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The concepts of deconfinement and topological order are of great current interest for quantum
information science and for our understanding of quantum materials. Here, we introduce a simple
model of three antiferromagnetically coupled Kondo impurities, a “Kondo triangle”, which can be
used to further extend the application of these concepts to electronic systems. We show that by
tuning the magnetic frustration, the Kondo triangle undergoes a quantum phase transition between
two phases of unbroken symmetry, signaling a phase transition beyond the Landau paradigm. We
demonstrate that the frustrated “spin liquid” phase is described by a three-channel Kondo fixed
point and thus displays an irrational ground state degeneracy. Using an Abrikosov pseudofermion
representation this quantum state is categorized by an emergent U(1) gauge field and its projective
symmetry group. The gauge theory is deconfining in the sense that a miniature Wilson loop orders
and that topological defects (instantons in the gauge field) are expelled. This phase persists in
presence of moderate Kondo screening until proliferation of topological defects lead to a quantum
phase transition to an unfrustrated Fermi liquid phase. Based on this evidence, we propose that
three-channel Kondo phase displays topological order in a similar sense as gapless spin liquids.

I. INTRODUCTION

Recent discoveries in quantum materials have urged us
to generalize Landau’s notion of broken symmetry by in-
troducing new classes of quantum order without symme-
try breaking. The prime example is quantum magnetism
in which strong frustration can give rise to quantum spin
liquids (QSLs)[1, 2] with fractionalized quasi-particles,
new patterns of long-range entanglement and topologi-
cal order [3]. Similar physics occurs at continuous phase
transitions between ordered phases with different sym-
metries which require a fractionalized description (“de-
confined criticality”) [4].

These ideas are of particular relevance to doped QSLs
in the vicinity of Mott-delocalization, a topic of poten-
tial importance for cuprate [5], organic salts [6, 7] and
iron-based [8] high-Tc superconductors. A closely re-
lated topic, is the interaction of electrons and spin liquids
via a Kondo interaction, as in geometrically frustrated
heavy fermion compounds, (e.g. CePdAl [9, 10]), tran-
sition metal dichalcogenides (e.g. 4Hb-TaS2 [11]) and in
engineered van-der-Waals heterostructures of graphene
and RuCl3 [12].

A significant component of this intriguing physics is
thought to involve the fractionalization of spins [13, 14]
into “spinons”, fractionalized particles interacting with
an emergent gauge field. Fractionalization is a useful
concept if the emergent gauge theory is in the decon-
fining phase. In (2+1)D compact quantum electrody-
namics (QED3) deconfinement is lost via a proliferation
of instantons in the gauge field [15], but the presence of
fermions [16–20] counteracts this mechanism allowing for
a confinement-deconfinement quantum phase transition.
It has been argued that transitions out of spin-liquid
phases via partial Mott delocalization, e.g. in heavy-

FIG. 1. a An antiferromagnetic triangle, where each spin is
coupled to its own conduction bath, caricatures a spin-liquid
competing with a Fermi liquid. b When TK/JH is large, each
spin is individually Kondo screened (local Fermi liquid LFL,
right inset). In contrast, at smallest TK/JH , the ground state
manifold of the impurity forms an effective spin (left inset)
and the system develops a 3 channel Kondo (3CK) phase, in
which instantons of the emergent gauge theory are irrelevant.
Analogously to confinement in QED3, instantons proliferate
beyond a critical TK/JH (red star) and restore an ordinary
(L)FL.

fermion materials, leads to a Fermi surface reconstruction
that may be understood in these terms [21–23].

In addition to its importance for quantum materials,
deconfinement of anyonic quasiparticles is of prime im-
portance for topological quantum computation [24] which
may be realized in materials (as discussed above) or by
artificially interweaving non-topological qubits into ro-
bust, macroscopic logical qubits, e.g. within the surface
code. As it appears particularly desirable to electroni-
cally manipulate and braid the emergent excitations, a
natural important question regards when and how topo-
logical order is destroyed by the coupling to electronic
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leads.
Related phenomena appear in the context of magnetic

impurities, as in the overscreened Kondo effect [25–29],
and in magnetically frustrated Kondo screened impuri-
ties [30–34]. The frustration lead to the fractionalization
of the spin and an irrational residual entropy suggestive
of an underlying presence of non-Abelian anyons [35]. It
has been recently suggested that these anyons can be po-
tentially used as a platform for topological quantum com-
putation [36, 37]. The common theme of these systems
is an abundance of competing patterns of spin entangle-
ment and their rearrangement at a quantum critical point
(QCP).

Here, we investigate a “Kondo triangle model” involv-
ing three antiferromagnetically coupled spins at the ver-
tices of a triangle, each independently coupled to its own
conduction sea (Fig. 1 a) [38, 39]. The solvable limits of
this model enable us to demonstrate a transition between
two distinct ground-state phases without any symmetry
breaking. In one of these two phases each spin is Kondo
screened separately and the spins are not mutually entan-
gled. In the other phase, the spins are strongly entangled,
the coupling to the leads results in an irrational impu-
rity entropy. To gain a better insight, we have explored
the physics of a Kondo triangle near the large N limit of
spins with an SU(N) symmetry. Our procedure contains
three steps:

i) We pre-fractionalize spins in terms of Abrikosov
fermion “spinons” [40].

ii) Decoupling of interactions leads to a quadratic
Hamiltonian [41] with a U(1) flux Φ through the triangle.

iii) We go beyond mean-field theory by studying 1/N
corrections and the non-perturbative effects of instantons
(i.e. phase-slips Φ→ Φ ± 2π).

The presence of these phase-slips makes the problem
distinct from the two-impurity Kondo problem discussed
extensively in the past [28, 42–44] and allows to draw
analogies to the confinement mechanism in QED3 and to
fractionalization in 2+1 dimensional quantum materials
in general.

We conclude this introduction with an overview of
previous works on confinement-deconfinement quantum
phase transitions in Kondo lattice systems. Senthil, Vo-
jta and Sachdev [21, 45] introduced the concept of frac-
tionalized Fermi liquid (FL∗) phases, in which the Kondo
screening of lattice spins breaks down at the expense of
establishing a QSL in the spin system. When the latter
is a Z2 QSL, the FL∗ is particularly robust, but FL∗ and
ordinary Fermi liquid are separated by a superconduct-
ing phase which breaks particle number conservation. In
contrast, the transition from an FL∗ with U(1) QSL to
the Kondo screened Fermi liquid may be direct, does not
involve the breaking of any microscopic symmetries and
is governed by a quantum critical point [45–47].To study
this phase transition in low-dimensional Kondo problems
a study of fermionic degrees of freedom coupled to com-
pact gauge fields seems essential to stabilize deconfine-
ment. We are not aware of any such previous studies.

The remainder of this paper is structured as follows: In
Sec. II we define the model under consideration and sum-
marize the main results. Sec. III contains a mapping of
the triangle model to a three channel Kondo model which
is independent of the approximate large-N treatment in-
troduced in Sec. IV. Fluctuation corrections beyond the
1/N limit are discussed in Sec. V while the conclusions,
Sec. VI contain a discussion of the relationship to topo-
logical order and of the experimental implications of our
work.

II. MODEL AND SUMMARY OF RESULTS

A. Model Hamiltonian

The Kondo triangle Hamiltonian (Fig. 1 a) H = Hc +
HH +HK consists of three terms:

Hc =
3

∑
m=1
∑
p

c̃†α,m(p)ε(p)c̃α,m(p), (1a)

HH = JH
N

3

∑
m=1

ŜamŜ
a
m+1, (1b)

HK = JK
N

3

∑
m=1

Ŝamc
†
α,m(0)σaαβcβ,m(0). (1c)

The operators c†m(x) [c̃†m(p) = ∑x e−ip ⋅x c†m(x)] create
electrons on lead m, with a dispersion ε(p). The σa

(a = 1 . . .N2 − 1) are generators of the fundamental rep-

resentation of SU(N) and Ŝam are the corresponding spin
operators. Summation convention over repeated spin in-
dices α,β = 1, . . . ,N is implied but summations over the
lead indexm are written explicitly. In this paper, we will
mainly use the Abrikosov fermion representation of spins
Ŝam = f †

α,m[σa]αβfm,β , with the constraint f †
α,mfα,m = Q

where Q = Nq.

B. Comparison to previous works

For a large Kondo temperature TK = De−1/JKρ ≫ JH
the model yields a local Fermi liquid (LFL), see Fig. 1
b, in which each spin is magnetically screened by its
own conduction band. The situation is more intricate
for small TK ≪ JH . For SU(2) spins, Ferrero et al. [38]
employed a combination of conformal field theory and nu-
merical renormalization group to demonstrate that the
LFL phase is stable at all values of the ratio TK/JH .
Recently, we investigated the ferromagnetic version [48]
of Eq. (1), but we are not aware of other studies of the
antiferromagnetic model defined in Eq. (1).

However, C3 symmetric models of spin-1/2 triangles
which are Kondo coupled [49] to a single 2D or 3D elec-
tronic bath were considered by Lazarovits et al. [32]
using a renormalization group approach. Contrary to
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Eq. (1), this setup features substantial intersite correla-
tions ⟨c†α,m(τ)cα,m+1(0)⟩ which can lead to an exotic non-
Fermi-liquid fixed point. The model was studied numer-
ically by Paul and Ingersent [50] and analytically by In-
gersent et al. [30]. Very recently Eickhoff and Anders [51],
have re-visited the model with the goal of developing a
cluster dynamical mean-field theory.

