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Significant experimental advances in single-electron silicon spin qubits have opened the possibility
of realizing long-range entangling gates mediated by microwave photons. Recently proposed iSWAP
gates, however, require tuning qubit energies into resonance and have limited fidelity due to charge
noise. We present a novel photon-mediated cross-resonance gate that is consistent with realistic
experimental capabilities and requires no resonant tuning. Furthermore, we propose gate sequences
capable of suppressing errors due to quasistatic noise for both the cross-resonance and iSWAP gates.

I. INTRODUCTION

Advanced semiconductor fabrication techniques, long
coherence times [1], and high-fidelity single [2–4] and two-
qubit [5–7] gates have positioned solid-state electronic
spin qubits as one of the most favorable candidates for
quantum information processing [8–14]. Recent break-
through experimental work has demonstrated a coher-
ent interface between individual electron spins in double
quantum dots (DQDs) and photons in superconducting
microwave resonators [15–18]. By electrically coupling a
plunger gate above one dot to a probe in the resonator,
and coupling the spin and position degrees of freedom
with a nearby micromagnet, Refs. [15–17] were able to re-
alize a spin-charge hybridized qubit which inherits a long
coherence time from its spin-like character and strong
coupling to the resonator mediated by the position de-
gree of freedom [16, 19, 20]. Building on this, recent the-
oretical work has investigated the use of this spin-photon
interface to realize long-range spin-spin entangling gates
mediated by resonator photons [21, 22]. This opens the
possibility for large, scalable quantum information pro-
cessors based on DQD electronic spins. The iSWAP pro-
posed in Refs. [21, 22], however, requires qubits to be
tuned into resonance, which can be challenging in some
architectures [23] and may be impractical for collections
of many spins coupled to a common resonator. Addition-
ally, spin-charge hybridization results in susceptibility of
the qubit to charge noise, limiting achievable gate fideli-
ties [16, 21, 22].

In this paper, we present a protocol for a novel en-
tangling gate in systems of DQDs coupled by microwave
resonators: a cross-resonance gate that is locally equiv-
alent to a CNOT and similar to gates used in supercon-
ducting transmon qubit systems [24, 25]. We also pro-
pose two protocols for suppressing charge noise, including
a nested gate sequence based on fast, dynamically cor-
rected single-qubit gates [26] which is also able to sup-
press errors due to quasistatic charge noise for the pre-
viously introduced resonant iSWAP. We find that these
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gate sequences substantially reduce gate infidelity due to
quasistatic charge noise.
The paper is organized as follows. In Sec. II, we in-

troduce the resonator-DQD Hamiltonian and define no-
tation. Our cross-resonance gate protocol is presented
in Sec. III. We include quasistatic charge noise in our
model and present dynamically corrected iSWAP and
cross-resonance gates in Sec. IV. We conclude in Sec. V.

II. HAMILTONIAN

As in Refs. [21, 22], we consider a system of sev-
eral gate-defined DQDs, each tuned to the single-electron
regime and capacitively coupled with coupling constant
gACi to a common microwave resonator mode with fre-
quency ωr. The inter-dot tunneling constants tci and
detunings ǫi of each DQD are independently electrically
tunable, and we explicitly include microwave-frequency
electric drive of the detunings with drive frequencies ωdi
and amplitudes Ω̃i. For simplicity, we assume a square-
envelope microwave pulse, although higher gate perfor-
mance may be achieved with pulse-shaping techniques
[27]. Micromagnets near each DQD, along with an ex-
ternal magnetic field, create an inhomogeneous magnetic
field in the vicinity of each DQD. At each DQD, the lon-
gitudinal average magnetic field gives rise to a Zeeman
splitting ωzi between the DQD electron spin states, while
the magnetic field gradients, which for simplicity we take
to be transverse, couple the spin and position degrees
of freedom of the electrons with coupling strengths gxi .
The system can then be described with the Hamiltonian
(~ = 1)

H̃(t) = H̃0 + H̃I + H̃dr(t), (1)

H̃0 = ωra
†a+

∑

i

(

1

2
ǫiτ̃

z
i + tciτ̃

x
i +

1

2
ωzi σ̃

z
i + gxi σ̃

x
i τ̃

z
i

)

,

H̃I =
∑

i

gACi
(

a† + a
)

τ̃zi ,

H̃dr(t) =
∑

i

Ω̃i cos
(

ωdi t
)

τ̃zi ,

where σ̃ki and τ̃
k
i for k ∈ {x, y, z} are the spin and position

Pauli matrices of the ith DQD electron.
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To proceed, we transform to the spin-orbit hybridized
eigenbasis of H̃0, in which

H̃0 = ωra
†a+

∑

i

(

1

2
ωτi τ

z
i +

1

2
ωσi σ

z
i

)

, (2)

where τki , σ
k
i are the transformed Pauli matrices in the

new basis and ωτi > ωσi . We assume 2tci > ωzi so that the
low-energy 〈τzi 〉 = −1 subspace of each DQD constitutes
a qubit which is largely spin-like in character.

In the dispersive regime 1 ≫ gACi /|ωr − ωσi | ≫
gACi /|ωτi − ωr|, and assuming sufficiently weak driving,
we can use a perturbative, time-dependent Schrieffer-
Wolff transformation to remove to leading order the cou-
plings between the DQDs and the resonator, as well as
time-dependent terms coupling the 〈τzi 〉 = ±1 subspaces
[28, 29]. Next, we take the empty-cavity limit and assume
the microwave drives are weak and well-detuned from
the resonator frequency ωr so that we can neglect tran-
sitions out of the

〈

a†a
〉

= 0, 〈τzi 〉 = −1 subspace. Pro-
jecting onto this subspace, we obtain an effective Hamil-
tonian describing the dynamics of our low-energy qubits
in which we see the appearance of long-range qubit-qubit
interactions mediated by the resonator mode:

H(t) =
∑

i

(

1

2
ωiσ

z
i + cos

(

ωdi t
)

(Ωzi σ
z
i +Ωxi σ

x
i ) (3)

+ cos
(

2ωdi t
)

