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Optical control protocols for high-fidelity spin rotations of single SiV− and SnV−

centers in diamond

Evangelia Takou and Sophia E. Economou
Department of Physics, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, USA

Silicon-vacancy and tin-vacancy defects in diamond are of interest as alternative qubits to the NV
center due to their superior optical properties. While the availability of optical transitions in these
defects is one of their assets, high-fidelity optical coherent control has not been demonstrated. Here,
we design novel optical control schemes tailored to these defects. We evaluate the performance of
arbitrary single-qubit rotations of the electron spin qubit both in the absence and presence of an
external magnetic field, by taking into account both coherent and incoherent errors. We find that
rotations in excess of 98.0% (T = 4 K) and 99.71% (T = 6 K) can be achieved for Si-V and Sn-V
respectively in the presence of realistic relaxation and leakage errors.

I. INTRODUCTION

Over the past decades, color centers in diamond have
been investigated for their potential use as the hardware
for solid-state quantum processing applications. The
most well-known defect in a diamond host is the NV cen-
ter. Its most prominent features are the long coherence
times of the NV electron spin [1] and the room temper-
ature operation [2, 3]. Practical experimental demon-
strations regarding the NV center involve readout [4–7],
initialization [8, 9], entanglement generation schemes, as
well as control of the surrounding nuclear bath [10, 11].
However, the optical control usually relies on the appli-
cation of external perturbations such as strain/electric
or magnetic fields, to lift the ground state degeneracy,
or allow for spin-flipping transitions [12, 13]. In addi-
tion, NV centers have poor optical properties, with large
phonon sideband and low probability of emission in the
zero phonon line (ZPL). While this can be boosted us-
ing coupling to cavities and waveguides [14], the low ZPL
emission still limits the performance of entanglement gen-
eration schemes. Moreover, the sensitivity of NV centers
to charge noise introduces spectral diffusion to optical
transitions [15].

As a result, alternative defects are explored in diamond
for quantum information applications. Two that stand
out are the negatively charged silicon vacancy (SiV−)
[16–24] in diamond and the newly emerging tin vacancy
(SnV−) color centers [25–30]. These spin S = 1/2
systems, have excellent optical properties, such as nar-
row linewidths of the ZPL transition which comprises
70 − 80% of the emitted light [31], small phonon side-
bands, and spectral stability [32, 33]. They belong to
the D3d point group [16] and display inversion symme-
try, which renders them robust to charge fluctuations,
since, unlike the NV, they lack permanent electric dipole
moment to first order [34]. Consequently, they are ex-
cellent indistinguishable single photon sources [35, 36],
and they are immune to noise emerging from integra-
tion into photonic devices [37]. Furthermore, due to the
large ground state splitting of the SnV− defect [25, 38],
no spin mixing is observed in the presence of external
magnetic fields [25], which can lead to improved opti-

cal control. In addition, nuclear spin control has been
achieved for SiV− in nano-waveguides [39, 40]. Initial-
ization and readout of the SiV− have also been demon-
strated in [41, 42], while coherent control and single qubit
rotations have been shown in [43–47]. In [46], the con-
trol of the electronic spin is achieved using MW pulses,
resulting in slower rotations. This approach also requires
microwave frequency generators and amplifiers, thus in-
creasing the experimental demands. In [45], full SU(2)
spin rotations were demonstrated via Ramsey interfer-
ence generated by two temporally separated pulses. Each
of these pulses originated from a single broadband laser
that addressed both transitions of a Λ-system. To avoid
driving unwanted transitions, a far off-resonant Raman
pulse was used, which restricted the achievable rotation
angles due to limitation of the laser power and did not
mitigate entirely the decoherence due to the excitation of
an unwanted excited state. Moreover, the fidelity of the
rotations was not quantified nor were the error mecha-
nisms investigated in detail.

So far, the theoretical models of optical control usu-
ally involve approximations under which the off-resonant
transitions are ignored. This is a good approximation for
longer gate durations, i.e., narrowband pulses. For faster
pulses, which are needed in these systems to ensure the
control takes place well within the optical coherence and
relaxation times, such off-resonant transitions cannot be
ignored. Another issue typically present in defect systems
is orbital mixing of the states caused by the Jahn-Teller
effect or crystal strain. In the case of Λ-system schemes,
each transition dipole couples to both driving fields, lead-
ing to additional errors during the optical control. Thus,
these error mechanisms present in many defects give rise
to the need for high-fidelity control techniques tailored
to these systems.

In this paper, we address the aforementioned chal-
lenges by developing all-optical control protocols for the
SiV− and SnV− color centers in diamond. We start
by demonstrating that existing approaches, in particu-
lar coherent population trapping, do not suffice for high-
fidelity gates. We show how to eliminate cross-talk errors
and reduce the number of unwanted leakage transitions
by appropriately selecting the polarization of the lasers.
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We further optimize the gates by analyzing the full dy-
namics of the systems, and we identify the coherent errors
as well as incoherent errors that arise due to unwanted
excitations of the multi-level electronic structures. We
resolve the leakage through two corrective methods, one
available in the literature and one developed here, that
allow for faster implementation of the rotations without
compromising the gate fidelity.

This paper is organized as follows. In Sec. II we de-
scribe the two main sources of errors of the optical con-
trol; the cross-talk and leakage. In Sec. III, we discuss
the cross-talk issue and provide an effective and simple
solution based on polarization schemes. In Sec. IV we
analyze two approaches for leakage mitigation. Finally,
in Secs. V and VI we apply our protocols to the SiV−

and SnV− defects, respectively, and quantify the fidelity
for various rotations angles and pulse durations.

II. OVERVIEW OF THE PROBLEM AND
ERROR MECHANISMS

A well-known technique that provides fast all-optical
control of Λ-systems is coherent population trapping
(CPT). In CPT, the two transitions of a Λ-system are
driven with two laser fields E1 and E2, each acting on
a distinct transition, as shown in Fig. 1(a), which sat-
isfy the two-photon resonance condition. CPT is based
on the destructive interference of the quantum processes
driven by the different fields, which leads to trapping
of the population into a dark state. In this so-called
dark-bright frame, the dark state is completely decoupled
from the dynamics of the other two levels in the system
[Fig. 1(b)]. The transformation to the dark-bright frame
defines the rotation axis of the qubit; by combining CPT
with hyperbolic secant pulses, we can design arbitrary
single-qubit rotations, as explained in Appendix A and
in Refs. [48, 49].

In an ideal CPT scheme, the distinct couplings can be
satisfied by either energy separation of the ground states,
or polarization selection rules that ensure each transition
is accessed by a single laser. However, energy separa-
tion alone does not guarantee negligible cross-talk errors
for all gate durations, and the approximation of distin-
guishable couplings breaks down for broadband pulses.
Unfortunately, the two transition dipoles are not orthog-
onal for the SiV− and the SnV− systems, leading to the
cross-talk (dashed arrows) shown in Fig. 1(c). The source
of the cross-talk and our solution to this problem will be
explained in Sec. III. For now, we stress that this setting
is unavoidable if each laser field is chosen according to the
polarization selection rules, i.e., such that its coupling to
one of the two Λ-transitions is maximized. Henceforth,
we refer to this approach as “naive”.

In addition to the cross-talk, each laser field removes
population from the Λ-subspace inducing thus leakage
errors to the control. As an example, we show the leakage
transitions of the SiV− system in Fig. 1(e), which occur

with an off-resonant energy cost δes. In the dark-bright
frame, these errors translate into couplings between the
dark/bright states and the unwanted excited level, |C〉
[Fig. 1(f)].

In the following sections, we propose schemes to resolve
the cross-talk by polarization tuning of the lasers, as well
as to counteract the leakage errors via pulse modulation.
These protocols are analyzed in Sec. III and Sec. IV re-
spectively. The readers who are more interested in the
numerical results could directly proceed with Sec. V (for
the SiV−) and Sec. VI (for the SnV−).
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FIG. 1. Summary of the error mechanisms for the SiV− sys-
tem. (a) Ideal CPT scheme performed with two fields E1 and
E2 acting on distinct transitions. The ground state splitting
is denoted as δgs. (b) Transformation to the dark-bright basis
for the case of (a) successfully decouples the dark state |d〉 and
transitions are driven between the bright |b〉 and excited state
|A〉. The effective Rabi frequency is expressed in terms of the

Rabi frequencies in the lab frame, i.e. Ωeff =
√
|Ω1|2 + |Ω2|2.

(c) Cross-talk within the Λ-system leads to off-resonant er-
rors (dashed green and blue arrows), that oscillate with an
additional energy shift, δgs. (d) In the presence of cross-talk
couplings as shown in (c), the dark state is not completely
decoupled. (e) Both laser fields drive the leakage transitions
C1 and C4, introducing errors to the optical control. δes is
the excited states splitting. (f) In addition to the cross-talk
shown in (d), each laser drives the |b〉 ↔ |C〉 and |d〉 ↔ |C〉
transitions in the db-frame.
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III. ADDRESSING CROSS-TALK ERRORS

One advantage of SiV− and SnV− defects is that Λ-
schemes can be realized even at zero-magnetic fields,
which simplifies the dynamics and facilitates experimen-
tal implementations of optical control. In Fig. 2 we show
the electronic structure for the SiV− and SnV− at zero
magnetic fields; each ground- and excited-state manifold
is pairwise degenerate. We follow the literature conven-
tion of labeling the ground states as |1〉 − |4〉, and the
excited states as |A〉 − |D〉 (for more precise labeling we
use the eigenstates of the spin-orbit coupling, |e±〉, for
the orbital part of the states).

Based on group theory, the allowed optical transitions
can be accessed by either linear z-polarization, which
drives transitions between orbital states with the same
symmetry, or by circular polarization, which drives tran-
sitions between the states |eg,±〉 ↔ |eu,∓〉 [16]. However,
a small orbital mixing of the states caused by the Jahn-
Teller effect [16] (or by crystal strain) introduces non-zero
z-dipoles (x, y dipoles) to the transitions mainly accessed
by σ± (z) polarization. Consequently, the choice of po-
larizations as dictated by selection rules would give rise
to a cross-talk, i.e. coupling of each laser field to both
Λ-transitions. In such a setting, the dark state is not
completely decoupled from the dynamics, as shown in
Fig. 1(d).
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FIG. 2. Electronic structure for the negatively silicon vacancy
(SiV−) (a), and for the negatively charged tin vacancy (SnV−)
in diamond (b), for zero magnetic fields. We label the states
using the eigenstates of the spin-orbit coupling (i.e. |e±〉)
which is the largest perturbation term, but in the text, we
use the notation |1〉 − |4〉 for the ground states and |A〉 − |D〉
for the excited states.