Finally, a vast amount of literature is devoted to asym-
metric triangles, in which Kondo-coupling to the leads is
site selective, and/or the Heisenberg interaction is not
homogeneous, see e.g. 52–54.

C. Summary of results

In this work, we generalize this model beyond SU(2), to
the case of spins forming an antisymmetric representation
of SU(N), described by vertical Young tableaux with Q
boxes. In Sec. III, we show that for a sequence of (N,Q)
our model at smallest TK/JH maps onto a single com-
posite spin, overscreened by three conduction channels,
denoted here as 3CK. This solvable limit corresponds to
a phase with a non-trivial ground state degeneracy, dif-
fering from the LFL at large TK/JH . Yet, neither phase
breaks any symmetries of the model.

Within the large-N approach, the appearance of
spinons is accompanied by an emergent U(1) gauge field
on the links of the triangle, with a gauge invariant flux

∮ A⃗ ⋅ dx⃗ = Φ that threads the triangle. The 3CK phase
(Fig. 1b), is characterized by the ordering of the symmet-
ric ring exchange operator

Os ≡ dabcŜa1 Ŝb2Ŝc3 ∝ cos(Φ), dabc ≡ tr[σa{σb, σc}], (2)

which preserves time reversal, spin SU(N) and crystalline
C3v symmetries. By contrast, in the Fermi liquid (FL),
phase-slips proliferate, confining the spinons to each lead,
and in this sense, the two phases are separated by a
confinement-deconfinement transition. Both (FL and
3CK) phases are robust against deformations of the tri-
angle (i.e. unequal JH) which make them suitable for
future experimental realizations.

Finally, we comment on special values of Q and N .
First, the particle-hole symmetric representation Q/N =
1/2, which is related to SU(2) spins, has mean-field solu-
tions for which some of the links are missing and the flux
is ill-defined (see Fig. 3 a, below). Moreover, the order
parameter Os of the 3CK phase vanishes for N = 2 since
dabc = 0 for SU(2) spins. These arguments explain the
persistence of the FL phase down to TK/JH → 0 for the
SU(2) triangle [38].

Second, at commensurate representations Q = N/3, or
Q = 2N/3, the spins form a singlet at small TK/JH and
the competition between Heisenberg and Kondo interac-
tions is analogous to the SU(2) two-impurity two-channel
Kondo problem, i.e. the two limiting phases are FLs with
conduction electron phase shift of δc = 0, π. For these
commensurate representations, instead of the 3CK phase,
we have a FL∗, i.e. a gapped spin-liquid which is robust

to the Kondo interaction up to a threshold coupling, and
a FL∗ to FL transition.

III. MAPPING TO THREE-CHANNEL-KONDO
MODELS

We first highlight a subset of models, with N = 3Q+1,
of which the simplest is the fundamental representation
of SU(4). In these special cases, we can show that three
channel Kondo (3CK) behavior develops at large JH .
To see this, we first solve HH at JK = 0. It is con-
venient to employ the previously introduced Abrikosov
fermion representation of the spin, and we emphasize
that here no approximations are made (for details see
Appendix A). The antiferromagnetic coupling JH favors
the formation of a maximally antisymmetrized combina-
tion of 3Q spinons. Since 3Q = N − 1, this system is
one spinon short of an overall SU(N) singlet. Indeed if
one of the spins, say m, had a larger representation, i.e.
Q+1 (rather than Q) vertical boxes, the three spins could
form a singlet, denoted by ∣singlet,m⟩. When all spins
have representation Q, the ground state of the Heisen-
berg Hamiltonian HH can be shown (Appendix A 2) to
be

∣α⟩ = 1√
3
∑
m

fm,α ∣singlet,m⟩ (3)

where α = 1 . . .N , and states {∣α⟩} form a basis for the
conjugate representation of SU(N). The corresponding
matrix elements of spin operators in the ground state
manifold are given by ⟨α∣Ŝam∣α′⟩ = −σaα′,α. Since the
groundstate of the triangle is given by a spinon hole,
it is suggestive to also represent the conduction band in
terms of holes cα,m(x) → h†

α,m(x), c†α,m(x) → hα,m(x).
In the limit of large JH we thus find a Kondo coupling

HK = JK
N

3

∑
m=1

[Ŝa]Th†
m,α(0)[σa]Tαβhm,β(0), (4)

between the spin and a Fermi sea of holes. Thus at large
JH , the model (1) is equivalent to the 3CK problem in the
conjugate representation of SU(N), which is equivalent to
the 3CK Kondo model, an exactly solvable model (See
Appendix A 2). From this mapping, we know that the
ground state has an irrational degeneracy of [55–57]

gN = 1 + 2 cos( 2π

N + 3
) . (5)

Note that limN→∞ gN = 3. We now develop an approxi-
mate field theoretical technique which connects the two
limits of the phase diagram, Fig. 1.

IV. LARGE-N TREATMENT

A. Hubbard-Stratonovich decoupling
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FIG. 2. a Pictorial representation of the mean-field Hamil-
tonian. b Schematic mean-field phase diagram. c Zero tem-
perature, mean-field behavior of t, ∆ = πρV 2 as a function
of Doniach parameter (here J4 = 0.3JH , Js ≈ 0.29JH). The
position where tc, defined in Eq. (21) below, crosses t de-
fines the confinement-deconfinement quantum phase transi-
tion at which phase slips proliferate (red star, here N = 4 and
q = 1/4).

Representing the spins using Abrikosov pseud-
ofermions, leads to four-fermion interactions, which we
decouple using Hubbard-Stratonovich transformation in
the leading channels, selected by the large-N limit (see
Fig. 2 a for illustration)

S = Sc + ∫ dτ∑
m

{f †
α,m[∂τ + λm]fα,m − λmqN + N ∣Vm∣2

JK

+ N ∣tm∣2

JH
+ [Vmf †

α,mcα,m − tmf †
α,mfα,m+1 +H.c.]}. (6)

Here, tm = ∣tm∣ eiAm and Vm = ∣Vm∣ eiam and the Lagrange
multipliers λm enforce the constraint (for details, see Ap-
pendix B).

B. Mean field solution

1. Mean field Ansätze

In the limit N →∞, the bosonic path integrals can be
evaluated at the saddle point level for static configura-
tions of the fields. At TK = Vm = 0, Fig. 3 a demonstrates
the stability of homogeneous solutions with tm = teiAm
and zero or π flux Φ = ∑mAm away from half-filling.
In the reverse limit JH = tm = 0, the equality of Kondo
couplings at each of the three sites implies the same hy-
bridization ∣Vm∣ for all m. In Read-Newns gauge the
phase of Vm is absorbed into λm, which also takes the
same mean field value at each site. Motivated by this, we
concentrate on rotationally symmetric solutions Vm = V ,
∣tm∣ = t and λm = λ, all real, and q < 1/3. In this case, the
spectrum can be found by Fourier transformation leading
to a spinon spectrum λh = λ−2t cos(h+Φ/3), see Fig. 3 b.
Here, we introduced the helicity h = 0,±2π/3 (the crystal

FIG. 3. a Ground state energies at TK = 0 as a function of
filling q, comparing rotationally symmetric solutions (labeled
by their flux Φ) with symmetry broken states with one (two)
non-zero tm [graphically labeled by triangles with one (two)
thick bonds]. b Single particle spectra of spinons at TK = 0
with helicity quantum numbers h ∈ {0,±2π/3} for different
flux configurations Φ = 0,±2π. Instantons map Φ→ Φ±2π and
thereby reshuffle the wave functions but leave the spectrum
unaltered.

momentum of the periodic 3-site chain). Using this so-
lution, the fermionic path integral can be taken exactly
and leads to a free energy

F

N
= −T ∑

εn,h

ln[−G−1
h (εn)]eiεnη + 3( t2

JH
+ ∆

πρJK
− λq) ,

(7)
Here, G−1

h (εn) = iεn − λh + i∆sgn(εn) in the wide band-
width limit where ∆ = πρV 2 is the hybridization energy
related to V and the density of states ρ. The variation of
the free energy with respect to the parameters Φ, λ,∆, t
leads to a set of mean field equations of which we discuss
the solutions below.

2. Finite temperature phase diagram

Before presenting details about these equations at zero
temperature, we discuss the finite temperature mean field
phase diagram, Fig. 2 b (a calculation of mean field tran-
sition temperatures is presented in App. B 3).

(i) At the highest temperature, the spinons are decou-
pled, both from each other (t = 0) and from their respec-
tive conduction band (V = 0), so the impurity spins are
neither entangled nor screened. This is characterized by
decoupled spins showing Curie susceptibility behavior.

(ii) For T < TK and large TK/JH , all moments are
individually screened (LFL), i.e. t = 0 but V > 0.

(iii) At smallest TK/JH ≪ 1 and finite temperature,
t > 0 but V = 0: here a miniature spin-liquid behavior
develops. Since the phase shift for all conduction bands
is zero, we denote this phase “LFL∗” [21] in Fig. 1 b.

(iv) Finally, the mean-field phase n which both V > 0
and t > 0, which is the focus of the rest of the paper. We
will show that there is a deconfinement transition inside
this mean field phase.