(ξzi σ
z
i + ξxi σ

x
i ) + sin

(

2ωdi t
)

ξyi σ
y
i

)

−
∑

i<j

Jijσ
x
i σ

x
j ,

where ωi are the dressed qubit transition frequencies, Ωki
are the effective drive amplitudes seen by the qubits at
the original drive frequency, ξki are small drive amplitude
terms at twice the original drive frequency which appear
as a second-order effect of the applied drive, and Jij is
the strength of the resonator-induced coupling between
qubits i and j. A complete derivation of the effective
Hamiltonian is given in Appendix A. Throughout the re-
mainder of this paper, we assume ǫi = 0 in the absence
of noise. In this case,

ωi = ωσi − 2ωσi sin
2(βi)

(

gACi
)2

ω2
r − (ωσi )

2 (4)

Ωxi = sin(βi)Ω̃i

Ωzi = ξxi = ξyi = ξzi = 0

Jij = ωrg
AC
i gACj sin(βi) sin(βj)

×

(

1

ω2
r − (ωσi )

2 +
1

ω2
r −

(

ωσj
)2

)

,

where βi =
(

β+
i + β−

i

)

/2 and β±
i =

arctan[−2gxi /(ω
a
i ± ωzi )].

III. CROSS-RESONANCE GATE

To arrive at the cross-resonance gate, we focus on a
system of two DQD qubits coupled via a resonator. Here,
qubit 2 acts as the target and remains undriven, while
the control, qubit 1, is driven. During the pulse, the
effective 2-qubit lab-frame Hamiltonian takes the form

H(t) =
1

2
ω1σ

z
1 + cos

(

ωd1t
)

(Ωz1σ
z
1 +Ωx1σ

x
1 ) (5)

+ cos
(

2ωd1t
)

(ξz1σ
z
1 + ξx1σ

x
1 ) + sin

(

2ωd1t
)

ξy1σ
y
1

+
1

2
ω2σ

z
2 − Jσx1σ

x
2 .

We proceed following Ref. [24], moving into the doubly-
rotating frame defined by the transformation Ua =
exp
[

−itωd1(σ
z
1 + σz2)/2

]

. Then, after making the ro-
tating wave approximation (RWA) to eliminate single-
qubit terms oscillating at multiples of ωd1 , we diago-
nalize the remaining single-qubit terms with the time-
independent transformation Ub = exp[−iχσy1/2], where
χ = arctan(Ωx1/δ1) and δi = ωi − ωd1 . In this diago-
nalized doubly-rotating frame (DDF), the Hamiltonian
becomes

HDDF =
1

2
ησz1 +

1

2
δ2σ

z
1 (6)

− J
(

cos
(

ωd1t
)

(sin(χ)σz1 + cos(χ)σx1 )

− sin
(

ωd1t
)

σy1
)(

cos
(

ωd1t
)

σx2 − sin
(

ωd1t
)

σy2
)

where η =

√

δ21 + (Ωx1)
2
. Next, we eliminate single-

qubit terms with another time-dependent transformation
Uc = exp[−it(ησz1 + δ2σ

z
2)/2]. In this quadruply-rotating

frame, we get the Hamiltonian

HQF = −J
[

cos
(

ωd1t
)

(sin(χ)σz1 + cos(χ)(cos(ηt)σx1 (7)

− sin(ηt)σy1 ))− sin
(

ωd1t
)

(cos(ηt)σy1 + sin(ηt)σx1 )
]

× [cos(ω2t)σ
x
2 − sin(ω2t)σ

y
2 ].

Generically, all terms in this frame oscillate rapidly.
However, by choosing a microwave pulse resonant with
our target qubit so that ωd1 = ω2, and assuming η ≫ J
so that we can again make the RWA and neglect remain-
ing oscillating terms, we arrive at the time-independent
Hamiltonian

HQF ≈ −
1

2
J̃σz1σ

x
2 , (8)

where we have defined J̃ = J sin(χ) = JΩx1/η. Up to
local operations, then, this microwave pulse produces a
controlled x-rotation of the target qubit. In particular,
when J̃ t = π/2, we get a local CNOT equivalent [24].
Notably, for a given effective coupling J , this cross-

resonance CNOT is always slower than the previously-
introduced resonant iSWAP by a factor of Ωx1/η. This
factor is small when the qubit-qubit detuning ∆ = ω1−ω2

is large compared to accessible drive strengths. Unlike
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FIG. 1. Average fidelity of the cross-resonance CNOT gate,
maximized at each time step over local rotations. Here, we
have chosen ωr = 6GHz, ωz1 = 5.96GHz, ωz2 = 5.94GHz,
ǫ1 = ǫ2 = 0, 2tc1 = 2tc2 = 7GHz, gAC1 = gAC2 = 40MHz, and
gx1 = gx2 = 200MHz corresponding to a transverse magnetic
field difference between the two QDs in each DQD of approx-
imately 30mT. Starting at time t = 0, qubit 1 is subject to
a microwave drive with Ω̃1 chosen so that Ωx1 = 15MHz and
with drive frequency ωd1 = 5.9059GHz. At time t = 590 ns,
the microwave drive is stopped. The final gate fidelity is be-
tween 98% and 99%, with remaining infidelity primarily due
to leakage to excited resonator states.

the iSWAP, however, there is no need for ∆ to be made
small relative to J . Additionally, since qubits never need
to be tuned into or out of resonance, the DQDs can re-
main at the ǫi = 0 sweet spot, allowing for decreased
sensitivity to electrical fluctuations [20].

To verify our effective model, we simulate the unitary
time evolution of the full 2-DQD system, including or-
bital degrees of freedom and a single resonator mode
truncated to 10 photonic states. We focus on systems
with realistic static parameters taken from Ref. [16]. To
ensure suppression of entangling interactions in the ab-
sence of microwave driving, we choose Zeeman splittings
ωzi such that the qubits are well-detuned from one an-
other. We choose drive amplitudes consistent with re-
ported EDSR Rabi frequencies in single-electron silicon
quantum dots [3, 30], and drive frequencies such that
ωd1 = ω2, following our analytical expressions.