The contribution of the off-resonant cross-talk is quan-
tified by the ground state splitting of the qubit states.
For the SnV− system, the errors average out more effi-

ciently due to its large ground-state splitting (δSnV−

gs =

825 GHz). These errors however are not negligible for

SiV− (for which δSiV−

gs = 50 GHz). Nevertheless, when
broadband pulses are considered, the cross-talk becomes
the central source of infidelity for both defects since off-
resonant transitions are more strongly coupled.

We propose a simple cross-talk elimination scheme that
is achieved by tuning the laser field polarizations. We
consider as an example the SiV− system and express the
direction and polarization of the laser fields in the defect
coordinate frame. In an experimental setup, most dia-
mond samples are cut with [0 0 1] as the surface normal.
Thus, the polarization directions that we express in the
internal coordinate frame would require a non-zero angle
of incidence on the sample.

We assume two lasers of xz-polarization and y-
propagation, where the former drives the A1 transition
and the latter the A4 transition. To fix the orthogonal-
ity of each laser with one of the Λ-transitions, we require
that its polarization is orthogonal to the corresponding
dipole, dij . In this particular case of Λ-system, we re-
quire dA1 ·E2 = 0 and dA4 ·E1 = 0, from which we find
that the electric fields need to be defined as:

E1 = E01

(
x̂− 〈px〉A4

〈pz〉A4
ẑ

)
ei(k1y−ω1t) + cc., (1)

E2 = E02

(
x̂− 〈px〉A1

〈pz〉A1
ẑ

)
ei(k2y−ω2t) + cc.. (2)

Here 〈pk〉ij = 〈ψi|pk|ψj〉 (with k ∈ {x, y, z}) is the tran-
sition dipole overlap that can be calculated according to
group theory. The polarizations of the lasers that satisfy
the orthogonality conditions are not unique; we choose to
restrict the polarization vectors in the xz plane, in which
case the polarizations are uniquely determined. The def-
initions of Eq. (1) and Eq. (2) can be generalized easily
to other choices of Λ-systems or other polarization direc-
tions. For the SnV− system, we chose yz-polarization
instead, and the reasons for this choice are explained in
Sec. VI A and in Appendix C.

Throughout the paper, we combine the sech-based
CPT scheme with E-field polarizations that satisfy the
orthogonality conditions to design arbitrary gates free
from cross-talk errors.

IV. CORRECTIVE METHODS FOR LEAKAGE
SUPPRESSION

A. General strategy of Magnus expansion

As we mentioned in Sec. III, we resolve the cross-talk
issue of the Λ-system by redefining the polarization of
the laser fields. However, leakage errors reduce the gate
fidelity of fast optical control schemes. To counteract
this problem, we use a Magnus-based expansion approach
developed in Ref. [50]. Here we outline the basic steps
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of the method, and we provide further details about the
procedure we follow in Appendix F.

Let us consider a generic Hamiltonian H(t) given by:

H(t) = H0(t) + εV (t), (3)

where H0(t) implements our analytically solvable target
gate, and V (t) introduces an error to the dynamics gen-
erated by H0(t). The error term is assumed to be per-
turbative, as it contains off-resonant terms, oscillating
faster than H0. To mitigate these errors, we additionally
consider a control Hamiltonian W (t), such that the total
Hamiltonian is modified into

H̄(t) = H0(t) + εV (t) +W (t). (4)

Further, the control Hamiltonian is expanded in a power
series according to:

W (t) =

∞∑
k=0

εkW (k)(t). (5)

By going into the interaction picture of H0(t), the Hamil-
tonian transforms into H̄I(t) = εVI(t) + WI(t), and the
total evolution operator becomes

U(t) = U0(t)UI(t), (6)

where U0 is the ideal gate, and UI(t) is generated by the
error and control Hamiltonian. The implementation of
the ideal gate is achieved if UI(T ) = 1 (where T is the
gate time), such that U(T ) = U0(T ), based on Eq. (6).
To this end, the evolution operator UI(t) is expanded
in a Magnus series, and as was shown in Ref. [50], the
solutions for the control are obtained iteratively via the
equation:

εn
∫ T

0

dt′W
(n)
I (t′) = −i

n∑
k=1

Ω
(n−1)
k (T ), (7)

where Ωk is the k-th Magnus expansion order. In this
work, we focus on first order corrections, i.e. we truncate
the Magnus series to the first order, which leads to the
equation:

ε

∫ T

0

dtVI(t) = −
∫ T

0

dtW
(1)
I (t). (8)

Equation (8) can be reformulated into a linear system of
equations via the decomposition of the error and control
part into an operator basis, which enables to rewrite it
as [50]:

Bx(1) = y(1), (9)

where B is a matrix that encodes the dynamics of H0,
y(1) are the error terms, and x(1), is a vector that contains
the solutions to the first order of control expansion.

An essential requirement of the Magnus scheme is that
the control Hamiltonian is decomposed into at least the
same operators as the errors, in the final interaction
frame of H0. However, it is not a strict requirement that
the control pulse has access to all error transitions in
the initial frame. For both defect systems, the leakage
transitions that remove the population outside of the Λ-
subspace correspond to the C transitions. To cancel out
the leakage in both cases, we need to modify only one of
the original sech pulses that drive the Λ-transitions.

As we already mentioned, the control Hamiltonian is
expanded in a power series. In our case, we consider the
total envelope:

g(n)(t) = g
(n)
1 (t) cos(ωdt) + g

(n)
2 (t) sin(ωdt), (10)

composed of two π/2-shifted envelopes g
(n)
l (t), which are

expanded in Fourier series. In particular, we use only the

cosine terms with g
(n)
l (t) given by:

g
(n)
l (t) =

∑
k

c
(n)
l,k

(
1− cos

(
2πtk

T

))
, (11)

where n denotes the Magnus expansion order and k de-
notes the Fourier expansion order. We have also fixed

g
(n)
l (0) = g

(n)
l (T ) = 0 such that the corrective pulse is

zero at the beginning and end of the evolution. The con-
trol Hamiltonian includes the couplings of the modified
laser field to the transitions with which it has non-zero
overlaps, with corrective envelopes given by Eq. (10) and
Eq. (11). The expression of W (t) for the SiV− and SnV−

systems can be found in Appendix F. Throughout this
paper, we always truncate the Magnus expansion to the
first order, i.e. we set n = 1.

The driving frequency of the control ωd is another free
parameter that can be tuned to lead to the most effec-
tive leakage cancellation. Nonetheless, introducing and
modifying a new laser field is more challenging experi-
mentally. To that end, we restrict the control pulse to
have the same frequency with the original pulse that we
modulate.

B. DRAG framework

An alternative route to leakage suppression is based
on the adiabatic removal of errors, which we analyze in
this subsection. The DRAG technique is a widely known
method, extensively used for correcting leakage errors in
superconducting qubits [51–53]. Based on the DRAG
formalism, analytically derived controls are obtained via
a time-dependent Schrieffer-Wolff transformation. The
generator of the transformation is A(t) = e−iS(t), where
S(t) is a Hermitian operator, and leads to the effective
DRAG Hamiltonian

HD = A†HdbA+ iȦ†A. (12)
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The dark-bright frame Hamiltonian is given by:

Hdb = (Ωefff(t)σbe + H.c.)−∆σee, (13)

where ∆ is the two-photon detuning and f(t) =
sech(σ(t−t0)). Also, |b〉 is the bright state and |e〉 the ex-
cited state. By requiring that the frame transformation
vanishes at the boundaries (i.e. A(0) = A(T ) = 1), the
target evolution in the initial (in this case, dark-bright)
and DRAG frames remains the same at the end of the
pulse. To reduce the leakage errors, one needs to find an
appropriate adiabatic transformation, S(t) that respects
the boundary conditions. Besides this restriction, S(t)
can be an arbitrary Hermitian operator, which allows for
the suppression of leakage errors.

The original DRAG scheme is designed to cancel out
leakage errors of a ladder-type system (e.g. transmon),
which are caused by transitions between consecutive lev-
els. In our work, we extend this formalism to a Λ-system.
This is qualitatively different, since in our case the pop-
ulation is removed from the system via transitions that
link the ground (qubit) states to an unwanted excited
level. Moreover, the complexity is increased, since each
leakage transition is driven by both laser fields used for
the CPT control.

In the DRAG framework, HD has to be constrained in
a way that it implements an ideal evolution dictated by a
target Hamiltonian. In our case, the target Hamiltonian
as defined in the CPT frame has the form:

Htarget =
h

(0)
x (t)

2
σx,be + h(0)

z (σbb − σee), (14)

where |d〉 (|b〉) is the dark (bright) state, |e〉 is the ex-

cited state of the Λ-system (|e〉 = |A〉), and h
(0)
z is the

two-photon detuning. Also, we have defined σx,ij =
|i〉〈j|+ |j〉〈i| and σy,ij = −i(|i〉〈j|− |j〉〈i|). At this point,
we should emphasize that our treatment is different from
Ref. [51], where the leakage-robust gates are designed
according to a target qubit-Hamiltonian in the rotating
frame. Instead, to reduce the leakage errors from the
qubit subspace (|d〉, |b〉), we formulate an indirect treat-
ment which involves the bright-excited subspace.

Based on the target Hamiltonian of Eq. (14), our target
constraints are:

h(n)
x = Tr[H

(n)
D σx,bA], (15)

h(n)
y = Tr[H

(n)
D σy,bA] = 0, (16)

h(n)
z = Tr[H

(n)
D (σbb − σAA)]. (17)

The zero-th order target constraints ensure that H
(0)
D =

Htarget. To satisfy the decoupling of the Λ-system from
the |C〉 leakage subspace we require the following decou-
pling constraints, with k ∈ {x, y}:

Tr[H
(n)
D σk,dC] = 0, (18)

Tr[H
(n)
D σk,bC] = 0, (19)

Tr[H
(n)
D σk,AC] = 0, (20)

as well as:

Tr[H
(n)
D σk,dA] = 0, (21)

which ensures that in the DRAG frame there is no tran-
sition between the dark and excited states. Intuitively,

for any order of H
(n)
D with n ≥ 0, the elements of the

DRAG Hamiltonian that do not correspond to the tar-
get subspace should be zero. To obtain the n-th order
DRAG Hamiltonian, we expand both S(t) and Hdb in
power series. The appropriate pulse modifications to the
initial fields are obtained by satisfying the constraints
consistently. In the particular case of Rx(π) rotations
(where the two-photon detuning is zero), the modulation
of one laser vanishes, which in terms of experimental re-
quirements matches the Magnus scheme. More details
about the analytic derivation of the corrective envelopes
are provided in Appendix G.

