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We use the entanglement negativity, a bipartite measure of entanglement in mixed quantum

states, to study how multipartite entanglement constrains the real-space structure of the ground

state wavefunctions of (2 + 1)-dimensional topological phases. We focus on the (Abelian) Laughlin

and (non-Abelian) Moore-Read states at filling fraction ν = 1/m. We show that a combination of

entanglement negativities, calculated with respect to specific cylinder and torus geometries, deter-

mines a necessary condition for when a topological state can be disentangled, i.e., factorized into a

tensor product of states defined on cylinder subregions. This condition, which requires the ground

state to lie in a definite topological sector, is sufficient for the Laughlin state. On the other hand, we

find that a general Moore-Read ground state cannot be disentangled even when the disentangling

condition holds.
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I. INTRODUCTION

A. Background

One of the defining characteristics of a topological

phase of matter is the sensitivity of its ground state

to the topology of the space on which it’s placed [1]

(see [2] for a review). For instance, the Laughlin

state at filling fraction ν = 1/m has ground state

degeneracy mg where g is the genus of space. Topo-

logical phases with robust ground state degeneracy,

such as the Laughlin state at m > 1, are said to be

long-range entangled [3]. On the other hand, short-

range entangled (topological) states [4, 5], which oc-

cur in the integer quantum Hall effect, have a unique

ground state when placed on any closed manifold,



but share other defining topological characteristics

such as protected gapless boundary modes [6].

The entanglement entropy is a useful diagnostic

for these two classes of states. The entanglement

entropy between subsystems A and B of a state

ρ ∈ HA ⊗ HB equals the von Neumann entropy

SA = − trA ρA ln ρA of its reduced density matrix

ρA = trB ρ. (Here we are denoting pure and mixed

states by ρ.) In a topological phase, the entangle-

ment entropy scales with the linear size L → ∞ of

region A as [7–9]

SA = αL− γ. (I.1)

The coefficient α is nonuniversal and UV divergent,

while the topological entanglement entropy γ is a

universal, geometry-dependent constant that char-

acterizes the phase.1

For instance, if A is a disk, γ = 1
2 log

∑
a d

2
a, where

the sum is over all superselection sectors of the phase

and da ≥ 1 is the quantum dimension of quasipar-

ticle a [8, 9].2 Short-range entangled phases have

a single superselection sector (corresponding to its

unique ground state) with d0 = 1; long-range entan-

gled phases, which include both Abelian states like

the toric code [10] and non-Abelian states like the

Moore-Read state [11], have at least two superselec-

tion sectors and, consequently, γ > 0. There can be

other “boundary” contributions to γ due to interac-

tions localized along the border of A in both short-

range and long-range entangled states [12, 13] (see

also [14, 15]). Importantly, for long-range entangled

states only and when A is non-contractible, γ can

receive an additional contribution—that we gener-

ally refer to as the topological sector correction—that

depends on the amplitude ψa to be in the sector a

degenerate ground state [16, 17]. For example, con-

sider the ground state of a topological phase on the

torus: |Ψ〉 =
∑
a ψa|Ψa〉, where ψa is the amplitude

to be in the ground state |Ψa〉 of sector a. If the

torus is divided into two cylinders A and B, then

1 For notational simplicity, we do not indicate the depen-
dence of γ on A, B, or the state.

2 da controls the Hilbert space dimension dNa of N quasipar-
ticles a as N → ∞. Abelian phases have da = 1 for all
a; non-Abelian phases have at least one quasiparticle with
da > 1.

the topological entanglement entropy of region A is

γ = log
∑
a d

2
a −

∑
a |ψa|2 log |ψa|

2

d2a
.

To better understand the distinct forms of entan-

glement that these different contributions to γ re-

flect in a topological ground state, Lee and Vidal

[18], Castelnovo [19], and Wen, Matsuura, and Ryu

[20] employed the entanglement negativity [21]. Un-

like the entanglement entropy, which only quantifies

the quantum correlations between a subsystem and

its complement when ρ is pure [21–23], the entangle-

ment negativity is a mixed state entanglement mea-

sure [24] that can thereby distinguish multipartite

features of entanglement (e.g., [25]), for instance if

ρ = trC |ΨABC〉〈ΨABC | obtains by tracing out de-

grees of freedom in a third subsystem C.

The entanglement negativity3 is motivated by

Peres’ [24] necessary condition for a mixed state

ρ ∈ HA ⊗ HB to be separable. This criterion says

that a separable state ρ has positive partial trans-

pose ρTA with respect to subsystem A, where

〈iAjB |ρTA |kAlB〉 = 〈kAjB |ρ|iAlB〉, (I.2)

and |iA〉, |kA〉 (|jB〉, |lB〉) are basis states for HA
(HB). The negativity NA:B(ρ) = (||ρTA ||1 − 1)/2

sums (the absolute value of) any negative eigenval-

ues of ρTA and thereby measures the degree of non-

separability of ρ. Here, ||ρ||1 ≡ tr
√
ρ†ρ is the trace

norm of ρ. The entanglement negativity EA:B(ρ) is

a closely related measure defined as

EA:B(ρ) = log ||ρTA ||1 = log
(
1 + 2NA:B(ρ)

)
. (I.3)

In contrast to NA:B(ρ), the entanglement negativity

has an operational meaning as an upper bound to

the amount of pure state entanglement contained in

a general mixed state [21]. For pure states, EA:B(ρ)

reduces to the q = 1/2 Renyi entropy of ρ [18]. Other

situations in which the entanglement negativity has

been measured include conformal field theory [26],

holography [27, 28], thermal phase transitions [29–

31], topological systems with symmetry [32] or at

nonzero temperature, [33, 34] non-equilibrium sys-

tems [35–39], and recently at measurement-driven

phase transitions [40, 41].

3 This quantity is also known as the logarithmic negativity.
See below for the definition of the negativity.
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In this paper, we use the entanglement negativity

to study how multipartite entanglement constrains

the structure of the manybody wave function of a

topological phase. In particular, we show how topo-

logical degeneracy can prevent the disentanglement

[42] of a topological ground state.

In general, a state ρ ∈ HA ⊗HB ⊗HC is said to

satisfy the disentangling condition4 with respect to

HA and HC if

EA:BC(ρ) = EA:B(ρAB), (I.4)

where ρAB = trC ρ. Notice that ρAB is necessarily

mixed (ρ could also be a mixed state) and so the en-

tanglement negativity is an appropriate measure to

use to compare the the quantum correlations in ρAB
and ρ. To appreciate (I.4), we can heuristically view

it as a special case of the monogamy-like relation,5

N 2
A:BC(ρ) ≥ N 2

A:B(ρAB) +N 2
A:C(ρAC), (I.5)

which expresses how entanglement is shared between

A, B, and C subsystems [43, 44]. Since the entan-

glement negativity is a monotonic function of the

negativity (I.3), the disentangling condition obtains

when NA:C(ρAC) = EA:C(ρAC) = 0, i.e., there are

no quantum correlations between degrees of freedom

in A and C. In three-qubit systems, for instance,

only product states such as |ΨABC〉 = |ΨAB〉⊗|ΨC〉
satisfy the disentangling condition [45]. When the

Hilbert space of subsystem B further factorizes as

HB = HBL ⊗ HBR , pure states satisfying (I.4) can

be disentangled as

|ΨABC〉 = |ΨABL〉 ⊗ |ΨBRC〉 , (I.6)

a result known as the disentangling theorem [42]. A

more general set of states that fulfill the disentan-

gling condition are those that saturate the strong

subadditivity of the entanglement entropy [46], i.e.,

IA:BC = IA:B , where the mutual information IA:B =

4 He and Vidal [42] introduced an equality like (I.5) in terms
of the negativity N instead of entanglement negativity E.
These two forms are equivalent when NA:C(ρAC) = 0.

5 Monogamy-like relations such as these depend on the en-
tanglement measure and aren’t generally satisfied for all
states in a given Hilbert (sub-)space. For example, this
inequality isn’t satisfied generally if N 2 is replaced by N
[42].

(a) (b)

FIG. 1: (a) (Torus geometry) Decomposition of a torus

X into 2M = 4 cylinders X1, X2, X3, X4 with Xodd =

X1 ∪X3 and Xeven = X2 ∪X4; (b) (Cylinder geometry)

Degrees of freedom in cylinder Ȳ = X4 have been traced

over; the remaining cylinders Y = Yodd ∪ Yeven with

Yodd = X1∪X3 and Yeven = X2 have R = 2 shared inter-

faces. Interactions between low-energy boundary modes

at cylinder interfaces are indicated by dashed green lines.

Superselection sector a is represented by the blue (quasi-

particle) threading the center of the (solid) torus.

SA + SB − SAB . For such states, Hayden et al. [47]

showed there exists a decomposition of the Hilbert

space as

HB =
⊕
j

HBjL ⊗HBjR (I.7)

such that ρ is separable:

ρ =
∑
j

pjρABjL
⊗ ρBjRC . (I.8)

Here {pj} are probabilities.

B. Summary of Results

We study the disentangling condition (I.4) for the

(Abelian) Laughlin and (non-Abelian) Moore-Read

states at filling fractions ν = 1/m. We show ex-

plicitly how Laughlin states satisfying this condition

can be disentangled according to either Eqs. (I.6) or

(I.8). Interestingly, we find that a general Moore-

Read ground state cannot be disentangled even when

(I.4) is satisfied.

To do this, we use the cut and glue construction

of these states [48–52] to calculate the entanglement

negativity in two related geometries (see Figure 1).

(When there is overlap, our results agree with [18–

20].) In the first, we partition a torus into 2M cylin-

ders Xi (i ∈ {1, . . . , 2M}) and perform partial trans-

position with respect to degrees of freedom on the

3



“odd” cylinders Xodd ≡ X1∪X3∪ · · ·∪X2M−1 (i.e.,

cylinders X1 and X3 in Figure 1a). We find that the

entanglement negativity is

EXodd:Xeven
= 2 log

∑
a

|ψa|ζ2M
a , (I.9)

where Xeven ≡ X2 ∪ X4 ∪ · · · ∪ X2M and ψa is the

unit-normalized amplitude to be in the sector a torus

ground state. ζa is a ratio of sector a edge state

partition functions at inverse “temperatures” β =

1/2 and β = 1:

ζa =
tr e−Ha/2√

tr e−Ha
(I.10)

with entanglement Hamiltonian Ha. This depen-

dence of the entanglement negativity on the spec-

trum of the entanglement Hamiltonian is reminis-

cent of a similar dependence (ρA ∝ e−Ha) of the en-

tanglement entropy, e.g., [53–64]. In contrast to the

entanglement entropy, the entanglement negativity

measures the system at two different “temperatures”

[27]. For the fully chiral topological phases that we

study, i.e., when all the edge modes move in the

same direction, Ha is proportional to the edge state

Hamiltonian. In general, there can be a different

Ha for each of the 2M interfaces [12]; here we only

consider torus states where the interactions are the

same at each interface.

The second geometry that we consider is obtained

by tracing over the degrees of freedom on N ≤ M

cylinders Ȳ ⊂ X (for example, X4 in Figure 1b).

We show that the entanglement negativity of the

resulting state is

EYodd:Yeven
= log

∑
a

(
|ψa|ζRa

)2
, (I.11)

where R is the number of shared interfaces between

the remaining cylinders Yodd and Yeven whose de-

grees of freedom have not been traced over (e.g.,

R = 2 in Figure 1b) and ζa is again given in (I.10).

Thus, the entanglement negativities (I.9) and

(I.11) are determined by ratios of entanglement

Hamiltonian partition functions. For the Laughlin

and Moore-Read states, we show that the above en-

tanglement negativities take the form:

EXodd:Xeven = MαL−M logD2 + 2 log
∑
a

|ψa|dMa ,

(I.12)

EYodd:Yeven
=
R

2
αL− R

2
logD2 + log

∑
a

|ψa|2dRa ,

(I.13)

where α is nonuniversal, da is the quantum dimen-

sion of quasiparticle a, and D =
√∑

a d
2
a is the to-

tal quantum dimension of the phase. The Laugh-

lin state has m Abelian anyons each with quantum

dimension da = 1; the Moore-Read state has 2m

Abelian anyons (da = 1) and m non-Abelian anyons

with quantum dimensions da =
√

2, corresponding

to the Majorana quasiparticle.

We use these entanglement negativities (I.12) and

(I.13) to test the disentangling condition (I.4) for

the geometries in Figure 1. For a general topological

state on the torus, we find6

EA:BC(ρ)− EA:B(ρAB) = log

(∑
a |ψa|da

)2∑
a |ψa|2d2

a

. (I.14)

Thus, the disentangling condition is only satisfied

when the torus state lies in a specific topological sec-

tor with ψa = 1 for some a and all other amplitudes

equal to zero. For topological states on the cylinder,

the disentangling condition is always satisfied.

We find the disentangling condition (I.4) is gener-

ally only a necessary condition to allow the disentan-

glement of a topological state. Specifically, we show

that Laughlin and untwisted sector Moore-Read

states can be disentangled according to Eqs. (I.6)

and (I.8) when (I.4) holds; on the other hand,

twisted sector Moore-Read states cannot be disen-

tangled even when the disentangling condition is sat-

isfied. (As we review later, the Moore-Read state

decomposes into so-called untwisted and twisted sec-

tors, associated to Abelian and non-Abelian bulk

quasiparticles.) These results provide a precise illus-

tration for how entanglement and non-Abelian topo-

logical order constrain a manybody wave function.

6 In (I.12) we set M = 1 for the two cylinders A = X2 and
B ∪ C = (X1 ∪ X3) ∪ X4; in (I.13) we set R = 2 for the
two cylinders A = X2 and B = X1 ∪ X3; and we use
EA:B = EB:A.
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The remainder of this paper is organized as fol-

lows. In §II, we review the edge-state theories

for the Laughlin and Moore-Read states at filling

fraction ν = 1/m and how the torus or cylinder

ground state is built out of topological states on

sub-cylinders (e.g., according to the geometry in Fig-

ure 1). In §III, we derive the entanglement negativi-

ties in Eqs. (I.12) and (I.13). In §IV, we discuss the

implications of these results for disentangling topo-

logical states. In §V, we conclude and discuss possi-

ble directions of future study.

II. CUT AND GLUE APPROACH TO

TORUS GROUND STATES

In this section we review the edge-state theories

for the Laughlin and Moore-Read states and how

topological states on the torus can be decomposed

into states on the sub-cylinders using the corre-

sponding edge states. In the next section we study

the multipartite entanglement properties of these

torus and cylinder states.

A. Laughlin Interface Ground State

We start by discussing the construction of the

Laughlin state at filling fraction ν = 1/m on the

torus. One approach is to “glue” together a collec-

tion of parallel 1d wires each hosting a single, nonchi-

ral electron by suitable sine-Gordon inter-wire cou-

plings [52]. An equivalent approach [48–52], which

we follow here, is to construct the torus state by

“glueing” together a collection of cylinder states

in the target phase of interest along their shared

boundaries by appropriate edge-state interactions.