We numerically solve the Schrödinger equation with
the Hamiltonian in Eq. (1) in the eigenbasis of H̃0. At
each time step, we use the evolved states to compute
density operators of the full system, and then trace out
the higher-energy DQD and resonator degrees of freedom
to obtain reduced density operators describing the qubit
evolution. We then compute state-averaged gate fideli-
ties according to the formula in Ref. [31]: F̄ (E , U) =
1
5 +

1
80

∑

j,k=1,x,y,z tr
(

Uσj1σ
k
2U

†E(σj1σ
k
2 )
)

where U is our

target gate and E(ρ) is the quantum process describing
the noisy time evolution of the qubits. We plot average
gate fidelities relative to a perfect CNOT in Fig. 1. We
find that with realistic parameters, we are able to real-
ize a local CNOT equivalent with 99% fidelity in 590ns,
with remaining infidelity largely due to leakage to excited
resonator states.

IV. DYNAMICALLY CORRECTED GATES

A. Corrected cross-resonance gate

We can model the effects of quasistatic charge noise
on our cross-resonance gate by substituting ǫi → ǫi + δǫi
and tci → tci+δtci for the detunings and tunnel couplings
respectively, where δǫi and δtci are Gaussian-distributed
random variables with standard deviations σǫ and σt, re-
spectively. Similarly, we can model errors in the applied
control field amplitude by substituting Ω̃i → Ω̃i(1 + µi)
where µi is a Gaussian-distributed random variable with
standard deviation σµ. In terms of the low-energy dy-
namics, the effect of these substitutions is random shifts
in the qubit splittings ωi, drive strengths Ωxi , and ef-
fective qubit-qubit interaction J . The noisy lab-frame
Hamiltonian is

H(t) =
1

2
(ω1 + δω1)σ

z
1 +

1

2
(ω2 + δω2)σ

z
2 (9)

+ cos(ω2t)((Ω
z
1 + δΩz1)σ

z
1 + (Ωx1 + δΩx1)σ

x
1 )

+ cos(2ω2t)((ξ
z
1 + δξz1 )σ

z
1 + (ξx1 + δξx1 )σ

x
1 )

+ sin(2ω2t)(ξ
y
1 + δξy1 )σ

y
1 − (J + δJ)σx1σ

x
2 .

As in the noiseless case, we move into the frame ro-
tating with the drive and diagonalize single-qubit terms.
Then, discarding all of the same rapidly-oscillating terms
as before, we arrive at the noisy DDF Hamiltonian

HDDF =
1

2
(η + δη)σz1 +

1

2
δω2σ

z
2 −

1

2

(

J̃ − δJ̃
)

σz1σ
x
2 .

(10)
Note that, because of variations δω1 and δΩx, this is
actually not the same DDF as in the noiseless case, but
is related to it by an additional σy1 rotation of angle δχ.
We can compute the average fidelity F̄ of the noisy

gate U
(1)
φ = T exp

(

−i
∫ φ/J̃

0 HDDF (t
′) dt′

)

relative to the

noiseless gate. Expanding to lowest order in each of the
shifted parameters, the average gate fidelity for a cross-
resonance CNOT (φ = π/2) is

F̄ ≈ 1−
π2

20

(

δη

J̃

)2

−
2

5

(

δω2

J̃

)2

−
π2

20

(

δJ̃

J̃

)2

(11)

−
2

5
δχ2.

The first-order sensitivities of various cross-resonance
gate parameters to charge noise are plotted in Fig. 2a for
some realistic system parameters. In this regime, we see
that η and ω2 are much more sensitive to electrical fluc-
tuations than χ or J̃ . For this reason, we neglect errors
due to δJ̃ and δχ, and focus our efforts instead on cor-
recting the larger errors. Notably, there is a sweet spot
at which η is first-order insensitive to charge noise fluctu-
ations. This can be understood from competing effects of
charge noise on δω1 and δΩx1 . For 2tc1 > ωz1 , spin-charge
hybridization decreases ω1. Thus, when fluctuations in-
crease spin-charge hybridization, δω1 < 0. Meanwhile,
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FIG. 2. The first-order charge noise sensitivities
(

∂x =
∑

i

∣

∣

∣

∂x
∂tci

∣

∣

∣

)

of various system parameters at the charge

degeneracy sweet spot (ǫ1 = ǫ2 = 0) [20] with ωr = 6GHz,
tc1 = tc2 = tc, gAC1 = gAC2 = 40MHz, and gx1 =
gx2 = 200MHz (a) for a cross-resonance CNOT with ω1 =
5.96GHz, ω2 = 5.94GHz, and Ωx1 = 20MHz. (b) for a reso-
nant iSWAP with ω1 = ω2 = 5.95GHz. Leading-order sensi-
tivities to DQD detunings are given in Appendix B.

the drive strength felt by the qubit increases, so neglect-
ing amplitude noise (µi = 0), we have Ωx1δΩ

x
1 > 0. By

choosing ∆ > 0 and using an appropriate drive ampli-
tude, then, we can engineer a situation in which, in the
absence of amplitude noise, δη ≈ 1

η (∆δω1 +Ωx1δΩ
x
1) = 0.

The noisy 2-qubit Hamiltonian in Eq. (10) belongs to
an su(2)⊕u(1) subalgebra of su(4), with su(2) generators
{σz1σ

x
2 , σ

z
1σ

y
2 , σ

z
2}, all of which commute with the u(1)

generator σz1 . While the δη error commutes with the
σz1σ

x
2 generator and can be eliminated with a simple π-

pulse (as we discuss below), the δω2 error anticommutes
with it, and requires more nontrivial error correction.