V. CONTROL OF SIV− SYSTEM

A. Zero magnetic fields

We begin by testing our protocols for the SiV− sys-
tem at B = 0 T. The bright transitions at zero magnetic
fields are the A1, C1, B2, D2, B3, D3, A4 and C4 tran-
sitions. We consider the Λ-system formed by the states
|1〉, |4〉 and |A〉 shown in Fig. 3(b). By choosing the |A〉
state to be the excited state of our Λ-system, we avoid
downward orbital relaxations (which are more likely than
the upward ones) that are present in the higher excited
manifold.
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FIG. 3. The selection rules-based E-field polarizations of (a)
lead to cross-talk and four leakage transitions shown in (b).
(c,d) The redefined polarizations in the xz-plane can eliminate
the cross-talk of (b).
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FIG. 4. Optical control of SiV− at B = 0: Infidelity of Rx(φ) (a), and optimal gate time (b), corresponding to four different
protocols. The pulse envelopes for Rx(−π) rotations are shown in (c), (d), (e), (f) and the pulse envelopes for Rx(−π/2) are
depicted in (g), (h), (i), (j). Gray: naive, red: orthogonal, purple: Magnus and blue: DRAG.

We assume no initialization errors and a temperature
of T = 4 K. At this temperature according to Ref. [41],
the spin relaxation time is T1,spin = 2.4 ms, the orbital
relaxation is T1,orbit = 38 ns, and the dephasing time
T ∗2 = 35 ns. We also set the optical lifetime to be τ =
4.5 ns [45].

We start from the simplest approach of controlling the
electronic spin, which we refer to as naive, and is simply
based on the CPT control of an ideal Lambda system.
It utilizes two laser fields according to the polarization
selection rules; in this setup the A1 transition is driven
by z-polarized light, and the A4 transition by circularly
polarized light [see Figs. 3(a), (b)]. Notice that we define
the polarizations in the defect coordinate frame. This
choice of polarizations is far from optimal, since it intro-
duces many off-resonant errors. In particular, in Fig. 3(b)
we show all the possible transitions driven by the naive
laser fields. The main error is the cross-talk within the
Λ-system, as this involves a transition that is detuned by
only δgs = 50 GHz, which is the ground state splitting.
Each laser field additionally drives the transitions C1 and
C4 (off-resonantly by δes = 260 GHz), introducing leak-
age outside of the Λ-subspace.

In the naive approach, the leakage issue can be par-
tially resolved by considering more narrowband pulses.
Nevertheless, the relaxation mechanisms for longer pulses
are detrimental to the optical control of the SiV−, lead-
ing to enhanced gate errors. In Fig. 4(a), we show (gray

curve) the infidelity of arbitrary rotations, Rx(φ), and
in Fig. 4(b) the optimal gate time. The naive approach
is the slowest of all our proposed protocols, since it bal-
ances the trade-off between leakage and cross-talk errors
with relaxation-induced effects. The sech pulses for the
optimal implementation of Rx(−π) and Rx(−π/2) by the
naive approach, are shown in the panels of Fig. 4(c) and
Fig. 4(g) respectively.

As mentioned in Sec. III, the cross-talk can be com-
pletely eliminated by redefining the polarization of the
two driving fields. In particular, we choose the polariza-
tion vectors to be in the xz-plane as shown in Fig. 3(c).
We refer to this approach as orthogonal, shown with
the red curve in Fig. 4. This protocol allows us to use
more broadband pulses (still well-protected from leak-
age errors), while simultaneously reducing the effect of
relaxations. Consequently, the pulses in the orthogonal
scheme can be up to four times faster compared to the
naive approach [see Fig. 4(b)], and the rotations display
lower infidelity [see Fig. 4(a)]. In Fig. 4(d) and Fig. 4(h)
we show the pulse envelopes of the orthogonal method for
the optimal implementation of Rx(−π) and Rx(−π/2)
rotations, respectively.

The orthogonal approach sets the upper bound to the
gate fidelities in the absence of additional pulse shaping.
However, the optimal gate time of this method still lies
within the regime where relaxation errors have non-zero
contribution. It is also apparent that by reducing the
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gate time, the leakage errors gradually become more im-
portant. To mitigate the unwanted couplings to the up-
per excited manifold we use the corrective techniques we
described in Sec. IV, and combine them with the orthog-
onal scheme to avoid the cross-talk within the Λ-system.
To minimize the experimental overhead, we do not intro-
duce new pulse envelopes, but instead modify the initial
laser fields.

The first corrective method that we employ is the
Magnus-based scheme [50]. In our protocol, we mod-
ify only one of the initial laser fields, which in this case
is the laser field E1 that drives the A1 transition, while
the laser field E2 that drives the A4 transition remains
intact. Both initial fields introduce leakage outside of the
Λ-system, via the excitation of the C1 and C4 transitions
[each driven by both lasers as shown in Fig. 3(d)]. The
modulated pulse has additional cosine envelopes, and the
Fourier coefficients are obtained by solving a linear sys-
tem of equations that we describe in Appendix F. To op-
timize the performance of the Magnus scheme, we search
solutions that reduce the gate error for different Fourier
series truncation and gate time intervals, while keeping
the Magnus truncation to the first order.

We show the infidelity of the Magnus protocol in
Fig. 4(a), and the optimal gate time in Fig. 4(b) (pur-
ple curve). The Magnus scheme allows us to reach an
even faster regime while simultaneously restricting the
leakage errors contributions. Therefore, with a simple
modulation of one of the initial pulses we can retain the
same fidelity as in the orthogonal scheme. The optimal
pulse envelopes for Rx(−π) and Rx(−π/2) are shown in
Fig. 4(e) and Fig. 4(i) respectively. In both cases, the
top panel corresponds to the modified pulse.

The alternative corrective method for leakage suppres-
sion is the DRAG technique. This scheme requires pulse
modulation of both initial laser fields, but in the par-
ticular case of Rx(−π) rotations, the correction to the
field driving the A1 transition goes to zero. This is a
consequence of the condition for achieving Rx(−π) gates,
which requires zero two-photon detuning, leading to van-
ishing correction for one pulse. We notice that for rota-
tion angles φ > −π/2 the DRAG method (blue curve)
has a longer optimal gate time compared to the Magnus
method. For rotation angles φ < −π/2, however, the
gate time is further reduced [Fig. 4(b)] and the fidelity
enhancement becomes more apparent [see blue curve of
Fig. 4(a)]. We should also mention that the DRAG pulse
modulations are obtained analytically [see Appendix G],
but we also perform a simple optimization by redefin-
ing the amplitude of the corrections. The optimal pulses
for Rx(−π) and Rx(−π/2) are displayed in Fig. 4(f) and
Fig. 4(j) respectively.

B. Non-zero magnetic fields

In the presence of an external non-axial B-field, the
pairwise degeneracy of each manifold is lifted, and all

transitions become allowed and are no longer spin-
conserving. This phenomenon is caused by the off-axial
Zeeman interaction that gives rise to SxBx and SyBy
terms, which cause spin-mixing of the states.

Arbitrary magnetic field directions are more difficult
to implement experimentally since a vector magnet is
required. For this reason, we assume a fixed magnetic
field orientation where the Bj magnetic field components
in the SiV− frame are expressed in terms of the B‖ and
B⊥ magnetic field strengths in the lab frame. The lab
frame magnetic fields in an experimental setting would be
applied parallel and perpendicular to the cryostat axis,
where the sample is placed. The parallel magnetic field
strengths reach up to |B‖| = 9 T and the perpendicular

up to |B⊥| = 3 T. In the coordinate frame of the SiV−

defect, we define the magnetic fields as:

Bx = B‖ cos(54.7o) +B⊥ sin(54.7o), (22)

By = 0, (23)

and

Bz = B‖ sin(54.7o)−B⊥ cos(54.7o), (24)

where γ = 54.7 o is the angle between the symmetry axis
[1 1 1] and the (1 0 0) sample surface.

The spin coherence of the S = 1/2 systems shows an
angular dependence on the direction of the external mag-
netic field. Larger deviation from the symmetry axis re-
sults in enhanced spin-mixing, which consequently re-
duces the spin coherence. In particular, according to
Ref. [41], the reported T1,spin for the SiV− reduces to
3.6 µs at 20o misaligned field and to 60 ns at 70o mis-
alignment. In our simulations, we assume a spin relax-
ation time of T1,spin = 300 ns for the SiV−.

We consider zero two-photon detuning corresponding
to Rx(π) gates, and we examine the Λ-system formed by
the states |1〉, |2〉 and |A〉. We study only the perfor-
mance of the orthogonal method and using the results of
the analysis of Sec. V A, we assume a fixed laser power,
that balances the contribution of relaxations and leakage
errors.

In Fig. 5, we show the fidelity [Fig. 5(a)] and gate
time [Fig. 5(b)] of Rx(π) gates for the SiV− for a fixed
laser field intensity. The maximum fidelity for the SiV−

corresponds to F SiV−

max = 0.975 for B⊥ = −2.8 T and
B‖ = −2 T. The corresponding gate time is T = 0.235 ns
(versus T = 0.3 ns at B = 0 T, see Appendix D). We ob-
serve a small increase in the fidelity for the SiV− (∼ 1%),
and reduction of the gate time, compared to orthogonal
scheme at zero magnetic fields. Note that even though
the laser intensity is fixed, the gate time varies as the
transition dipole overlaps 〈ψi|pk|ψj〉 (which change the
effective Rabi frequency and hence, the bandwidth) are
different for each magnetic field strength.

In the low fidelity range, one or both Λ-transitions be-
come weakly allowed, while other transitions are driven
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(a)

(b)

FIG. 5. Optical control of SiV− at B 6= 0: Dependence of the
fidelity (a) and duration (b) of Rx(π) gates on the parallel and
perpendicular (with respect to the cryostat axis) magnetic
field strengths. For B 6= 0 we consider the A1-A2 Λ-system.
The regions of low fidelity correspond to weakly excited Λ-
system.

more strongly. As an example, in Fig. 5(b), the re-
gions of longest gate time correspond to weakly allowed
Λ-transitions, which consequently lowers the fidelity in
Fig. 5(a), for the same magnetic field values. The long
gate time of these weakly excited transitions is associated
with the transitionless-pulse condition that we explain in
Appendix. A, so for weak effective Rabi frequency, the
pulses are narrow-band. In the remaining low fidelity
range, one of the Λ-transitions is weakly driven, thus re-
quiring an increase of the laser power driving the particu-
lar transition to match the Rabi frequency of the second
Λ-transition. This is a requirement that we impose to
the CPT transformation to achieve Rx gates. Conse-
quently, with higher laser-power, other bright transitions
are driven more strongly, which results in low overall fi-
delity. Nevertheless, our choice of Λ-system is not re-
stricted, and for the magnetic field values of low fidelity
shown in Fig. 5, we could instead select a different Λ-
system.