In the Laughlin phase, each cylinder Xi with i ∈
{1, . . . , 2M} hosts a pair of U(1)m chiral edge modes

φσi with Lagrangian density,

Lσi =
m

4π
∂xφ

σ
i (σ∂t − vc∂x)φσi . (II.1)

Here, φσi ∼ φσi + 2πZ with σ = L(R) = +1(−1) is a

real, boson field that takes values on a circle of unit

radius and vc > 0 is the common7 velocity of the

edge modes. The charge density on each edge is ρσi =

∂xφ
σ
i /(2π) in units where e = 1. The Lagrangian

implies the equal-time commutation relations,

[φσi (x), ∂x′φ
σ
i (x′)] =

2πiσ

m
δ(x− x′). (II.2)

The primary fields of the theory are the vertex op-

erators eirφ
σ
i for r ∈ {0, 1, . . . ,m − 1}. They carry

charge σr/m and spin8 r2/2m. For r > 0, these

operators create/destroy for σ = L/R fractionally-

charged Laughlin quasiparticles at a point along the

edge. The monodromy braiding phase between bulk

quasiparticles, corresponding to operators eirφ and

eir
′φ, equals e2πirr′/m. Local quasiparticles corre-

spond to products of the fundamental electronic op-

erator eimφ
σ
i carrying unit charge and integer (half-

integer) spin when m is even (odd). The braiding

phase between mutually local quasiparticles is triv-

ial, i.e., equal to one. (For example, when m is odd,

eimφ
σ
i creates/destroys an electron on the edge.)

Take the boundary circles on each cylinder to have

circumference L. Then φσi has the mode expansion:

φRi = φRi,0 + 2πNRXi
x

L

+
∑
k>0

√
2π

mL|k|
(
ai,ke

ikx + (ai,k)†e−ikx
)
,

φLi = φLi,0 + 2πNLXi
x

L

+
∑
k<0

√
2π

mL|k|
(
ai,ke

ikx + (ai,k)†e−ikx
)
(II.3)

with integer quantized momenta k = 2πj/L and

j ∈ Z\{0}. Here, k > 0 (k < 0) corresponds to a

right (left) mover. The superscript “RXi” (“LXi”)

refers both to the right (left) edge and the right-

moving (left-moving) edge mode of cylinder Xi. The

equal-time commutation relations imply the mode

operators in (II.3) satisfy the following commutation

7 This simplification does not affect our conclusions; it merely
simplifies the presentation.

8 The spin of an operator with left and right scaling dimen-
sions (hL, hR) equals |hR − hL|.
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relations:[
ai,k, (ai,k′)

†] = δk,k′ ,
[
ai,k, ai,k′

]
= 0,[

φRi,0, N
RXi

]
= −

[
φLi,0, N

LXi
]

= − i

m
.

(II.4)

The winding number NσXi measures the total

charge of the σXi edge state since

NσXi =

∫ L

0

∂xφ
σ
i

2π
dx. (II.5)

The local operator eimφ
σ
i obeys periodic boundary

conditions (in the absence of any additional fields).

For this requirement to be consistent with Eq. (II.5),

eimφ
σ
i (x+L) = eimφ

σ
i (x)eim2πNσXi , (II.6)

the winding number must be quantized as NσXi −
σ a
m ∈ Z [65]. Thus, a = 0, 1, . . . ,m − 1 (mod m)

specifies m inequivalent boundary conditions for φσi .

As the notation suggests, these boundary conditions

are in 1:1 correspondence with the different anyon

types. In particular, boundary condition a can be

viewed as resulting from threading the flux of anyon

a through the cylinder (see Figure 2). Each of these

boundary conditions corresponds to a Wilson line of

type a connecting the two edges, obtained by the

creation of an anyon of type a on, say, the left edge

and its subsequent destruction on the right edge.

We are interested in “glueing” together the right

edge states of cylinder Xi−1 to the left edge states

of cylinder Xi in order to form the torus state. (The

subscripts are 2M periodic: X0 ≡ X2M and there-

fore X2M+1 ≡ X1.) This means we want to add a

suitable interaction between edge modes on the right

edge of cylinder Xi−1 and the left edge of cylinder

Xi that results in a gapped state along their shared

interface i. According to (II.1), before the interac-

tion is added, the relevant edge modes are controlled

by the Hamiltonian,

H
(0)
i =

mvc
4π

∫ L

0

dx
[
(∂xφ

R
i−1)2 + (∂xφ

L
i )2
]
. (II.7)

The edges are “glued” together by an interaction

that tunnels a local boson or fermion between nearby

edges. This is accomplished by the sine-Gordon in-

teraction,

H
(1)
i = −2g

π

∫ L

0

dx cos
[
m
(
φRi−1 + φLi

)]
. (II.8)

FIG. 2: (a) Anyon flux threading continuously across a

cylinder with no bulk excitation. φL,Ri refer to bosonic

edge modes of the Laughlin and Moore-Read states; χL,Ri
refer to fermionic edge modes that only in the Moore-

Read state. (b) Wilson string operators in the x or y

directions parallel or perpendicular to interfaces between

cylinders A and B.

We take coupling of the interaction g > 0 to be

independent of i. The total Hamiltonian at interface

i is therefore

Hi = H
(0)
i +H

(1)
i . (II.9)

The resulting torus Hamiltonian is then H =
∑
iHi.

Upon projecting each cylinder Xi into the same

topological sector a, i.e., all edge modes obey the

same boundary conditions around L, these decou-

pled Hi may be considered independently.

For large coupling g → ∞, we approximate the

sine-Gordon potential at quadratic order in an ex-

pansion in (φRi−1 + φLi ) [51, 52]. This is a dramatic

simplification that enables the following exact solu-

tion to the approximated Hi; it relies on the ability

of the sine-Gordon potential to generate a gapped

interface ground state. (We will denote and refer

to the approximated Hamiltonian by Hi.) Using

the mode expansion (II.3) for the bosons, the to-

tal Hamiltonian decouples into zero and oscillation

(osc) mode sectors:

Hi = Hzero
i,b +Hosc

i,b . (II.10)

Defining Xi = m
(
NRXi−1 −NLXi

)
/2 and Pi =

φRi−1,0 + φLi,0 such that [Xi, Pi] = i, the zero mode

Hamiltonian is

Hzero
i,b =

2πvc
mL

X2
i +

πλvcL

2
P 2
i , (II.11)

6



where λ ≡ 2gm2/π2vc > 0. This has the form of an

harmonic oscillator Hamiltonian and a correspond-

ing ground state,

|bzero
a,i 〉 =

∑
Na,i∈Z− a

m

e−
veπm
2L N2

a,i |NRXi−1 = Na,i〉RXi−1
⊗ |NLXi = −Na,i〉LXi . (II.12)

RXi−1 (LXi) labels the Hilbert space of edge modes

on the right (left) boundary of cylinder Xi−1 (Xi)

with X0 ≡ X2M and ve = 2
π

√
m
λ is the “entangle-

ment velocity.”

The oscillation mode Hamiltonian is

Hosc
i,b = vc

∑
k>0

[
(ai−1,k)† ai,−k

] [Ak Bk
Bk Ak

][
ai−1,k

(ai,−k)†

]
(II.13)

with Ak ≡ |k| + 2λπ2

m|k| and Bk ≡ 2λπ2

m|k| . Using the

Bogoliubov transformation,[
βi,k

(γi,k)†

]
=

[
cosh θk sinh θk
sinh θk cosh θk

][
ai−1,k

(ai,−k)†

]
, (II.14)

where cosh 2θk = Ak/Ek and sinh 2θk = Bk/Ek with

Ek =
√
|k|2 + 4λπ2/m, the oscillation mode Hamil-

tonian is diagonal,

Hosc
i,b = vc

∑
k>0

Ek

(
β†i,kβi,k + γ†i,kγi,k + 1

)
. (II.15)

The ground state of the diagonalized Hamiltonian is

given by the coherent state [65]

|bosc
i 〉 =

∏
k>0

e−Ωk(ai−1,k)†(ai,−k)† |0〉, (II.16)

where |0〉 is the vacuum state annihilated by all

ai−1,k and ai,−k. |bosc
i 〉 satisfies βi,k|bosc

i 〉 =

γi,k|bosc
i 〉 = 0 for k > 0 with Ωk = tanh θk. In the

limit |k| � λ, tanh θk ≈ vek/2. Upon expanding the

exponential in (II.16), the oscillation ground state

can be rewritten as

|bosc
i 〉 =

∑
{ni,k∈Z+}

e−
∑
k>0

vek
2 (ni,k+1/2)|{nRXi−1

b,k = ni,k}k>0〉RXi−1
⊗ |{nLXib,−k = ni,k}k>0〉LXi . (II.17)

Here, n
RXi−1

b,k is the eigenvalue of the right-moving

number operator (ai−1,k)†ai−1,k on cylinder Xi−1

and nLXib,k the eigenvalue of the left-moving number

operator (ai,−k)†ai,−k on cylinder Xi. The coher-

ent state form for |bosc
i 〉 in (II.16) ensures these two

eigenvalues coincide in each interface oscillator state.

Putting together these results, we find the unnor-

malized torus state in sector a equals

|Ψa〉 =
⊗
i

|bzero
a,i 〉 ⊗ |bosc

i 〉. (II.18)

The topological sector label a = 0, 1, . . . ,m−1 coin-

cides with the m-fold ground state degeneracy of the

Laughlin phase on the torus. Notice that each cylin-

der is in the same topological sector a. This follows

from our assumption that there are no bulk excita-

tions inside any cylinder. Consequently, all cylinders

are threaded by the same anyon flux a and NRXi =

−NLXi = a/m mod 1 for all Xi (see Figure 2). Us-

ing (II.12), Na,i = −NLXi = NRXi = Na,i+1 mod 1

and therefore Na,i ≡ a/m mod 1 for all cylinder i. A

general (unnormalized) ground state on the torus is

the linear combination of states |Ψa〉 with different

anyon fluxes a.
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1 e1/2 e1 e3/2 . . . er er+1/2 . . . em−1 em−1/2

1 0 ∗ 1
2m

∗ . . . r2

2m
∗ . . . m2+1

2m
∗

χ 0 ∗ 1
2

+ 1
2m

∗ . . . 1
2

+ r2

2m
∗ . . . 1

2
+ m2+1

2m
∗

ξ ∗ 1
16

+ 1
8m

∗ 1
16

+ 9
8m

. . . ∗ 1
16

+ (2r+1)2

8m
. . . ∗ 1

16
+ (2m−1)2

8m

TABLE I: The 3m anyon types of the Moore-Read topological order. Occupied entries are the spins (mod 1) of

distinct (deconfined) anyons, Ir = er ≡ eirφ, χr = χer and ξr+1/2 = ξer+1/2, for r = 0, 1, . . . ,m− 1. Empty entries

(∗) are confined fields disallowed by electron locality.

B. Moore-Read Interface Ground State

The Moore-Read state at filling fraction ν = 1/m

has (U(1)m × Ising)/Z2 topological order. The Z2

symmetry couples together the U(1)m and Ising

topological orders. The U(1)m sector edge states are

described by the same bosonic fields φσi used in the

construction in the Laughlin state. In particular,

the commutation relations (II.2) and mode expan-

sions (II.3) still hold. The Ising sector, which has

electrically-neutral Majorana fermion edge states,

supports bulk quasiparticles 1, χ, and ξ. Here, 1

labels the identity sector containing the vacuum;

χ = χ† is the neutral Majorana fermion; and ξ is the

non-Abelian Ising twist field. The Ising anyon and

the Majorana fermion have mutual semionic statis-

tics, so that the monodromy braiding phase between

χ and ξ is −1.

We set the notion of locality in the Moore-Read

edge-state theory by taking the fundamental elec-

tronic operator to be ψel = χeimφ. When m is even,

ψel is a fermion; when m is odd, ψel is a boson.

Integral combinations of the fundamental electronic

operator, such as e±2imφ, belong to the identity sec-

tor. They are mutually local in the sense that the

corresponding bulk quasiparticles have trivial mon-

odromy braiding phases with one another.

The remaining anyons in the Moore-Read theory

correspond to the operators Ir = eirφ, χr = χeirφ

and ξr+1/2 = ξei(r+1/2)φ, where r ∈ {0, 1, . . . ,m −
1}. The corresponding anyons have trivial braiding

monodromy with linear combinations of ψel. The

anyons obey the fusion rules:

Ir × Ir
′

= χr × χr
′

= Ir+r
′
, Ir × χr

′
= χr+r

′

Ir × ξr
′+1/2 = χr × ξr

′+1/2 = ξr+r
′+1/2,

ξr+1/2 × ξr
′+1/2 = Ir+r

′+1 + χr+r
′+1.

(II.19)

The fusion rules imply the quantum dimensions

dIr = dχr = 1 and dξr+1/2 =
√

2. The locality of

the electronic operator dictates that fields that dif-

fer by ψel belong in the same anyon class, a×ψel ≡ a.

Hence, the anyon types have a m-fold (i.e., charge

e) periodicity

χr+m ≡ Ir, Ir+m ≡ χr, ξr+m+1/2 ≡ ξr+1/2.

(II.20)

In total, there are 3m distinct anyon classes; they

are listed in Table I.

Bulk anyonic quasiparticles are non-local excita-

tions that must come in conjugate pairs in real space,

i.e., the total anyon charge contained in a region is

conserved. Anyons in the physical Hilbert space are

identified by equivalence classes of particles. Two

anyons belong to the same class if they differ by a

multiple of the electronic operator. Different topo-

logical sectors on the torus are obtained by imag-

ining a process in which an anyon-anti-anyon pair

is nucleated at a point and then each is dragged

around the y-loop in Figure 2 in opposite directions

until they meet again and annihilate. Decompos-

ing the torus into cylinders, edges of adjacent cylin-

ders must therefore carry conjugate anyon charge

(see Figure 1). This constraint was imposed im-

plicitly when we considered the Laughlin state by

requiring each cylinder to lie in sector a; in the

present case, the presence of non-Abelian quasipar-

ticles makes this more delicate, as we discuss.

The Moore-Read edge-states on cylinder Xi are
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described by the Lagrangian density [66],

Lσi =
i

2
χσi (∂t − σvm∂x)χσi

+
m

4π
∂xφ

σ
i (σ∂t − vc∂x)φσi .

(II.21)

As before, φσi is a real boson with unit compact-

ification radius and σ ∈ {L,R} = {±1}; χσi is a

Majorana fermion; and vc (ṽc) is the velocity of the

the boson (Majorana fermion). χσi satisfies the anti-

commutation relations,

{χσi (x), χσi (x′)} = δ(x− x′). (II.22)

The mode expansions [65] of the Majorana fermion

fields are

χRi =
1√
L

∑
k

eikxcRi,k, χLi =
1√
L

∑
k

eikxcLi,k.

(II.23)

The fermionic mode operators cσi,k obey (cσi,k)† =

cσi,−k since χσi is real, and the anti-commutation re-

lations

{cσi,k, cσ
′

i′,k′} = δk,−k′δii′δ
σσ′ . (II.24)

The Moore-Read state is classified into untwisted

and twisted sectors [65]. In the untwisted sector,

the Majorana fermions obey anti-periodic boundary

conditions (χσi (x+L) = −χσi (x)). Consequently, the

fermionic momenta are quantized in half-integers:

k = 2π
L (j + 1/2) with j ∈ Z. This sector consists

of Abelian quasiparticles that correspond to vertex

operators {eirφσi , χσi eirφ
σ
i }. The boson winding num-

ber is quantized as NσXi − σr/m ∈ Z.

In the twisted sector, the Majorana fermion is pe-

riodic (χσi (x + L) = χσi (x)) and the fermionic mo-

menta are integrally quantized: k = 2πj
L , j ∈ Z.

The change in boundary conditions is effected by

inserting a π flux through the cylinder. In addi-

tion to the fermion oscillation modes with nonzero

momenta (k > 0), there is an additional Majorana

zero mode (k = 0) cσi,0 due to the integral quanti-

zation of momenta in the twisted sector. The bo-

son winding number also changes its quantization to

NσXi −σ r+1/2
m ∈ Z in response to the added π flux.

