in terms of the complex fields

χR,A
1,2 ,

ϕ1 + ϕ2 =

(

eiχ
R
1 0

0 eiχ
A
1

)

, ϕ1 − ϕ2 = −

(

e−iχR
2 0

0 e−iχA
2

)

, (III.53)

the generalization of [76] to complex ϕ1,2 gives the linear in Aj contribution to Stop:

SI
top =

1

8π

∫

d2x ǫjk∂j
(

χR
1 + χR

2 − χA
1 − χA

2

)

Tr
(

τ 3Ak

)

. (III.54)

After an integration by parts, we identify

θI = −
1

2

(

χR
1 + χR

2 − χA
1 − χA

2

)

. (III.55)

We now evaluate θI on the saddle-point solution by setting ϕ1 and ϕ2 to their values in

(III.50). To ensure that θI is well defined modulo an integer multiple of 2π, we constrain

the real parts Re[χR,A
1,2 ] ∈ [0, π). For general ϕ1,2 it’s necessary to perform some combination

of a charge conjugation,

CΨC = γ2Ψ∗, (III.56)
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and a chiral rotation with α = π/2 (see (A.7)) on each fermion species in order to solve

for χR,A
1,2 . Note that a flip of the relative sign in χR

1 + χR
2 − χA

1 − χA
2 accompanies a charge

conjugation on an advanced or retarded fermion. Likewise any chiral rotation would generally

include an additional contribution to the NLSM action due to the anomalous variation of

the fermion measure [78] in Eq. (III.49). For the ϕ1,2 under consideration, it’s only necessary

to perform a charge conjugation on the advanced fermions with the result (see Appendix

B 4 b):

θI = π + arctan
(Γ+ − Γ−

m1 +m2

)

− arctan
(Γ+ + Γ−

m1 −m2

)

. (III.57)

In the diffusive regime 0 < Γ1,2 ≪ EF with weak particle-hole symmetry violation |Γ−| ∝

W0 ≪ W ,

θI = π +O(W0). (III.58)

Eq. (III.51) indicates that θII is sensitive to the non-Abelian nature of SU(2). By direct

evaluation of (III.49) of the quadratic in Aj contribution to Stop, we find (see Appendix

B 4 a)

θII =
m1Γ− +m2Γ+

m1Γ+ +m2Γ−

(

arctan
(Γ+ − Γ−

m1 +m2

)

+ arctan
(Γ+ + Γ−

m1 −m2

)

)

. (III.59)

Notice that θII 6= 0 only when particle-hole violating disorder W0 6= 0 is present. The θ term

only receives a contribution from θI when the disorder is particle-hole symmetric because

the particle-hole violating mass m2 vanishes in the saddle-point solution.

IV. DISCUSSION

In this note, we studied the effect of particle-hole symmetry violation on the integer

quantum Hall plateau transition using the HLR and Dirac composite fermion mean-field

theories. For the particle-hole violating perturbations we considered, we showed that the

diffusive quantum criticality of this transition is described by the same nonlinear sigma

model (NLSM). The derivation of this NLSM proceeded by a semiclassical analysis in which

Schwinger-Dyson equations, associated to the “interactions” produced by the various types

of quenched disorders in the (2+0)d generating functional of composite fermion Green’s func-

tions (III.1), are solved via a particular ansatz. (Here we used the replica trick to obtain this

generating functional with 2n replicas.) Our ansatz preserved the UR(n)×UA(n) symmetry

present in this generating functional. For particle-hole symmetric quenched disorder (see IIA

for the definition), we found that the solution to the Schwinger-Dyson equations—in partic-

ular, finite composite fermion dc conductivity σcf
xx—required the vanishing of a particle-hole
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breaking (renormalized) mass term corresponding to m2 in (I.1). In the Dirac composite

fermion theory, this term is the usual (2 + 1)d Dirac mass; in the HLR theory, this mass

term is controlled by the difference of the renormalized Fermi energy and effective mass. The

resulting NLSM contains a topological θ = π term. This suggests an emergent particle-hole

symmetry of the diffusive quantum critical point. It would be interesting to explore other

ansatze, e.g., those associated with flag manifolds [79], with reduced symmetry to better

understand this interpretation.