VI. CONTROL OF SNV− SYSTEM

A. Zero magnetic fields

The main advantage of the SnV− defect is its large
ground and excited states splittings. This suppresses
both incoherent and coherent errors. Due to the large
energy separation, orbital relaxations are further sup-
pressed compared to the SiV−, meaning that high-fidelity
control is possible without millikelvin cooling. The larger
splitting also reduces the cross-talk of the lasers driv-
ing the transitions. For zero magnetic fields, we find
that the bright transitions are A2, C2, B1, D1, B3, D3,
A4, and C4. We form the Λ-system by selecting the
|2〉, |4〉 and |A〉 states, as shown in Fig. 6(b). Again,
we assume no initialization errors, and in this case, a
temperature of T = 6 K. The spin relaxation time is
set to T1,spin = 1.26 ms, the orbital relaxation time to
T1,orbit = 38 ns, the dephasing time to T ∗2 = 59 ns and
the optical lifetime to τ = 4.5 ns [25].

𝐀
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(a)

(c)

(b)

(d)

Naive

Orth.

FIG. 6. The selection rules-based E-field polarizations of (a)
lead to cross-talk and four leakage transitions shown in (b).
(c,d) The redefined polarizations in the yz-plane can eliminate
the cross-talk and additionally two leakage transitions of (b).

In the naive scheme, which is based on selection rules,
the A2 transition is strongly driven by z-polarized light
and the A4 by circularly polarized light [Fig. 6(a)]. As
a result, both cross-talk and leakage errors are present
in the optical control [Fig. 6(b)]. However, due to the
large ground and excited states splittings of the SnV−,
these errors average out more effectively than the SiV−

system, when the pulses are not extremely broadband.
Again, we test the performance of our four protocols;

the naive, the orthogonal, the Magnus and the DRAG
approaches. All of these schemes can achieve faster and
higher fidelity gates compared to the SiV− system. The



9

 

 

      
      

 

 

 

 

       

      

 

 

 

 

      
      

 

 

(b)

(a) (c) (d) (e) (f)

(g) (h) (i) (j)

 

 

       

      

 

 

 

 

         

      

 

 

 

 

      

      

 

 

 

 

       
      

 

 

 

 

     
      

 

 

FIG. 7. Optical control of SnV− at B = 0: Infidelity of Rx(φ) (a), and optimal gate time (b), corresponding to four different
protocols. The pulse envelopes for Rx(−π) rotations are shown in (c), (d), (e), (f) and the pulse envelopes for Rx(−π/2) are
depicted in (g), (h), (i), (j). Gray: naive, red: orthogonal, purple: Magnus and blue: DRAG.

large excited state splitting of almost 3 THz allows to im-
plement the rotations at less than hundreds of picosec-
onds, while preserving selectivity of the A transitions.
Consequently, in contrast to the SiV−, the gates can be
performed in a completely relaxation-free duration range,
even for the naive approach. Thus, there is no trade-off
between frequency selectivity and relaxation errors.

Starting with the naive approach (gray curve) we show
the infidelity of Rx(φ) rotations in Fig. 7(a) and the op-
timal gate time in Fig. 7(b). We notice that the gates are
well-protected and considerably faster than the SiV−, as
the error transitions average out efficiently. The selec-
tivity of the A transitions and the contribution of the
cross-talk set a lower bound for the optimal gate time,
which on average is greater than 50 ps [see Fig. 7(b)].

In the orthogonal scheme, we can remove the cross-
talk within the Λ-system by redefining the polarization
of the laser fields. One example would be to select xz-
polarization for the driving fields (such that E1 · dA4 =
0 = E2 · dA2), similar to the SiV− system. However, we
found that a different choice of polarizations can addi-
tionally eliminate two out of the four leakage transitions.

We model the Jahn-Teller (JT) contribution according
to [25], which gives rise to purely real 〈pz〉 and 〈px〉 transi-
tion dipoles and purely imaginary 〈py〉 transition dipoles.
Under this assumption, and considering yz-polarization
for E1 and E2, we find that by setting the polarizations
to be:

E1 = E01

(
y− 〈py〉A4

〈pz〉A4
z

)
ei(k1x−ω1t) + c.c. (25)

E2 = E02

(
y− 〈py〉A2

〈pz〉A2
z

)
ei(k2x−ω2t) + c.c., (26)

we not only resolve the cross-talk, but we also fulfil the
relations E1 · dC2 = 0 and E2 · dC4 = 0. Thus, the
remaining leakage transitions correspond to the driving
of C2 by the E2 field and to the driving of C4 by the E1

field [see Figs. 6(c), (d)]. In Appendix C, we derive the
polarizations we need to define to eliminate the cross-talk
and two out of the four leakage transitions for arbitrary
JT parameters.

With this simple redefinition of the E-field polariza-
tions, the orthogonal approach (red curve) achieves en-
hanced gate fidelities compared to the naive scheme, as
shown by the red curve in Fig. 7(a). By removing the
cross-talk and reducing the leakage, we manage to de-
crease the optimal gate time below 50 ps [Fig. 7(b)]. The
optimal pulse envelopes for the Rx(−π) and Rx(−π/2)
are shown in Fig. 7(d) and Fig. 7(h) respectively, which
still correspond to simple sech pulses.

The orthogonal scheme sets the lower bound of gate
infidelities and gate durations for unmodulated pulses.
To go beyond this limit, we allow for pulse modifications
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by using the Magnus- and DRAG-based protocols. First,
we test the performance of the Magnus protocol. In this
method, only the pulse envelope of the E1-field is mod-
ified. Even though in the initial frame the control pulse
has access only to the C4 error transition and not the C2
(which is driven by the E2-laser field), we find that the
linear system we solve to specify the control is still well-
defined. More details for the Magnus scheme are given in
Appendix F. The Magnus scheme has the shortest opti-
mal gate-time duration of all methods [see purple curve
Fig. 7(b)]. Although it seems to underperform compared
to the orthogonal scheme for larger rotation angles, the
pulses are much more broadband than in the former case.
The pulse envelopes are displayed in Fig. 7(e) [Rx(−π)],
and Fig. 7(i) [Rx(−π/2)] , where the top panels involve
pulse modulation of the laser driving the A2 transition.

Finally, we evaluate the performance of the DRAG pro-
tocol. In Fig. 7(a), we show with blue curve the infidelity
of arbitrary rotations for the DRAG scheme. For almost
all rotation angles the infidelity owed to leakage is sup-
pressed, and the gate time is reduced compared to the
orthogonal method. The optimal pulse envelopes that
implement Rx(−π) and Rx(−π/2) rotations are shown
in Fig. 7(f) and Fig. 7(j) respectively. In both cases, the
modified pulse shown in the bottom panels corresponds
to the laser driving the A4 transition. In general, for ro-
tations other than Rx(−π), both envelopes require mod-
ulation. However, we have performed a simple optimiza-
tion search on the DRAG corrections, which allows for
a redefinition of their amplitude strength. Thus, in this
particular case, the optimal solution for the Rx(−π/2)
gate involves modification of one of the initial driving
fields.

B. Non-zero magnetic fields

Similar to the SiV−, we consider zero two-photon de-
tuning which corresponds to Rx(π) rotations, and we se-
lect the Λ-system formed by the states |1〉, |3〉 and |A〉.
For the spin relaxation time, we assume T1,spin = 150 ns.
We consider the orthogonal approach and in this case we
select the xz-polarization definition, similar to Sec. III.
For non-zero magnetic field strengths, all transitions be-
come bright, and selecting the yz-polarizations for the
lasers does not offer any advantage (since the transition
dipoles are modified due to the Zeeman Hamiltonian).
For each magnetic field strength, we would have to select
the optimal Λ-system, and define laser field polarizations
that eliminate the cross-talk and also reduce or remove
the contribution of the dominant leakage transitions. Al-
though this analysis would be more complete, we instead
prefer to showcase the performance of a particular po-
larization of the E-fields of the orthogonal scheme (that
mitigates only the cross-talk), and optimize in terms of
the magnetic field strengths.

We assume the same magnetic field definitions in the
defect coordinate frame as in Sec. V B, and we vary the

(a)

(b)

FIG. 8. Optical control of SnV− at B 6= 0: Dependence
of the fidelity (a) and duration (b) of Rx(π) gates on the
parallel and perpendicular (with respect to the cryostat axis)
magnetic field strengths. For B 6= 0 we consider the A1-A3
Λ-system. The regions of low fidelity correspond to weakly
excited Λ-system.

parallel and perpendicular magnetic field strenghts, with
respect to the cryostat axis. In Fig. 8(a) we show the
fidelity and in Fig. 8(b) the gate time of Rx(π) rotations
for the optimal laser field intensity. The maximum fi-

delity corresponds to F SnV−

max = 0.996 for B⊥ = 0.3 T and
B‖ = 0.2 T and the gate time is T = 80 ps. This is also
the maximum achievable fidelity for the xz-polarization
in the absence of magnetic field strengths, and the gate
time is also close to the zero magnetic field case [see Ap-
pendix D].

The low fidelity range arises for the same reasons as
in the case of the SiV− system. Specifically, the Λ-
transitions are weakly excited and our choice of Λ-system
is not optimal for the particular magnetic fields. As we
mentioned for the SiV− system, even though the laser
field intensity is fixed in this case, the bandwidth of
the pulse varies, since the transition dipoles depend on
the Zeeman Hamiltonian term. For the magnetic field
strengths where the fidelity is low, the choice of a differ-
ent Λ-system could still maintain high-fidelity control.

VII. CONCLUSIONS

In conclusion, we have designed optical control proto-
cols for high-fidelity rotations of two defect systems: the
SiV− and SnV− in diamond. We use coherent popula-
tion trapping techniques combined with judicious choice
of laser polarizations to mitigate the cross-talk issue of
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the Λ-transitions caused by the Jahn-Teller effect. Im-
portantly, strain induced due to integration of the defects
in photonic structures can result in enhanced orbital mix-
ing and modification of the selection rules, and hence,
more intensified cross-talk. Thus, our cross-talk elimina-
tion approach could also be beneficial in such a context.
We implement simulations of arbitrary rotations both in
the absence and presence of external magnetic fields and
thoroughly test the maximum fidelity that we can reach
without any additional corrections. To an extended gen-
eralization, the choice of polarizations can ensure both
vanishing cross-talk and reduced number of leakage tran-
sitions.