The non-Abelian bulk quasiparticles are associated

to the vertex operators {ei(r+1/2)φσi }.

While the boson and fermion modes are decoupled

in the Lagrangian (II.21), physical states must be

invariant under a Z2 internal symmetry. This neu-

trality requirement introduces correlations between

the bosonic and fermionic components of a physi-

cal state. To see how this works, we first observe

that the local electronic operator (ψel)
σ
i = χσi e

imφσi

is neutral under the following Z2 transformation,

which is local to a given cylinder Xi:

Z2(i) : χσi′ → (−1)δii′χσi′ , φσi′ → φσi′ +
iπσ

m
δii′ .

(II.25)

Consequently, any integral combination of electron

operators, such as a Wilson string that creates a con-

jugate pair of anyons on the two ends of Xi, must

be even under the local Z2 symmetry. Assuming

there are no bulk excitations inside any of the cylin-

ders, the artifically extended Hilbert space in which

the bosons and fermions are decoupled where (II.21)

acts must be restricted to the physical Hilbert space

that is invariant under all the Z2(i) symmetries. The

restriction can be achieved by the projection opera-

tor P =
∏
i PXi , where

PXi =
1

2

(
1 + (−1)N

LXi+NRXi (−1)F
LXi+FRXi

)
(II.26)

is the projection operator for cylinder Xi that en-

sures the corresponding edge states are even under

Z2(i). Here NσXi is the winding number defined

in (II.5) and FσXi measures the fermion parity of a

state. In particular, (−1)F
σXi

χσi = −χσi (−1)F
σXi

.

Now consider “gluing” the right edge of cylinder

Xi−1 to the left edge of cylinder Xi. The strategy

is similar to that of the Laughlin case. In the ab-

sence of any coupling, the edge modes are described

by the free, decoupled Hamiltonians associated to

(II.21). The cylinders can be pieced together at the

interfaces by the electron tunneling terms,

H
(1)
i = − 2g

2π

∫ L

0

dx
{(
ψLi
)†
ψRi−1 + h.c.

}
= −2g

π

∫ L

0

dx
{
iχLi χ

R
i−1 cos

[
m
(
φRi−1 + φLi

)] }
,

(II.27)

where the coupling constant g > 0 is taken to be

independent of the specific interface i. We treat the
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tunneling term in a mean-field approximation [65]

in which the corresponding ground state expecta-

tion values (up to Z2 symmetry) of the bosonic and

fermionic operators are

〈m(φLi + φRi−1)〉 = 0 mod 2π and 〈iχLi χRi−1〉 > 0,

or 〈m(φLi + φRi−1)〉 = π mod 2π and 〈iχLi χRi−1〉 < 0.

(II.28)

The overall scale of the expectation value of the

fermion bilinear is absorbed into g. In the g → ∞
limit, we once again employ the quadratic approx-

imation to the sine-Gordon potential and pin the

bosonic fields at the corresponding minima. This

allows only neutral charge (NRXi−1 + NLXi = 0)

at the interfaces. With these approximations, the

tunneling potential becomes

H
(1)
i =

∫ L

0

dx
[vcλπ

2

(
φRi−1 + φLi

)2
+ vmg̃iχ

L
i χ

R
i−1 + const.+ . . .

]
,

(II.29)

where g̃ = − 2g
vmπ

< 0 and λ > 0. The ellipsis denotes

higher-order terms which can be ignored as g →∞.

It remains to construct torus ground state of

this simplified model. We treat the untwisted and

twisted sectors in turn.

1. Untwisted Sector

We construct the ground state of the quadratic

Hamiltonian discussed in the previous section and

then project the result to the physical Hilbert space.

Since the bosonic zero and oscillation mode Hamil-

tonians are the same as in the Laughlin case, the

bosonic parts of the unprojected ground state are

given in Eqs. (II.12) and (II.17). The Hamiltonian

for the fermionic oscillation modes is

Hosc
i,f = vm

∑
k>0

[
(cRi−1,k)† cLi,−k

] [k −ig̃
ig̃ −k

][
cRi−1,k

(cLi,−k)†

]
(II.30)

where k = 2π(j+1/2)/L with j a non-negative inte-

ger. For suitable ϕk, the following transformation,[
β̃i,k

(γ̃i,k)†

]
=

[
cosϕk −i sinϕk

sinϕk i cosϕk

][
cRi−1,k

(cLi,−k)†

]
, (II.31)

diagonalizes the Hamiltonian to

Hosc
i,f = vm

∑
k>0

(
(β̃i,k)†β̃i,k + (γ̃i,k)†γ̃i,k − 1

)
.

(II.32)

We take cos 2ϕk = k/εk, sin 2ϕk = g̃/εk, and εk =√
k2 + g̃2. The ground state is given by the BCS

coherent state,

|fosc
i 〉 =

∏
k>0

e−iΞk(cLi,−k)†(cRi−1,k)† |0〉, (II.33)

where β̃i,k|fosc
i 〉 = γ̃i,k|fosc

i 〉 = 0, and cLi−1,−k|0〉 =

cRi,k|0〉 = 0 for all k > 0. In the limit of |k| � |g̃|,
Ξk = tanϕk ≈ ṽek/2 with ṽe ≡ 2/|g̃| the “entan-

glement velocity” in the fermionic sector. Similar to

|bosc
i 〉 in (II.17), the ground state can be rewritten

as

|fosc
i 〉 =

∑
{ñi,k∈Z2}

i
∑
k>0 ñi,ke−

∑
k>0

ṽek
2 (ñi,k+1/2)|{nRXi−1

f,k = ñi,k}k>0〉RXi−1
⊗ |{nLXif,−k = ñi,k}k>0〉LXi .

(II.34)

where n
RXi−1

f,k and nLXif,−k are the eigenvalues of

the fermion number operators (cRi−1,k)†cRi−1,k and

(cLi,−k)†cLi,−k.

Because the zero mode and oscillation modes

are decoupled (in the artificially extended Hilbert

space), the torus ground state for the approximated

Hamiltonian can be written as a tensor product of
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(II.12), (II.17), and (II.34):

|Ψ̂a〉 =
⊗
i

|bzero
r,i 〉 ⊗ |bosc

i 〉 ⊗ |fosc
i 〉. (II.35)

The corresponding physical ground state that is in-

variant under the internal Z2 symmetry (II.25) is the

projection:

|Ψa〉 = P|Ψ̂a〉 (II.36)

=
⊗
i

Pa,i|bzero
r,i 〉 ⊗ |bosc

i 〉 ⊗ |fosc
i 〉,

where the projection operator P is given in (II.26).

In the untwisted sector, the projection operator for

each cylinder Xi decomposes into the product of left

and right edge projection operators Pa,iPa,i+1 given

by

Pa,i =
1

2

(
1 + (−1)Na,i−r/m+

∑
k>0 ñi,k

)
. (II.37)

(Note that ñi,k denotes one of the fermion num-

ber operators (cRi−1,k)†cRi−1,k or (cLi,−k)†cLi,−k, whose

eigenvalues coincide at interface i.) These operators

restrict the winding number and fermion parity of

the ground state at interface i between Xi−1 and

Xi.

2. Twisted Sector

In the twisted sector, we must include the Ma-

jorana zero mode excitations, which arise from the

π flux that threads across all cylinders and results

in fermionic momenta that are integrally quantized

as k = 2πj/L. The contributions of the bosonic

modes and fermion oscillator modes to the unpro-

jected torus state have the same form as before and

so we need only discuss the novelty presented by the

Majorana zero modes.

The Majorana zero mode Hamiltonian is

Hzero
f = ig̃

∑
i

cRi−1,0c
L
i,0 = g̃

∑
i

f†i fi, (II.38)

where g̃ > 0. This Hamiltonian is essentially the Ki-

taev chain [67] with quantum states labeled by the

eigenvalues n′i = 0, 1 of the fermion number oper-

ators f†i fi at the interface between cylinders Xi−1

and Xi. Here, fi = (cRi−1,0 + icLi,0)/
√

2 is an interface

FIG. 3: Basis Change. Three F -moves are used to

transform from the interface to cylinder bases. Each

|n′i = 0〉 in |0′0′0′0′〉 obtains by fusing two non-Abelian

twist fields ξ into the vacuum channel; fusion into the χ

channel is denoted by “1.” The interface fermion num-

bers generally satisfy n′1 + n′2 + n′3 + n′4 = 0 (mod 2).

Dirac fermion. Suppose the torus is divided into four

consecutive cylinders X1 ∪X2 ∪X3 ∪X4. Then the

ground state of (II.38) is |f zero〉 = |0′0′0′0′〉, where

the primes refer to the interface basis states.

Because the Z2 projection operator is not diago-

nal with respect to this interface basis, we need to

change to an appropriate cylinder basis for the Majo-

rana zero modes. To this end, we define the cylinder

Dirac fermions di = (cRi,0 + icLi,0)/
√

2 on Xi and the

corresponding occupation numbers γi = 0, 1 of the

operators d†idi. Notice that f†i fi and d†i′di′ do not

commute when i = i′ or i = i′ + 1. The F -symbols

[68] generate the basis transformation between cylin-

der and interface bases. This basis change is de-

picted in Figure 3. For Ising topological order, the

relevant F-move transformation is given by the 2×2

matrix, (
F ξξξξ

)ν
µ

=
1√
2

(−1)µν (II.39)

where µ, ν ∈ {0, 1}, corresponding to the two possi-

ble fusion channels of ξ. Thus, the F-moves trans-

form |0′0′0′0′〉 to a basis written in terms of states

labeled by the fusion channels of pairs of ξ belonging

to a particular cylinder. The index µ is the original

internal channel and ν the new internal channel af-

ter the F -move. Thus, to transform the ground state
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|n′1 = 0, n′2 = 0, n′3 = 0, n′4 = 0〉, we use

|n′1n′2n′3n′4〉

=
∑

γ1,γ2,γ3

(
F ξξξξ

)γ3
n′4

(
F ξξξξ

)γ2
n′1+n′2

(
F ξξξξ

)γ1
n′1

× |γ1γ2γ3γ4〉, (II.40)

where γ4 = 1+γ1 +γ2 +γ3 (mod 2), with the result:

|f zero〉 =
1√
8

(|0001〉+ |0010〉+ |0100〉+ |0111〉

+ |1000〉+ |1011〉+ |1101〉+ |1110〉).
(II.41)

Each of the un-primed states in |f zero〉 is an eigen-

state of d†idi. For example, |γ1γ2γ3γ4〉 has eigenvalue

(−1)γi under d†idi. Here, the total fermion parity in

the cylinder basis,
∑
i γi, is odd, while the total par-

ity in the interface basis,
∑
i n
′
i, is even. This is

because the two total parities are exactly opposite,∏
i

(−1)f
†
i fi = (−1)M22M

∏
i

cRi−1,0c
L
i,0

= −(−1)M22M
∏
i

cRi,0c
L
i,0

= −
∏
i

(−1)d
†
idi . (II.42)

For 2M cylinders, this result generalizes to

|f zero〉 =
1√

22M−1

∑
~γ∈{0,1}2M |C

|γ1γ2 · · · γ2M 〉.

(II.43)

Here, {0, 1}2M |C indicates that ~γ takes values

in {0, 1}2M subject to the constraint
∑2M
i=1 γi ≡

1 (mod 2); the overall normalization comes from

the fact that there are 22M−1 solutions to this con-

straint. Physically, this constraint on ~γ means

the overall topological charge of the 2M Majorana

fermions on the torus is in the vacuum channel. Sim-

ilar to Eq. (II.40), it will sometimes be convenient

to take the sum in (II.43) to be over unconstrained

γi for i ∈ {1, . . . , 2M − 1} with γ2M implicitly de-

termined by the constraint.

Thus, the unprojected ground state for the twisted

sector is

|Ψ̂a〉 =

(⊗
i

|bzero
r,i 〉 ⊗ |bosc

i 〉 ⊗ |fosc
i 〉

)
⊗ |f zero〉.

(II.44)

Here a refers to the Ising twist field ξr+1/2 =

ξei(r+1/2)φ, for r = 0, 1, . . . ,m − 1, and therefore

the winding number Nr,i of |bzero
r,i 〉 takes values in

(r + 1/2)/m+ Z. The physical ground state that is

invariant under the internal Z2 symmetry (II.25) is

the projection:

|Ψa〉 = P|Ψ̂a〉 =
∏
i

Pa,Xi |Ψ̂a〉 (II.45)

where the projection operator Pa,Xi on cylinder Xi

is defined by

Pa,Xi =
1

2

(
1 + (−1)Na,Xi+

∑
k>0(ñXi,k)+d†idi+ui

)
,

Na,Xi ≡ −Na,i +Na,i−1, ñXi,k ≡ ñi−1,k + ñi,k,

ui = δ2M,i =

{
0, if i = 1, . . . , 2M − 1

1, if i = 2M
.

(II.46)

Here, the additional u2M accounts for the total

odd parity in the zero mode sector
∏
i(−1)d

†
idi =

(−1)
∑
i ui = −1 (see (II.42)).

III. ENTANGLEMENT NEGATIVITY

We now study the entanglement negativity of the

Laughlin and Moore-Read states at filling fraction

ν = 1/m on the torus, constructed in the previous

section.

A. ν = 1/m Laughlin State

1. Torus Geometry

We begin with the Laughlin state at filling fraction

ν = 1/m and the torus geometry (e.g., Figure 1a).

The unnormalized torus ground state in sector a ∈
{0, . . . ,m− 1} factorizes as

|Ψa〉 =

2M⊗
i=1

|Ψa,i〉, (III.1)

where i refers to the interface between cylinders

Xi−1 and Xi and

|Ψa,i〉 = |bzero
a,i 〉 ⊗ |bosc

i 〉. (III.2)
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The bosonic zero mode |bzero
a,i 〉 and oscillator |bosc

i 〉
states are given in Eqs. (II.12) and (II.17). Intro-

ducing the collective mode numbers,

NLXi ≡
(
−NLXi , {nLXib,−k}k>0

)
, (III.3)

NRXi ≡
(
NRXi , {nRXib,k }k>0

)
, (III.4)

Na,i ≡
(
Na,i, {ni,k}k>0

)
, (III.5)

with domains defined in Eqs. (II.12) and (II.17), we

write

|Ψa,i〉 =
∑
Na,i

λ(Na,i)|NRXi−1 = Na,i〉RXi−1 ⊗ |NLXi = Na,i〉LXi , (III.6)

where

λ(Na,i) = exp

[
−veπm

2L
N2
a,i −

∑
k>0

vek

2

(
ni,k +

1

2

)]
.

(III.7)

Assembling the preceding together, we have

|Ψa〉 =

2M⊗
i=1

∑
Na,i

λ(Na,i)|Na,i〉RXi−1
⊗ |Na,i〉LXi .

(III.8)

Eq. (III.8) shows how a product of cylinder states

glue together to form the unnormalized torus state

in sector a. The norm-squared of |Ψa〉 is

(Za)2M =

(∑
Na

λ2(Na)

)2M

(III.9)

with mode numberNa defined as in (III.5). We iden-

tify Za as the partition function in sector a at inverse

“temperature” β = 1 of the entanglement Hamilto-

nian Ha,

Za(β) = tr e−βHa , (III.10)

with entanglement spectrum equal to −2 log λ(Na).