We also considered the effect of particle-hole symmetry breaking quenched disorder. We

found such disorder can shift the θ angle away from π. This corresponds to a violation

of particle-hole symmetric electrical transport. Because the NLSM that we study is only

appropriate for longitudinal conductivities σcf
xx ≫ 1 (in units of e2/h), we aren’t able to

determine the identity of the state that obtains for σcf
xx ∼ 1 towards which the nonlinear

sigma model evolves at low energies. (Recall that the longitudinal conductivity is a coupling

in the nonlinear sigma model: in the absence of a topological θ term, σcf
xx → 0 in the IR; with

a topological θ term, it is expected that σcf
xx takes an O(1) fixed point value.) It would be

interesting to understand if particle-hole symmetry emerges for σcf
xx ∼ 1, as predicted in [80]

and found in a numerical study of noninteracting electrons [81]. Alternatively, if particle-

hole symmetry doesn’t emerge, we expect either a gapped insulator or a diffusive metal (at

least in the vicinity of the particle-hole symmetric limit at θ = π). It would be interesting

to connect our result with recent work [32] that found evidence for a line of extended states

with continuously varying critical exponents as particle-hole symmetry is violated by varying

the coefficient of electron scalar potential in (II.3).

In [54], the θ = π term was extracted by a careful study of the chiral anomaly of a 2d

theory closely related to the one in (III.49). In this earlier study, only particle-hole symmetric

disorder was considered. We have been unsuccessful in applying this chiral anomaly argument

to the case studied in this paper, where particle-hole violating disorder is included. The

technical issue is that a non-unitary chiral rotation is required to relate the retarded and

advanced fermion mass matrices. We are unaware how the gauge field effective action changes

under such transformations. Perhaps the methods in [82] can shed light on this question.
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Appendix A: Minkowski Action

In this appendix, we translate the 2d Euclidean “disorder-averaged action” S = S
(1)

+

S
(2)

+ S
(3)

in (III.9) - (III.11) into Minkowski signature. We first define the Minkowski

spinors [73],

Φ = e
π
4
γ2γ5

Ψ, Φ† = Ψ†e
π
4
γ2γ5

. (A.1)

Note the same transformation is used for Φ and Φ†. The Euclidean-signature gamma matrices

are given in (III.5). Next we introduce the Minkowski-signature (+1,−1) gamma matrices,

Γ0 = −γ5, Γ1 = iγ1, Γ5 = iΓ0Γ1 = iγ2, (A.2)

and Wick rotate x0 = −ix2, x1 = x1. (We caution that we are redefining in this appendix the

uppercase gamma matrices previously employed in the (2+1)d composite fermion mean-field

theories in Eqs. (II.7) and (II.10).) Making these replacements in Eqs. (III.9) and (III.10),

we find the Minkowski-signature action SM = S
(1)

M + S
(2)

M + S
(3)

M :

S
(1)

M =

∫

dx0dx1 Φ̄
(

iΓµ∂µ +M
(1 + Γ5

2
) +M∗(

1− Γ5

2
)
)

Φ, (A.3)

S
(2)

M =
W

2

∫

dx0dx1
(

Φ̄ΓµΦ
)(

Φ̄ΓµΦ
)

, (A.4)

S
(3)

M = −
W0

2

∫

dx0dx1
(

Φ̄
1 + iΓ5

2
Φ)2, (A.5)

where µ ∈ {0, 1}, Φ̄ = Φ†Γ0, and the complex mass matrix M = M2 − iM1 with the mass

matrices for the HLR and Dirac theories given in Eqs. (III.6) and (III.7). We see that M2

is a conventional Dirac mass and M1 is an axial mass. S
(2)

M is a SU(2n) Thirring interaction

with coupling −W ; the chiral interaction S
(3)

M is a chiral repulsion W0 > 0.

In Minkowski signature, the chiral transformation is

Φ → eiαΓ
5

Φ, Φ† → Φ†e−iαΓ5

, (A.6)

where α is a real. Using (A.1) and (A.6), the Euclidean-signature fermions transform under

a chiral transformation as

Ψ → eiαγ
5

Ψ, Ψ† → Ψ†eiαγ
5

. (A.7)

Notice again that Hermitian conjugation andWick rotation (between Euclidean and Minkowski

signatures) don’t commute. The derivative terms and Thirring interaction are invariant un-

der continuous chiral rotations; the mass terms and interaction proportional to W0 are only

invariant under the Z/2 subgroup for which α ∈ πZ.
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Appendix B: Detailed NLSM Derivation

In this appendix, we detail the calculation of the NLSM for composite fermion mean-field

theory that is sketched in §III B.