One option for suppressing the δω2 error, inspired by
techniques used in superconducting qubits [32, 33], is
the addition of a microwave-frequency drive applied to
the target qubit concurrently with the cross-resonance
drive applied to the control qubit (Fig. 3a). By driving
the target qubit at its own transition frequency and in-
phase with the cross-resonance drive, we introduce a large
(Ωx2+δΩ

x
2)σ

x
2 term to the noisy HDDF . As this new term

commutes with our desired σz1σ
x
2 generator, but anticom-

mutes with σz2 , this additional driving actively suppresses
the δω2 error without interfering with entanglement gen-
eration. This comes at the expense of introducing a new
δΩx2 error. However, this can be eliminated, along with
the δη error, by a π rotation about the σyi axis on each
qubit. The entire gate sequence, with simultaneous drive
on both qubits and single-qubit echo pulses, we refer to
as “2Qecho,” and is shown in Fig. 3b. For Ωx2 ≫ J̃ , the
average gate fidelity to lowest order in the presence of

this cancellation pulse is

F̄2Qecho ≈ 1−
2

5

(

δω2

Ωx2

)2

−
π2

20

(

δJ̃

J̃

)2

−
2

5
δχ2. (12)

Below in Sec. IVC, we test the efficacy of this approach
using full numerical simulations. Before we examine
these results, however, we first introduce alternative ap-
proaches to suppressing noise errors.
While driving the target qubit concurrently with the

cross-resonance drive is an effective strategy for suppress-
ing the δω2 error, it requires simultaneous microwave
drive of both the target and control qubits, which may be
impractical for some devices. As an alternative, we can
use the isomorphism that exists between the su(2) sub-
algebra of our Hamiltonian and the ordinary su(2) alge-
bra for single-qubit operations to adapt to our purposes
the fastest pulse sequence that can eliminate a single-
qubit drift error [26]. While Ref. [26] assumed the abil-
ity to directly change the sign of the desired generator
term, we can achieve the same effect by applying π ro-
tations about the σz2 axis on the target qubit. Defining
ψ(φ) ≡ arccos(cos(φ/2)/2), we can correct the δω2 error
to lowest order for arbitrary φ with the gate sequence

U1Qpartial
φ = U

(1)
ψ(φ)−φ/2σ

z
2U

(1)
2ψ(φ)+πσ

z
2U

(1)
ψ(φ)−φ/2 (13)

≈ e−i
ζ(φ)
2 σz

1 e−i
φ+π

2 σz
1σ

x
2

+O

(

(

δω2

J̃

)2
)

+O

(

δJ̃

J̃

)

+O(δχ)

where ζ(φ) = (4ψ(φ) + π − φ)(η+ δη)/J̃ . If we stop here
and set φ = π/2, we get a CNOT equivalent which is first-
order insensitive to δω2 errors and which never requires
simultaneous drive of both qubits. In fact, using virtual
gates, it should be possible to realize this gate sequence
without applying any drive at all to the target qubit.
This sequence, which we call “1Qpartial,” is shown in
Fig. 3c. The average gate fidelity relative to the noiseless
case, to lowest order, is

F̄1Qpartial ≈ 1− 8.21

(

δη

J̃

)2

−
9π2

20

(

δJ̃

J̃

)2

(14)

−
2

5
δχ2 − 5.99

(

δω2

J̃

)2
δJ̃

J̃
− 2.02

(

δω2

J̃

)4

.

Neglecting single-qubit gate times, which are small rela-
tive to the two-qubit gates, this gate sequence increases
the total gate time by a factor of 8

πψ(π/2) + 1 ≈ 4.08
compared to the uncorrected CNOT.
Just as in 2Qecho, the remaining δη error can be com-

pletely eliminated using π rotations about the σyi axis on
each qubit:

U1Qfull
φ = U1Qpartial

φ/2 σy1σ
y
2U

1Qpartial
φ/2 σy1σ

y
2 (15)

≈ e−i
φ
2 σ

z
1σ

x
2 +O

(

(

δω2

J̃

)2
)

+O

(

δJ̃

J̃

)

+O(δχ).
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FIG. 3. (a) Diagram for the different drive schemes used to generate a cross-resonance CNOT. In either case, we have two

qubits coupled via a microwave resonator with coupling strength J . For the gate U
(12)
φ , which is used in 2Qecho, both the

control and target qubit are driven at the target qubit transition frequency. For the gate U
(1)
φ , which is used in 1Qpartial

and 1Qfull, only the control qubit is driven. (b) Circuit diagram for the 2Qecho corrected CNOT. (c) Circuit diagram for
the 1Qpartial corrected CNOT or iSWAP, which corrects only the non-commuting errors. (d) Circuit diagram for the 1Qfull
corrected CNOT or iSWAP, which corrects both the commuting and non-commuting errors.

The full nested gate sequence, which we call “1Qfull,” is
shown in Fig. 3d. Although 1Qfull does require driving
both qubits to realize single-qubit gates, it still does not
require driving both qubits simultaneously at any point.
Note that, because they commute with σy1 , all single-
qubit gates can be applied in the doubly-rotating frame
using EDSR regardless of the χ rotation. In principle,
single-qubit EDSR gates will also suffer some gate infi-
delity as a result of charge noise, reducing the fidelity
of the corrected gate sequence. However, single-qubit
π-pulse EDSR gate fidelities exceeding 99.9% have been
reported for single-electron DQD qubits [3], so we choose
here to neglect this additional error source.

Once again setting φ = π/2, we obtain a robust CNOT
equivalent with average gate fidelity

F̄1Qfull ≈ 1−
5π2

4

(

δJ̃

J̃

)2

−
2

5
δχ2 (16)

− 20.41

(

δω2

J̃

)2
δJ̃

J̃
− 8.44

(

δω2

J̃

)4

.

This additional step of correcting δη errors yields a gate
which is insensitive to charge noise to lowest order. How-
ever, the total time required for 1Qfull is increased by a
factor 16

π ψ(π/4) + 3 ≈ 8.55 compared to the uncorrected
CNOT, neglecting single-qubit gate times, and the effect
of the δω2 error has been amplified relative to 1Qpartial.
For this reason, especially in the presence of accumulat-
ing error due to decoherence, it might be preferable to
take advantage of the δη = 0 sweet spot and only correct
the δω2 error. This tradeoff is examined more closely in
Sec. IVC, where we also provide a side-by-side compari-
son of the 2Qecho, 1Qpartial, and 1Qfull sequences.