We use Lemma 1 below to calculate the entan-

glement negativity of the general torus state |Ψ〉 =∑
a ψa|Ψa〉 with respect to the torus partition (e.g.,

Figure 1a), where the normalized sector a state is

|Ψa〉 = Z−Ma |Ψa〉. (III.11)

While the details of the proof of the analogous

lemma for the non-Abelian Moore-Read state dif-

fers slightly due to the presence of fermionic zero

modes (in the twisted sector), it turns out that the

result of Lemma 1 continues to apply. Readers un-

interested in the details of the straightforward, but

tedious proof of Lemma 1, may safely skip it and use

the result.

Lemma 1. The entanglement negativity of ρ =

|Ψ〉〈Ψ| with respect to the torus partition X = Xodd∪
Xeven (e.g., Figure 1) and with partial transposition

on “odd” cylinders Xodd = X1 ∪X3 ∪ · · · ∪X2M−1

equals

EXodd:Xeven
= 2 log

∑
a

|ψa|

(
Za(1/2)√
Za(1)

)2M

,

(III.12)

where Xeven = X2 ∪ X4 ∪ · · · ∪ X2M and Za(β) is

defined in (III.10).

Proof. We directly evaluate ||ρTodd ||1 =

tr
√

(ρTodd)†ρTodd in order to compute

EXodd:Xeven
= log ||ρTodd ||1, where ρTodd denotes

the partial transpose of ρ with respect to Xodd.

Define { ~Na} ≡ {(Na,1,Na,2, . . . ,Na,2M )} with Na,i
in (III.5) and ca( ~Na) = ψa

∏2M
i=1 λ(Na,i)/

√
Za (no

sum over a) with λ(Na,i) given in (III.7); we will

sometimes denote ca = ca( ~Na) for brevity. Then we
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may write

ρ =
∑
a,a′

∑
~Na, ~N ′a′

c∗a( ~Na)ca′( ~N ′a)|N ′a′,1N ′a′,2〉〈Na,1Na,2|X1

⊗ . . .
⊗ |N ′a′,2M−1N ′a′,2M 〉〈Na,2M−1Na,2M |X2M−1

⊗ |N ′a′,2MN ′a′,1〉〈Na,2MNa,1|X2M
.

(III.13)

Note that |N ′a′,iN ′a′,i+1〉〈Na,iNa,i+1|Xi denotes the

outer product of states on the edges of cylinder Xi:

the first entry of each ket or bra refers to states on

the left edge of Xi, while the second entry refers to

states on the right edge of Xi. Taking the partial

transpose with respect to Xodd, we have

ρTodd =
∑
a,a′

∑
~Na, ~N ′a′

c∗aca′ |Na,1Na,2〉〈N ′a′,1N ′a′,2|X1

⊗ . . .
⊗ |N ′a′,2M−2N ′a′,2M−1〉〈Na,2M−2Na,2M−1|X2M−2

⊗ |Na,2M−1Na,2M 〉〈N ′a′,2M−1N ′a′,2M |X2M−1

⊗ |N ′a′,2MN ′a′,1〉〈Na,2MNa,1|X2M
.

(III.14)

Next we evaluate

(ρTodd)†ρTodd =
∑

a,a′,a′′ ,a′′′

∑
~Na, ~N ′a′ ,

~N ′′
a
′′ , ~N

′′′

a
′′′

c∗
a′′′
ca′′ c

∗
aca′

× |N ′′′a′′′,1N ′′′a′′′,2〉〈N ′′a′′,1N ′′a′′,2|Na,1Na,2〉〈N ′a′,1N ′a′,2|X1

⊗ . . .
⊗ |N ′′a′′,2M−2N ′′a′′,2M−1〉〈N ′′′a′′′,2M−2N ′′′a′′′,2M−1|N ′a′,2M−2N ′a′,2M−1〉〈Na,2M−2Na,2M−1|X2M−2

⊗ |N ′′′a′′′,2M−1N ′′′a′′′,2M 〉〈N ′′a′′,2M−1N ′′a′′,2M |Na,2M−1Na,2M 〉〈N ′a′,2M−1N ′a′,2M |X2M−1

⊗ |N ′′a′′,2MN ′′a′′,1〉〈N ′′′a′′′,2MN ′′′a′′′,1|N ′a′,2MN ′a′,1〉〈Na,2MNa,1|X2M
. (III.15)

Using the orthonormality of states with different

quantum numbers in the above overlaps,

a′′′ = a′, N ′′′a′′′,i = N ′a′,i,
a′′ = a, N ′′a′′,i = Na,i,

(III.16)

for all 1 ≤ i ≤ 2M , we find that (ρTodd)†ρTodd is

diagonal with entries given by |ca′( ~N ′a′)|2|ca( ~Na)|2.

Thus,√
(ρTodd)†ρTodd =

∑
a,a′

∑
~Na, ~N ′a′

|ca′ ||ca|

× |N ′a′,1N ′a′,2〉〈N ′a′,1N ′a′,2|X1

⊗ |Na,2Na,3〉〈Na,2Na,3|X2

⊗ · · ·
⊗ |Na,2MNa,1〉〈Na,2MNa,1|X2M

(III.17)

and tr
√

(ρTodd)†ρTodd =
∑
a,a′

∑
~Na, ~N ′a′

|ca′ ||ca|.

Tracing through our definitions, we find

||ρTodd ||1 =
(∑

a

∑
~Na

|ca( ~Na)|
)2

=

∑
a

|ψa|
∑
~Na

2M∏
i=1

λ(Na,i)√
Za

2

=

∑
a

|ψa|

 ∑
Na λ(Na)√∑
Na λ

2(Na)

2M


2

=

∑
a

|ψa|

(
Za(1/2)√
Za(1)

)2M
2

.

(III.18)

Taking the logarithm of ||ρTodd ||1, we obtain (III.12)

and thereby complete the proof.

It remains to calculate Za(β). We are specifically
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interested in the L → ∞ limit. The partition func-

tion of the Laughlin edge states in sector a can be

written as

Za(β) =
θ
−a/m
0 (mτ)

η(τ)
, τ = iτ2 =

iβve
L

, (III.19)

where the Jacobi θ and Dedekind η functions (see

Appendix A) are

θ
−a/m
0 (mτ) =

∑
Na∈Z− a

m

e−
βveπm
L N2

a , (III.20)

=
∑
n∈Z

q
1
2 (n− a

m )2 , (III.21)

η−1(τ) =
∑

ni,k∈Z+

e−
∑
k>0 βvek(ni,k+1/2)

(III.22)

= q−
1
24

∏
ni,k∈Z+

(1− qni,k)−1, (III.23)

and q = e2πiτ . These functions have a useful

transformation under the modular transformation

τ 7→ −1/τ that allows us to easily extract the scaling

behavior of the entanglement negativity as L→∞.

Specifically,

θ
−a/m
0 (mτ) =

θ0
−a/m(−1/mτ)
√
−imτ

, (III.24)

η(τ) =
η(−1/τ)√
−iτ

. (III.25)

Thus, Za(β) = 1√
m

exp
[

πL
12βve

]
and so

Za(1/2)√
Za(1)

=
1

4
√
m
e
πL
8ve . (III.26)

Inserting this expression into (III.12) and taking the

L → ∞ limit, we find the topological entanglement

negativity

EXodd:Xeven
= M

(
π

2ve

)
L−M logm+ 2 log

∑
a

|ψa|.

(III.27)

We see that EXodd:Xeven
receives 2M contributions,

proportional to log
√
m, and a single topological

sector correction, equal to 2 log
∑
a |ψa|. Since

the Laughlin phase has only Abelian quasiparticles

(da = 1), EXodd:Xeven takes the form given in (I.12)

with α = π
2ve

and D =
√
m.

2. Cylinder Geometry

Next we consider the entanglement negativity be-

tween subsets of Xeven and Xodd when the degrees

of freedom on N ≤ M cylinders Ȳ ⊂ X have been

traced over. We denote the remaining (2M − N)

cylinders by Y and their decomposition into “odd”

and “even” cylinders as Yodd and Yeven. The result-

ing entanglement negativity will depend on the num-

ber R of shared interfaces between the remaining

cylinders in Yodd ∪ Yeven. As an example, Figure 1b

represents TrX4
|Ψ〉〈Ψ|, i.e., the X1 ∪X2 ∪X3 cylin-

der state when the degrees of freedom on Ȳ = X4

have been traced over; we then consider the entan-

glement negativity of TrX4 |Ψ〉〈Ψ| between degrees

of freedom on Yodd = X1 ∪X3 and Yeven = X2 with

a result that depends on R = 2.

Our calculation of the entanglement negativity

will apply Lemma 2 below to the torus ground state

from the previous section. This lemma applies to

both the Abelian Laughlin and non-Abelian Moore-

Read states. We will summarize the appropriate

generalization of its proof in the non-Abelian case

in a later section.

Lemma 2. Consider the reduced density matrix

ρY = TrȲ |Ψ〉〈Ψ|, where |Ψ〉 =
∑
a ψa|Ψa〉 is a gen-

eral state on the torus X = Y ∪ Ȳ . Then the entan-

glement negativity of ρY equals

EYodd:Yeven
= log

∑
a

|ψa|(Za(1/2)√
Za(1)

)R2

,

(III.28)

where R equals the number of interfaces shared be-

tween the remaining cylinders Y = Yodd ∪ Yeven and

Za(β) is defined in (III.10).

Proof. We use notation introduced in Lemma 1.

There are four cases to consider.

(Case I) We remove cylinder Ȳ = X2k where

1 < 2k ≤ 2M by tracing over its left and right

edge states. Thus, Yodd = Xodd, Yeven = X2 ∪ · · · ∪
X2k−2 ∪X2k+2 · · ·X2M , and R = 2M − 2.
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We begin with the torus ground state |Ψ〉〈Ψ|:

ρ =
∑
a,a′

∑
~Na, ~N ′a′

ca( ~Na)c∗a′( ~N ′a′)× · · ·

⊗ |Na,2k−2Na,2k−1〉〈N ′a′,2k−2N ′a′,2k−1|X2k−2

⊗ |Na,2k−1Na,2k〉〈N ′a′,2k−1N ′a′,2k|X2k−1

⊗ |Na,2kNa,2k+1〉〈N ′a′,2kN ′a′,2k+1|X2k

⊗ |Na,2k+1Na,2k+2〉〈N ′a′,2k+1N ′a′,2k+2|X2k+1

⊗ |Na,2k+2Na,2k+3〉〈N ′a′,2k+2N ′a′,2k+3|X2k+2

⊗ · · · .
(III.29)

Tracing over degrees of freedom on X2k sets

a′ = a, N ′a′,2k = Na,2k, N ′a′,2k+1 = Na,2k+1,

(III.30)

and removes the corresponding outer products in-

volving states on X2k. The first condition above

(a = a′) removes any “interference” in TrX2k
(ρ)

between states in different topological sectors. Us-

ing (III.30) and the definition of ca( ~Na), the partial

transpose of TrX2k
(ρ) with respect to Yodd is

ρTodd

Y =
∑
a

∑
~Na, ~N ′a

ca( ~Na)c∗a( ~N ′a)× · · ·

⊗ |Na,2k−2Na,2k−1〉〈N ′a,2k−2N ′a,2k−1|X2k−2

⊗ |N ′a,2k−1Na,2k〉〈Na,2k−1Na,2k|X2k−1

⊗ |Na,2k+1N ′a,2k+2〉〈Na,2k+1Na,2k+2|X2k+1

⊗ |Na,2k+2Na,2k+3〉〈N ′a,2k+2N ′a,2k+3|X2k+2

⊗ · · · ,
(III.31)

where

ca( ~Na)c∗a( ~N ′a) =
|ψa|2

Z2M
a

λ(Na,1)λ(N ′a,1)× . . .

× λ(Na,2k−1)λ(N ′a,2k−1)

× λ2(Na,2k)λ2(Na,2k+1)

× λ(Na,2k+2)λ(N ′a,2k+2)× . . .
× λ(Na,2M )λ(N ′a,2M ).

(III.32)

There is no dependence on N ′a,2k or N ′a,2k+1 above

because of (III.30). In what follows, it will be im-

plicitly understood that N ′a,2k,N ′a,2k+1 are removed

in sums over ~N ′a. The remainder of the proof follows

that of Lemma 1. Specifically, we compute

(ρTodd

Y )†ρTodd

Y =
∑
a,a′

∑
~Na, ~N ′a, ~N ′′a′ ,

~N ′′′
a′

c∗a′( ~N ′′a′)ca′( ~N ′′′a′ )ca( ~Na)c∗a( ~N ′a)× · · ·

⊗ |N ′′′a′,2k−2N ′′′a′,2k−1〉〈N ′′a′,2k−2N ′′a′,2k−1|Na,2k−2Na,2k−1〉〈N ′a,2k−2N ′a,2k−1|X2k−2

⊗ |N ′′a′,2k−1N ′′a′,2k〉〈N ′′′a′,2k−1N ′′a′,2k|N ′a,2k−1Na,2k〉〈Na,2k−1Na,2k|X2k−1

⊗ |N ′′a′,2k+1N ′′a′,2k+2〉〈N ′′a′,2k+1N ′′′a′,2k+2|Na,2k+1N ′a,2k+2〉〈Na,2k+1Na,2k+2|X2k+1

⊗ |N ′′′a′,2k+2N ′′′a′,2k+3〉〈N ′′a′,2k+2N ′′a′,2k+3|Na,2k+2Na,2k+3〉〈N ′a,2k+2N ′a,2k+3|X2k+2

⊗ · · · .

(III.33)

Note that N ′a,2k,N ′a,2k+1 and N ′′′a,2k,N
′′′

a,2k+1 are ab- sent in the sums over ~N ′a and ~N ′′′a . The above over-
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laps fix a = a′ and

N ′′′a′,i = N ′a,i, N ′′a′,i = N ′a,i, (III.34)

for 1 ≤ i ≤ 2M . Analogous to (III.17), we may now

read off ||ρTodd

Y ||1 = tr
√

(ρTodd

Y )†ρTodd

Y to find

||ρTodd

Y ||1 =
∑
a

∑
~Na, ~N ′a

|ca( ~Na)||ca( ~N ′a)|

=
∑
a

|ψa|2
∣∣∣∣Z2M−2

a (1/2)

ZM−2
a (1)

∣∣∣∣∣∣∣∣Z2M−2
a (1/2)

ZMa (1)

∣∣∣∣
=
∑
a

|ψa|(Za(1/2)√
Za(1)

)2M−2
2

.(III.35)

The second equality follows from (III.32) and the

definition of the ca( ~Na). Taking the logarithm of

||ρTodd

Y ||1, we obtain (III.28) and thereby complete

the proof of the lemma when Ȳ = X2k, i.e., a single

“even” cylinder has been removed.

This dependence of the entanglement negativity

on the number R of shared interfaces of the remain-

ing cylinders Y not traced over continues in the other

cases.

(Case II) If X2k and an additional “even” cylin-

der X2k′ are traced out, then the generalization of

(III.30) will also remove any dependence on N ′a,2k′
and N ′a,2k′+1. Proceeding with the remaining steps

outlined for Case 1, we find R = 2M − 4, reflective

of the number of remaining shared interfaces. In the

special case when k′ = k + 1, degrees of freedom

on X2k+1 become disconnected from those on the

remaining cylinders; because X2k+1 has no shared

interface with the remaining cylinders, we conclude

that it effectively makes no contribution to the en-

tanglement negativity.

(Case III) The proof proceeds identically if instead

Ȳ = X2k−1. Then (III.30) removes the dependence

on N ′a,2k′−1 and N ′a,2k′ , and the remainder of the

proof proceeds as before, obtaining R = 2M − 2 in

this case.