1. Setup

Here we have found it convenient to employ a different convention than the one used in

the main text. The translation table between the two conventions is given below.

Γ+ =
α2

2
(B.1)

Γ− =
−α1

2
(B.2)

γ1 = σy, γ2 = σx, γ5 = −σz . (B.3)

Above (σx, σy, σz) are the usual Pauli sigma matrices that act on the spinor indices; note

that we are leaving implicit the replica indices since the gamma matrices are diagonal in

replica space (see (III.5)). Furthermore, we reflect both coordinates (x, y) → (−x,−y) and

reverse the overall signs of the fermion and NLSM actions in (III.49):

eSNLSM =

∫

DΨDΨ† eS, (B.4)

with

S =

∫

d2x Ψ†
(

iσx∂x − iσy∂y −M2σz +M1σ0 + i
α1σz + α2σ0

2
Q
)

Ψ. (B.5)

Here σ0 is the 2×2 identity matrix. The masses M1 andM2 for the HLR and Dirac theories

are given in (III.6) and (III.7); we set ω = ǫ = 0 in these expressions for the masses. The

matrix boson Q(x) = U(x)τ 3U †(x) for U(x) ∈ U(2n) and τ 3 = σz ⊗ σn
0 . Since all terms

except for Q are singlets with respect to the replica indices (i.e., the τ space), we (generally)

leave implicit the 2n× 2n identity matrix τ0 that acts in this subspace.

We partially follow [61] to separately derive the real and imaginary parts of SNLSM. Before

proceeding, we define the self-consistent Born approximation (SCBA) Green’s functions,

g± ≡
1

M1σ0 + iσx∂x − iσy∂y −M2σz ± i(α1σz+α2σ0

2
)τ 3

, (B.6)

which are related to the retarded and advanced Green’s functions gR,A as follows:

(g+)
† = g− , g+ = Diag(gR, gA)τ , g− = Diag(gA, gR)τ (B.7)

g+ − g− = (gR − gA) τ
3, g+ + g− = (gR + gA) τ0. (B.8)

Note that the ± subscript of g± labels the sign of the imaginary part of the Green’s function.
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2. Goldstone Parameterization

In the main text we argued that the massless Goldstone modes correspond to Q1 =

Q2 fluctuations, where the matrix bosons Q1, Q2 ∈ U(2n)/U(n) × U(n). The Q1 = Q2

fluctuations correspond to vector gauge transformations of Ψ. Here we show explicitly that

axial gauge transformations corresponding to Q1 6= Q2 fluctuations are massive.

Consider the two-field sigma model involving Q1 and Q2:

S[Q1, Q2] ≡ Tr ln
[(

M1 σ0 −M2 σz + iσx∂x − iσy∂y

)

+

(

iΓ1Q1 0

0 iΓ2Q2

)

σ

]

. (B.9)

Using the same logic that produced (B.22) with Ĥ = (α1σz+α21σ

2
) = iΓ1P1 + iΓ2P2 for

P1 =
1+σz

2
and P2 =

1−σz

2
, and including a test function f , we calculate

(g−1
+ − i Ĥτ 3 + iΓ1Q1P1 + iΓ2Q2P2) (Ĥ)−1 (g−1

− + i Ĥ τ 3 − iΓ1Q1P1 − iQ2P2) f

= g−1
+ Ĥ−1 g−1

− f + /∇(QV 1σ +QA σz) f + ( /∇f) (QV 1σ +QA σz)− (QV 1σ +QA σz) ( /∇f)

= g−1
+ Ĥ−1 g−1

− f + /∇(QV 1σ +QA σz) f − 2QA σz ( /∇f), (B.10)

where we’ve used Q2
1 = Q2

2 = 1 and introduced the“vector” QV = 1
2
(Q1 + Q2) and “axial”

QA = 1
2
(Q1−Q2) matrix bosons. The crucial term that leads to a mass for QA is −2QA σz /∇.