For the SiV−, there is a trade-off between faster gates
protected from relaxation and slower gates protected
from leakage errors. On the contrary, for the SnV−,
we can safely reach the gate time range where the dis-
sipation mechanisms are negligible, without causing en-
hanced leakage. We show that with our orthogonal pulse
scheme we achieve fast and high fidelity control for the
SnV− system, due to its larger ground and excited state
splittings.

Further, we use a Magnus expansion technique, as
well as a newly developed version of the DRAG tech-
nique, to mitigate leakage errors when considering broad-
band pulses. The corrective modifications in the Magnus
and DRAG schemes involve simple cosine envelopes that
can be generated using arbitrary waveform generators
and electro-optical modulators, which create modulated
pulses from a CW laser. In general, pulses carved out of
a CW laser have limited power and speed, but a power
enhancement could be achieved with a fast response op-
tical amplifier (e.g. semiconductor amplifiers with up to
tens of GHZ repetition rate [54]). Depending on experi-
mental constraints (e.g. laser power, duration), one could
select the least demanding and most practical approach
to counteract leakage errors. A promising direction for
further research would be to perform numerical optimiza-
tion on top of our analytically derived pulses using op-
timal control theory [55–59], which was used for finding
control pulses for NV centers in diamond [60].

ACKNOWLEDGMENTS

The authors would like to thank Shahriar Aghaei,
Jonas Becker, Alison Emiko Rugar, Jelena Vuckovic, as
well as Arian Vevzaee for valuable discussions. The au-
thors were supported by the United States National Sci-
ence Foundation under the grant 1838976.

Appendix A: CPT control with sech pulses

As we mentioned in the main text, the destructive in-
terference in the CPT scheme leads to a dark state that
is completely decoupled from the dynamics of the three-
level system. This is achieved by tuning the laser param-

eters (relative amplitudes and phases), and satisfying the
two-photon resonance condition (∆1 = ∆2 ≡ ∆), where
∆j is the detuning of the transition labeled j. The map-
ping from the initial qubit states in the lab frame to the
dark-bright basis can be performed via the transforma-
tion:

Rdb =

(
cos θ2 −e−iα sin θ

2

eiα sin θ
2 cos θ2

)
. (A1)

Effectively, this transformation defines the rotation axis
of the qubit, which is n = (sin θ cosα, sin θ sinα, cos θ),
while it also enables the reduction of the initial problem
into a two-level system. In particular, the Hamiltonian
in the dark-bright basis reads:

Hdb = Ωefff(t)ei∆tσbe + H.c., (A2)

where σbe = |b〉〈e|, with |b〉 being the bright state and
|e〉 the excited state. Also, the effective Rabi frequency
in this frame is expressed in terms of the original Rabi
frequencies as Ωeff =

√
|Ω1|2 + |Ω2|2. For a general pulse

envelope, the two-level problem is not analytically solv-
able. Here we consider hyperbolic secant pulses (i.e.
f(t) = sech(σt)), that have been proven to be analyti-
cally solvable [61], and lead to a rotation in the qubit
subspace given by [48, 49]:

U0 =

(
1 0
0 e−iφ

)
. (A3)

As shown by Eq. (A3), the dark state does not evolve,
whereas the bright state picks up a phase given by φ =
2 tan−1(σ/∆), where ∆ is the detuning and σ the band-
width. Control of both rotation axis and angle is achieved
by combining CPT with hyperbolic secant pulses, which
allows us to design arbitrary single-qubit gates. The only
additional requirement is that the bandwidth is equal to
the effective Rabi frequency in the CPT frame (σ = Ωeff),
such that the pulse is transitionless, i.e. the population
returns to the ground states at the end of the pulse.

Appendix B: Details of the simulations

In this section, we provide further details regarding our
simulations. First, based on Ref. [44], we use the laser
power applied on the SiV− system for π-rotations to cal-
culate the electric field amplitude and estimate the Rabi
frequencies. For a numerical aperture NA=0.7, the spot-
size (radius) of the laser is given by w0 = λ0/(πNA),
where λ0 is the wavelength of a specific transition for
the SiV− or the SnV−, which can be assumed to be
close to the central transition. For the SiV− the cen-
tral wavelength is λ0 ≈ 736 nm, while for the SnV− it is
λ0 ≈ 620 nm. Assuming an emitter focused at the center
of the beam, the intensity is related with the power and
spot-size by the expression:

I =
P0

πw2
0

, (B1)
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while it can also be expressed as:

I =
cnε0

2
|E0|2, (B2)

where c is the speed of light, n = 2.4 is the refractive of
diamond, E0 is the electric field amplitude and ε0 is the
vacuum permittivity. The factor of 1/2 comes from aver-
aging the intensity. By combining Eq. (B1) with Eq. (B2)
we can express the electric field in terms of the laser
power as:

|E0| =

√
2P0

πw2
0cnε0

. (B3)

From Eq. (B3), we calculate the electric field amplitude
based on the laser powers of Ref. [44], shown in Fig. B.1.
For the SiV−, the maximum electric field amplitude we
have considered is E0 = 8.5 × 104 (V/m), while for the
SnV−, we have considered up to E0 ≈ 1 × 106 (V/m).
(These values exclude the numerically optimized DRAG
pulses, whose amplitude corrections have a multiplicative
factor |k| < 4). Further, for the z-transition dipoles, we
have taken into account the experimental enhancement
factor of 2 of the z-dipole. In general, the optimal ranges
of operation we found for both defects are smaller than
these maximum E0 amplitudes, so the laser power should
correspond to experimentally safe and achievable ranges.

FIG. B.1. Electric field amplitude versus the square root of
the laser power, for the SiV− central wavelength (blue) and
the SnV− central wavelength (red).

Further, we calculate the Rabi frequencies for each
transition as:

Ωij = α
er0|E0|

~
〈ψi|pk|ψj〉, (B4)

where e is the electronic charge, and r0 = 0.53 Å is
the Bohr radius. We estimate the multiplicative factor
α ≈ 6.663 for the SiV− and α ≈ 3.3 for the SnV−. In
particular, for the SiV−, that would give rise to a dipole
moment of approximately µ ≈ 16.6 Debye, which is close
to µ = 14.3 Debye reported in [32]. Also, 〈ψi|pk|ψj〉,
is the dipole overlap of the transition and the matrices
px, py, pz are given by group theory [16]. We should

mention that in our simulations we start by defining the
driving Hamiltonian without the factor of 1/2 in front
of the Rabi-frequencies, which would be a result of the
RWA. This means that the E0 value should be twice as
much as the approximate values we report above. To cal-
culate the eigensystem of all eight levels of each defect,
we consider three main interaction terms: the spin-orbit
coupling, the Jahn-Teller and the Zeeman effects.

Regarding the Lindblad relaxation operators, we fol-
low a similar convention as in Ref. [46]. First, for the
dephasing mechanism, we assume an equal dephasing of
all states:

Gdeph =
1√
T ∗2
|i〉〈i|. (B5)

Spin-relaxation mechanisms lead to a change of the spin-
state while preserving the same orbital part, which occur
within the ground or excited state manifold. We define
the Lindblad spin-relaxation operators as:

Gspin =
1√

2T1,spin

|i〉〈j|. (B6)

Orbital dissipation mechanisms occur between different
orbital states of the same spin projection. We define the
associated Lindblad operator as:

Gorbit =
√
Forbit|i〉〈j|, (B7)

where the decay rate Forbit is different for an upward
or downward relaxation. For a downward relaxation we
define:

Forbit, down =
1

T1,orbit(1 + e−|∆E|/kbT )
(B8)

and for an upward:

Forbit,up = Forbit,downe
−|∆E|/kbT , (B9)

i.e. the orbital relaxations are scaled by Boltzman fac-
tors, with the upward orbital relaxations being less prob-
able. ∆E is the energy difference between the levels that
participate in the orbital relaxation mechanism. Finally,
for the lifetime relaxations, we define the Lindblad oper-
ators as:

Glifetime =
1√
τ
|i〉〈j|, (B10)

where σij = |i〉〈j| corresponds to a bright transition, and
τ is the lifetime.

Appendix C: General method for removing the
cross-talk and one leakage transition

As we mentioned in the main text, we can always re-
define the polarization of the laser fields to remove com-
pletely the cross-talk within the Λ-system. We also men-
tioned that for the SnV− and by using the Jahn-Teller
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(JT) parameters of [25], the polarization of the E-fields
was found to be additionally orthogonal to the dipole of
one leakage transition each.

However, this extra property depends on the modeling
of the JT interaction. To resolve this subtlety, we de-
rive analytically the transition dipoles for arbitrary JT
parameters. Assuming no crystal strain, and working at
B = 0 T, the only non-zero interaction terms are the
spin-orbit coupling and the JT effect.

By expressing the interaction Hamiltonian in the |e±〉
orbital basis and in the {| ↑〉, | ↓〉} spin basis, the two
interaction terms read:

Hg/e =

(
Qx,g/e Qy,g/e

Qy,g/e −Qx,g/e

)
⊗ 1−

λSO,g/e

2
Lz ⊗ Sz, (C1)

where Qx,g/e = Qg/e cosφg/e, Qy,g/e = Qg/e sinφg/e,
λSOg/e

= ∆Eg/e cos θg/e and Qg/e = ∆Eg/e/2 sin θg/e.
The subscript g and e denote ground and excited state
respectively. The parameter θg/e can be tuned so as to
give the relative strength of the SO and JT contribu-
tions that are experimentally observed. The unnormal-
ized eigenvectors are given by:

v1,g/e =
(

0 eiφg/e tan
θg/e

2 0 1
)T

(C2)

v2,g/e =
(
eiφg/e cot

θg/e
2 0 1 0

)T
(C3)

v3,g/e =
(

0 −eiφg/e cot
θg/e

2 0 1
)T

(C4)

v4,g/e =
(
−eiφg/e cot

θg/e
2 0 1 0

)T
, (C5)

where v1,g/e and v2,g/e correspond to the eigenenergy
−∆Eg/e/2 and the eigenvectors v3,g/e and v4,g/e to the
eigenenergy ∆Eg/e/2.

As an example let’s assume that we use the Λ-
transitions A2 and A4, and that we want to make the E1

field orthogonal to dA4 and dC2. Under this notation, the
non-zero transitions would be between v1,g ↔ v1,e and
v1,g ↔ v3,e. Thus, the transition dipole d1 = dv1,gv1,e (of
A2) is:

d1 =
1

| sec θe
2 sec

θg
2 |

−(e−iφe tan θe
2 + eiφg tan

θg
2 )

i(eiφe tan θe
2 − e

iφg tan
θg
2 )

2(1 + ei(φe+φg) tan θe
2 tan

θg
2 )

 .