It is straightforward to generalize the above rea-

soning to the situation when more than two non-

consecutive cylinders, e.g., a subset of the “even”

cylinders, are removed. In this situation, the gener-

alization of the above arguments gives R = 2M−2Q,

where Q equals the number of cylinders removed.

(Case IV) The remaining case to discuss involves

the removal (by trace) of two consecutive cylinders,

say, X2k−1 and X2k. In this case, (III.30) removes

the dependence on N ′a,2k−1,N ′a,2k, and N ′a,2k+1.

There are only three mode numbers in this case be-

cause states at the interface between X2k−1 and X2k

share N ′a,2k. Proceeding then as above we obtain

R = 2M − 3.

The above reasoning can then be suitably general-

ized, as needed, to show (III.28) with R equal to the

number of shared interfaces in Y . This completes

our proof of Lemma 2.

By Lemma 2, the calculation of the entanglement

negativity between Yodd and Yeven reduces to the

calculation of the ratio of entanglement Hamilto-

nian partition functions. Making use of the partition

function results from the previous section, we find

EYodd:Yeven =
R

2

(
π

2ve

)
L− R

2
logm+ log

∑
a

|ψa|2

=
R

2

(
π

2ve

)
L− R

2
logm,

(III.36)

where in the last line we used
∑
a |ψa|2 = 1. This

verifies (I.13) with α = π/2ve and D =
√
m. Simi-

lar to the torus geometry, there are R contributions,

equal to log
√
m. However, the topological sector

correction is absent: the trace that is used to con-

struct the cylinder state removes the correlations be-

tween different topological sectors when the state

is Abelian (da = 1). We show in the next section

that a topological sector correction is present for the

Moore-Read state.

B. ν = 1/m Moore-Read State

1. Torus Geometry

We now consider the entanglement negativity of

the Moore-Read state on the torus geometry (e.g.,

Figure 1a). At filling fraction ν = 1/m, there are

2m untwisted anyon sectors a = Ir = er or χr = χer

and m twisted anyon sectors a = ξr+1/2 = ξer+1/2

topological sectors for r = 0, 1, . . . ,m (see table I).

For the untwisted sector, much of our presentation
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will mirror that of the Laughlin state; in the twisted

sector, there are some differences associated to Ma-

jorana fermion zero modes that we will highlight and

discuss as they arise.

We begin with the untwisted sectors. The un-

normalized torus ground state in sector a can be

factorized as (see (II.36))

|Ψa〉 = Pa|Ψ̂a〉 =

2M⊗
i=1

Pa,i|Ψ̂a,i〉, (III.37)

where i labels the interface between cylinders Xi and

Xi+1, Pa = ⊗iPa,i is the decomposition of the sector

a projection operator into projection operators local

to each interface, and the unprojected state:

|Ψ̂a,i〉 = |bzero
r,i 〉 ⊗ |bosc

i 〉 ⊗ |fosc
i 〉. (III.38)

The bosonic zero mode and oscillator states are given

in Eqs. (II.12) and (II.17); the fermionic oscillator

states are given in Eq. (II.34). The collective mode

numbers are now

NLXi ≡
(
−NLXi , {nLXib,−k}k>0, {nLXif,−k}k>0

)
,

(III.39)

NRXi ≡
(
NRXi , {nRXjb,k }k>0, {nRXif,k }k>0

)
, (III.40)

Na,i ≡
(
Na,i, {ni,k}k>0, {ñi,k}k>0

)
, (III.41)

with domains defined in Eqs. (II.12), (II.17), (II.34).

When acting on |Ψ̂a,i〉, we may replace Pa,i with its

eigenvalue Pa(Na,i) using

Pa,i
(
|Na,i〉RXi−1

⊗ |Na,i〉LXi
)

=
1

2

(
1 + (−1)Na,i−

r
m+

∑
k>0 ñi,k

)
|Na,i〉RXi−1

⊗ |Na,i〉LXi

≡ Pa(Na,i)|Na,i〉RXi−1 ⊗ |Na,i〉LXi . (III.42)

Putting this all together, we have

|Ψa〉 =

2M⊗
i=1

∑
Na,i

Pa(Na,i)λ(Na,i)|Na,i〉RXi−1
⊗ |Na,i〉LXi , (III.43)

where

λ(Na,i) = exp

[
−veπm

2L
N2
a,i −

∑
k>0

vek

2

(
ni,k +

1

2

)
−
∑
k>0

ṽek

2

(
ñi,k +

1

2

)]
. (III.44)

The norm-squared of |Ψa〉 is

(
Zuntwisted
a

)2M
=

(∑
Na

P (Na)λ2(Na)

)2M

.

(III.45)

Similar to the Laughlin case, Zuntwisted
a defines the

untwisted sector a partition function at inverse

“temperature” β = 1 of the Moore-Read entangle-

ment Hamiltonian Ha:

Zuntwisted
a (β) = tr e−βHa (III.46)

with untwisted entanglement spectrum equal to

−2 log λ(Na), subject to the condition on allowed

states imposed by the projection operator eigenval-

ues in (III.42). (As we have already done above,

we will continue to abuse notation below; however,
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we will make sure to specify whether we are dealing

with the untwisted or twisted topological sectors.)

We next turn to the twisted sectors. The unpro-

jected sector a torus state is

|Ψ̂a〉 =
( 2M⊗
i=1

|Ψ̂a,i〉
)
⊗ |f zero〉, (III.47)

where |Ψ̂a,i〉 takes the form in (III.38) and the Ma-

jorana zero mode state |f zero〉 is given in (II.43).

Note that the domain of Na,i ∈ Z + (r + 1/2)/m

and oscillator fermion momenta are shifted by an

half-integer.

The presence of Majorana zero modes makes the

decomposition of the torus ground states into cylin-

der states more delicate. In particular, the twisted

sector a projection operator Pa does not factorize

in terms of independent projection operators local

to each interface (as in, e.g., (III.37)); instead, we

can at most decompose Pa = ⊗2M
i=1Pa,Xi , where

Pa,Xi is the projection operator for cylinder Xi.

When acting on a cylinder state |Ψ̂a,i〉 ⊗ |γi〉 ∈
(⊗i|Ψ̂a,i〉)⊗|f zero〉 we may replace the projection op-

erator Pa,Xi with its eigenvalue Pa(Na,i,Na,i+1, γi)

using

Pa,Xi |Na,i,Na,i+1, γi〉|Xi =
1

2

(
1 + (−1)−Na,i+Na,i+1+

∑
k>0

(
ñi,k+ñi+1,k

)
+γi
)
|Na,i,Na,i+1, γi〉|Xi

≡ Pa(Na,i,Na,i+1, γi)|Na,i,Na,i+1, γi〉|Xi . (III.48)

Using these eigenvalues, the product of 2M pro-

jection operators can be reduced to a product of

(2M − 1) operators, e.g.,

2M∏
i=1

Pa,Xi |Ψ̂a〉 =

2M−1∏
i=1

Pa,Xi |Ψ̂a〉. (III.49)

Thus, the norm-squared of twisted sector a state

|Ψa〉 = Pa|Ψ̂a〉 (see (II.45)) equals

(
Ztwisted
a

)2M
=

1

22M−1

∑
~Na

λ2(Na,2M )
∑

γ1,...,γ2M−1∈{0,1}

2M−1∏
i=1

Pa(Na,i,Na,i+1, γi)λ
2(Na,i)

=
1

22M−1

(∑
Na

λ2(Na)

)2M

, (III.50)

where λ(Na,i) is given in (III.44) and we have used∑
γi∈{0,1} Pa(Na,i,Na,i+1, γi) = 1. As before, we

may interpret Ztwisted
a in terms of a twisted sec-

tor partition function Ztwisted
a (β) of a Hamiltonian

Ha with spectrum −2 log λ(Na) at inverse “temper-

ature” equal to one. In contrast to the untwisted

sector, the projection operator eigenvalues do not

appear in the norm-squared of the twisted sector

state |Ψa〉 or the corresponding partition function.

To calculate the entanglement negativity of |Ψ〉 =∑
a ψa|Ψa〉, where the sum is over all topological

sectors and the normalized sector a state is

|Ψa〉 = Z−Ma |Ψa〉. (III.51)

We will again use Lemma 1. (Here and in the gen-

eralized proof below we drop the untwisted/twisted
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superscripts for the normalization factors in (III.45)

and (III.50).) The proof that we previously gave of

this lemma was special to the Laughlin state; be-

low we will sketch how the proof generalizes for the

Moore-Read state.

Generalized Proof of Lemma 1. As before, we will

directly evaluate ||ρTodd ||1 = tr
√

(ρTodd)†ρTodd . We

begin by writing the torus state as

|Ψ〉 =
∑
a

∑
~Xa

ca( ~Na)Pa( ~Xa)

2M⊗
i=1

|Xa,i〉, (III.52)

Xa,i ≡ (Na,i,Na,i+1, saγi), (III.53)

ca( ~Na) ≡ ψa
2M∏
i=1

λ(Na,i)√
Za

, (III.54)

Pa( ~Xa) ≡
2M∏
i=1

Pa(Xa,i) (III.55)

where sa = 0 if a belongs to an untwisted sec-

tor and sa = 1 if a belongs to a twisted sec-

tor. The sum over ~Xa is understood to be a

sum over ~Na and, when sa = 1, the Majo-

rana fermion parity eigenvalues ~γ, (i.e.,
∑

~Xa =∑
~Na,sa~γ). Pa(Xa,i) = Pa(Na,i,Na,i+1, saγi) is de-

fined in (III.48) for twisted sector a where sa = 1,

this eigenvalue is also valid for untwisted a, in which

case sa = 0.

The density matrix ρ = |Ψ〉〈Ψ| and its partial

transpose with respect to Xodd are then

ρ =
∑
a,a′

∑
~Xa, ~X ′a′

ca( ~Na)c∗a′( ~N ′a′)

× Pa(Xa,1)|Xa,1〉〈X ′a′,1|Pa′(X ′a′,1)

⊗ Pa(Xa,2)|Xa,2〉〈X ′a′,2|Pa′(X ′a′,2)

⊗ · · ·
⊗ Pa(Xa,2M )|Xa,2M 〉〈X ′a′,2M |Pa′(X ′a′,2M ),

(III.56)

ρTodd =
∑
a,a′

∑
~Xa, ~X ′a′

ca( ~Na)c∗a′( ~N ′a′)

× Pa′(X ′a′,1)|X ′a′,1〉〈Xa,1|Pa(Xa,1)

⊗ Pa(Xa,2)|Xa,2〉〈X ′a′,2|Pa′(X ′a′,2)

⊗ · · ·
⊗ Pa(Xa,2M )|Xa,2M 〉〈X ′a′,2M |Pa′(X ′a′,2M ).

(III.57)

Thus,

(ρTodd)†ρTodd =
∑

a,a′,a′′,a′′′

∑
~Xa

∑
~X ′
a′

∑
~X ′′
a
′′

∑
~X ′′′
a
′′′

ca( ~Na)c∗a′(
~N ′a′)ca′′′( ~N ′′′a′′′)c∗a′′( ~N ′′a′′)

× Pa′′′(X
′′′

a′′′,1)Pa′′(X
′′

a′′,1)|X
′′

a′′,1〉〈X
′′′

a′′′,1|X ′a′,1〉〈Xa,1|Pa(Xa,1)Pa′(X ′a′,1)

⊗ Pa′′(X
′′

a′′,2)Pa′′′(X
′′′

a′′′,2)|X
′′′

a′′′,2〉〈X
′′

a′′,2|Xa,2〉〈X ′a′,2|Pa′(X ′a′,2)Pa(Xa,2)

⊗ Pa′′′(X
′′′

a′′′,3)Pa′′(X
′′

a′′,3)|X
′′

a′′,3〉〈X
′′′

a′′′,3|X ′a′,3〉〈Xa,3|Pa(Xa,3)Pa′(X ′a′,3)

⊗ . . .

⊗ Pa′′(X
′′

a′′,2M )Pa′′′(X
′′′

a′′′,2M )|X
′′′

a′′′,2M 〉〈X
′′

a′′,2M |Xa,2M 〉〈X ′a′,2M |Pa′(X ′a′,2M )Pa(Xa,2M ).

(III.58)

The inner products identify:

a′′′ = a′, X
′′′

a′′′,2k−1 = X ′a′,2k−1, Pa′′′(X ′′′a′′′,2k−1) = Pa′(X ′a′,2k−1),

a′′ = a, X
′′

a′′,2k = Xa,2k, Pa′′(X ′′a′′,2k) = Pa(Xa,2k),
(III.59)

for k ∈ {1, . . . ,M}. From (III.53), we see that X ′′′a′′′,2k−1 = X ′a′,2k−1 means that N ′′′a′′′,i = N ′a′,i for all

i = 1, 2, . . . , 2M and sa′′′γ
′′′
2k−1 = sa′γ

′
2k−1 for k = 1, 2, . . . ,M . If the projection operators Pa′′′(X ′′′a′′′,2k) and

Pa′(X ′a′,2k) are to be nonzero simultaneously for fixed ~N ′′′a′′′ = ~N ′a′ , then sa′′′γ
′′′
2k = sa′γ

′
2k for k = 1, 2, . . . ,M .

Thus, we conclude the above inner products identify Pa′′′(X ′′′a′′′,i) = Pa′(X ′a′,i) and X ′′′a′′′,i = X ′a′,i for all i.
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Using similar logic, we likewise find X ′′a′′,i = Xa,i and Pa′′(X ′′a′′,i) = Pa(Xa,i) for all i. Thus, (ρTodd)†ρTodd is

again diagonal and√
(ρTodd)

†
ρTodd =

∑
a,a′

∑
~Xa

∑
~X ′
a′

Pa( ~Xa)Pa′( ~X ′a′)|ca( ~Na)||ca′( ~N ′a′)|

× |Xa,1〉〈Xa,1| ⊗ |X ′a′,2〉〈X ′a′,2| ⊗ · · · ⊗ |X ′a′,2M 〉〈X ′a′,2M |.

(III.60)

Consequently,

tr

√
(ρTodd)

†
ρTodd =

∑
a,a′

∑
~Xa

∑
~X ′
a′

Pa( ~Xa)Pa′( ~X ′a′)|ca( ~Na)||ca′( ~N ′a′)| (III.61)

=

∑
a

∑
~Xa

Pa( ~Xa)|ca( ~Na)|

2

. (III.62)

Following the same logic as in (III.18)) and using the definitions in Eqs. (III.45) and (III.50) as well as the

identity
∑
γi∈{0,1} P (Xa,i) = 1 when sa = 1, we find

||ρTodd ||1 =

 ∑
a∈untwisted

|ψa|

(
Zuntwisted
a (1/2)√
Zuntwisted
a (1)

)2M

+
∑

a∈twisted

|ψa|

(
Ztwisted
a (1/2)√
Ztwisted
a (1)

)2M
2

. (III.63)

We obtain Lemma 1 upon taking the logarithm of

||ρTodd ||1.

To finish the computation of the entanglement

negativity, we need to evaluate the untwisted and

twisted partition functions in the L → ∞ limit.

The untwisted sector a partition function at inverse

“temperature” β can be written as [65]

Zuntwisted
a (β) =

1

2
χIsing

0 (q̃)
[
χ+
r/m(q) + χ−r/m(q)

]
+

1

2
χIsing

1/2 (q̃)
[
χ+
r/m(q)− χ−r/m(q)

]
,

(III.64)

where the characters χ are

χIsing
0 (q̃) =

1

2
q̃−

1
48

∏
j>0

(
1 + q̃j+

1
2

)
+
∏
j>0

(
1− q̃j+ 1

2

)
χIsing

1/2 (q̃) =
1

2
q̃−

1
48

∏
j>0

(
1 + q̃j+

1
2

)
−
∏
j>0

(
1− q̃j+ 1

2

)
χ±r/m(q) =

(∑
n∈Z

(±1)nqm(n− r
m )

2
/2

)
× q− 1

24

∏
j>0

(1− qj)−1.