B. Corrected iSWAP gate

Much of the same analysis can be applied to the
iSWAP gate discussed in Refs. [21, 22]. Starting with
the noisy, undriven 2-qubit effective Hamiltonian with
ω1 = ω2 = ω,

H =
1

2
(ω + δω1)σ

z
1 +

1

2
(ω + δω2)σ

z
2 (17)

− (J + δJ)σx1σ
x
2 ,

we move to the rotating frame for both qubits and make
the RWA. In the doubly-rotating frame, we have

HDF =
1

2
δω1σ

z
1 +

1

2
δω2σ

z
2 (18)

−
1

2
(J + δJ)(σx1σ

x
2 + σy1σ

y
2 )

=
1

2
δω+

σz1 + σz2
2

+
1

2
δω−

σz1 − σz2
2

− (J + δJ)
σx1σ

x
2 + σy1σ

y
2

2
,

where δω± = δω1 ± δω2. The gate generated by this

Hamiltonian, Uφ = exp
(

−i φ2JHDF

)

, thus implements a

noisy iSWAP local equivalent for φ = π. The average
gate fidelity relative to a noiseless iSWAP gate is

F̄ ≈ 1−
π2

10

(

δJ

J

)2

−
1

10

(

δω−

J

)2

−
π2

40

(

δω+

J

)2

. (19)

The first-order sensitivities of the iSWAP Hamiltonian
parameters to charge noise are shown in Fig. 2b. Similar
to the cross-resonance gate, we find that the ωi are much
more sensitive than J , so we neglect the δJ error (though
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such errors could in principle be corrected with a more
complicated gate sequence [34]).
Thus again we have a Hamiltonian in an su(2) ⊕

u(1) subalgebra of su(4), now with su(2) generators
{(σx1σ

x
2 + σy1σ

y
2 )/2, (σ

x
1σ

y
2 − σy1σ

x
2 )/2, (σ

z
1 − σz2)/2}, all of

which commute with the u(1) generator (σz1 + σz2)/2.
And again, we have commuting (δω+) and non-
commuting (δω−) error terms which we would like to
eliminate. In fact, we can use the exact same nested
gate sequence as for the cross-resonance gate to suppress
these errors as well. Simply substituting this new Uφ for

U
(1)
φ in the U1Qfull

φ gate sequence in Fig. 3d and setting
φ = π yields a robust iSWAP gate which has substan-
tially reduced sensitivity to charge noise. The fidelity of
this corrected iSWAP, to lowest order, is

F̄1Qfull ≈ 1−
9π2

10

(

δJ

J

)2

− 3.00
δJ

J

(

δω−

J

)2

(20)

− 0.25

(

δω−

J

)4

.

Unlike the cross-resonance gate, there is no sweet spot at
which the commuting error vanishes, nor can we simply
suppress the non-commuting error by driving the qubits,
so we must use 1Qfull to obtain a gate which corrects the
largest charge noise errors. However, because the iSWAP
is a π rotation, the gate time penalty is not as severe, with
1Qfull only increasing the total gate time by a factor of
8
πψ(π/2) + 1 ≈ 4.08 compared to the uncorrected noisy
iSWAP, neglecting single-qubit gate times.

C. Corrected gate simulations

To investigate the effectiveness of our corrected gate
sequences, we numerically compute the average gate fi-
delity of our corrected iSWAP and cross-resonance se-
quences at various quasistatic noise amplitudes. For the
iSWAP (Fig. 4a), we find that our corrected gate se-
quence always outperforms the uncorrected gate, at least
in the absence of decohering interactions, with the im-
provement becoming more pronounced at smaller values
of charge noise. We can roughly estimate the impact
of decoherence by noting that, at short times, gate fi-
delity goes as exp

(

−t2/T 2
2

)

. As 1Qfull increases gate
time by a factor of nearly 4 for the iSWAP, the relative
penalty incurred by 1Qfull due to decoherence is then
roughly exp

(

−15t2iSWAP/T
2
2

)

, where tiSWAP is the dura-
tion of the uncorrected iSWAP. This suggests that our
gate sequence still retains its advantage if it is feasible to
realize tiSWAP/T2 . 10−2.
For the cross-resonance CNOT (Fig. 4b), we first inves-

tigate gate performance in the presence of applied control
field amplitude errors with standard deviation σµ = 0.01,
consistent with current experimental capabilities [35],
then we look at the performance of the same gates with-
out any control field error. We find that, in both cases,
2Qecho outperforms all other gate sequences at all levels
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1e-8
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FIG. 4. Average gate infidelities for various amplitudes
of quasistatic charge noise, starting from the noisy doubly-
rotating frame Hamiltonian. Here, we set 2σt = σǫ/100 and
have again chosen ωr = 6GHz, ǫ1 = ǫ2 = 0, 2tc1 = 2tc2 =
7GHz, gAC1 = gAC2 = 40MHz, and gx1 = gx2 = 200MHz.
(a) For the iSWAP, we choose ω1 = ω2 = 5.95GHz, and
plot infidelity of the uncorrected gate Uπ as well as the cor-
rected 1Qfull. (b) For the cross-resonance CNOT, we present
gate fidelities both with (σµ = 0.01) (upper frame) and with-
out control field amplitude noise (lower frame). We choose
ω1 = 5.96GHz, ω2 = 5.94GHz, and Ωx1 = 28.5MHz, which
tunes us to the δη = 0 sweet spot. Here, in addition to

the uncorrected gate U
(1)
π/2 and 1Qfull, we also plot the infi-

delity of 1Qpartial, as well as the infidelity of 2Qecho with
Ωx2 = 15MHz.

of charge noise. As 2Qecho does not require increasing
gate time beyond the addition of relatively short single-
qubit gates, it also incurs no additional penalty due to
decoherence. Meanwhile, 1Qfull and 1Qpartial do offer
substantial fidelity improvements at sufficiently low noise
levels, but no meaningful improvement is offered by ei-
ther at these system parameters for σǫ & 100MHz or
σt & 1MHz. Previous experimental work in Si DQDs
found detuning noise on the order of 200MHz [36], sug-
gesting that 1Qfull and 1Qpartial may offer a substan-
tial advantage with moderate improvements over current
charge noise levels, provided that gate times can be made
sufficiently short relative to T2. Notably, the performance
of 1Qpartial changes considerably when control field er-
rors are present. The addition of realistic control field
amplitude errors introduces δη errors to which 1Qpartial
is sensitive, ultimately resulting in worse performance
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than even the uncorrected gate. However, because we
chose our cross-resonance pulse amplitude to tune the
system to the δη = 0 sweet spot, 1Qpartial actually
outperforms 1Qfull if control field errors are sufficiently
small. Considering also the additional penalty incurred
by 1Qfull due to increased gate time, this demonstrates
the considerable advantage of forgoing 1Qfull for 1Qpar-
tial executed at the sweet spot.