(C6)
Similarly the dipole d2 = dv1,gv3,e (of C2) is:

d2 =
1

| sec θe
2 sec

θg
2 |

 (eiφe cot θe2 − e
iφg tan

θg
2 )

−i(eiφe cot θe2 + eiφg tan
θg
2 )

2(−1 + ei(φe+φg) cot θe2 tan
θg
2 )

 .

(C7)
Finally, the dipole d3 = dv3,gv1,e (of A4) is:

d3 =
1

| sec θe
2 sec

θg
2 |

 eiφg(cot θg + csc θg)− eiφe tan θe
2

−i(eiφg(cot θg + csc θg) + eiφe tan θe
2 )

2(1− ei(φe+φg) cot
θg
2 tan θe

2 )

 .

(C8)
The goal is to make E1 ·d2 = 0 and E1 ·d3 = 0. Thus,

considering the general expression:

E1 = E01(c1x + c2y + c3z)ei(k·r−ωt) + c.c., (C9)

we specify the c2 and c3 parameters that satisfy the or-
thogonality relations:

c3 =
−ic1(cos θe + cos θg)

2(sin θe sinφe + sin θg sinφg)
(C10)

c2 =
c1(− cosφe sin θe + cosφg sin θg)

sin θe sinφe + sin θg sinφg
. (C11)

Similarly, we could follow the same procedure to satisfy
E2 · dA2 = 0 = E2 · dC4.

Alternatively, we could choose the polarization of E1

such that we satisfy the orthogonality relation to the A4
Λ-transition while also minimizing both leakage transi-
tions C2 and C4 that are driven by each laser field (and
similarly for the E2 field).

Appendix D: Gate time dependence of the fidelity

Here we show the time dependence of the gate fidelity
for the SiV− and the SnV− defects. For both systems we
consider the orthogonal scheme and use a combination
of xz-polarizations for the E-fields (such that we cancel
the cross-talk errors). In Fig. D.1 (a) and Fig. D.1(b)
we show the fidelity versus the gate time for Rx(π) and
Rx(−π/2) rotations for the SiV−. Narrow-band pulses
suffer from relaxation errors, while very broadband pulses
suffer from enhanced leakage errors. The optimal gate
time for both rotations is T = 0.3 ns, with a fidelity
close to F = 0.97 − 0.98. In Fig. D.1(c) we show the
fidelity of arbitrary rotations versus the gate time and
two-photon detuning. For ∆ & 200 GHz, which corre-
sponds to the excited state splitting, the upper-excited
manifold is driven more strongly leading to significant
leakage errors. Nevertheless, the same rotation angles
can be implemented with negative detuning at high fi-
delities. The corresponding rotation angles are shown in
Fig. D.1(d).

Similarly, we show the gate time dependence of Rx(π)
and Rx(−π/2) for the SnV− system in Fig. D.2(a) and
Fig. D.2(b). The infidelity of arbitrary rotations in log-
arithmic scale is shown in Fig. D.2(c) and the rotation
angles are shown in Fig. D.2(d). In this case, due to the
large excited state splitting of the defect, the positive
rotation angles exhibit low infidelity.
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(a) (b)

(c) (d)

FIG. D.1. Gate time dependence of the fidelity for Rx(−π) (a)
and Rx(−π/2) gates for the SiV−. Fidelity of Rx(φ) rotations
(c) and rotation angles (d) versus the gate time and two-
photon detuning.

(a) (b)

(c) (d)

FIG. D.2. Gate time dependence of the fidelity for Rx(−π)
(a) and Rx(−π/2) gates for the SnV−. Fidelity of Rx(φ)
rotations (c) and rotation angles (d) versus the gate time and
two-photon detuning.

Appendix E: Effect of relaxations on the fidelity

In Fig. E.1(a), we test the fidelity of Rx(π) rotations
(orthogonal scheme) for the case of the SnV−, consider-
ing two different temperatures. For T = 3 K, we assume
T ∗2 = 540 ns and T1,spin = 10.2 ms, while for T = 6 K we
assume T1,spin = 1.26 ms and T ∗2 = 59 ns. We observe
that the two curves are almost identical for gate times
T < 0.1 ns, while for longer gates the deviation starts to
increase further.

In general, for all rotation angles, the optimal fidelity
range should lie below ∼ 0.1 ns for the SnV−, such that
the contribution of the relaxations is negligible and the

fidelity is almost independent of the temperature. On the
other hand, for the SiV−, the optimal range is shifted to
longer times, as the leakage errors tend to increase sub-
stantially for broadband pulses [Fig. E.1(b)]. (Again we
show the performance of the orthogonal scheme.) Upon
cooling to mK temperatures, the phonon induced re-
laxations can be suppressed substantially [42], since the
qubit states become decoupled from the phonon bath.

(a) (b)

FIG. E.1. (a) Fidelity of Rx(π) rotations at zero magnetic
fields for the SnV−, for temperature T = 3 K (blue) and
T = 6 K (red). For a gate time T <0.1 ns there is no tem-
perature dependence of the fidelity, as below this gate time
the relaxations seize to contribute. (b) Fidelity of Rx(π) ro-
tations for the SiV− in the presence of relaxations (red) and
without dissipation mechanisms (blue).

Appendix F: Corrections to leakage errors with the
Magnus expansion approach

In this section, we provide the linear system of equa-
tions of the Magnus method, for both defect systems.
According to the Magnus expansion approach of [50], we
specify the control fields by reducing the problem to a
linear set of equations. We consider zero external mag-
netic fields since, in this case, we have a smaller number
of unwanted transitions that we want to cancel out. We
further distinguish two cases: i) resonant driving (Rx(π)
rotations) and ii) off-resonant driving (Rx(φ) rotations).
As we will show in subsequence, we can generalize from
the resonant to the off-resonant case by a slight modifi-
cation of our linear system of equations.

Starting from the SiV− system, our goal is to find a
corrective Hamiltonian W (t) to suppress the leakage er-
rors. In the main text, we chose the Λ-system formed
by the states |1〉, |4〉 and |A〉. Assuming perfect initial-
ization, the main error of our orthogonal scheme is the
driving of the C1 and C4 transitions, which leads to leak-
age outside of our Λ-system.

We first decompose the error terms of our Hamiltonian
into the Gell-Mann basis. Starting from the lab frame,
we fix two orthogonal polarizations for the Λ-transitions,
as described in the main text. Thus, in the interaction
frame, our initial Hamiltonian including only the A1, A4
and C1 and C4 transitions reads:
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H = (|ΩA1
1 |eiφ1ei∆tσ1A + ΩC1

1 ei(∆−δes)tσ1C + |ΩC4
1 |eiφC4ei(∆−(δes−δgs))tσ4C + H.c.)

+ (|ΩA4
2 |eiφ1ei∆tσ4A + |ΩC1

2 |e−iφC4ei(∆−(δes+δgs))tσ1C − |ΩC4
2 |ei(∆−δes)tσ4C + H.c.)f(t),

(F1)

where σij = |i〉〈j|, δes = 260 GHz, δgs = 50 GHz are the
excited and ground state splittings respectively, f(t) =
sech(σ(t− t0)) and ∆ is the two-photon detuning. Note
that in order to define the error and ideal Hamiltonians
we need only these four transitions. For the SiV− at
zero magnetic fields, we also find that |ΩC1

2 | = |ΩC4
1 |,

and φC2 = −φC4. Since we are further interested for the
Rx rotations, we fix |ΩA1

1 | = |ΩA4
2 |. The transformation

matrix to the dark-bright frame is given by:

R =
σ11 − σ14 + σ41 + σ44√

2
+ σ22 + σ33

+ σAA + σBB + σCC + σDD,

(F2)

which transforms our initial ground states into the dark-
bright states (i.e. |1〉 → |d〉 and |4〉 → |b〉), and the
initial Hamiltonian H into Hdb = RHR†. Our target
Hamiltonian in the db-frame is given by:

H0,db = (σei∆tσbA + H.c.)f(t), (F3)

where we have substituted σ =
√

2|ΩA1
1 |, and we have de-

fined |b〉 = 1/
√

2(|1〉+ |4〉) to be the bright state. Next,
we apply one more transformation by going to the inter-
action picture generated by the ideal Hamiltonian, H0,db,
which is given by U0:

U0 = σ11 + σ22 + σ33 + σBB + σCC + σDD

+ cos θ(σ44 + σAA) + i sin θ(σ4A + σA4).
(F4)

Note that U0 of Eq. (F4) should not be confused with
the target gate U0 of Sec. A. Here, θ(t) is the integral of

the pulse envelope, which for the resonant case reads:

θ(t) =

∫ t

0

σsech(σ(t′ − t0))dt′

= 2(tan−1(eσ(t−t0))− tan−1(e−σt0)).

(F5)

For the off-resonant case, we need to evaluate:

θ±(t) =

∫ t

0

σsech(σ(t′ − t0))e±i∆t
′
dt′

= σe±i∆t0
∫ t−t0

−t0
e±i∆usech(σu)du.

(F6)

The solution of these indefinite integrals is:

g±(u) = 2F1(1,
σ ± i∆

2σ
,

3σ ± i∆
2σ

,−e2σu)
ei[(σ±∆)u±∆t0]

σ±i∆
2σ

,

(F7)
where 2F1(a, b, c, z) is the Gauss hypergeometric func-
tion. By evaluating this expression in the limits of the
integration, we obtain θ±(t). We notice that the two
functions θ±(t) are complex conjugates, which simplifies
the equations for the off-resonant case. To obtain the set
of equation for off-resonant driving, we replace θ(t) of the

resonant case by θ̃(t) = |θ+(t)| = |θ−(t)|.
The error terms in the interaction picture of H0,db, are

given by Herror = U0(Hdb − H0,db)U†0 . Using the Gell-
Mann basis we now decompose the error terms (where
the RWA has been applied) into the operators

H
(1)
er,1 =

(|ΩC1
1 |+ |ΩC4

2 |) cos(tδes)− 2|ΩC4
1 | sin(tδes) sin(φC4 + tδgs)√

2
f(t)Ls,17 (F8)

H
(1)
er,2 =

cos θ(t) cos(φ1/2 + δest)(|ΩC1
1 | − |ΩC4

2 |+ 2|ΩC4
1 | cos(φC4 + δgst))√

2
f(t)Ls,47 (F9)

H
(1)
er,3 =

sin θ(t) sin(φ1/2 + δest)(|ΩC1
1 | − |ΩC4

2 |+ 2|ΩC4
1 | cos(φC4 + δgst))√

2
f(t)Ls,57 (F10)

H
(1)
er,4 =

(|ΩC1
1 |+ |ΩC4

2 |) sin(δest) + 2|ΩC4
1 | cos(δest) sin(φC4 + δgst)√

2
f(t)La,17 (F11)

H
(1)
er,5 =

cos θ(t) sin(φ1/2 + δest)(|ΩC1
1 | − |ΩC4

2 |+ 2|ΩC4
1 | cos(φC4 + δgst))√

2
f(t)La,47 (F12)

H
(1)
er,6 =

sin θ(t) cos(φ1/2 + δest)(−|ΩC1
1 |+ |ΩC4

2 | − 2|ΩC4
1 | cos(φC4 + δgst))√

2
f(t)La,57, (F13)

where Ls are the symmetric and La the anti-symmetric Gell-Mann operators given by [62]:
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Ls,jk = |j〉〈k|+ |k〉〈j| (F14)

La,jk = −i(|j〉〈k| − |k〉〈j|), (F15)

where 1 ≤ j < k ≤ d, with d = 8 being the dimension of
the Hilbert space.