We find:

Re[S[Q1, Q2] ] =
1

2
Tr ln

[

(g−1
+ Ĥ−1g−1

− )
(

1+ (g− Ĥ g+) ( /∇QV + /∇QAσz − 2QAσz /∇)
)]

]

=
1

16
Tr
[

(gR − gA)
(

/∇QV + /∇QAσz − 2QAσz /∇
)

(gR − gA)
(

/∇QV + /∇QAσz − 2QAσz /∇
) ]

.

(B.11)

Consider the last term, quadratic in QA /∇:

1

4
Tr
[

(gR − gA)
(

QAσz /∇
)

(gR − gA)
(

QAσz /∇
) ]

(B.12)

=

∫

x,x1,x2,x3

∫

k1k2k3k4

1

4
Tr
[

〈x|(gR − gA)|k1〉〈k1|x1〉〈x1|QAσz /∇|k2〉〈k2|x2〉

〈x2|(gR − gA)|k3〉〈k3|x3〉〈x3|QAσz /∇|k4〉〈k4|x〉
]

(B.13)

=
−1

4

∫

k1,k2

Tr[(gR − gA)
∣

∣

∣

k1
QA(k2 − k1)σz /k2(gR − gA)

∣

∣

∣

k2
QA(k1 − k2)σz /k1] (B.14)

=
−1

4

∫

p

QA(p)QA(−p)

∫

k1

Tr[(gR − gA)
∣

∣

k1
σz(/p+ /k1)(gR − gA)

∣

∣

k1+p
σz /k1] (B.15)

≡
−1

4

∫

p

QA(p)QA(−p)F (p)

=
−1

4

∫

p

QA(p)QA(−p)
(

F (p = 0) +
∂F

∂/p

∣

∣

∣

p=0
/p+

1

2

∂2F

∂/p2

∣

∣

∣

p=0
/p
2 + ...

)

, (B.16)
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where we made the change of variables k2 − k1 ≡ p. Next, examine the two crossing terms

containing QA /∇ and /∇QA:

1

16
Tr
[

(gR − gA)( /∇QAσz) (gR − gA)(−2QAσz /∇) + (gR − gA)(−2QAσz /∇) (gR − gA)( /∇QAσz)
]

=
−1

4
Tr
[

(gR − gA)( /∇QAσz) (gR − gA)(QAσz /∇)
]

(B.17)

=
−1

4

∫

dp

QA(p)QA(−p)

∫

dk1

Tr
[

(gR − gA)
∣

∣

∣

k1
σz /k1(gR − gA)

∣

∣

∣

p+k1
σz /k1

]

. (B.18)

Combining Eqs. (B.16) and (B.18), the total mass term forQA is −1
2

∫

dp1
QA(p1)QA(−p1)F (0).

The function F (0) 6= 0 generally: QA is only massless if it’s tuned to criticality. This is in

sharp contrast toQV , which is massless because it’s a Goldstone boson. Thus, QA is generally

massive and we neglect it at low energies.

3. Real Part of SNLSM

To compute the real part of SNLSM we directly compute the fermion determinant implied

by (B.4):

Re
(

SNLSM

)

+ iIm
(

SNLSM

)

= Tr ln
(

(

M1 σ0 −M2 σz + iσx∂x − iσy∂y
)

+ i
α1σz + α2σ0

2
Q
)

.

(B.19)

For any operator X̂ with determinant det X̂ = Reiθ, we seek lnR. Let iĈ ≡ i (α1σz+α2σ0

2
)Q

and B̂ ≡M1 σ0−M2 σz + iσ∂x− iσy∂y, then we can decompose the operator in 2×2 σ-space

using the identities:

det[iĈ + B̂] = det[i Ĉ] + det[B̂] + i det[Ĉ]Tr[Ĉ−1 B̂], (B.20)

det[(B̂ + iĈ) Ĥ−1 (B̂ − iĈ) Ĥ] =
∣

∣

∣
det[iĈ + B̂]

∣

∣

∣

2

, (B.21)

where Ĥ is any constant matrix in σ-space that satifies [Ĉ, Ĥ ] = 0. We choose Ĥ =

(α1σz+α2σ0

2
). Up to an unimportant constant that we drop, we find

Re
(

SNLSM

)

=
1

2
Tr ln

[

(g−1
+ − i Ĥτ 3 + i Ĥ Q) (Ĥ)−1 (g−1

− + i Ĥ τ 3 − i Ĥ Q)
]