V. CONCLUSION

Our cross-resonance gate, with no requirement that
qubits be brought into resonance, extends long-range 2-
qubit entangling operations to a broader class of quan-
tum dot architectures with a larger range of useful sys-
tem parameters. Our numerical simulations suggest that
our 2Qecho sequence is able to substantially reduce the
sensitivity of our cross-resonance gate to charge noise
with no associated increase in 2-qubit gate time by utiliz-
ing simultaneous, synchronous microwave driving of both
qubits. Our 1Qpartial sequence, meanwhile, is able to re-
duce sensitivity to charge noise without the need for any
drive on the target qubit. However, this comes at the
expense of increased gate times, and the gate must be
generated at a dynamic sweet spot and in the absence

of large control errors to ensure high fidelity. Finally,
our 1Qfull sequence is able to decrease the sensitivity to
charge noise of both our cross-resonance gate and our pre-
viously introduced cavity-mediated iSWAP gates without
requiring simultaneous drive of both qubits or the use of
a dynamic sweet spot. However, this increased resistance
to charge noise and control error comes at the expense of
further-increased gate times and the need to apply mi-
crowave drive to both qubits, though not necessarily si-
multaneously. With our focus on experimentally realistic
parameters, we hope this work will guide efforts to de-
velop solid-state quantum computing technologies. Ad-
ditionally, our dynamic error correction sequences have
the potential to greatly improve robustness to quasistatic
charge noise of both our proposed cross-resonance gate
as well as previously investigated cavity-mediated entan-
gling gates, improving prospects of fault-tolerant entan-
gling operations in solid state quantum processors.
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and apply the unitary U1 to H̃0 to obtain

U †
1H̃0U1 =

∑

i

(

1

2
ωai τ̃

z
i +

1

2
ωzi σ̃

z
i (A2)

+ gxi σ̃
x
i (cos(θi)τ̃

z
i − sin(θi)τ̃

x
i )

)

.

Next, we can eliminate the σ̃xi τ̃
z
i terms by defining

αi = arctan

(

2gxi cos(θi)

ωzi

)

(A3)

ωz
′

i =

√

ωzi
2 + (2gxi cos(θi))

2

U2 =
∏

i

exp(−iαiτ̃
z
i σ̃

y
i /2)

and applying the unitary U2

U †
2U

†
1 H̃0U1U2 =

∑

i

(

1

2
ωai τ̃

z
i +

1

2
ωz

′

i σ̃
z
i (A4)

− gxi sin(θi)σ̃
x
i τ̃

x
i

)

.

Finally, we eliminate the σ̃xi τ̃
x
i terms by defining

β±
i = arctan

(

−2gxi sin(θi)

ωai ± ωz
′

i

)

(A5)

βi =
1

2

(

β+
i + β−

i

)

ωτi ± ωσi =

√

(

ωai ± ωz
′

i

)2
+ (2gxi sin(θi))

2

U3 =
∏

i

exp

(

−
i

2

(

β+
i + β−

i

2
τ̃yi σ̃

x
i +

β+
i − β−

i

2
τ̃xi σ̃

y
i

))

,

and now the transformation U1U2U3 takes us to the
eigenbasis of H̃0.

Now, we define the transformed operators

τki = U1U2U3τ̃
k
i U

†
3U

†
2U

†
1 (A6)

σki = U1U2U3σ̃
k
i U

†
3U

†
2U

†
1 ,

in terms of which the system Hamiltonian becomes

H̃0 = ωra
†a+

∑

i

(

1

2
ωτi τ

z
i +

1

2
ωσi σ

z
i

)

(A7)

H̃I =
∑

i

gACi
(

a† + a
)

di

H̃dr =
∑

i

Ω̃i cos
(

ωdi t
)

di.

Here, di is the transformed electron dipole operator

di = τ̃zi =
1

2

(

cos(θi)
(

cos
(

β+
i

)

+ cos
(

β−
i

))

(A8)

− sin(θi) sin(αi)
(

sin
(

β+
i

)

− sin
(

β−
i

)))

τzi

+
1

2

(

cos(θi)
(

cos
(

β+
i

)

− cos
(

β−
i

))

− sin(θi) sin(αi)
(

sin
(

β+
i

)

+ sin
(

β−
i

)))

σzi

−
1

2

(

cos(θi)
(

sin
(

β+
i

)

+ sin
(

β−
i

))

+ sin(θi) sin(αi)
(

cos
(

β+
i

)

− cos
(

β−
i

)))

σxi τ
x
i

+
1

2

(

cos(θi)
(

sin
(

β+
i

)

− sin
(

β−
i

))

+ sin(θi) sin(αi)
(

cos
(

β+
i

)

+ cos
(

β−
i

)))

σyi τ
y
i

− sin(θi) cos(αi) cos(βi)τ
x
i

− sin(θi) cos(αi) sin(βi)σ
x
i τ

z
i .