(III.65)

Recall that q = e2πiτ and τ is defined in (III.19). In

addition, we have a new pair of modular parameters

τ̃ and q̃ defined by τ̃ = τ/2 = iτ̃2 and q̃ = e2πiτ̃ .

The characters can be rewritten in terms of modular
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functions (Appendix A) as

χIsing
0 (q̃) =

1

2

√
θ0

0(τ̃)

η(τ̃)
+

1

2

√
θ0

1/2(τ̃)

η(τ̃)
,

χIsing
1/2 (q̃) =

1

2

√
θ0

0(τ̃)

η(τ̃)
− 1

2

√
θ0

1/2(τ̃)

η(τ̃)
,

χ±r/m(q) =
θ
−r/m
0 (mτ)

η(τ)
, or

e
iπr
m θ
−r/m
1/2 (mτ)

η(τ)
.

(III.66)

θ0
1/2(τ̃) goes to zero in the L→∞ limit. Therefore,

the untwisted 1 and χ sector partition functions both

reduce to

Zuntwisted
a (β) =

1

2

√
θ0

0(τ̃)

η(τ̃)

θ
−r/m
0 (mτ)

η(τ)
. (III.67)

In the L→∞ limit,

Zuntwisted
a (1/2)√
Zuntwisted
a (1)

=
1√

2
√
m

exp

[
πL

8

(
1

ve
+

1

2ṽe

)]
.

(III.68)

The twisted sector a partition function is

Ztwisted
a = χIsing

1/16 (q̃)χ+
(r+1/2)/m(q), (III.69)

where the characters are

χIsing
1/16 (q̃) =

∑
ni,k∈Z+

e−
∑
k>0 βṽek(ni,k+ 1

2 )

= q̃
1
24

∞∏
j=1

(1 + q̃j), k =
2πj

L
, j ∈ Z+

χ(r+1/2)/m(q) = q−
1
24

∞∏
j=1

(1− qj)−1

×

(∑
n∈Z

qm(n− r+1/2
m )

2
/2

)
.

(III.70)

χIsing
1/16 produces the da =

√
2 quantum dimension as-

sociated to the Majorana quasiparticle of the Moore-

Read state. In terms of modular functions (Ap-

pendix A), the characters are

χIsing
1/16 (q̃) =

√
θ

1/2
0 (τ̃)

2η(τ̃)
,

χ(r+1/2)/m(q) =
θ
−(r+1/2)/m
0 (mτ)

η(τ)
.

(III.71)

Thus,

Ztwisted
a =

√
θ

1/2
0 (τ̃)

2η(τ̃)

θ
−(r+1/2)/m
0 (mτ)

η(τ)
, (III.72)

and for L→∞,

Ztwisted
a (1/2)√
Ztwisted
a (1)

=
1

4
√

2m
exp

[
πL

8

(
1

ve
+

1

2ṽe

)]
.

(III.73)

Plugging these untwisted and twisted partition

function ratios (III.68) and (III.73) into Lemma 1,

we find
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||ρTodd ||1 =

 ∑
a∈untwisted

|ψa|

[
Zuntwisted
a (1/2)√
Zuntwisted
a (1)

]2M

+
∑

a∈twisted

|ψa|

[
Ztwisted
a (1/2)√
Ztwisted
a (1)

]2M
2

=

((
1

2
√
m

)M
exp

[
MπL

4

(
1

ve
+

1

2ṽe

)]∑
a

|ψa|(da)M

)2

;

(III.74)

EXodd:Xeven = M

[
π

2

(
1

ve
+

1

2ṽe

)]
L− 2M log

√
4m+ 2 log

∑
a

|ψa|(da)M . (III.75)

In the second identity above, we recovered the quan-

tum dimensions of the quasiparticles associated to

each sector: for the {1, χ} untwisted sectors, da = 1;

while for the ξ twisted sectors, da =
√

2. In addition

to the 2M contributions, proportional to log
√

4m,

in the entanglement negativity, there is a topological

sector correction equal to 2 log
∑
a |ψa|(da)M . This

recovers (I.12) with the non-universal constant given

by α = π
2

(
1
ve

+ 1
2ṽe

)
and the total quantum dimen-

sion equal to D =
√

4m.

2. Cylinder Geometry

Next we calculate the entanglement negativity be-

tween subsets of Xeven and Xodd when the degrees

of freedom on N ≤ M cylinders Ȳ ⊂ X of the

Moore-Read state (constructed in the previous sec-

tion) have been traced over (e.g., Figure 1b). As in

§III A 2, we denote the remaining (2M − N) cylin-

ders by Y and their decomposition into “odd” and

“even” cylinders as Yodd and Yeven. The resulting

entanglement negativity will depend on the number

R of shared interfaces between the remaining cylin-

ders in Yodd ∪ Yeven.

To find the entanglement negativity in this cylin-

der geometry, we will apply Lemma 2. Before doing

so, we describe how the proof of this lemma gener-

alizes to the Moore-Read state.

Generalized Proof of Lemma 2. The argument fol-

lows almost exactly the proof for the Laughlin case

upon updating the notation to the Moore-Read state

with the replacements: ca( ~Na)→ Pa( ~Xa)ca( ~Na) and

|Na,i,Na,i+1〉 → |Xa,i〉. Because of this, we will

only discuss one case (Case I) below; the remaining

cases (Case II - Case IV) follow straightforwardly

using the same logic as in the Laughlin case and the

manipulations outlined for the generalized proof of

Lemma 1. We will suppress the untwisted/twisted

superscripts on Za when convenient.

(Case I) We remove cylinder Ȳ = X2k where

1 < 2k ≤ 2M by tracing over its left and right

edge states. Thus, Yodd = Xodd, Yeven = X2 ∪ · · · ∪
X2k−2 ∪X2k+2 · · ·X2M , and R = 2M − 2.

The density matrix of the Moore-Read torus state

in (III.52) is

ρ =
∑
a,a′

∑
~Xa, ~X ′a′

ca( ~Na)c∗a′( ~N ′a′)× · · ·

× Pa(Xa,2k−1)|Xa,2k−1〉〈X ′a′,2k−1|Pa′(X ′a′,2k−1)

⊗ Pa(Xa,2k)|Xa,2k〉〈X ′a′,2k|Pa′(X ′a′,2k)

⊗ Pa(Xa,2k+1)|Xa,2k+1〉〈X ′a′,2k+1|Pa′(X ′a′,2k+1)

⊗ · · · .
(III.76)

The trace over degrees of freedom on cylinder Ȳ =

X2k sets

a′ = a, X ′a′,2k = Xa,2k, Pa′(X ′a′,2k) = Pa(Xa,2k)

(III.77)

and removes the corresponding outer products in-

volving states on X2k In particular, TrȲ (ρ) is a di-

rect sum over untwisted and twisted topological sec-

tors.
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The partial transpose of ρY = TrȲ (ρ) with respect to Yodd is

ρTodd

Y =
∑
a

∑
~Xa, ~X ′a

ca( ~Na)c∗a( ~N ′a)P 2
a (Xa,2k)× · · ·

× Pa(Xa,2k−2)|Xa,2k−2〉〈X ′a,2k−2|Pa(X ′a,2k−2)

⊗ Pa(Xa,2k−1)|N ′a,2k−1,Na,2k, saγ′i−1〉〈Xa,2k−1|Pa(N ′a,2k−1,Na,2k, saγ′i−1)

⊗ Pa(Xa,2k+1)|Na,2k+1,N ′a,2k+2, saγ
′
2k+1〉〈Xa,2k+1|Pa(Na,2k+1,N ′a,2k+2, saγ

′
2k+1)

⊗ Pa(Xa,2k+2)|Xa,2k+2〉〈X ′a,2k+2|Pa(X ′a,2k+2)

⊗ · · · ,

(III.78)

where ca( ~Na)c∗a( ~N ′a) takes the same form as in (III.32). There is no dependence on X ′a,2k above because

of (III.77). In (III.78), we have expanded out the arguments of two of the projection operator eigenvalues

and kets involved in the outerproducts associated to cylinders X2k−1 and X2k+1 to make the identifications

(III.77) manifest. Next, we compute

(ρTodd

Y )†ρTodd

Y =
∑
a,a′

∑
~Xa, ~X ′a, ~X ′′a′ ,

~X ′′′
a′

c∗a′(
~N ′′a′)ca′( ~N ′′′a′ )ca( ~Na)c∗a( ~N ′a)P 2

a (Xa,2k)P 2
a′(X ′′a,2k)× · · ·

⊗ Pa′(X ′′′a,2k−2)Pa′(X ′′a,2k−2)Pa(Xa,2k−2)Pa(X ′a,2k−2)|X ′′′a′,2k−2〉〈X ′′a′,2k−2|Xa,2k−2〉〈X ′a,2k−2|
⊗ Pa′(X ′′′a,2k−1)Pa′(X ′′a,2k−1)Pa(Xa,2k−1)Pa(X ′a,2k−1)|X ′′a′,2k−1〉〈X ′′′a′,2k−1|X ′a,2k−1〉〈Xa,2k−1|
⊗ Pa′(X ′′′a,2k+1)Pa′(X ′′a,2k+1)Pa(Xa,2k+1)Pa(X ′a,2k+1)|X ′′a′,2k+1〉〈X ′′a′,2k+1|Xa,2k+1〉〈Xa,2k+1|
⊗ Pa′(X ′′′a,2k+2)Pa′(X ′′a,2k+2)Pa(Xa,2k+2)Pa(X ′a,2k+2)|X ′′′a′,2k+2〉〈X ′′a′,2k+2|Xa,2k+2〉〈X ′a,2k+2|
⊗ · · · .

(III.79)

Note that X ′a,2k and X ′′′a,2k are absent in the sums

over ~X ′a and ~X ′′′a and it is to be understood that we

have imposed (III.77) and the analogous constraints

for X ′′′a,2k above. The above overlaps fix a′ = a and

identify

X ′′′a′,2i−1 = X ′a,2i−1, X ′′a′,2i = Xa,2i,
Pa′(X ′′′2i−1) = Pa(X ′2i−1), Pa′(X ′′2i) = Pa(X2i),

(III.80)

for 1 < 2i ≤ 2M . (Recall that 2M + 1 ≡ 1.) As

in the generalized proof of Lemma 1, these identifi-

cations imply X ′′′a′,i = X ′a,i, X ′a′,i = Xa,i, and equate

corresponding projection operators for all i. Thus,

(ρTodd

Y )†ρTodd

Y is again diagonal and, analogous to

(III.60), we may read off tr
√

(ρTodd

Y )†ρTodd

Y to find

||ρTodd

Y ||1 =
∑
a

∑
~Xa, ~X ′a

Pa( ~Xa)|ca( ~Na)|Pa( ~X ′a)|ca( ~N ′a)|

=
∑
a

|ψa|(Za(1/2)√
Za(1)

)2M−2
2

,

(III.81)

where the sum is over all topological sectors and

the identifications in (III.77) are understood and the

corresponding sums are removed. Taking the loga-

rithm of ||ρTodd

Y ||1, we complete the proof of Lemma

2 for the Moore-Read state when X
′′

= X2k. As

remarked above, the remaining cases follow simi-

larly.

By Lemma 2, the entanglement negativity be-

tween Yodd and Yeven reduces to the calculation of

entanglement Hamiltonian partition functions for

the Moore-Read state. Using the partition functions

24



calculated in the previous section, we find

EYodd:Yeven =
R

2

(
π

2

(
1

ve
+

1

2ṽe

))
L−R log

√
4m

+ log
∑
a

|ψa|2dRa ,

(III.82)

where the sum is over a in the last term is over

all topological sectors and the quantum dimensions

da = 1 for the {1, χ} untwisted sectors and da =
√

2

for the ξ twisted sectors. This verifies (I.13) with

α = π
2

(
1
ve

+ 1
2ṽe

)
and D =

√
4m. Similar to the

torus geometry, there are R terms each proportional

to logD. In addition and in contrast to the Abelian

case (where da = 1), there is a topological sector

correction equal to log |ψa|2dRa .

IV. DISENTANGLING

In this section, we discuss how the topological or-

der of the Laughlin and Moore-Read states affects

the spatial structure of their manybody wavefunc-

tions. Specifically, we determine when the disentan-

gling condition,

EA:BC(ρ) = EA:B(ρAB), (IV.1)

holds, for suitable choices of cylinder subsets A, B,

and C of the torus, and the implication of (IV.1)

for the manybody wavefunction. We focus on two

decompositions of the torus:

1. AB1CB2 geometry: the torus is divided into

four consecutive cylinders A, B1, C, and B2

with disjoint B = B1 ∪ B2. In this case,

ρABC = |ΨABC〉〈ΨABC | with |ΨABC〉 a pure

ground state on the torus.

2. ABCD geometry: the torus is divided into

four consecutive cylinders A, B, C, and D. In

this case, ρABC = trD |ΨABCD〉〈ΨABCD| is a

mixed state on cylinder A∪B∪C and |ΨABCD〉
is a pure torus ground state.

The entanglement negativity results in the previ-

ous section can be used to determine when the dis-

entangling condition (IV.1) is satisfied. Applying

Eqs. (I.12) with M = 1 and (I.13) with R = 2 to the

AB1CB2 geometry, we find

EA:BC(ρABC)− EA:B(ρAB) = log

(∑
a |ψa|da

)2∑
a |ψa|2d2

a

.

(IV.2)

Consequently, only torus states in a specific topolog-

ical sector, i.e., ψa = 1 for a single a with all other

amplitudes vanishing, satisfy the disentangling con-

dition. For the ABCD geometry, (I.13) with R = 1

implies any mixed cylinder state on A ∪ B ∪ C sat-

isfies (IV.1).

Generally, for a tripartite Hilbert spaceHA⊗HB⊗
HC , the degrees of freedom in subsystems A and C

have no quantum correlations in states that satisfy

the disentangling condition. This allows their cor-

responding wavefunctions to be disentangled in the

following sense. For pure states |ΨABC〉, He and

Vidal [42] showed that (IV.1) implies that there ex-

ists a decomposition of the Hilbert space of region

B as HB = HBL ⊗HBR such that the state can be

factorized as

|ΨABC〉 = |ΨABL〉 ⊗ |ΨBRC〉 . (IV.3)

The reverse statement is also valid: the disentan-

gling condition (IV.1) is implied by states satsifying

(IV.3). For mixed states, Gour and Guo [46] demon-

strated that the disentangling condition (IV.1) is

satisfied for all states that saturate the strong subad-

ditivity of the entanglement entropy. The structure

of these states follows

ρABC =
∑
j

pjρABjL
⊗ ρBjRC , (IV.4)

where the Hilbert space of B decomposes into HB =⊕
j HBjL ⊗HBjR and {pj} are probabilities. The re-

verse statement of this case is not necessarily true:

not all mixed states that satisfy the disentangling

condition have the structure of (IV.4).

To what extent does (IV.1) constrain the struc-

ture of the manybody ground state of a topological

phase? More specifically, how are the disentangling

condition (IV.1) and the decompositions (IV.3) and

(IV.4) related, if at all, for the Laughlin and Moore-

Read ground states? Because the relevant ground

state of a topological phase is generally a direct sum
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over distinct topological sectors, |Ψ〉 =
∑
a ψa |Ψa〉,

the applicability of the above results is less clear.