Next, we derive the mean-field transition between these
zero temperature phases to map out the mean-field phase
diagram.
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3. Zero temperature mean field equations

We now investigate the two zero temperature phases.
We readily find that Φ = 0 solves the mean field equations
and we concentrate on this solution for q < 1/2. It is con-
venient to replace the three other variational parameters
(λ,∆, t) by (δ0, δ2π/3, t), where δh = δ−h = arccot(λh/∆)
is the phase shift in the helicity channel h. The variation
of the free energy with respect to the Lagrange multiplier
λ enforces a sum rule

3πq = δ0 + 2δ2π/3, (8a)

while the variation with respect to t connects the differ-
ence d = δ2π/3−δ0 of phase shifts with the spinon hopping

3πt = −JHd. (8b)

Note that t > 0 implies d < 0. The third saddle point
equation follows from the variation of the action with re-
spect to ∆. We exploit the previous equation and obtain

( sin(d)
d

πTK
JH

)
3

= sin(3πq + d
3

) sin2 (3πq − 2d

3
) . (8c)

Note that there is only one variational parameter, d, in
this equation, while q and πTK/JH are fixed externally.
For a graphical solution of Eq. (8c), see Fig. 4. It demon-
strates that for q = 1/3, a state where both t ≠ 0 and V ≠ 0
is never the ground state, while for q < 1/3 of prime in-
terest in this work, there is a phase with t ≠ 0 and V ≠ 0
which persists to the smallest TK/JH and is separated
from the LFL by a first-order phase transition (an arti-
fact of the mean-field approach).

C. Symmetries

Here, we summarize the underlying symmetry break-
ing using the language of conventional phase transitions.
We emphasize, however, that no physical symmetry is
broken in either 3CK or LFL phase. A parallel discus-
sion in terms the projective symmetry groups is therefore
included in Sec. IV E, below.

In the UV (t = V = 0), Eq. (6) displays a symmetry

Uf(1)⊗3 × Uc(1)⊗3 (i.e. fm → eiφm(τ)fm, cm → eiϕmcm),
of which Uf(1)⊗3 is a gauge symmetry. The Kondo ef-
fect on each site m (Vm ≠ 0) breaks the symmetry as
Uf(1)⊗3×Uc(1)⊗3 → Ucf(1)⊗3≡ G fixing ϕm = φm for each
spin/bath m separately. The three “Goldstone modes”
are eaten by the Lagrange multiplier λm within the Read-
Newns gauge [58]. Most interesting for the present study
is the establishment of a spin liquid, in which ∣t∣ > 0 fixes
φm = φ + j(m − 1) 2π

3
with j ∈ {0,1,2} = Z3. Thus, the

remaining symmetry H = Ucf(1)×Z3 is generated by the
total phase φ and the insertion of a total flux of 2πj,
i.e. a large gauge transformation which leaves the spec-
trum unchanged, but re-arranges the eigenstates, Fig. 3
b. The symmetry breaking G→H is apparent within the

Landau free energy, which we derived (see Appendix B 4)
at T = 0, V > 0 and small t̄ = ∣tm∣/TK

F

N
= TK [αt̄ 2 − βt̄ 3 cos(Φ) + γt̄ 4+O(t̄5)] . (9)

where α = 3TK/JH − sin(πq)/π. The flux Φ = ∑mAm ∈
[0,6π), but Eq. (9) is 2π periodic in the total flux, point-
ing to the emergent Z3 gauge symmetry of the problem.

D. Bilinear coupling and ring exchange

The Landau free energy illustrates the first order na-
ture of the mean-field transition: The cubic term is a
consequence of the threefold symmetry of the impurity,
and additionally the microscopic parameters in Eq. (1)
imply γ < 0 near the transition, reinforcing the first or-
der behavior. A negative quartic term is typical in the
large-N treatments and can be cured by inclusion of a
biquadratic interaction [22]

H4 = −
π3J4

2N3 ∑
m

[ŜamŜam+1]2, (10)

leading to γ = 3[J4 sin(πq)4/TK − sin(3πq)]/(2π). The
first order jump is further weakened by the addition of a
totally symmetric ring exchange

H3 = −π2 Js
N
dabcŜ

a
1 Ŝ

b
2Ŝ

c
3, (11)

so that microscopically β = [sin(2πq)−Js sin(πq)3/TK]/π
after integration of fermions. A similar integration is the
origin of the relation Os ∼ cos(Φ) presented in Eq. (2).

Ring exchange terms can be employed to physically
access the emergent gauge flux Φ. An adiabatic flux in-
sertion can be achieved by adiabatically tuning θ(t) in

∆H(t) = − J
N

{dabc cos θ(t) + fabc sin θ(t)}Ŝa1 Ŝb2Ŝc3

where dabc and fabc are symmetric and antisymmetric
structure factors of SU(N). A mean-field decoupling of
H +∆H leads to ∆F∝ −J cos(Φ − θ).

E. A study of projective symmetry group

We now return to the emergent gauge invariance in the
problem and employ the method of projective symmetry
groups (PSGs), introduced [59] to categorize gapless spin
liquid states which do not break any microscopic (e.g.
crystalline) symmetries. To recapitulate the procedure:

(i) Consider a mean field tight binding model of
spinons fα,m, in our case Eq. (6). Because spinons carry
an emergent gauge charge, mean field tight-binding mod-
els which can be transformed into each other by means
of a gauge transformation are equivalent.
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FIG. 4. Graphical illustration of mean field solutions. a - c Each point on the black curves corresponds to a solution of Eq. (8c)
for a given value of the Doniach parameter πTK/JH . For q < 1/2 (q > 1/2), we concentrate on d < 0 (d > 0) (other solutions are
“false vacua” indicated as thin lines). For comparison, we include analogous curves of solutions in the limit TK = 0 [t > 0, V = 0
(red) and t < 0, V = 0 (blue)] as well as JH = 0 [t = 0, V > 0 (green)]. The vertical gray dashed lines indicate the position
of q = 1/4,1/3. For q = 1/4 there are up to two non-trivial solutions with −π < d < 0 (orange and pink circles, denoted d<
and d>, respectively), while for q = 1/3 there is only one non-trivial solution (pink circle) in addition to the solution d = −π
corresponding to complete Kondo breakdown (V = 0). The corresponding mean field energy is plotted with the same color code
in d, e, and compared to the solutions where either V = 0 or t = 0.

(ii) The group of microscopic symmetry operations fol-
lowed by a gauge transformation which leave the tight
binding model invariant form the PSG of the model.

(iii) The subgroup of gauge transformations which
leave the tight binding Hamiltonian invariant form the
invariant gauge group (IGG).

(iv) The actual symmetry group (SG) of the model is
thus SG = PSG/IGG. Hence the PSG can be seen as an
extension of the SG.

The IGG also places constraints on Wilson loop op-
erators PC [2], which are products of Peierls gauge
fields along closed contours on links of the lattice (PC =
∏3
m=1 e

iAm in our simple three-site lattice). Wilson loops
are a particularly useful definition for gapless topologi-
cal quantum states when standard signatures (such as a
degenerate ground state manifold) are less obvious.

As mentioned, in our case the infrared gauge trans-
formations are fα,m → eiφmfα,m, cα,m → eiφmcα,m,
Am → Am + φm − φm+1 and imply an IGG which is
U(1). The crystalline symmetries group of the trian-
gle is generated by 120○ rotations R, R3 = 1 and an
involutory mirror operation M = M−1 exchanging sites
m = 1 ↔ m = 2. They do not commute, instead
MRMR = 1. We may then proceed with the analy-
sis of the PSG assuming deconfining gauge fields. To
projectively represent the rotation, we perform a gauge
transformation fm → GR(m)fm, cm → GR(m)cm with
GR(m) = eiAm after application of the crystalline sym-
metry operation. Analogously, the mirror exchanging
sites 1 ↔ 2 is projectively represented by employing
GM(m) = ei(A3−A2)δm,3 . Since we assume time reversal
symmetry, there is a gauge in which all hopping matrix
elements are real, i.e. Am ∈ {0, π}. Then the algebra
of projective symmetry operations is (GRR)3 = eiΦ = ±1,
(GMM)2 = 1, (GMM)(GRR)(GMM)(GRR) = 1. Thus,
the two mean field states associated to Φ = 0, π in Fig. 3 a
are categorized by different algebraic PSGs. On the mean
field level these two states are separated by multiple sym-

metry broken states - this is reminiscent of the transition
between 2D quantum phases with different PSGs coupled
to fermionic matter [60].

V. FLUCTUATIONS AND GAUGE FIELDS

In the previous section we discussed the mean field
solution to Eq. (1), which is valid at N = ∞. Here, we
consider fluctuation corrections beyond this limit.

A. Dynamics of low-energy excitations

The bosonic low-energy excitations in the model are
the phases Am, whose action may be derived microscop-
ically by a lengthy but straightforward integration of
fermionic degrees of freedom, see Appendix C, leading
to S[Am] = Sdiss + SMaxwell

Sdiss = ∫
dω

2π

η

4π
Φ(ω)Φ(−ω)∣ω∣, (12a)

SMaxwell = ∫ dτ∑
m

ε

2
Ȧ2
m, (12b)

where

η ≃ 3N
t2

T 2
K

sin2(πq), (for t≪ TK cos(πq)), (13a)

ε = 2N

9JH
(1 +

JH sin(δ2π/3)2

2π∆
)(1 + 2ρ∆) . (13b)

Here, we presented the microscopic expression for the
low-energy (∣ω∣ ≪ TK) dissipative dynamics of Φ in the
limit t ≪ TK (near the QCP, see Fig. 2 c). For a
more comprehensive expression, see Eq. (C16) of the Ap-
pendix.
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Before discussing the features of this emergent gauge
theory, we analyze the fluctuations using the more con-
ventional language of Goldstone bosons.