=
1

2
Tr
[

( i

2
(gR − gA) /∇Q

)

−
1

2

( i

2
(gR − gA) /∇Q

) ( i

2
(gR − gA) /∇Q

)

]

=
1

16
Trσ

[

(gR − gA) κa (gR − gA) κb

]

Tr[∇aQ∇bQ]

≡
−Sjk

8
Tr[∇jQ∇kQ], (B.22)
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where /∇
i
≡ κx

∂x
i
+κy

∂y
i
, κx = σx, κy = −σy. We identify Sjk = σcf

xx δjk as the dc longitudinal

conductivity:

σcf
xx = −

1

2
Tr
[

(gR − gA) σx (gR − gA) σx

]

(B.23)

= 1 +
(4m2

1 − 4m2
2 − α2

1 + α2
2)(π + 2arccot[ |m1 α2−m2 α1|

4m2
1−4m2

2+α2
1−α2

2
])

8|m1 α2 +m2 α1|

≈
π(m2

1 −m2
2)

|m1 α2 −m2 α1|
≫ 1. (B.24)

In these expressions, we’ve used m1 = 1
2n
TrM1 and m2 = − 1

2n
TrM2. The last expression

uses the weak disorder limit, i.e., O(EF ) ≈ O(|m1|) ≫ α2, α1.

Here and below we use the dc (ω → 0) limit of the Kubo formula:

σcf
ij (q → 0, ω + iη) = −

∫

d2r′

V

∫

d2r
1

2πω

∫ ∞

−∞

dz

×

(

∫ ∞

−∞

dz

(

[f(z)− f(z − ω)] Tr[κiG
R
z (r, r

′)κj G
A
z−ω(r

′, r)]

+ f(z) Tr[κiG
R
z+ω(r, r

′)κj G
R
z (r

′, r)]

− f(z) Tr[κiG
A
z (r, r

′)κj G
A
z−ω(r

′, r)]

)

. (B.25)

For the Dirac theory, the SCBA Green’s function is

GD(ǫ+ EF ;ω)R/A =
1

(ǫ+ EF + ω)σ0 −mDσz + i∂xσx − i∂yσy ± iα1σz+α2σ0

2

. (B.26)

For the linearized HLR theory,

g(ǫ+ EF ;ω)R/A =
1

(ǫ+ EF )σ0 + ω P1 + 2mP2 + i∂xσx − i∂yσy ± iα1σz+α2σ0

2

, (B.27)

where P1 = 1+σz

2
and P2 = 1−σz

2
and we’ve inserted the specific masses for the HLR (III.6)

and Dirac (III.7) theories using (III.8). The frequency term should be thought of as a “mass”

term in the Hamiltonian instead of the physical frequency appearing in (B.25). Notice that

since we’ve included the Fermi level in the above Greens function, we only need to perform

the energy integral
∫

dzf(z) up to zero. We comment that a direct calculation of the Hall

conductivity using the above SCBA Green’s functions agrees with the results below, up to

the crucial additive term equal to e2

2h
.

4. Imaginary Part of SNLSM

To calculate the imaginary part of SNLSM in (B.4), we first set n = 1 and perform the gauge

transformation Ψ(x) → U(x)Ψ(x). This introduces the gauge field Aj(x) = iU †(x)∂jU(x) =
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∑3
b=1A

b
j τb, where (τ1, τ2, τ3) are the Pauli matrices in retarded-advanced space. We deter-

mine Im
(

SNLSM

)

from the imaginary part of the expectation value of the current (calculated

to linear order in Aj):

i
δ
(

ImSNLSM

)

δAb
j

=
δSI

top

δAb
j

+
δSII

top

δAb
j

, (B.28)

where SI
top and SII

top are the linear (“quantum”) and quadratic (“classical”) in Aj contribu-

tions to the imaginary part of SNLSM [75].

a. SII
top

We begin with the “classical” contribution SII
top. By direct evaluation we find

SII
top =

1

2
Tr[κµAµ g+κν Aν g+ − κµAµ g−κν Aν g−]

=
1

2
Tr[κµAµ(g+ + g−) κν Aν(g+ − g−)]

=
i

2
Trσ[κµ (gR + gA) κν (gR − gA)] Trτ [AµAν τ3]

=
i

4
Trσ[κx (gR + gA)κy (gR − gA)]Trτ [Q(∂xQ)(∂yQ)]

≡ i
θII

2π
Trτ [Q(∂xQ)(∂yQ)] (B.29)

where we used Trτ [Q(∂xQ)(∂yQ)] = 4i(A1
iA

2
j − A2

iA
1
j)ǫij .