For the special case ǫi = 0, this takes on the much sim-
pler form di = − cos(βi)τ

x
i − sin(βi)σ

x
i τ

z
i . We can fur-

ther partition the drive Hamiltonian into terms which are
block diagonal and block off-diagonal with respect to the
〈τzi 〉 = ±1 subspaces:

H̃d
dr =

∑

i

Ω̃i cos
(

ωdi t
)

ddi (A9)

H̃od
dr =

∑

i

Ω̃i cos
(

ωdi t
)

dodi

where we define

ddi =
1

2

(

cos(θi)
(

cos
(

β+
i

)

+ cos
(

β−
i

))

(A10)

− sin(θi) sin(αi)
(

sin
(

β+
i

)

− sin
(

β−
i

)))

τzi

+
1

2

(

cos(θi)
(

cos
(

β+
i

)

− cos
(

β−
i

))

− sin(θi) sin(αi)
(

sin
(

β+
i

)

+ sin
(

β−
i

)))

σzi

− sin(θi) cos(αi) sin(βi)σ
x
i τ

z
i

dodi =−
1

2

(

cos(θi)
(

sin
(

β+
i

)

+ sin
(

β−
i

))

+ sin(θi) sin(αi)
(

cos
(

β+
i

)

− cos
(

β−
i

)))

σxi τ
x
i

+
1

2

(

cos(θi)
(

sin
(

β+
i

)

− sin
(

β−
i

))

+ sin(θi) sin(αi)
(

cos
(

β+
i

)

+ cos
(

β−
i

)))

σyi τ
y
i

− sin(θi) cos(αi) cos(βi)τ
x
i .

Now, we assume |ωτi − ωr|, |ωr − ωσi |, |ωr − (ωτi − ωσi )| ≫

gACi and
∣

∣ωdi − ωτi
∣

∣,
∣

∣ωdi − (ωτi − ωσi )
∣

∣ ≫ Ω̃i so that we
can use a time-dependent perturbative Schrieffer-Wolff
transformation S(t) to eliminate to leading order cou-
pling between the DQDs and the resonator and block
off-diagonal terms coupling the 〈τzi 〉 = ±1 subspaces
[28, 29, 37]. Here, unlike in Ref. [29], the drive frequen-
cies ωdi are of the same order as the resonator frequency
ωr and DQD frequencies ωτi and ωσi . Consequently, we
make the a priori assumption that time derivatives of
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the Schrieffer-Wolff generator Ṡ ∼ ωdi S are of the same order as the generator itself. We expand the transformed
Hamiltonian

eSH̃e−S − ieS
de−S

dt
≈ H̃0 + H̃I + H̃dr + iṠ +

[

S, H̃0 + H̃I + H̃dr

]

+
1

2

[

S, iṠ +
[

S, H̃0

]]

(A11)

= H̃0 + H̃d
dr +

(

H̃I + H̃od
dr + iṠ +

[

S, H̃0

])

+
[

S, H̃d
dr

]

+
[

S, H̃I + H̃od
dr

]

+
1

2

[

S, iṠ +
[

S, H̃0

]]

= H̃0 + H̃d
dr +

[

S, H̃d
dr

]

+
1

2

[

S, H̃I + H̃od
dr

]

,

where in the final line we’ve eliminated the leading-order
DQD-resonator coupling and block off-diagonal drive

terms using iṠ +
[

S, H̃0

]

+ H̃I + H̃od
dr = 0. This de-

termines S(t)

S(t) =
∑

i

gACi

[

1

2ωr

(

cos(θi)
(

cos
(

β+
i

)

+ cos
(

β−
i

))

− sin(θi) sin(αi)
(

sin
(

β+
i

)

− sin
(

β−
i

)))

(a† − a)τzi (A12)

+
1

2ωr

(

cos(θi)
(

cos
(

β+
i

)

− cos
(

β−
i

))

− sin(θi) sin(αi)
(

sin
(

β+
i

)

+ sin
(

β−
i

)))

(a† − a)σzi

−
(

sin(θi) sin(αi) cos
(

β+
i

)

+ cos(θi) sin
(

β+
i

))

(

a†τ+i σ
+
i − aτ−i σ

−
i

ωr + ωτi + ωσi
+
a†τ−i σ

−
i − aτ+i σ

+
i

ωr − ωτi − ωσi

)

+
(

sin(θi) sin(αi) cos
(

β−
i

)

− cos(θi) sin
(

β−
i

))

(

a†τ+i σ
−
i − aτ−i σ

+
i

ωr + ωτi − ωσi
+
a†τ−i σ

+
i − aτ+i σ

−
i

ωr − ωτi + ωσi

)

− sin(θi) cos(αi) cos(βi)

(

a†τ+i − aτ−i
ωr + ωτi

+
aτ+i − a†τ−i
ωτi − ωr

)

− sin(θi) cos(αi) sin(βi)τ
z
i

(

a†σ+
i − aσ−

i

ωr + ωσi
+
aσ+

i − a†σ−
i

ωσi − ωr

)]

+
∑

i

Ω̃i
2

[

−
(

sin(θi) sin(αi) cos
(

β+
i

)

+ cos(θi) sin
(

β+
i

))

(

eiω
d
i tτ+i σ

+
i − e−iω

d
i tτ−i σ

−
i

ωdi + ωτi + ωσi
+
eiω

d
i tτ−i σ

−
i − e−iω

d
i tτ+i σ

+
i

ωdi − ωτi − ωσi

)

+
(

sin(θi) sin(αi) cos
(

β−
i

)

− cos(θi) sin
(

β−
i

))

(

eiω
d
i tτ+i σ

−
i − e−iω

d
i tτ−i σ

+
i

ωdi + ωτi − ωσi
+
eiω

d
i tτ−i σ

+
i − e−iω

d
i tτ+i σ

−
i

ωdi − ωτi + ωσi

)

− sin(θi) cos(αi) cos(βi)

(

eiω
d
i tτ+i − e−iω

d
i tτ−i

ωdi + ωτi
+
eiω

d
i tτ−i − e−iω

d
i tτ+i

ωdi − ωτi

)

]

.