B. Goldstone bosons

When t/tK > 0, two combinations of A phases,
parametrized by Am = −2x⃗ ⋅ êm/3, where ê1,2 =
(±

√
3,1)/2, ê3 = (0,−1), x⃗ = (x1, x2), are zero modes

of the free energy Eq. (9) and parametrize the manifold
of Goldstone bosons (see Sec. IV C)

G

H
= U(1) ×U(1) ×U(1)

U(1) ×Z3
. (14)

In contrast, the third linear combination of phases, Φ =
∑mAm, is gapped. For JH ≫ TK , the two brackets en-
tering ε in Eq. (13b) are approximately one, so we omit
them for simplicity. The effective action of Goldstone
bosons is thus

SGoldstone[x⃗] = ∫ dτ
mx

˙⃗x2

2
, (15)

where mx = 8N/(27JH). This action describes a free
particle with position x⃗ and mass mx living on the flat,
yet compact manifold (14). The ground state is an x⃗-
independent wave function and, due to the compactness
of G/H, detached from the first excited state at energy
∼1/mx.

As a consequence, despite the mean field value t > 0, in-
tersite Green’s functions ⟨c†mcm+1⟩ ∼ ⟨eiAm⟩ vanish upon
integration of Goldstone modes. Therefore, the absence
of charge transfer between different leads is ensured by
the fluctuations beyond the N → ∞ limit. Equivalently,
this can be interpreted as a consequence of gauge sym-
metry which impedes charge fluctuations on the impurity
sites.

C. Confinement-Deconfinement transition

So far, we incorporated leading terms in a 1/N se-
ries. Now, we address processes with Boltzmann weight
Γ ∼ e−N (instantons). Naively, these are strongly sup-
pressed, yet we demonstrate a proliferation of instantons
at sufficiently large TK/JH . Instantons in gauge theories
are non-trivial gauge field configurations which are bound
to be a pure gauge at infinity. In the present case, these
are phase slips, i.e. configurations of the field Φ(τ) such
that Φ(∞) − Φ(−∞) = ±2π, and we estimate their bare

tunneling action Γ ∼ e−Nt̄ for β ≪ t̄ in Appendix C 3.
Considering Eq. (6) with static fields t, V , we can ar-

tificially introduce [29] an additional Hilbert space asso-
ciated to Φ = 0,2π,4π. To manifestly illustrate the effect
of phase slips, we define ω = ei2π/3 and the following two

matrices in the space of groundstate manifold

σΦ =
⎛
⎜
⎝

1
ω
ω2

⎞
⎟
⎠
, τΦ =

⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠
. (16)

Here, τΦ are clock matrices σΦτΦ = ωτΦσΦ, τ3
Φ = 1. The

phase slips accompanying spinon hoppings, are taken into
account by replacement t→ tσΦ.

The infinite resummation of phase slips of the latter
in the partition sum leads to an effective Hamiltonian
derived in Appendix D 2

Heff = [Hc +∑
m

λ(f †
α,mfα,m −Q)]1Φ − Γ(τΦ + τ−1

Φ )

+∑
m

[V f †
α,mcα,m1Φ − tf †

α,mfα,m+1σΦ +H.c.] . (17)

In the formulation of Eq. (17), two limiting cases become
apparent. First, Γ/t → 0 representing the 3CK phase.
Second, perturbation about Γ/t → ∞ demonstrates that
t is RG irrelevant and the LFL is restored.

To study the transition between these two limiting
phases, we consider the helical (i.e. Fourier transformed)

basis f̃α,h = ∑m e−ihmfα,m/
√

3. A phase slip t → ωt is
equivalent to the instantaneous jump of the spinon en-
ergy (t,−2t, t) → (t, t,−2t) for h = (−2π/3,0,2π/3), Fig. 3
b. Due to hybridization with conduction electrons a
phase slip triggers an Anderson orthogonality catastro-
phe and thereby logarithmic attraction of opposite phase
slips, ∆τ apart, with an effective action

Sslips = κ ln ∣∆τ ∣. (18)

Here

κ = 2N

π2
[arctan( 3t∆

∆2 + λ2
)]

2

(19)

is the stiffness of interaction as determined by the per-
turbative inclusion of a single pair of opposite phase slips
at distance ∆τ in the fermionic partition sum, see Ap-
pendix D 1. Integration over ∆τ leads to the free energy

F = ln(gN)T + C(Γ2/λ)(T /λ)κ−1, (20)

where we included the effect of the ground state degener-
acy gN , Eq. (5), and C is a constant. This signals a quan-
tum phase transition when the phase-slips overpower the
first term at κ = 2, corresponding to, Fig. 2 c,

tc ∼ TK sin(πq)/
√
N. (21)

The residual entropy at the QCP is enhanced to S =
ln(gN) + CΓ2/λ2 + O(Γ4/λ4) by the instanton contribu-
tion, in consistency with the g-theorem [61]. The present
model of logarithmically interacting particles on a ring of
circumference 1/T can be cast into renormalization group
language [62]: Γ renormalizes to infinity (zero) for t < tc
(tc < t). However, contrary to the Berezinskii-Kosterlitz-
Thouless transition, the stiffness κ does not flow.
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So far, the deconfinement transition was studied by
first locking Φ into one of the minima of Eq. (9) and sub-
sequent perturbative inclusion of phase slips. The same
transition may also be studied in a dual language (ap-
proaching the red star of Fig. 1 b from the right). In
this case Φ is free to fluctuate and β ≪ 1 is considered
as a perturbation. From this perspective, the 3CK (FL)
is the phase where β is relevant (irrelevant). Crucially,
near the transition, the dynamics of the Φ field is over-
damped due to the interaction with the conduction bath,
see Eq. (12a), (13a) The problem of dissipative tunneling,
i.e. S = Sdiss − ∫ dτNTKβ cos[Φ(τ)], for small β yields a
scaling equation

dβ

d`
= (1 − 1

η
)β (22)

where d` = − logD in terms of the running cut-off [63,
64], while the non-analytical nature of the “kinetic”
(i.e. damping) term is believed to prevent a renormal-
ization of η to all orders [62]. The condition η > 1 for
relevant β is parametrically equivalent to t > tc, with tc
given in Eq. (21). In the dual language it is manifest
that Goldstone bosons x⃗ do not affect the nature or po-
sition of the transition because they are by construction
perpendicular to Φ.

D. 3CK phase in fractionalized language

Before concluding, we briefly reiterate the connection
to the three channel Kondo problem for TK ≪ JH in
fractionalization language:

In this limit it is convenient to evaluate Eq. (17) in a
gauge in which t is real and positive. Since Γ is irrelevant
in this phase, σΦ is conserved. We project on the ground
state (zero helicity h = 0) of the f -electrons (Fig. 3 a)
and obtain the effective Kondo Lagrangian

LKondo = ∑
m

[(f̃ †
α,0Vmcα,m + c.c.) + ∣Vm∣2

JK
], (23)

with constraint f̃ †
α,0f̃α,0 = 3Q. As anticipated previously,

three channels of conduction electrons are screening a
single spin and 3CK physics is expected. The soft modes
associated with rotations of ∣Vm∣ are gapped for TK/JH >
0 enforcing Vm = V eiam . Based on this observation, we
conjecture that the physics discussed here for the 3CK
phases of our Kondo triangle applies more generally to
single-impurity three-channel Kondo systems and more
generic oversceened Kondo problems.

VI. CONCLUSION

We conclude with a discussion of multi-channel Kondo
phases as representatives of topological order and of pos-
sible experimental and numerical implications of our find-
ings.

A. Signatures of topological order

While there is no magnetic ordering in any of the
phases, the symmetric ring exchange operator Os =
dabcŜ

a
1 Ŝ

b
2Ŝ

c
3 displays order in the 3CK phase. The or-

dering of such a composite operator is similar to order
by disorder [65–67] or vestigial order [68] phenomena
and would suggest a characterization of the 3CK phase
in terms of a generalization of spontaneous symmetry
breaking.

However, we here propose a different interpretation
and put forward the hypothesis that multi-channel
Kondo states display a form of topological order which
is similar to the quantum order in gapless QSLs. For the
3CK phase scrutinized here, the evidence is as follows:

First, as mentioned the 3CK phase does not break any
of the physical symmetries in the original model (1), even
when the Os orders. This invalidates any interpretation
of the 3CK in terms of spontaneous symmetry breaking
- instead we have presented a categorization using the
projective symmetry group. Second, regarded as an op-
erator in the gauge theory, Os∼ Re(ei∑mAm) is a minia-
ture Wilson loop. In macroscopically extended systems,
this would be taken as a clear signal of deconfinement.
Third, the order of Os is destroyed by the proliferation,
or “condensation”, of monopoles in the FL, which on the
other hand are gapped in the 3CK phase. This is rem-
iniscent of the situation in QED3, while the expulsion
of topological defects is generically a defining character-
istic of topological states.[69] Finally, the 3CK displays
an irrational ground state degeneracy indicating gapless
anyonic excitations, another striking signature of topo-
logical order.

At the same time, multichannel Kondo states are of-
ten unstable towards anisotropic coupling to the leads
(see, e.g. Refs. 70 and 71 for exceptions). As mentioned,
while the 3CK phase studied here is stable for unequal
JH it is unstable if JK are unequal. This suggests the
interpretation of the 3CK phase as a symmetry protected
topological state of matter or as a deconfined quantum
critical fixed point.