As we explained in the main text, we need a corrective
Hamiltonian that is decomposed into at least the same
operators as the error terms. In other words, starting
from the lab frame, we are looking for control pulses that
drive the C1 and C4 unwanted transitions. However, it
is not a strict requirement that the control pulse drives
both error transitions (we will show a counter-example
later for the SnV−).

In the general case, the lab-frame control Hamiltonian

for the SiV− has the form:

W
(n)
lab = (ΩA1

1 σ1A + ΩC1
1 σ1C + ΩC4

1 σ4C + H.c.)g(n)(t),
(F16)

where g(n)(t) = (g
(n)
1 cos(ωdt) + g

(n)
2 sin(ωdt) and ωd is

the frequency of the control. The amplitudes g
(n)
1/2 are

expanded in a Fourier series:

g
(n)
1/2 =

∑
k

c
(n)
k,1/2

(
1− cos

(
2πkt

T

))
, (F17)

where T is the gate time, k is the order of truncation of
the Fourier expansion, and n is the order of truncation
of the Magnus series expansion.

We follow the same procedure of transforming our
lab frame control Hamiltonian into the interaction pic-
ture generated by H0,db. Specifically, we first trans-

form W
(n)
lab (t) into the interaction picture via Rint =∑

j e
iωjt|j〉〈j| (where ωj are the eigen-energies), then to

the dark-bright frame via Rdb, and finally into the in-
teraction picture generated by H0,db. After this series of
transformations, the decomposition of W (t) in the final
frame (and after applying the RWA) yields:
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W1 =
|ΩA1

1 | sin θ(−g2 cos(φ1/2 + t∆c) + g1 sin(φ1/2 + t∆c))√
2

Ls,14 (F18)

W2 =
|ΩA1

1 | cos θ(g1 cos(φ1/2 + t∆c) + g2 sin(φ1/2 + t∆c))√
2

Ls,15 (F19)

W3 =
|ΩC1

1 |(g1 cos(t∆̄) + g2 sin(t∆̄)) + |ΩC4
1 |(g1 cos(φC4 + t∆̃)) + g2 sin(φC4 + t∆̃))√

2
Ls,17 (F20)

W4 =
|ΩA1

1 |(g1 cos(t∆c) + g2 sin(t∆c))√
2

Ls,45 (F21)

W5 =
cos θ(|ΩC1

1 |(g1 cosα− g2 sinα) + |ΩC4
1 |(g1 cosβ − g2 sinβ))√

2
Ls,47 (F22)

W6 =
|ΩC1

1 |(g2 cosα+ g1 sinα) + |ΩC4
1 |(g2 cosβ + g1 sinβ)√

2
Ls,57 (F23)

W7 =
|ΩA1

1 | sin θ(g1 cos(φ1/2 + t∆c) + g2 sin(φ1/2 + t∆c))√
2

La,14 (F24)

W8 =
|ΩA1

1 | cos θ(g2 cos(φ1/2 + t∆c)− g1 sin(φ1/2 + t∆c))√
2

La,15 (F25)

W9 =
|ΩC1

1 |(g2 cos(t∆̄)− g1 sin(t∆̄)) + |ΩC4
1 |(−g2 cos(φC4 + t∆̃) + g1 sin(φC4 + t∆̃))√

2
La,17 (F26)

W10 =
|ΩA1

1 | cos(2θ)(g2 cos(t∆c)− g1 sin(t∆c))√
2

La,45 (F27)

W11 =
cos θ(|ΩC1

1 |(g2 cosα+ g1 sinα) + |ΩC4
1 |(g2 cosβ + g1 sinβ))√

2
La,47 (F28)

W12 =
sin θ(|ΩC1

1 |(−g1 cosα+ g2 sinα) + |ΩC4
1 |(−g1 cosβ + g2 sinβ))√

2
La,57 (F29)

W13 =

√
3

4
|ΩA1

1 | sin(2θ)(g2 cos(t∆c)− g1 sin(t∆c))L33 (F30)

W14 =

√
5

4
|ΩA1

1 | sin(2θ)(−g2 cos(t∆c) + g1 sin(t∆c))L44 (F31)

with ∆̄ = ∆c − δes, ∆̃ = ∆̄ + δgs, α = φ1/2 − t∆̄ and

β = φ1/2 − φC4 − t∆̃. Here ∆c is the detuning of the
control measured from the A1 transition, which is fixed to
be the same with the detuning of the laser field E1, since

we modulate that initial laser. We have also dropped the
superscript n in g1, g2 and Wi, that denotes the order of
Magnus truncation.

The linear system of equations for the first order Mag-
nus expansion is formed as follows:


w

(1)
j=1,k=1,l . . . w

(1)
j=1,k=kmax,l

w
(1)
j=1,k=1,l′ . . . w

(1)
j=1,k=kmax,l′

...
. . .

...
...

. . .
...

w
(1)
j=jmax,k=1,l . . . w

(1)
j=jmax,k=kmax,l

w
(1)
j=jmax,k=1,l′ . . . w

(1)
j=jmax,k=kmax,l′





c
(1)
k=1,l

...

c
(1)
k=kmax,l

c
(1)
k=1,l′

...

c
(1)
k=kmax,l′


=


h

(1)
err.,j=1

...

h
(1)
err.,j=jmax

 , (F32)

with l = 1 corresponding to g1 and l′ = 2 corresponding

to g2. Also, we have defined h
(1)
err.j = −i

∫ T
0
dt′H

(1)
err,j(t

′)

to be the integral of the error term of the j-th operator.
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The components of the first matrix are given by:

w
(1)
j,k,m =

∫ T

0

dt′Wj,m(t′)

(
1− cos

(
2πkt′

T

))
, (F33)

where Wj,m corresponds to the coefficient of g1 (m = l)
or g2 (m = l′), for each j operator we decomposed the
control into. Since the control is decomposed into more

operators than the errors, we set herr,j = 0, for the com-
ponents of the error vector where the error Hamiltonian
has no decomposition.

Regarding the SnV−, we use yz-polarization which
leads to two vanishing leakage transitions, i.e. ΩC2

1 = 0
and ΩC4

2 = 0. In this case, the error terms in the final
interaction frame have the decomposition:

H
(1)
er,1 =

|ΩC2
2 | cos t∆̄− |ΩC4

1 | cosβ√
2

Ls,27 (F34)

H
(1)
er,2 =

cos θ(|ΩC2
2 | cos t∆̄ + |ΩC4

1 | cosβ)√
2

Ls,47 (F35)

H
(1)
er,3 = − sin θ(|ΩC2

2 | sin t∆̄ + |ΩC4
1 | sinβ)√

2
Ls,57 (F36)

H
(1)
er,4 =

−|ΩC2
2 | sin t∆̄ + |ΩC4

1 | sinβ√
2

La,27 (F37)

H
(1)
er,5 = −cos θ(|ΩC2

2 | sin t∆̄ + |ΩC4
1 | sinβ)√

2
La,47 (F38)

H
(1)
er,6 = − sin θ(|ΩC2

2 | cos t∆̄ + |ΩC4
1 | cosβ)√

2
La,57, (F39)

where ∆̄ = ∆− (δes + δgs) and β = t(∆− δes + δgs) + 2φ1.
For the resonant case, ∆ = 0.

Regarding the control Hamiltonian, we start from the

following lab-frame corrective Hamiltonian:

Wlab = (ΩA2
1 σ2A + ΩC4

1 σ4C + H.c.)g(n)(t), (F40)

where we have assumed same polarization as the original
laser that drives the A2 transition. Following a simi-
lar procedure as for the SiV−, we find that the control
Hamiltonian in the final frame has the decomposition:
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W1 =
|ΩA2

1 | sin θ(−g2 cos(t∆c) + g1 sin(t∆c))√
2

Ls,24 (F41)

W2 =
|ΩA2

1 | cos θ(g1 cos(t∆c) + g2 sin(t∆c))√
2

Ls,25 (F42)

W3 = −|Ω
C4
1 |(g1 cosβ + g2 sinβ)√

2
Ls,27 (F43)

W4 =
|ΩA2

1 |(g1 cos(t∆c) + g2 sin(t∆c))√
2

Ls,45 (F44)

W5 =
|ΩC4

1 | cos θ(g1 cosβ + g2 sinβ)√
2

Ls,47 (F45)

W6 =
|ΩC4

1 | sin θ(g2 cosβ − g1 sinβ)√
2

Ls,57 (F46)

W7 =
|ΩA2

1 | sin θ(g1 cos(t∆c) + g2 sin(t∆c))√
2

La,24 (F47)

W8 =
|ΩA2

1 | cos θ(g2 cos(t∆c)− g1 sin(t∆c))√
2

La,25 (F48)

W9 =
|ΩC4

1 |(−g2 cosβ + g1 sinβ)√
2

La,27 (F49)

W10 =
|ΩA2

1 | cos(2θ)(g2 cos(t∆c)− g1 sin(t∆c))√
2

La,45 (F50)

W11 =
|ΩC4

1 | cos θ(g2 cosβ − g1 sinβ)√
2

La,47 (F51)

W12 = −|Ω
C4
1 |(g1 cosβ + g2 sinβ)√

2
La,57 (F52)

W13 =

√
3

4
|ΩA2

1 | sin(2θ)(g2 cos(t∆c)− g1 sin(t∆c))L33 (F53)

W14 =

√
5

4
|ΩA2

1 | sin(2θ)(−g2 cos(t∆c) + g1 sin(t∆c))L44, (F54)

where we have defined β = t(∆− δes + δgs). The detun-
ing of the control is set equal to the two-photon detuning
(same frequency as the E1 laser field), i.e. ∆c = ∆. No-
tice that even though we started with a control pulse that
does not have access to the error transition C2, in the fi-
nal interaction frame the linear system of equations is
well-defined, as for each error decomposition term, there
is a corresponding control decomposition.