For example, the degenerate ground state Hilbert

space H =
⊕

aHa does not decompose into a tensor

productHA⊗HB⊗HC of local cylinder spaces. (See

Ref. [69] for a related discussion in the context of en-

tanglement entropy in gauge theory.) This provides

an a priori explanation for the necessity of restric-

tion to a single topological sector a to disentangle a

ground state.

In this section, we will show that the Abelian

Laughlin and untwisted sector Moore-Read states

can be decomposed according to Eqs. (IV.3) in the

AB1CB2 geometry and (IV.4) in the ABCD geom-

etry. On the other hand, the twisted sector Moore-

Read states fail to decompose according to (IV.3) or

(IV.4). In other words, even when the disentangling

condition (IV.1) is satisfied, the ground state |Ψa〉
cannot be disentangled, if a = ξr+1/2 is an Ising

twist field.

The general failure of the Moore-Read state to dis-

entangle stems from the non-Abelian nature of the

twisted sectors. The Ising twist field carries non-

trivial quantum dimension da =
√

2 > 1, associ-

ated to each Majorana zero mode cσi,0. The ground

state fixes the fermion parity (−1)n
′
i = icRi−1,0c

L
i,0

of the pair of zero modes to be even at any given

interface. However, the two zero modes do not be-

long to the same cylinder. When decomposing the

ground state into a tensor product of local cylin-

der states, the ground state becomes a superposi-

tion of states with different cylinder fermion pari-

ties (−1)γi = icRi,0c
L
i,0. Since (−1)n

′
i and (−1)γi do

not commute, they do not share simultaneous eigen-

states and the basis transformations between the two

bases are generated by the non-diagonal F -symbol

in (II.39). Consequently, the zero mode part of the

ground state, |f zero〉 in (II.43), is a maximally entan-

gled state where the cylinder fermion parities (−1)γi

are scrambled. This state |f zero〉 does not decom-

pose because the total fermion parity
∑
i γi has a

fixed value (see (II.42)).

The main results of this section are summarized

as the follows. The ground state of a fixed Abelian

(Laughlin or untwisted Moore-Read) sector |Ψa〉 ad-

mits the factorization (IV.7) in the AB1CB2 geom-

etry. The reduced density matrix TrD |Ψa〉〈Ψa| in

the ABCD geometry also factorizes according to

(IV.26). These results are in agreement with the

factorizability (IV.3) and (IV.4) (from [42] and [46])

as the ground state |Ψa〉 obeys the disentangling

condition (IV.1). On the other hand, we show that

the ground state |Ψa〉 (see (IV.18)) of a non-Abelian

twisted sector a = ξr+1/2 of the Moore-Read state

fails to decompose. We demonstrate this by focus-

ing on the zero mode sector and seeing that (i) the

(partially traced) reduced density matrix (IV.19) is

a mixed state and therefore the ground state must

be entangled and (ii) the (partially transposed) den-

sity matrix (IV.20) in the AB1CB2 geometry does

not factorize. Furthermore, we show that (iii) the

reduced density matrix (IV.27) in the ABCD ge-

ometry also fails to disentangle. These results serve

as concrete examples where (IV.3) and (IV.4) both

fail to hold even though the disentangling condition

(IV.1) is satisfied.

A. AB1CB2 Geometry

We first consider the AB1CB2 torus geometry

with X1 = A, X2 = B1, X3 = C, and X4 = B2.

Our discussion below will apply to both the Laugh-

lin and Moore-Read states, with the understanding

that Majorana fermion labels and projection oper-

ators are dropped for the Laughlin and untwisted

Moore-Read states.

Since we are interested in measuring the entangle-

ment EA:BC(ρABC) between A and its complement

in (IV.1), we first show how the corresponding four-

cylinder state can be viewed as a two-cylinder state

on cylinders A and Ā = B1∪C∪B2. The torus state

is given by

|Ψ〉 =
∑
a

Paψa
∑

Na,1,Na,2

λ(Na,1)λ(Na,2)√
Za,1Za,2

× |01〉′sa ⊗ |Na,1Na,2〉X1
⊗ |02〉′sa

⊗ |Na,2〉LX2
⊗ |Ψ̂bulk〉 ⊗ |Na,1〉RX4

.

(IV.5)

The partition functions Za,i = Za for all i with

Za defined in (III.10) for the Laughlin state and in

(III.46) and (III.50) for the untwisted and twisted

sectors of the Moore-Read state; the additional i
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indices are bookkeeping devices that associate these

factors to their corresponding cylindersXi. The (un-

projected) “bulk” state is

|Ψ̂bulk〉 =
∑

Na,3,Na,4

∏
i=3,4

λ(Na,i)√
Za,i

|Na,3〉RX2
⊗ |03〉′sa

⊗ |Na,3Na,4〉X3 ⊗ |04〉′sa ⊗ |Na,4〉LX4 .

(IV.6)

It is normalized: 〈Ψ̂bulk|Ψ̂bulk〉 = 1. Because of sum-

ming over all the internal indexes labeled by Na,3,

Na,4, |01〉′sa , and |04〉′sa in (IV.6), |Ψ̂bulk〉〈Ψ̂bulk| acts

as an identity operator when computing ρ = |Ψ〉〈Ψ|.
Therefore |Ψ̂bulk〉 makes no contribution to the mea-

sured entanglement. This is the key observation for

relating the four-cylinder and two-cylinder states.

Note that |0i〉′sa = |0i〉′ when sa = 1 in the twisted

sector where |0i〉′ denotes the parity of the Majorana

zero mode states at the interfaces between cylin-

ders. These states appear before the F -symbol basis

change to states labeled by the parity of Majorana

zero mode states on a given cylinder. |0i〉′sa = 1

when sa = 0 in an Abelian or untwisted sector.

One can then perform a basis transformation using

the F -symbols and shift the labeling of Majorana

fermion parity from the interfaces to the cylinders.

The second identity in (IV.5) shows that the above

four-cylinder torus state is equivalent to the the two-

cylinder torus state. Thus, we may safely apply the

results of the previous section for the entanglement

negativity to conclude that only pure states is a

specific topological sector, i.e., those states without

long-range entanglement, satisfy the disentangling

condition (IV.1).

In a specific sector a, the unprojected state |Ψ̂a〉
can be factorized as

|Ψ̂a〉 = |Ψ̂X1(LX2RX4),a〉 ⊗ |Ψ̂(RX2LX4)X3,a〉,
(IV.7)

where

|Ψ̂X1(LX2RX4),a〉 =∑
Na,1,Na,2

λ(Na,1)√
Za,1

λ(Na,2)√
Za,2

Ψ̂
(Na,1Na,2)
X1,a

Ψ̂
Na,2Na,1
LX2RX4

,

|Ψ̂(RX2LX4)X3,a〉 =∑
Na,3,Na,4

λ(Na,3)√
Za,3

λ(Na,4)√
Za,4

Ψ̂
(Na,3Na,4)
X3,a

Ψ̂
Na,3Na,4
RX2LX4

,

(IV.8)

and

Ψ̂
(Na,1Na,2)
X1,a

= |01〉′sa ⊗ |Na,1Na,2〉X1 ⊗ |02〉′sa ,

Ψ̂
(Na,3Na,4)
X3,a

= |03〉′sa ⊗ |Na,3Na,4〉X3 ⊗ |04〉′sa ,

Ψ̂
Na,2Na,1
LX2RX4

= |Na,1〉RX4
⊗ |Na,2〉LX2

,

Ψ̂
Na,3Na,4
RX2LX4

= |Na,3〉RX2
⊗ |Na,4〉LX4

.

(IV.9)

Here, |Ψ̂X1(LX2RX4),a〉 and |Ψ̂(RX2LX4)X3,a〉 are nor-

malized. (IV.7) is the desired factorization for the

Laughlin state, where there is no projection op-

erator. For a untwisted sector Moore-Read state,

the projection operator Pa can be decomposed into

cylinder state projection operators Pa,Xi , which in

turn decompose into left and right edge projection

operators as Pa,Xi = Pa,iPa,i+1. Including these fac-

torized projection operators, we find the untwisted

Moore-Read ground state wavefunction in a specific

sector a can be disentangled.

In the twisted sector of the Moore-Read phase,

the projection operator PXi does not factorize into

left and right edge components. Further division of

a given cylinder into sub-cylinders does not appear

to help, as the resulting Hilbert space is not a simple

tensor product. Thus, the corresponding manybody

wavefunction does not factorize as (IV.3). Although

the corresponding pure state density matrix can be

written in a form similar to (IV.4), we will show in

the following that the factorization of HB = HBL ⊗
HBR fails.

By splitting cylinder B1 into sub-cylinders X2, X3

and B2 into sub-cylinders X5, X6 (see Figure 4),

the torus ground state of a fixed twisted sector
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a = ξr+1/2 is

|Ψa〉 =
∑
~Na,~γ

ca( ~Na)Pa( ~Na, ~γ)

6⊗
i=1

|Na,iNa,i+1γi〉Xi ,

(IV.10)

where ca( ~Na) ≡
∏6
i=1

λ(Na,i)√
Za

and the projection op-

erator eigenvalues Pa( ~Na, ~γ) =
∏6
i=1 Pa(Na,i, γi) are

defined in (II.46). We find that under the restricted

FIG. 4: A torus is divided by the dashed lines into the

AB1CB2 geometry: region A is the X1 cylinder while

region C the X4 cylinder. Region B1 is the union of X2

and X3; and B2 the union of X5 and X6. The collective

mode Ni are defined on the ith interface as in (III.5) or

(III.41).

sum
∑6
i=1 γi = 1 mod 2 (see (II.42)), we can split

and restrict the sum over γ1, γ2, γ6 and the sum over

γ3, γ4, γ5 according to the parity

s = −(−1)γ1+γ2+γ6 = (−1)γ3+γ4+γ5 = ±. (IV.11)

The projections Pa,X1
Pa,X2

Pa,X6
and

Pa,X3Pa,X4Pa,X5 from (II.46) both require

s = (−1)Na,3+Na,6 .

The density matrix ρtwist = |Ψa〉〈Ψa| from the

twisted sector a = ξr+1/2 can now be factorized as

ρtwist =
∑
j

pjρ
j
X1(X2X6) ⊗ ρ

j
(X3X5)X4. (IV.12)

Here the summation index j is an abbreviation for

the collection of quantities

j =

{
Na,3,Na,6, s
N ′a,3,N ′a,6, s′

∣∣∣∣∣ s = (−1)Na,3,Na,6

s′ = (−1)N
′
a,3,N

′
a,6

}
.

(IV.13)

The probabilities in the density matrix are

pj ≡
∏
i=3,6

λ(Na,i)λ(N ′a′,i)√
Za,iZa,i

(IV.14)

so that
∑
j pj = 1. The density matrix components

are

ρjX1(X2X6) =
∑
{h}

∏
i=1,2

λ(Na,i)λ(N ′a,i)√
Za,iZa,i

∑
γ1,γ2,γ6

s=−(−1)γ1+γ2+γ6

∑
γ′1,γ

′
2,γ
′
6

s′=−(−1)γ
′
1+γ′2+γ′6

× Pa,X6 |Na,6Na,1γ6〉〈N ′a,6,N ′a,1, γ′6|Pa,X6

⊗ Pa,X1
|Na,1Na,2γ1〉〈N ′a,1N ′a,2γ′1|X1

Pa,X1

⊗ Pa,X2
|Na,2Na,3γ2〉〈N ′a,2,N ′a,3, γ′2|Pa,X2

(IV.15)

with {h} ≡ {Na,1N ′a,1,Na,2,N ′a,2}, and

ρj(X3X5)X4
=
∑
{e}

∏
i=4,5

λ(Na,i)λ(N ′a,i)√
Za,iZa,i

∑
γ3,γ4,γ5

s=(−1)γ3+γ4+γ5

∑
γ′3,γ

′
4,γ
′
5

s′=(−1)γ
′
3+γ′4+γ′5

× Pa,X3
|Na,3Na,4γ3〉〈N ′a,3,N ′a,4, γ′3|Pa,X3

⊗ Pa,X4
|Na,4Na,5γ4〉〈N ′a,4N ′a,5γ′4|Pa,X4

⊗ Pa,X5
|Na,5Na,6γ5〉〈N ′a,6,N ′a,6, γ′5|Pa,X5

,

(IV.16)

with {e} ≡ {Na,4N ′a,4,Na,5,N ′a,5}. All density matrix components ρ’s are Hermitian and have unit trace.
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We notice that the ground state (IV.10) and the density matrix (IV.12) of any of the twisted sectors

are not factorizable and cannot be expressed in (IV.3) and (IV.4). This is because the summation index

j involves the parities s, s′, which specify the fermion parity of half of the torus ABtop = X1(X2X6) and

BbottomC = (X3X5)X4. These parity indices cannot be absorbed entirely into Btop and Bbottom, and

therefore the Hilbert space decomposition HB =
⊕

j HBjtop ⊗HBjbottom
is not satisfied. We show this failure

of decomposition of the ground state below by focusing on the zero mode sector

|GS〉 =
1

4
√

2

∑
{γi}|C

|γ1γ2γ3γ4γ5γ6〉 (IV.17)

where the constraint C requires that
∑6
i=1 γi = 1 mod 2.

Proof. We first see that the ground state can be re-expressed as

|GS〉 =
1√
2

∑
s=±

1

2

∑
γ1,γ2,γ6

s=−(−1)γ1+γ2+γ6

|γ1γ2γ6〉

⊗
1

2

∑
γ3,γ4,γ5

s=(−1)γ3+γ4+γ5

|γ3γ4γ5〉

 . (IV.18)

To show that the above ground state does not decompose according to (IV.3), we assume the contrary that

|GS〉 = |GS〉ABtop
⊗ |GS〉BbottomC . This would imply the reduced density matrix ρABtop

= TrBbottomC(ρ) is

a pure state, where ρ = |GS〉〈GS|. However, from (IV.18),

TrBbottomC |GS〉〈GS| =
1

8

∑
(−1)γ1+γ2+γ6

=(−1)γ
′
1+γ′2+γ′6

|γ1γ2γ6〉〈γ′1γ′2γ′6| (IV.19)

has spectrum {1/2, 1/2, 0, 0, 0, 0, 0, 0} and is a mixed state. Therefore the assumption |GS〉 = |GS〉ABtop ⊗
|GS〉BbottomC must be false, and the ground state does not disentangle according to (IV.3).

Furthermore, we consider the density matrix ρ = |GS〉〈GS|,

ρ =
1

32

∑
~γ|C

∑
~γ′|C

|γ1γ2γ6〉〈γ′1γ′2γ′6| ⊗ |γ3γ4γ5〉〈γ′3γ′4γ′5|

=
1

32

∑
s,s′=±

 ∑
s=−(−1)γ1+γ2+γ6

s′=−(−1)γ
′
1+γ′2+γ′6

|γ1γ2γ6〉〈γ′1γ′2γ′6|

⊗
 ∑
s=(−1)γ3+γ4+γ5

s′=(−1)γ
′
3+γ′4+γ′5

|γ3γ4γ5〉〈γ′3γ′4γ′5|

 .