B. Relevance for experiment and numerics

Beyond its purpose as an analytically tractable toy
model, our investigations are relevant to the simplest
cluster-dynamical mean field theory [72, 73] approaches
to Hubbard models on triangular lattices which have en-
joyed increased interest in recent times [74, 75]. The
SU(4) case studied here might be of importance for
twisted bilayer graphene [76, 77] with approximate val-
ley symmetry. Emergent SU(4) symmetric spin inter-
actions [78–80] were also recently predicted in spin-
orbit coupled transition metal trihalides with low-lying
Jeff = 3/2 quartets [81]. SU(N) symmetric interactions of
strongly correlated fermions with large flavor number N
have moreover been realized in cold atomic quantum em-
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ulators [82, 83]. We conclude with the prospect of directly
probing the presented theory in quantum dot experi-
ments: Recent advance on SU(4) impurities [84], trian-
gle [85], and three channel [86] Kondo physics may allow
to artificially fabricate the setup Fig. 1 a and thereby con-
duct an experimental study of the deconfinement transi-
tion.
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Appendix A: Mapping to three channel Kondo
problem

This section is devoted to the mapping of the frus-
trated triangle to a three channel Kondo problem and
contains details for Sec. III of the main text. This
mapping is possible for the sequence of models with
SU(4), SU(7), SU(10) . . . (i.e. N ∈ 3N + 1) symmetry at
filling q = 1/4,2/7,3/10, . . . (i.e. Q = (N − 1)/3) and is
valid when JH is the largest scale.

1. Solution of the triangle alone

We represent a given spin configuration with fixed par-
ticle number per site Q = (N − 1)/3 by

∣α1 . . . αQ;αQ+1 . . . α2Q;α2Q+1 . . . α3Q⟩

= f †
1,α1

. . . f †
1,αQ

f †
2,αQ+1

. . . f †
2,α2Q

f †
3,α2Q+1

. . . f †
3,α3Q

∣0⟩ .
(A1)

In this manifold, the spin is faithfully represented as

Ŝam = f †
α,mσ

a
αβfm,β . (A2)

We next act on Eq. (A1) with the Hamiltonian

HH = JH
N

3

∑
m=1

(f †
m,αfm,βf

†
m+1,βfm+1,α

−
f †
m,αfm,αf

†
m+1,βfm+1,β

N
). (A3)

The last term yields a mere shift of energy 3Q2JH/N2

for any of the states Eq. (A1), so we omit it. The action
of the first term is the sum of permutations of two spin
indices from adjacent sites,

HH ∣α1 . . . αQ;αQ+1 . . . α2Q;α2Q+1 . . . α(N−1)⟩ =
JH
N

{ ∣αQ+1 . . . αQ;α1 . . . α2Q;α2Q+1 . . . α(N−1)⟩

+ ∣α1, αQ+1 . . . αQ;α2, αQ+2 . . . α2Q;α2Q+1 . . . α(N−1)⟩ + (similar perm. between sites 1,2)

+ ∣α1 . . . αQ;α2Q+1 . . . α2Q;αQ+1 . . . α(N−1)⟩ + (similar perm. between sites 2,3)

+ ∣α2Q+1 . . . αQ;αQ+1 . . . α2Q;α1 . . . α(N−1)⟩ + (similar perm. between sites 3,1)}. (A4)

Therefore, eigenstates ∣ψ⟩ are obtained by sums over symmetric/antisymmetric permutations (Einstein summation
convention is employed.)

∣ψ⟩ =tα1,...,αQ;αQ+1...α2Q;α2Q+1+α3Q
∣α1, . . . , αQ, αQ+1 . . . α2Q, α2Q+1 + α3Q⟩ . (A5)

We concentrate on the ground state, where the tensor has the following antisymmetry properties

tα1,α2...,αQ;αQ+1...α2Q;α2Q+1+α3Q
= −tα2,α1...,αQ;αQ+1...α2Q;α2Q+1+α3Q

(Fermi-Dirac statistics within a given site)

(A6)

tα1,α2...,αQ;αQ+1...α2Q;α2Q+1+α3Q
= −tαQ+1,...,αQ;α1...α2Q;α2Q+1+α3Q

(HH favors pairwise antisymmetry across sites)

(A7)

To get the total number of states, we start by over-
counting allowed possibilities. There are N options to
place α1, N − 1 to place α2 etc., leading to

N !

(N − 3Q)!
(A8)

states. However, we overcounted 3Q! different permuta-
tions, so the actual number of states is just

( N
3Q

) = ( N
N − 1

) = N. (A9)
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Thus, the following completely antisymmetriezed
eigenstates are the ground state of the triangle at fill-
ing Q

∣αN ⟩ = εα1...αN√
N

∣α1 . . . αQ;αQ+1 . . . α2Q;α2Q+1 . . . α(N−1)⟩ .

(A10)
Here and in the following we label numerical normal-

ization factors by N . This concludes the derivation of
Eq. (3). There we use the notation

∣singlet,m = 1⟩ = εα1...αN√
N

×

∣α1 . . . αQ+1;αQ+2 . . . α2Q+1;α2Q+2 . . . αN ⟩ , (A11)

and analogously for m = 2,3.

2. Effective low-energy Hamiltonian

As a next step, we project the Kondo-triangle Hamil-
tonian onto the groundstate manifold spanned by the N
states Eq. (A10). We begin by determining the spin-
representation within the manifold of states Eq. (A10)

⟨αN ∣Ŝam∣α′N ⟩ =
σaββ′εα1...αN εα′1...α′N

N
⟨α1 . . . αQ;αQ+1 . . . α2Q;α2Q+1 . . . αN−1∣ f †

m,βfm,β′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δββ′−fm,β′f

†
m,β

∣α′1 . . . αQ′ ;α′Q+1 . . . α
′
2Q;α′2Q+1 . . . α

′
(N−1)⟩

= − Ñσaα′
N
αN
. (A12)

This result immediately follows from the consideration
that all spin quantum numbers except αN(α′N) have been
used in the ket (bra). Thus the index of the creation
operator β = α′N (β′ = αN ) unless β = β′. We further used
tr[σa] = 0. Instead of explicitly calculating the positive

proportionality constant we show that Ñ = 1 by

∑
N,N ′

∣ ⟨αN ∣Ŝam∣α′N ⟩ ∣2 = tr[[σa]2]

= Ñ 2tr[{[σa]T }2]. (A13)

Here, the first equality follows from the completeness of
{∣αN ⟩} and the second equality from the evaluation of
the matrix element. Therefore, the effective Hamiltonian
has the form

Heff =Hc −
JK
N

3

∑
m=1

[Ŝa]T c†mσacm. (A14)

As a final step, we reverse particle and hole operators
cm → h†

m, c
†
m → hm, then

Heff =Hc +
JK
N

3

∑
m=1

[Ŝa]Th†
m[σa]Thm. (A15)

This is the origin of Eq. (4) in the main text. To see
that Eq. (4), in which spin operators are transposed, is
equivalent to the standard three channel Kondo model

H3CK =Hc +
JK
N

3

∑
m=1

Ŝah†
mσ

ahm, (A16)

it is sufficient to realize that the SU(N)-invariant inter-
action can be reexpressed using the Fierz identity

[σa]αβ[σa]γδ = δαδδβγ −
1

N
δαβδγδ, (A17)

which is invariant under simultaneous transposition op-
eration (α, γ) ↔ (β, δ).

3. Robustness against inhomogeneity

At strong coupling the triangle is robust against mod-
erate inhomogeneities in JH , as can be seen by the fol-
lowing evaluation of matrix elements of δH = δJH Ŝa1 Ŝa2

⟨αN ∣δH ∣α′N ⟩ = δJH∑
α̃N

⟨αN ∣Ŝa1 ∣α̃N ⟩ ⟨α̃N ∣Ŝa2 ∣α′N ⟩

= Ñ 2∑
a
∑
α̃N

[σa]α′
N
α̃N [σa]α̃NαN ∝ δα′

N
αN .

(A18)

Thus, inhomogeneities projected to the ground state
manifold are proportional to the unit matrix and do not
lift the degeneracy of states ∣αN ⟩.

Appendix B: Impurity partition sum, static
evaluation

In this section we present technical details on the eval-
uation of the partition sum. Throughout the paper, we
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consider the partition sum (and thus free energy and ef- fective action) of the impurity alone. This is defined as
Zimpurity = Ztotal/Zno impurity, where Ztotal is given by

Ztotal =
3

∏
m=1
∫

∞

0
DVmVm ∫

i∞

−i∞
Dλm ∫

C2
D[tm, t∗m]∫ D[cm, fm]e−S[Vm,λm,tm,cm,fm], (B1)

Note that we employ Read-Newns gauge (Vm > 0)
throughout this section. The partition sum Zno impurity

is the same partition sum of the three wires but without
any Kondo impurities.