θII

2π
is the “classical” contribution

σI
xy to the dc Hall conductivity σcf

xy = σI
xy + σII

xy:

σI
xy =

1

2π

(m2Γ+ +m1Γ−

m1Γ+ +m2Γ−

)(

arctan[
2(Γ+ + Γ−)

2(m1 −m2)
] + arctan[

2(Γ+ − Γ−)

2(m1 +m2)
]
)

. (B.30)

The “quantum” contribution σII
xy to the Hall conductivity equals θI

2π
(modulo 1); it’s calcu-

lated in the next section.

b. SI
top

SI
top obtains from a result first obtained by Goldstone and Wilczek [76]; below we follow

the treatment in [83]. We first introduce the “mass field,”

Φm(0) ≡ M1σ0 −M2σz + i(
α1σz + α2σ0

2
) τ3. (B.31)

For this calculation, we’ll treat Φm(0) as a spatially-varying field Φm(x) that takes its fixed

point value (B.31) at the end of the calculation. We write the “mass field” as

Φm(x) ≡
(

m1a(x) τ3 +m1b(x) τ0
)

σ0 +
(

m2a(x) τ3 −m2b(x) τ0
)

σz. (B.32)
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Notice thatm1 = m1a(0) andm2 = m2a(0). The real space Green’s function is then expanded

about uniform Φm as

S(Φm) =

∫

dp1dp2
(2π)2

1

iκµDµ + Φm(x)
eip·(x−y)

= S0 +
(

− S0

(

xν∂νΦm(0)
)

S0

)

+ . . . , (B.33)

where we drop the “...” in what follows. S0 is the Green’s function for uniform Φm with

S0

∣

∣

∣

Aj=0
= g+, given in (B.6).

The “quantum” current
δSI

top

δAb
j

is then computed as

δSI
top

δAb
j

= − lim
y→x

Tr[〈κj τb S(x, y)〉]

≈ 〈x|Tr[κj τb S0 ∂kΦm(0) iS0 κk S0 ]|x〉, (B.34)

where we use 〈x′|S0 r̂k|x〉 = 〈x′|iS0 κk S0|x〉. We set the gauge potential in the Green’s

function S0 to zero to find

δSI
top

δAb
j

=

∫

dqxdqy
(2π)2

Tr[κj τb
1

/q + Φm(0)
∂kΦm(0)

1

/q + Φm(0)
i κk

1

/q + Φm(0)
]

=
1

2π
ǫjk δb3

[(m1a +m1b) ∂k(−m2a +m2b)− (−m2a +m2b) ∂k(m1a +m1b)

(−m2a +m2b)2 − (m1a +m1b)2

−
(−m1a +m1b) ∂k(m2a +m2b)− (m2a +m2b) ∂k(−m1a +m1b)

(m2a +m2b)2 − (−m1a +m1b)2

]

≡
i

2π
δb3ǫjk∂k θ

I , (B.35)

where /q ≡ κxpx + κypy. We now deduce SI
top by coupling this current to Ab

j and then

performing an integration by parts:

SI
top =

∫

d2x

3
∑

b=1

Ab
j

δSI
top

δAb
j

=
i

2π

∫

d2x A3
j ǫjk∂kθ

I

= −
1

4π

∫

d2x θIǫjkTrτ [τ
3∂k Aj ]. (B.36)

It remains to determine θI for the specific fixed point value Φm(0) (B.31). The detailed

discussion below complements the presentation of this in the main text. We replace α1/2 =

Γ− and α2/2 = Γ+, and introduce the superscript s = R,A to label the diagonal retarded

and advanced components in τ space of

ϕ1 = m1τ
0 + iΓ+τ

3, ϕ2 = −m2τ
0 + iΓ−τ

3. (B.37)
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Thus, we may also specify the diagonal components of Φm with this superscript,

Φs
m(x) = −ϕs

2(x)σz + ϕs
1(x)σ0 ≡

(

−e−iχs
2 0

0 eiχ
s
1

)

. (B.38)