With all resonator couplings removed to leading order,
we now assume

∣

∣ωr − ωdi
∣

∣ ≫ Ω̃i so that the microwave
drives will not excite the resonator mode, and we take the
empty cavity limit by projecting onto the

〈

a†a
〉

= 0 sub-
space. Additionally, as we have removed leading-order
coupling to higher-energy DQD states, we further project
onto the 〈τzi 〉 = −1 subspace. Now, if we diagonalize
static single-qubit terms and neglect terms higher than
fourth order in gxi , g

AC
i , or Ω̃i, we arrive at an effective

Hamiltonian describing the low-energy dynamics of the

DQD systems

H =
∑

i

(

1

2
ωiσ

z
i + cos

(

ωdi t
)

(Ωzi σ
z
i +Ωxi σ

x
i ) (A13)

+ cos
(

2ωdi t
)

(ξzi σ
z
i + ξxi σ

x
i ) + sin

(

2ωdi t
)

ξyi σ
y
i

)

−
∑

i

∑

j<i

Jijσ
x
i σ

x
j ,

where we’ve defined
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ωi = ωσi − 2ωσi

(

gACi
)2

ω2
r − (ωσi )

2 (sin(θi) cos(αi) sin(βi))
2

(A14)

+

(

(

gACi
)2

ωr + ωτi + ωσi
−
ωτi + ωσi

2

Ω̃2
i

(

ωdi
)2

− (ωτi + ωσi )
2

)

(

cos(θi) sin
(

β+
i

)

+ sin(θi) sin(αi) cos
(

β+
i

))2

+

(

ωτi − ωσi
2

Ω̃2
i

(

ωdi
)2

− (ωτi − ωσi )
2
−

(

gACi
)2

ωr + ωτi − ωσi

)

(

cos(θi) sin
(

β−
i

)

− sin(θi) sin(αi) cos
(

β−
i

))2

+
gACi
ωr

(

cos(θi)
(

cos
(

β+
i

)

− cos
(

β−
i

))

− sin(θi) sin(αi)
(

sin
(

β+
i

)

+ sin
(

β−
i

)))

×
∑

j

gACj
(

cos(θj)
(

cos
(

β+
j

)

+ cos
(

β−
j

))

− sin(θj) sin(αj)
(

sin
(

β+
j

)

− sin
(

β−
j

)))

Ωxi = sin(θi) cos(αi) sin(βi)Ω̃i

Ωzi =
1

2

(

cos(θi)
(

cos
(

β+
i

)

− cos
(

β−
i

))

− sin(θi) sin(αi)
(

sin
(

β+
i

)

+ sin
(

β−
i

)))

Ω̃i

ξxi =
Ω̃2
i

4
sin(θi) cos(αi) cos(βi)

(

(

sin(θi) sin(αi) cos
(

β+
i

)

+ cos(θi) sin
(

β+
i

))

(

ωτi + ωσi
(

ωdi
)2

− (ωτi + ωσi )
2
+

ωτi
(

ωdi
)2

− (ωτi )
2

)

−
(

sin(θi) sin(αi) cos
(

β−
i

)

− cos(θi) sin
(

β−
i

))

(

ωτi − ωσi
(

ωdi
)2

− (ωτi − ωσi )
2
+

ωτi
(

ωdi
)2

− (ωτi )
2

)

)

ξyi =
Ω̃2
i

4
sin(θi) cos(αi) cos(βi)

(

(

sin(θi) sin(αi) cos
(

β+
i

)

+ cos(θi) sin
(

β+
i

))

(

ωdi
(

ωdi
)2

− (ωτi + ωσi )
2
−

ωdi
(

ωdi
)2

− (ωτi )
2

)

+
(

sin(θi) sin(αi) cos
(

β−
i

)

− cos(θi) sin
(

β−
i

))

(

ωdi
(

ωdi
)2

− (ωτi − ωσi )
2
−

ωdi
(

ωdi
)2

− (ωτi )
2

)

)

ξzi =
Ω̃2
i

4

(

−
(

sin(θi) sin(αi) cos
(

β+
i

)

+ cos(θi) sin
(

β+
i

))2 ωτi + ωσi
(

ωdi
)2

− (ωτi + ωσi )
2

+
(

sin(θi) sin(αi) cos
(

β−
i

)

− cos(θi) sin
(

β−
i

))2 ωτi − ωσi
(

ωdi
)2

− (ωτi − ωσi )
2

)

Jij = ωrg
AC
i gACj sin(θi) cos(αi) sin(βi) sin(θj) cos(αj) sin(βj)

(

1

ω2
r − (ωσi )

2 +
1

ω2
r −

(

ωσj
)2

)

.

In the ǫi = 0 case, this reduces to

ωi = ωσi − 2ωσi sin
2(βi)

(

gACi
)2

ω2
r − (ωσi )

2 (A15)

Ωxi = sin(βi)Ω̃i

Ωzi = ξxi = ξyi = ξzi = 0

Jij = ωrg
AC
i gACj sin(βi) sin(βj)

×

(

1

ω2
r − (ωσi )

2 +
1

ω2
r −

(

ωσj
)2

)

.

Appendix B: Higher-order charge noise sensitivity

In the main text, we discuss first-order sensitivity of ef-
fective Hamiltonian parameters to the bare Hamiltonian
parameters affected by charge noise, ǫi and tci. How-
ever, as we consider only systems operating at the charge
degeneracy sweet spot (ǫi = 0), all effective Hamiltoni-
ans parameters are actually insensitive to changes in the
ǫi to first order. For completeness, we discuss here the
second-order sensitivity of effective Hamiltonian parame-
ters to errors in the ǫi. Much like the shifts in the tunnel-
ing constants, we find that for the cross-resonance gate,
the leading-order effect of shifts in the DQD detunings
most significantly impacts η and ω2, with a considerably
smaller effect on other system parameters (Fig. 5a). Sim-
ilarly for the iSWAP, we find that the most significant
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FIG. 5. Second-order sensitivity to DQD detunings
(

∂2x = 1
2

∑

i

∣

∣

∣

∂2x
∂ǫ2

i

∣

∣

∣

)

of various system parameters at the

charge degeneracy sweet spot (ǫ1 = ǫ2 = 0) with ωr = 6GHz,
tc1 = tc2 = tc, gAC1 = gAC2 = 40MHz, and gx1 =
gx2 = 200MHz (a) for a cross-resonance CNOT with ω1 =
5.96GHz, ω2 = 5.94GHz, and Ωx1 = 20MHz. (b) for a reso-
nant iSWAP with ω1 = ω2 = 5.95GHz.

impact of shifts in the DQD detunings is shifts in ω1 and
ω2, with much smaller effect on J (Fig. 5b).