1. Diagonalization of spinon Hamiltonian

The spinon Hamiltonian, see also Eq. (6) of the main
text, has the form

Ht = −tf †
⎛
⎜
⎝

0 eiA1 e−iA3

e−iA1 0 eiA2

eiA3 e−iA2 0

⎞
⎟
⎠
f, (B2)

where we use the three component notation f =
(f1, f2, f3), and similarly for c(x) = (c1(x), c2(x), c3(x))
on each site of the wires. We rotate f = Uf̃ and c = Uc̃
electrons by U = diag(ei(A1−Φ/3),1, e−i(A2−Φ/3)), leading
to

Ht = −tf̃ †
⎛
⎜
⎝

0 eiΦ/3 e−iΦ/3

e−iΦ/3 0 eiΦ/3

eiΦ/3 e−iΦ/3 0

⎞
⎟
⎠
f̃ . (B3)

This rotation appears at the expense of a vector potential

(c†, f †)∂τ(c, f)T = (c̃†, f̃ †)[∂τ + iA](c̃, f̃)T , (B4)

where

A = −iU †∂τU = diag(Ȧ1 − Φ̇/3,0,−[Ȧ2 − Φ̇/3]). (B5)

It is furthermore useful to expand f̃ , c̃ in eigenstates with
instantaneous energy εk = −2t cos(k +Φ(τ)/3)

∣ψk⟩ =
1√
3

⎛
⎜
⎝

e−ik

1
eik

⎞
⎟
⎠
, k = 0,±2π

3
. (B6)

In this basis the Berry connection is Ak′k =
([Ȧ1 − Φ̇/3]ei(k

′−k) − [Ȧ2− Φ̇/3]e−i(k
′−k))/3. In summary,

the total Lagrangian under consideration is (we employ
the notation Dτ = ∂τ + iA and λk = λ + εk(Φ))

L = ∑
k,k′

( ⋯ c†α,k(p) ⋯ f †
α,k )

⎛
⎜⎜⎜
⎝

[Dτ ]k,k′ + ε(p)δp,p′δkk′ V δkk′

V δkk′ [Dτ ]k,k′ + λkδkk′

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

⋮
cα,k′(p ′)

⋮
fα,k′

⎞
⎟⎟⎟⎟
⎠

+3(N t2

JK
+N V 2

JK
− λqN) . (B7)

2. Static fields and mean field solution

We begin by studying the mean field solution. At this
level, we consider all bosonic fields V > 0, t > 0,Φ =
∑mAm as constant variational parameters, and A = 0.
The fermionic integral yields Eq. (7). The mean field

equations involve the following two integrals

nF ≡ I1(λ/∆) = T∑
n

eiεnη

iεn − λ + i∆s(εn/D)
≃ arccot(λ/∆)/π =∶ δ(λ/∆)/π, (B8a)

I2(λ + i∆) = T∑
n

is(εn/D)eiεnη

iεn − λ + i∆s(εn/D)

≃ − ln(∣λ + i∆∣η) + γEM

π
. (B8b)

Here, γEM is the Euler Mascheroni constant (with our

regularization scheme TK = e−1/[ρJK]−γEM/η) and ≃ im-
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plies a zero temperature calculation. Note that δ be-
comes a step function (from π down to 0) as ∆→ 0.

Having established these prerequisites, we are now in

the position of imposing the mean field equations

1

N

∂F

∂λ
= ∑

k

(I1 (λk
∆

) − q) != 0, (B9a)

1

N

∂F

∂∆
= ∑

k

(−I2 (λk
∆

) + 1

πρJK
) != 0, (B9b)

1

N

∂F

∂t
= ∑

k

(∂εk
∂t

I1 (λk
∆

) + 2t

JH
) != 0, (B9c)

1

N

∂F

∂Φ
= ∑

k

∂εk
∂Φ

I1 (λk
∆

) != 0. (B9d)

We readily see that ground state solutions are given by
Φ ∈ 2πZ. Then the first three equations yield cf. Eqs. (8),

3πq = ∑
k

δk = δ0 + 2δ2π/3 (B10a)

T 3
K =∏

k

√
λ2
k +∆2 = ∆3

sin(δ3) sin(δ2π/3)2
(B10b)

2(δ0 − δ2π/3) = 3
2πt

JH
= 2π

JH
(λ2π/3 − λ0) =

2π∆

JH
(cot(δ2π/3) − cot(δ0)) = 2 sin(δ0 − δ2π/3)

πTK
JH

3

¿
ÁÁÀ 1

sin(δ2π/3) sin2(δ0)
(B10c)

We readily recognize the Kondo solution t = 0, δk =
πq,∆ = TK sin(πq), which is present for any TK/JH . The
last equation is the origin of Eq. (8c).

3. Finite temperatures

Of the presented finite temperature phases in Fig. 1
b of the main text, the presence of the LFL and local
moment phase is obvious. The existence of an LFL∗ and
of the 3CK phase is discussed now by showing that there
is a mean field transition TSL = JHq(1 − q) below which
t develops a vacuum expectation value and a lower tran-

sition T eff
K at which V spontaneously develops. For the

perturbative solution in ∆ at finite T we use

nf(λ) = I1 = nFD(λ) = 1 − tanh(λ/2T )
2

(B11)

and, perturbatively in ∆,

I2(λ) = T ∑
εn>0

( i

iεn − λ
+ i

iεn + λ
)

≃ ln(D/T )
π

−
ψ(0) ( iλ/T+π

2π
) + ψ(0) (π−iλ/T

2π
)

2π
.(B12)

The mean field equations (perturbative in ∆) are then

nFD(λ − 2t) = q + 2t

JH
= q + λ

JH
− λ − 2t

JH
, (B13)

nFD(λ + t) = q − t

JH
, (B14)

3 ln(TK
T

) = ∑
k

⎛
⎜
⎝

ψ(0) ( iλk/T+π
2π

) + ψ(0) (π−iλk/T
2π

)
2

−
ψ(0) ( iλt=0/T+π

2π
) + ψ(0) (π−iλt=0/T

2π.
)

2

⎞
⎟
⎠
, (B15)

with λk = (λ + t, λ + t, λ − 2t) and λt=0 = 2Tartanh(1 −
2q) the solution without t. The mean field spin-liquid

transition temperature is obtained by expanding the first
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two equations in t

q = nFD(λ) ⇔ λ = 2Tartanh (1 − 2q) , (B16)

1

JH
= −∂nFD

∂λ
= 1

4T cosh2(λ/2T )

= 1

4T cosh2(artanh(1 − 2q))
. (B17)

Thus for 0 < q < 1/3

TSL

JH
= 1

4π cosh2(artanh(1 − 2q))
= q(1 − q). (B18)

For the solution of T eff
K < TSL it is more convenient to use

nk = nFD(λk) (B19)

and insert this into

3q = 2n2π/3 + n0, (B20)

∆n ≡ n0 − n2π/3 =
3t

JH
= T

JH
(λ̄2π/3 − λ̄0). (B21)

We use

λ̄t=0 = λt=0/T = 2artanh(1 − 2q), (B22)

λ̄2π/3 = λ2π/3/T = 2artanh(1 − 2n2π/3)

= 2artanh(1 − 2q + 2∆n

3
), (B23)

λ̄0 = λ0/T = 2artanh(1 − 2n0)

= 2artanh(1 − 2q − 4∆n

3
). (B24)

to replace temperature in Eq. (B15)

T = TK∏
k

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝

ψ(0) ( iλk/T+π
2π

) + ψ(0) (π−iλk/T
2π

)
2

−
ψ(0) ( iλt=0/T+π

2π
) + ψ(0) (π−iλt=0/T

2π
)

2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

−1/3

≡ TK g(λt=0, λ2π/3(∆n), λ0(∆n))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=f(∆n)

. (B25)

We thus reduced the finite temperature Kondo transi-
tion in the presence of finite t, i.e. finite ∆n to a single
equation for ∆n

∆n = TK
JH

f(∆n)[λ̄2π/3 − λ̄0]. (B26)

Numerical solution of this equation demonstrates the ex-
istence of 0 < T eff

K < TSL for sufficiently small TK/JH .

4. Landau Free energy (perturbative in t)

We consider the case of small t and employ ξ = λ+i∆ =
TKe

iπq [87]

V [Φ] = N
π
∑
k

Im [(λk + i∆) ln((λk + i∆)
eTKeiπq

)] (B27)

= N
π
∑
k

Im [∑
k

ε2k
2ξ

−
ε3k
6ξ2

+
ε4k

12ξ3
]

= TKN
π

[ − 3t̄2 sin(πq) − cos(Φ)t̄3 sin(2πq)

−3t̄4 sin(3πq)/2]. (B28)

Up to the effect of biquadratic and ring exchange
terms (see following section), as well as the Hubbard-
Stratonovich term 3t2/JH , this expression yields Eq. (9)
of the main text.

5. Ring exchange and biquadratic terms

In the large N limit, the transition between LFL and
3CK appears to be first order. Here, we consider addi-
tional terms which ultimately overcome the first order
behavior. We need

⟨fmf †
m+1⟩ ≃ −∫ (dε) tm

[iε + λ + i∆sign(ε)]2
= tm
πTK

sin(πq)

(B29)

We first study ring-exchange terms of the form

H3 = −π2 Js
N
dabcŜ

a
1 Ŝ

b
2Ŝ

c
3 − π2 Jχ

N
fabcŜ

a
1 Ŝ

b
2Ŝ

c
3. (B30)

These terms can be evaluated on mean field level as
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(Tabc = Jsdabc + Jχfabc and we use tm = teiΦ/3.)