Eq. B.35 indicates that the retarded and advanced contributions to θI are fully separable,

i.e., θI only couples to 1
2
Tr(τ 3Aj) = A3

j . This allows us to determine θI as the contribution

from the U(1) subgroup of SU(2) associated to τ 3. Plugging (B.38) into B.35, we find

−∂kθ
I = ∂k

χR
1 + χR

2 − χA
1 − χA

2

2
. (B.39)

Note that χs
1 and χs

2 are generally complex. We restrict Re[χ1,2] ∈ [0, π). We now specialize

to the masses associated to the HLR theory by setting m1 = EF/2+m and m2 = EF/2−m;

similar manipulations yield θI for the Dirac theory. We use ϕ1+ϕ2 = eiχ1 , ϕ1−ϕ2 = −e−iχ2

and (B.31) to find the equations:

2m+ i(Γ+ + Γ−) = eiχ
R
1 , EF + i(Γ+ − Γ−) = −e−iχR

2 , (B.40)

2m− i(Γ+ + Γ−) = eiχ
A
1 , EF − i(Γ+ − Γ−) = −e−iχA

2 . (B.41)

For the retarded component χR
1,2, we find:

Re[χR
1 ] = arctan[

Γ+ + Γ−

2m
], Im[χR

1 ] =
−1

2
log[(2m)2 + (Γ+ + Γ−)

2], (B.42)

Re[χR
2 ] = π − arctan[

Γ+ − Γ−

EF
], Im[χR

2 ] =
−1

2
log[(EF )

2 + (Γ+ − Γ−)
2]. (B.43)

Due to the restriction Re[χs
1,2] ∈ [0, π), we need to perform a charge conjugation on the

advanced fermions using the definition in (III.56). It’s here that we use the fact that θI is

only sensitive to the Abelian component 1
2
Tr(τ 3Aj) of Aj . Charge conjugation flips the sign

of mass term involving σ0 as well as the gauge coupling of the advanced fermion to A3
j : The

part of the action including the advanced fermion only transforms as

SA = Ψ†
A

(

m1σ0 +m2σz + iσx(∂x − iA3
x)− iσy(∂y − iA3

y)− i
α1σz + α2σ0

2

)

ΨA, (B.44)

CSAC = Ψ†
A

(

−m1σ0 +m2σz + iσx(∂x + iA3
x)− iσy(∂y + iA3

y)− i
α1σz − α2σ0

2

)

ΨA. (B.45)

After performing this charge conjugation, we find the current
δSI

top

δAb
j

equals

δSI
top

δAb
j

=
1

2π
ǫjk δb3

[(m1a +m1b) ∂k(−m2a +m2b)− (−m2a +m2b) ∂k(m1a +m1b)

(−m2a +m2b)2 − (m1a +m1b)2

+
(−1) (−m1a +m1b) ∂k(m2a +m2b)− (m2a +m2b) (−1)∂k(−m1a +m1b)

(m2a +m2b)2 − (−m1a +m1b)2

]

≡
i

2π
δb3ǫjk∂k θ

I . (B.46)

24



The retarded contribution to θI is unchanged since only the advanced fermions were charge

conjugated. The advanced fermion mass becomes

ΦA
m(x) = −ϕA

2 (x)σz + (−1)ϕA
1 (x)σ0 ≡

(

−e−iχ̃A
2 0

0 eiχ̃
A
1

)

. (B.47)

This results in the equations for χ̃A
1,2:

2m− i(Γ+ + Γ−) = eiχ̃
A
2 , −EF + i(Γ+ − Γ−) = eiχ̃

A
1 , (B.48)

Re[χ̃A
2 ] = arctan[

Γ+ + Γ−

2m
], Re[χ̃A

1 ] = π − arctan[
Γ+ − Γ−

EF

] (B.49)

Since charge conjugation also flips relative sign between retarded and advanced contributions

in Eq. B.39, we have

θI = −
1

2

[

(Re[χR
1 ] + Re[χR

2 ] + Re[χ̃A
1 ] + Re[χ̃A

2 ])
]

(B.50)

= π + arctan[
Γ+ − Γ−

m1 +m2

]− arctan[
Γ+ + Γ−

m1 −m2

]. (B.51)

We have used θI = 0 (mod 2π) to fix the coefficient of π to be unity and replaced the

HLR-specific masses by the general masses m1 and m2
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