(IV.20)

We define the density matrix components

ρss
′

ABtop
=

1

4

∑
s=−(−1)γ1+γ2+γ6

s′=−(−1)γ
′
1+γ′2+γ′6

|γ1γ2γ6〉〈γ′1γ′2γ′6|,

ρss
′

BbottomC
=

1

4

∑
s=(−1)γ3+γ4+γ5

s′=(−1)γ
′
3+γ′4+γ′5

|γ3γ4γ5〉〈γ′3γ′4γ′5|.
(IV.21)

These components have unit trace only when s = s′, and have vanishing trace when s 6= s′. Therefore

(IV.20) does not admit a density matrix decomposition (IV.4). Moreover, even when s = s′, the parity

index cannot be absorbed entirely in Btop and Bbottom. To see this, we assume the contrary that the density
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matrix components decompose, ρsABtop
= ρA ⊗ ρsBtop

, where ρA and ρBtop have unit trace. This implies

ρA = TrBtop
(ρsABtop

) and ρsBtop
= TrA(ρsABtop

). By taking the partial traces in (IV.21),

ρA = TrBtop(ρsABtop
) =

1

2

∑
γ1=0,1

|γ1〉〈γ1| and ρsBtop
= TrA(ρsABtop

) =
1

4

∑
(−1)γ2+γ6

=(−1)γ
′
2+γ′6

|γ2γ6〉〈γ′2γ′6|.
(IV.22)

The product ρA ⊗ ρsBtop
= TrBtop

(ρsABtop
)⊗ TrA(ρsABtop

) is

1

8

∑
γ1=0,1

∑
(−1)γ2+γ6

=(−1)γ
′
2+γ′6

|γ1γ2γ6〉〈γ′1γ′2γ′6|, (IV.23)

which contradicts (IV.21). Therefore, the assumption ρsABtop
= ρA⊗ρsBtop

must be false. Similarly, ρsBbottomC

is also not factorizable.

B. ABCD Geometry

.

As we found in the proof of Lemma 2, the trace

over degrees of freedom in cylinder D results in a re-

duced density matrix ρABC that is a direct sum over

each of the topological sectors. We may therefore

consider the decomposition (IV.4) for the Laughlin

and untwisted Moore-Read states separately from

that of the twisted Moore-Read states. We will show

how the latter set of states admits a refinement of

the decomposition (IV.4). In both cases, the reduced

density matrices ρABC saturate the strong subaddi-

tivity relation of the entanglement entropy.

1. Laughlin and Untwisted Sector Moore-Read States

We begin with a fixed pure torus state with anyon

flux a,

|Ψ〉 =
∑
~Na

Pa( ~Na)

4∏
i=1

λ(Na,i)√
Za,i

× |Na,1Na,2〉X1 ⊗ |Na,2Na,3〉X2

⊗ |Na,3Na,4〉X3
⊗ |Na,4Na,1〉X4

.

(IV.24)

Here we are taking X1 = A, X2 = B, X3 = C,

and X4 = D. Pa( ~Na) is the product of projec-

tion operator eigenvalue for the four cylinders. For

the Laughlin state, Pa( ~Na) = 1. For the un-

twisted sectors of the Moore-Read state, a cylin-

der projection operator eigenvalue can be factor-

ized into a product of left and right edge pro-

jection operator eigenvalues for each cylinder, i.e.,

Pa,Xi(Na,i,Na,i+1) = Pa,i(Na,i)Pa,i+1(Na,i+1) with

Pa,i(Na,i) given in (III.42). The density matrix

ρABC = trX4 |Ψ〉〈Ψ| obtained by tracing out X4 is

ρABC =
∑

Na,1,Na,2,N ′a,2

λ2(Na,1)

Za,1

λ(Na,2)√
Za,2

λ(N ′a,2)√
Za,2

× Pa,X1 |Na,1Na,2〉〈Na,1N ′a,2|X1Pa,X1

⊗ Pa,2|Na,2〉〈N ′a,2|LX2
Pa,2

⊗
∑

Na,3,N ′a,3,Na,4

λ2(Na,4)

Za,4

λ(Na,3)√
Za,3

λ(N ′a,3)√
Za,3

× Pa,3|Na,3〉〈N ′a,3|RX2Pa,3

⊗ Pa,X3 |Na,3Na,4〉〈Na,3N ′a,4|X1Pa,X3 ,

(IV.25)

where the partition functions Za,i = Za for all i

(for the uniform states we consider) with Za defined

in (III.10) for the Laughlin state and in (III.46) for

the untwisted sectors of the Moore-Read state. By

inspection this admits the decomposition (IV.4):

ρABC = ρaA(LB) ⊗ ρ
a
(RB)C , (IV.26)
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The density matrices associate with (IV.26) are,

ρaA(LB) =∑
Na,2,N ′a,2

λ(Na,2)λ(N ′a,2)

Za,2
ρ
Na,2N ′a,2
A,a ρ

Na,2N ′a,2
LB,a

(IV.27)

where

ρ
Na,2N ′a,2
A,a =∑
Na,1

λ2(Na,1)

Za,1
Pa,X1

|Na,1Na,2〉〈Na,1N ′a,2|X1
Pa,X1

,

ρ
Na,2N ′a,2
LB,a = Pa,2|Na,2〉〈N ′a,2|LX2Pa,2.

(IV.28)

ρ(RB)C,a has a similar decomposition,

ρa(RB)C =∑
Na,3,N ′a,3

λ(Na,3)λ(N ′a,3)

Za,3
ρ
Na,3N ′a,3
RB,a ρ

Na,3N ′a,3
C,a .

(IV.29)

2. Twisted Sector Moore-Read States

For the twisted sectors of the Moore-Read state,

we need to split B into two consecutive cylinders BI
and BII . Specifically, we take X1 = A, X2 = BI ,

X3 = BII , X4 = C, X5 = D1 and X6 = D2 (see

Figure 5) and begin with the generic twisted sector

pure state,

The ground state of a fixed twisted sector a =

ξr+1/2 is again described by (IV.10). We will show

the reduced density matrix ρtwist
ABC , after tracing out

subsystem D, cannot factorize according (IV.4).

Similar to the previous AB1CB2 geometry in the

last subsection, it suffice to focus on the zero mode

sector. The ground state in the zero mode sector is

|GS〉 =
∑
{γi}|C |γ1 . . . γ6〉/(4

√
2), where the sum is

restricted by
∑6
i=1 γi = 1 mod 2.

The reduced density matrix is

ρtwist
ABC = TrD (|GS〉〈GS|)

=
1

16

∑
γ1+...+γ4

=γ′1+...+γ′4

|γ1 . . . γ4〉〈γ′1 . . . γ′4|. (IV.30)

FIG. 5: A torus is divided by the dashed lines into the

ABCD1D2 geometry: region A is the X1 cylinder while

region C the X4 cylinder. Region B is the union of X2

and X3; and D the union of X5 and X6.

To show that it does not decompose, we follow a

similar procedure to before and assume the con-

trary that ρtwist
ABC =

∑
j pjρABjI

⊗ ρBjIIC
, where pj

are probabilities satisfying
∑
j pj = 1. Tracing

over subsystem B, the factorization would imply

TrB(ρtwist
ABC) = ρA ⊗ ρC . At the same time, from

(IV.30),

TrB(ρtwist
ABC) =

1

4

∑
γ1+γ4

=γ′1+γ′4

|γ1γ4〉〈γ′1γ′4|,

ρA = TrBC
(
ρtwist
ABC

)
=

1

2

∑
γ1=0,1

|γ1〉〈γ1|,

ρC = TrAB
(
ρtwist
ABC

)
=

1

2

∑
γ4=0,1

|γ4〉〈γ4|.

(IV.31)

However, this would lead to a contradiction because

ρA ⊗ ρC = 1
4

∑
γ1γ4
|γ1γ4〉〈γ1γ4|, which disagrees

with TrB(ρtwist
ABC) in the equation above. Therefore,

the assumption that the reduced density matrix de-

composes, ρtwist
ABC =

∑
j pjρABjI

⊗ ρBjIIC
, must be

false.

V. DISCUSSION AND CONCLUSION

In this paper, we studied multipartite entangle-

ment in the Laughlin and Moore-Read ground state

wavefunctions. Our main results for the entangle-

ment negativity of these states are summarized in

Eqs. (I.12) and (I.13). From these entanglement neg-

ativities, we constructed a disentangling condition
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(I.14) for whether states can be disentangled, i.e.,

decomposed according to either (I.6) or (I.8). The

disentangling condition is only satisfied by states in

a definite topological sector. We found the disen-

tangling condition to be a necessary and sufficient

condition to disentangle the Laughlin and untwisted

sector Moore-Read states.

Despite satisfying the disentangling condition, a

twisted sector Moore-Read ground state wavefunc-

tion on the torus cannot be disentangled. The ob-

struction is due to the lack of a tensor product de-

composition of the twisted sector torus Hilbert space

into appropriate subspaces. It would be interest-

ing to find a generalization of the disentangling con-

dition, perhaps one that involves the partial time-

reversal [70] or anyonic partial transpose [71], that

is sensitive to this particular obstruction to wave-

function disentanglement.

Our results rely on the cut and glue construction

of topological ground states. In this approach, the

correlation length is zero. With finite correlation

length, we expect exponentially suppressed correc-

tions to appear in the disentangling condition. It

would also be interesting to consider the disentan-

gling condition at phase transitions where the corre-

lation length is infinite.

We focused on the Laughlin and Moore-Read

topological states. We expect that our entanglement

negativity results hold for more general topological

states in 2+1 dimensions, such as those phases host-

ing metaplectic anyons [72] and Fibonacci anyons

[73]. It is unclear to us whether the corresponding

wavefunctions for such states might disentangle, as

the fusion rule structure of general states is more

intricate than the Laughlin and Moore-Read states.

Fracton orders in 3 + 1 dimensions [74] have similar

entanglement signatures as their lower-dimensional

“conventional” topologically ordered counterparts

[75]. Recent work has shown how certain types

of fracton order obtain from coupled-wire construc-

tions [76, 78] or from infinite-component (2+1)-

dimensional Chern-Simons gauge theory [77]. The

multipartite entanglement characteristics of this or-

der are yet to be understood.
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Appendix A: Modular and Character Functions

1. Modular functions

For all the modular functions in this paper, we will

follow directly the notation from Sohal et al. [65].

The nome q is defined by

q = e2πτ . (A.1)

For the fictitious inverse temperature β = 1/T , the

modular parameter τ for our physical systems is de-

fined by

τ = iτ2 =
iβve
L

, (A.2)

where τ ∈ C. The Dedekind’s η function is defined

as

η(τ) = q1/24
∞∏
n=1

(1− qn). (A.3)

The modular transformations (with τ → −1/τ and

τ → τ + 1) of the eta function gives us the following

relations

η(−1/τ) =
√
−iτη(τ), (A.4)

η(τ + 1) = eiπ/12η(τ). (A.5)

The more general Jacobi theta functions are defined

by

θαβ (τ) =
∑
n∈Z

q
1
2 (n+α)2e2πi(n+α)β . (A.6)

Under modular transformations, the theta functions

satify the following relations

θαβ (−1/τ) =
√
−iτe2πiαβθβ−α(τ), (A.7)

θαβ (τ + 1) = e−πiα(α−1)θαα+β− 1
2
(τ). (A.8)
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Recall that τ = iτ2 where τ2 ∈ R+. As τ2 →∞, the

modular functions approaches asymptomatic values

lim
τ2→∞

η(i/τ2) = q1/24, (A.9)

lim
τ2→∞

θαβ (i/τ2) = δα,0. (A.10)

The standard theta functions can be written in

terms of the above general theta functions in the

following form,

θ2(τ) =
∑
n∈Z

q(n+ 1
2 )

2

/2 = θ
1/2
0 (τ), (A.11)

θ3(τ) =
∑
n∈Z

qn
2/2 = θ0

0(τ), (A.12)

θ4(τ) =
∑
n∈Z

(−1)nqn
2/2 = θ0

1/2(τ). (A.13)

Include here also three product representation of

theta functions

θ2(τ) = 2 4
√
q
∏
j>0

(1− q2j)(1 + q2j)2, (A.14)

θ3(τ) =
∏
j>0

(1− q2j)(1 + q2j−1)2, (A.15)

θ4(τ) =
∏
j>0

(1− q2j)(1− q2j−1)2. (A.16)

2. Character functions

From the entanglement Hamiltonian for fermions,

its partition function under anti-periodic boundary

condition (k = 2π
L (j + 1

2 )), the fermionic partition

function is instead

∑
ni,k=0,1

e−
∑
k>0 βṽek(ni,k+1/2)

= q̃
1
24

∏
j>0

∑
ni,k=0,1

(q̃j+1/2)ni,k

= q̃−
1
48

∏
j>0

(1 + q̃j+1/2).

(A.17)

Under the action of parity (−1)
∑
k>0 ni,k , the parti-

tion functions now become∑
ni,k=0,1

(−1)
∑
k>0 ni,ke−

∑
k>0 βṽek(ni,k+1/2)

= q̃
1
24

∏
j>0

∑
ni,k=0,1

eiπni,ke−
2πiβṽe
L (j+ 1

2 )ni,k

= q̃−
1
48

∏
j>0

(
1− q̃j+1/2

)
.

(A.18)

Using (A.15), the partition function can be recast in

terms of modular function as

q̃−
1
48

∏
j>0

(
1 + q̃j+1/2

)
=

√
q̃−

1
24

∏
j>0

(1 + q̃
1
2 (2j−1))2

=

√√√√√∏j>0

(
1 + q̃

1
2 (2j−1)

)2 (
1− q̃ 1

2 (2j)
)

q̃
1
24

∏
j>0(1− q̃j)

=

√
θ0

0(τ̃)

η(τ̃)
.

(A.19)

Similarly using (A.16),

q̃−
1
48

∏
j>0

(
1− q̃j+1/2

)
=

√
q̃−

1
24

∏
j>0

(
1− q̃ 1

2 (2j−1)
)2

=

√√√√√∏j>0

(
1− q̃ 1

2 (2j−1)
)2 (

1− q̃ 1
2 (2j)

)
q̃

1
24

∏
j>0(1− q̃j)

=

√
θ0

1/2(τ̃)

η(τ̃)
.

(A.20)

Thus the character functions in the untwisted sector

have the forms

χIsing
0 (q̃) =

1

2

√
θ0

0(τ̃)

η(τ̃)
+

1

2

√
θ0

1/2(τ̃)

η(τ̃)
,

χIsing
1/2 (q̃) =

1

2

√
θ0

0(τ̃)

η(τ̃)
− 1

2

√
θ0

1/2(τ̃)

η(τ̃)
.

(A.21)

On the other hand, for periodic boundary condi-

tion (k = 2πj
L , j ∈ Z), the fermionic partition func-
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tions is instead∑
ni,k=0,1

e−
∑
k>0 βṽek(ni,k+1/2)

= q̃
1
24

∏
j>0

∑
ni,k=0,1

(q̃j)ni,k

= q̃
1
24

∏
j>0

(1 + q̃j).

(A.22)

We now rewrite (A.22) in terms of modular function

using (A.14):

q̃
1
24

∏
j>0

(1 + q̃j)

=

√
q̃1/12

∏
j>0

(1 + q̃j)2

=
2q̃

1
8

∏
j>0

(
1+q̃

1
2
(2j)
)2(

1−q̃
) 1

2
(2j)

2q̃
1
24

∏
j>0(1− q̃j)

=

√
θ

1/2
0 (τ̃)

2η(τ̃)
.

(A.23)

So the character function in the twisted sector has

the form

χIsing
1/16 (q̃) =

√
θ

1/2
0 (τ̃)

2η(τ̃)
. (A.24)

The rest of character functions in this paper can be

read off from (A.3) and (A.6).
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