H3 ≃ −π2Tabc
N

⟨f †
1σ

af1f
†
2σ

bf2f
†
3σ

cf3⟩

= Tabc(sinπq)
3

πT 3
KN

[t1t2t3tr(σaσbσc) + t̄3t̄2t̄1tr(σaσcσb)]

= Js(sinπq)3 dabc
πT 3

KN
tr(σa{σb, σc})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dabc

t3 cos(Φ)

+ Jχ(sinπq)3 ifabc
πT 3

KN
tr(σa[σb, σc])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ifabc

t3 sin(Φ)

= N Js(sinπq)3

πT 3
K

t3 cos(Φ) +N
Jχ(sinπq)3

πT 3
K

t3 sin(Φ)

(B31)

We used

dabcdabc = N2 − 4, fabcfabc = N2. (B32)

This term enters β in Eq. (9) of the main text.
We furthermore introduce biquadratic interactions

H4 = −
π3J4

2N3 ∑
m

[ŜamŜam+1]2. (B33)

Their mean field decoupling leads to

H4 = −
π3J4

2N3
⟪∑
m

f †
mσ

afmf
†
m+1σ

afm+1f
†
mσ

bfmf
†
m+1σ

bfm+1⟫

= 3t4
J4 sin(πq)4

2N3πT 4
K

⎛
⎜⎜⎜
⎝

tr[σa{σa, σb}σb]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dabcdabc/2

+ tr[σaσa]2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(N2−1)2

⎞
⎟⎟⎟
⎠

≃ N 3J4 sin(πq)4

2πT 4
K

t4. (B34)

This term enters γ in Eq. (9) of the main text.
For the plot of Fig. 2 c we used Jeff

Ring = 0.3 and Jeff
4 =

0.1 in the effective replacement JH → JH(1 + dJeff
ring −

d2Jeff
4 ) in the numerator of Eq. (8c), left.

The replacement is related to the microscopic Hamil-
tonian as follows. From the mean field evaluation

⟨fmf †
m+1⟩ = ∑

k

Gk(0)/3/3 = −d/3π. (B35)

Therefore, on Hartree-Fock level

H3 → −NJs(d/3)3/π = Nπ2Js(t/JH)3, (B36)

H4 → NJ43(d/3)4/(2π) = NJ43π3(t/JH)4/2.(B37)

For small t/JH this can be reinterpreted as a renormal-
ization

t2

JH
→ t2

JH(1 − π2Jst/J2
H − 3π2(t2/J3

H)J4/2)

= t2

JH(1 + πJs/JH d/3 − J4/JH d2/3)
. (B38)

Hence we identify

Jeff
Ring =

πJs
3JH

, Jeff
4 = J4

3JH
. (B39)

Appendix C: Dynamics of Goldstone modes and
total flux

In this section we derive the kinetic terms for Gold-
stone bosons and Φ(τ), Eq. (12) of the main text.

1. Goldstone bosons

Before turning to the effective action of Goldstone
bosons we comment on the structure

G

H
= U(1) ×U(1) ×U(1)

U(1) ×Z3
(C1)

of the Goldstone manifold. Smooth transformations of
the large group G are represented by three phases χm

fm → Umm′fm′ ; cm → Umm′cm′ (Umm′ = δmm′eiχm)
(C2)

and per definition χm(τ = 1/T ) = χm(τ = 0) + 2πj. Fol-
lowing Sec. II of this supplement, a convenient form of
U = diag(eiA1−Φ/3,1, e−iA2+Φ/3), as it cancels the fluctu-
ating gauge fields on the links. To make the quotient
group G/H apparent we factorize

U = eiφV, with detV = 1. (C3)

The naive derivation of the Goldstone action implies the
absorption the V (i.e. the SU(3) part of G) into f, c at
the expense of a Berry curvature termA = −iV †∂τV . The
integration of fermions then leads to an effective action
in terms of A, an thus implicitly in terms of A1,2,3.

However, a certain care is needed for this procedure.
The quotient group introduces an emergent Z3 redun-
dancy which is manifested in non-contractable loops (j =
0,1,2)

eiφ(1/T ) = ωjeiφ(0), (C4)

V (1/T ) = ω̄jV (0). (C5)

In particular, the absorption of f(τ) = V (τ)f̃(τ) changes

the boundary conditions (f̃(1/T ) = −ωjf(0)), i.e. f̃(τ) is
generically not a fermionic field. We conjecture that the
topological nature of π1(G/H) = Z3 is at the root of the
ground state degeneracy of the 3CK phase.

To remedy this problem we choose a parametrization
of U(τ) such that the topological winding is manifest,
i.e.

U(τ) = eiφ̄(τ)+2πiτT /3

×
⎛
⎜⎜
⎝

e−2πiτT /3 0 0

0 e−2πiτT /3 0

0 0 e4πiτT /3

⎞
⎟⎟
⎠
V̄ (τ),(C6)

where both eiφ̄(τ) and V̄ (τ) are periodic in imaginary
time. In this parametrization it is apparent that the
three different Z3 sector correspond to the 2π winding
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of one of the χm. In order to derive the effective ac-
tion of V (τ) fluctuations even for non-zero j, we thus

absorb e−iφ̄(τ)U(τ) into fermionic fields (without chang-
ing their statistics) and integrate fermions subsequently.
(with Gcf ,Gcf,k the full Green’s function of c and f space
and Gc,Gc,k the Green’s function of conduction electrons
and G,Gk the Green’s function of f electrons)

S[A2,3]/N = −Tr ln[−G−1
cf + iA] + tr ln[−G−1

c + iA](C7)

≃ iTr[GcfA] − itr[GcA]

−1

2
Tr[(GcfA)2] + 1

2
tr[(GcA)2]. (C8)

The symbol “tr” denotes a trace in the space of the three
sites and in time, “Tr” additionally includes the 2 × 2
space of c and f electrons. Specifically, we employ a gauge
in which

Ak′k =
2πjT

3
+
(Ȧ2 − Ȧ1)δkk′ + (Ȧ1e

i(k′−k) − Ȧ2e
−i(k′−k))

3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Āk′k

.

(C9)
The leading term is fixed by the constraint ∑k δk = 3πq

(this result is true beyond mean field)

S(1) = i∫ dτ∑
k

Gk(τ, τ+)Akk(τ)

= iQ∫ dτ∑
k

Akk(τ)

= iQ2πm. (C10)

Note that, since Q ∈ Z, this expression is invariant yields
a trivial phase 2π and can be omitted.

Next we switch to the term of second order in gradi-
ents, which can be expressed as

S(2) = −N
2
∫ dτ∑

kk′
Ikk′ ∣Akk′ ∣2. (C11)

The polarization operator under consideration is

Ikk′ = ∫
dε

2π
trcf[Gcf,k(ε)Gcf,k′(ε)] −Gc,k(ε)Gc,k′(ε)

= (1 + 2(πρV )2)∫
dε

2π
Gk(ε)Gk′(ε)

= −1 + 2ρ∆

JH

⎛
⎜⎜
⎝

JH sin(δ+)2

∆π
JH sin(δ+)2

∆π
1

JH sin(δ+)2

∆π
JH sin(δ+)2

∆π
1

1 1 JH sin(δ0)2

∆π

⎞
⎟⎟
⎠
kk′

.

(C12)

We here used the short hand notation δ+ = δ2π/3 and that

∫
dε

2π
Gk(ε)Gk′(ε) = −

1

π

⎧⎪⎪⎨⎪⎪⎩

∆
∆2+λ2

k

, λk = λk′
π+arctan(∆/λk)−arctan(∆/λk′)

λk′−λk
, λk < 0, λk′ > 0,

(C13)

as well as the mean field equations, Eq. (B10). It is
important to realize that remnant U(1) terms and SU(3)
terms in Eq. (C11) decouple

S(2) = −N
2
∫ dτ∑

kk′
[Ikk′ ∣Ākk′ ∣2 + Ikk (

2πmT

3
)

2

δkk′].

(C14)
The second term yields a vanishing contribution to the

weight in the limit T → 0 and is disregarded. We further
use that

∣Ākk′ ∣2 =
∑m Ȧ2

m

18
. (C15)

Here, we have used a gauge transformation to return to
generic gauge. The combination of Eq. (C12), (C14),
(C15), results in the final result, Eq. (12b) in the main
text. To obtain Eq. (15), we employ the parametrization
in terms of unit vectors êm and ∑m êmêTm = 31.

2. Total flux

To obtain the dynamics of the total flux Φ(τ) we use
the notation δλk = −2t [cos(k +Φ/3) − cos(k)] and ex-
pand the fermionic determinant to second order in δλk.
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S
(2)
eff ≃ N

2
∑
ωm,k

δλk(ωm)δλk(−ωm)∑
εn

Gk(εn)Gk(εn + ωm)

T→0≃ N∆

2πT
∑
ωm,k

δλk(ωm)δλk(−ωm)
ln ( λ2

k+∆2

λ2
k
+(∆+∣ω∣)2 )

∣ω∣(2∆ + ∣ω∣)

= N∆

2πT
∑
ωm,k

δλk(ωm)δλk(−ωm)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[− 1
∆2+λ2

k

+ ∣ω∣ ∆
(∆2+λ2

k
)2 ] , ∣ω∣ ≪ λ2

k +∆2,

−
ln( ω2

λ2
k
+∆2 )

ω2 , ∣ω∣ ≫ λ2
k +∆2.

(C16)

The equation substantially simplifies for small t≪ λ, and
leads to the kinetic energy of Φ fluctuations

Skin[Φ] = N 3t2TK sin(πq)
4πT

∑
ωm

Φ(ωm)Φ(−ωm)

×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣ω∣ sin(πq)
T 3
K

, ∣ω∣ ≪ T 2
K ,

⎡⎢⎢⎢⎢⎢⎣

1
T 2
K

−
ln( ω

2

T2
K

)

ω2

⎤⎥⎥⎥⎥⎥⎦
, ∣ω∣ ≫ T 2

K .
(C17)

The ∣ω∣ term in the first line is the origin of the damped
kinetic term presented in the main text and leads to log-
arithmic correlators.