Even though the controls are obtained in the inter-
action frame generated by the ideal Hamiltonian, the fi-
delity of the Magnus scheme in the main text is evaluated
in the initial dark-bright (interaction) frame.

Appendix G: Pulse corrections obtained via the
DRAG method

Here, we provide further details regarding the deriva-
tion of the control pulses based on the DRAG method.

First, we briefly highlight the strategy for deriving the
controls. Following the procedure of Ref. [51], we start
by transforming our Hamiltonian that also includes the
error terms in the rotating frame. We further mention
that for the derivation of the corrections, we consider
only the subspace composed of the {|1〉, |4〉, |A〉, |C〉}
({|2〉, |4〉, |A〉, |C〉}) states for the SiV− (for the SnV−).

Regarding the SiV− system, the Hamiltonian for this
reduced subspace in the lab frame reads:

H = Hlab,1 +Hlab,2 +H0, (G1)

where H0 = diag[ω1, ω1 + δgs, ωA, ωA + δes], with δgs and
δes being the ground and excited states splittings and ω1,
ωA being the eigen-energies of |1〉 and |A〉 respectively.
Also, Hlab,1 and Hlab,2 are given by:
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H
(n)
lab,1 =

(
Ω

(n)
1 cos(ωd1t)

[
eiφA1σ1A + λ1σ1C + λ12e

iφC4σ4C

]
+ Ω

(n)
2 cos(ωd2t)

[
eiφA4σ4A − λ2σ4C + λ21e

iφC1σ1C]
)
f(t)

+ H.c.,

(G2)

H
(n)
lab,2 =

(
Ω̄

(n)
1 sin(ωd1t)

[
eiφA1σ1A + λ1σ1C + λ12e

iφC4σ4C

]
+ Ω̄

(n)
2 sin(ωd2t)

[
eiφA4σ4A − λ2σ4C + λ21e

iφC1σ1C]
)
f(t)

+ H.c. ,

(G3)

with f(t) = sech(σ(t − t0)) and ωd1, ωd2 the laser fre-
quencies. The fields Ē1 and Ē2 are π/2-shifted compared
to E1 and E2. Starting from Eq. (G1) we perform the
transformation

Urot = diag[eiω1t, ei(ω1+ωd1−ωd2)t, ei(ω1+ωd1)t, ei(ω1+ωd1)t],
(G4)

which leads to the rotating frame Hamiltonian, as well
as the transformation

Uφ = diag[e−iφA1 , e−iφA1 , 1, e−iφA1 ]. (G5)

Notice that the transformation Uφ removes the com-
plex part eiφA1 from the Rabi frequency corresponding
to the A1 as well as A4 transitions, since we fix the Rabi
frequencies to be equal a priori to satisfy the db trans-
formation for Rx gates. At this step, our rotating frame
Hamiltonian reads:

Hrot =
1

2

[(
Ω1σ1A + Ω2σ4A + (λ1Ω1 + e−it(δgs+φC4)λ21Ω2)σ1C + (eit(δgs+φC4)λ12Ω1 − λ2Ω2)σ4C

)
+ H.c.

]
+
−i
2

[(
Ω̄1σ1A + Ω̄2σ4A + (λ1Ω̄1 + e−it(δgs+φC4)λ21Ω̄2)σ1C + (eit(δgs+φC4)λ12Ω̄1 − λ2Ω̄2)σ4C

)
+ H.c.

]
−∆σAA + (δes −∆)σCC.

(G6)

For clarity, we mention that we have defined λ1 =
|ΩC1

1 |/|Ω1|, λ12 = |ΩC4
1 |/|Ω1|, λ2 = |ΩC4

2 |/|Ω2| and

λ21 = |ΩC1
2 |/|Ω2|, where the subscripts k = {1, 2} in Ωijk

correspond to the lasers by which the error transitions
are driven by. Finally, in order to go to the db-frame we
apply the transformation:

Rdb =
1√
2

(σ11 − σ14 + σ41 + σ44) + σAA + σCC. (G7)

To decouple the dark state from the excited, we further
set Ω1 = Ω2 and Ω̄1 = Ω̄2. Thus, the dark-bright (rotat-
ing) Hamiltonian reads:

Hdb =
1√
2

(
− (eit(δgs+φC4)λ12 − (λ1 + λ2)− λ21e

−it(δgs+φC4))(Ω1 − iΩ̄1)

2
σdC + (Ω1 − iΩ̄1)σbA

+
(eit(δgs+φC4)λ12 + (λ1 − λ2) + λ21e

−it(δgs+φC4))(Ω1 − iΩ̄1)

2
σbC + H.c.

)
−∆σAA + (−∆ + δes)σCC.

(G8)

The leakage subspace |C〉 is off-resonant from the re-
maining Hamiltonian by an energy cost δes. Effectively,
this allows us to perform an expansion of the control
fields in the parameter ε = 1/(Tδes). More analytically,

according to Ref. [51], by multiplying Hdb by the gate
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time we convert it to the dimensionless form:

H̃db =
1

ε
H0 +

∞∑
n=0

εnH̃
(n)
db (t), (G9)

with H0 = diag[0, 0, 0, 1] and H̃
(n)
db (t) given by:

H̃
(n)
db (t) =

1√
2

(
− (eit(δgs+φC4)λ12 − (λ1 + λ2)− λ21e

−it(δgs+φC4))(Ω
(n)
1 − iΩ̄(n)

1 )

2
σdC + (Ω

(n)
1 − iΩ̄(n)

1 )σbA

+
(eit(δgs+φC4)λ12 + (λ1 − λ2) + λ21e

−it(δgs+φC4))(Ω
(n)
1 − iΩ̄(n)

1 )

2
σbC + H.c.

)
−∆σAA + (−∆ + δes)σCC.

(G10)

Note that now in Eq. (G10), the control fields Ω
(n)
k and

Ω̄
(n)
k , as well as the detuning, ∆(n), should be understood

as dimensionless. The next step is to satisfy the tar-
get constraints that will allow us to implement the ideal
Hamiltonian of Eq. (14) of Sec. IV B, as well as the decou-
pling constraints that will suppress the leakage to the |C〉
subspace. These constraints are imposed in the DRAG
frame, which as we mentioned in the main text is gener-
ated by the Hermitean operator S(t), via A = e−iS(t). To
this end, the operator S(t) is expanded in power series
in ε, as S(t) =

∑
n=1 ε

nS(n)(t), with S(n)(t) given by:

S(n)(t) =
∑
j=1

s
(n)
z,j σjj +

∑
j<k

s
(n)
x,jkσx,jk +

∑
j<k

s
(n)
y,jkσy,jk.

(G11)
As a result, the decoupling and target constraints can

be solved iteratively in a consistent manner, and the set
of equations for the n-th order can be found in the Ap-
pendix of Ref. [51]. For transparency, we highlight how
we solve the constraints and provide the equations for
the corrective modulations.

The first step is to define the target Hamiltonian,
which as given in the main text reads:

Htarget =
h

(0)
x

2
σx,be + h(0)

z (σbb − σee). (G12)

By satisfying the zero-th order constraints [mentioned in

Sec. IV B] we ensure that H
(0)
D = Hdb,0, where Hdb,0 is

the ideal Hamiltonian:

Hdb,0 = (Ωefff(t)σx,be + H.c.)−∆σee. (G13)

Effectively, this means that to the zero-th order, the tar-
get gate is the same in both frames. At the same time,
satisfying the zero-th order constraints implies that cer-
tain S(1)(t) elements need to be restricted; these cor-

respond to s
(1)
k,dC, s

(1)
k,bC, s

(1)
k,AC, with k = {x, y}. This

leaves the parameters s
(1)
z,j (with j = {d, b, A, C}), s(1)

k,db,

s
(1)
k,dA and s

(1)
k,bA free. We set all s

(1)
z,j = 0, as well as

s
(1)
k,db = s

(1)
k,dA = 0 = s

(1)
x,bA. This choice satisfies the

boundary conditions for the frame transformation A(t),

and allows us to obtain the corrective fields by s
(1)
y,bA(t)

via the first order target constraints. In particular, for
∆(1) = 0, the target condition:

Tr[H
(1)
D (σbb − σee)] = 0, (G14)

gives the following solution for s
(1)
y,bA(t):

s
(1)
y,bA(t) =

Ω
(0)
1 (λ1 − λ2 + 2λ12 cos(tδgs + φC4))2f(t)

8
√

2δes

,

(G15)
where we have also set λ12 = λ21, which arises from the
polarization definitions we have used. Then, from the
target constraints:

h(1)
x = Tr[H

(n)
D σx,be] = 0, (G16)

h(1)
y = Tr[H

(n)
D σy,be] = 0, (G17)

we solve for Ω
(1)
1 and Ω̄

(1)
1 , which depend on s

(1)
y,bA(t). The

expressions for the pulse corrections for the SiV− are:

Ω
(1)
1 = Ω

(1)
2 =

∆Ω
(0)
1 (λ1 − λ2 + 2λ1λ2 cos(tδgs + φC4))2

16δes
,

(G18)

Ω̄
(1)
1 = Ω̄

(1)
2 =

Ω
(0)
1 (λ1 − λ2 + 2λ12 cos(tδgs + φC4))

16δes
A(t),

(G19)
where A(t) is given by:

A(t) =
(
− 4δgsλ12 sin(tδgs + φC4)

+ (λ1 − λ2 + 2λ12 cos(tδgs + φC4))
ḟ(t)

f(t)

)
(G20)

Lastly, we follow a similar procedure for the SnV−, and

we find that the corrections Ω
(1)
1 and Ω̄

(1)
1 are:

Ω
(1)
1 = Ω

(1)
2 =

Ω
(0)
1 ∆((λ1 + λ2)2 + 2λ2

21(1− cos(2δgst)))

16δes
(G21)
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Ω̄
(1)
1 = Ω̄

(1)
2 =

λ2
21Ω

(0)
1 sin(tδgs)(2δgs cos(tδgs) + ḟ(t)

f(t) sin(tδgs))

4δes
,

(G22)

where λ21 = ΩC2
2 /Ω

(0)
1 .
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205444 (2018).

[21] Y. Sohn, S. Meesala, B. Pingault, H. A. Atikian,
J. Holzgrafe, M. Gndoan, C. Stavrakas, M. J. Stan-
ley, A. Sipahigil, J. Choi, M. Zhang, J. L. Pacheco,
J. Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, and
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and D. Hunger, Phys. Rev. Applied 7, 024031 (2017).

[38] C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and
I. Aharonovich, Nat. Commun. 10 (2019).

[39] C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar,
B. Machielse, D. S. Levonian, E. N. Knall, P. Stroganov,
C. Chia, M. J. Burek, R. Riedinger, H. Park, M. Lončar,
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