3. Estimate of tunneling time and tunneling action.

As demonstrated in the main text, details of the tun-
neling rate Γ are irrelevant for the transition. We there-

fore constrain ourselves to merely estimate Γ, based on a
tunneling event

Φ(τ) = π
2
+ 2πτ/τ0θ(τ2

0 − 4τ2)

⇒ ∣Φ(ω)∣2 =
(ωτ0 cos (ωτ0

2
) − 2 sin (ωτ0

2
))2

[ωτ0]4
. (C18)

In terms of dimensionless parameters t̄ = t/TK and τ̄0 =
τ0/TK , ω̄ = ωτ0,Φ(ω) = Φ̄(ωτ0) we obtain

Stun(τ̄0)/N ∼ βτ̄0 + t̄2 sin(πq)τ̄0 ∫
∞

0
∣Φ̄(ω̄)∣2 (1 − ln([sin(πq) + ω̄]2τ̄2

0 )
ω̄2τ̄2

0

)

≈ βτ̄0 {1 + t̄
2 sin(πq)

β
[π

6
− 1

τ̄2
0

(π ln[sin(πq)2τ̄2
0 ]

60
+ 0.7)]} . (C19)

To obtain the optimal tunneling time we use that t̄ ∼ β/γ
at the mean field first order transition. We thus obtain
for any q such that sin(πq) ∼ 1

τoptimal
0 ∼ 1

TK

⎧⎪⎪⎨⎪⎪⎩

1, γ ≪ 1,√
ln(γ)
γ
, γ ≫ 1,

(C20)

Stun/N ∼ β
⎧⎪⎪⎨⎪⎪⎩

1/γ + 1.4, γ ≪ 1.√
ln(γ)
γ
, γ ≫ 1.

(C21)

as quoted in the main text.
4. Implications for interwire correlations

Using ψ = (c, f)T the generating functional at mean
field level, but including fluctuations of the Goldstone

modes is Z = ∏k Zk

Zk[η] = ∫ Dψke−∫ dτψ̄k[−Ĝ
−1+iA]ψk+ψ̄kUηk+η̄kU†ψk

= e∫ dτη̄kĜηk+S[A2,3]. (C22)

Here, U is the diagonal matrix introduced after Eq. (B2).
Intersite correlator (obtained by differentiation with re-
spect to η) thus contain averages like the following
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⟨eiAm(τ)e−iAm′(0)⟩ = tr[e−(β−τ)He−iAme−τHeiAm′ ]
T→0= ∑

p
∫ d2x∫ d2x′ψ∗0(x⃗)e−iAm(x⃗)ψp⃗(x⃗)e−iτεp⃗ψ∗p⃗(x⃗′)eiAm′(x⃗′)ψ0(x⃗′)

= δmm′e−iε−2êm/3 . (C23)

We used the notation ψp⃗(x⃗) for eigenstates of
(−i∇x⃗)2/(2mx) with eigenenergy p⃗2/(2mx). Thus, only
intrasite terms survive.

5. Ordering of Os = dabcŜa
1 Ŝ

b
2Ŝ

c
3.

For t > tc (i.e. in the 3CK phase), the effective action
of Φ fluctuations can be obtained by expansion about the
minimum of cos(Φ) leading to

S[Φ] = ∫
dω

2π
Φ(ω)Φ(−ω) [ η

4π
∣ω∣ + MΦ

2
] (C24)

where MΦ = NβTK . The correlator of phase fluctuations
thus decays as

⟨Φ(τ)Φ(0)⟩ ∼ ∫
∞

0
dω

cos(ωτ)
η∣ω∣ + 2πMΦ

∼ −η sin(2πMΦτ)
(MΦτ)2

,

(C25)
and therefore leads to long-range correlations

⟨Os(τ)Os(0)⟩ ∼
t6

T 6
K

e
− η sin(2πMΦτ)

(MΦτ)2 → t6

T 6
K

. (C26)

Appendix D: Phase slips

Here we include phase slips of weight Γ and time τ0
which is assumed to be smaller than all other time scales
of the effective theory. We now consider a single kink in
Φ with shift 2π, which is associated to an amplitude [88]

A(0)
(−τ/2,Φ)→(τ/2,Φ±2π) = Γ∫

τ/2

−τ/2
dτc. (D1)

1. Instanton interactions

We consider the full partition function (generating
functional) to second order in Γ.

Z[η] = Z0[η]+Γ2∑
±
∫

β

0
dτf ∫

τi

0
dτiZ2,±[η; τf , τi], (D2)

where a phaseslip (anti phase slip ) is introduce at τi
(τf ) and the sum over ± indicates the direction of the
slip. The partition function is

F = −T lnZ[0]

≃ −T lnZ0[0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=F0

−TΓ2∑
±
∫

β

0
dτf ∫

τi

0
dτi

Z2,±[0; τf , τi]
Z0[0]

.

(D3)

We use that, before and after a phase slip, h labels
the same quantum states, however their energy has been
shuffled around cyclically εh → εh+1. We can thus ex-
press the partition function in the helicity basis, Z0[η] =
∏hZ0,h[ηk], Z2,±[η; τf , τi] = ∏hZ2,±,h[ηh; τf , τi] where
(h index from now on suppressed unless explicitly re-
stored)

Z0[η] = ∫ D[c, f]e−∫ dτ(c̄,f̄)[∂τ+HMF](c,f)T+η̄f+f̄η (D4a)

Z2[η] = ∫ D[c, f]e−∫ dτ(c̄,f̄)[∂τ+Hslips(τ)](c,f)T+η̄f+f̄η,

(D4b)

and

Hslips(τ) = ( ε(p) V

V λ(τ)
) (D4c)

where λ(τ) = λ+δλχτi,τf (τ) and χτi,τf (τ) = 1 for τi < τ <
τf and χτi,τf (τ) = 0, otherwise. Note that λ = λh = λ−εh,
for the ground state δλ = 3t, for one of the excited state
δλ = −3t and for the third state δλ = 0 (k = ±2π/3 are
degenerate).

Thus, the instantons generate an x-ray edge problem
in each helicity channel. We follow [89] and employ the
long-time f-electron Green’s function

Gf(τ) ≈ −
g

τ
, (D5)

with g = ∆/π(∆2+λ2) for the Kondo/resonant level prob-
lem. This leads to

Sslips(τf − τi) = (τf − τi)δλGf(0,0+)+(δx
π

)
2

ln(
τf − τi
λ

) ,
(D6)

where δx = −arctan(πgδλ). The first (classical) term
cancels upon taking the product of h, leaving only the
logarithmic repulsion. This concludes the derivation of
κ = 2N(δx/π)2, Eq. (19), as presented in the main text.

2. Infinite order resummation of phase slips

We now switch to the full resummation of phase slips.
We consider an amplitude for Φ→ Φ+NΦ2π and denote n
and n̄ the number of kinks/antikinks (i.e. n−n̄ = NΦ) and
their center of mass time τ1, . . . τn+n̄. Different instanton
sequences correspond to the integral over these variables.
Then the amplitude is
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A(0,Φ)→(β,Φ+NΦ2π) =
∞
∑
n=0

∞
∑
n̄=0

δn−n̄,NΦ
Γn+n̄ ∑

perm. of
n̄,n kinks

{∫
β

0
dτn+n̄⋯∫

τ3

0
dτ2 ∫

τ2

0
dτ1

tr[e−∫
β
τn+n̄ dτ

′ĤMF(Φ+NΦ2π) . . . e
−∫ τ2τ1 dτ ′ĤMF(Φ±2π)

e
−∫ τ1τ0 dτ ′ĤMF(Φ)]}. (D7)

In the second line, the ± refers to the sign of the first kink.
We can now use that the Hamiltonian between two kinks
is time independent and the evolution operator between
two kinks is

T e−∫
τl+1
τl

dτ ′ĤMF(Φ+k2π) =∏
∆τ

[1 +∆τĤ(Φ + k2π)]

= ∏
∆τ

(τkΦ [1 +∆τH(Φ)] τ−kΦ )

= τkΦ∏
∆τ

([1 +∆τH(Φ)]) τ−kΦ

= τkΦT [e−∫
τl+1
τl

dτ ′HMF(Φ)]τ−kΦ .
(D8)

Thus, a kink at time τ is represented by the operator
insertion τΦ at time τ into the partition sum

A(0,Φ)→(β,Φ+NΦ2π) =
∞
∑
n=0

∞
∑
n̄=0

δn−n̄,NΦ
Γn+n̄

(n + n̄)!
n!n̄!

1

(n + n̄)!

T {∫
β

0
dτn⋯∫

β

0
dτ1 ∫

β

0
dτ̄n̄⋯∫

β

0
dτ̄1tr[

n

∏
j=1

n̄

∏
j̄=1

τΦ(τk)τ−1
Φ (τ̄j̄)e−∫

β
0 dτĤMF]}

= 1

3
∑
θ

e−iθNΦtr[e∫
β
0 dτΓeiθτΦ(τ)e∫

β
0 dτΓe−iθτ−1

Φ (τ)e−∫
β
0 dτĤMF]. (D9)

We used the Fourier transform on `3 with periodic
boundary conditions (i.e. with possible wavevectors θ =
0,±2π/3) such that ∑θ eiθN = 3δN,0 and ∑n einθ = 3δθ,0.

Here, (n+n̄)!
n!n̄!

is the number of possibilities to arrange the
n upsteps if there are n + n̄ steps in total. The factor

1
(n+n̄)! accounts for the fact that the integration domain

has been increased from an explicitly time ordered n + n̄
dimensional integral in Eq. (D7), to a n + n̄ dimensional
hypercube.

The total partition sum is given by (we use
∑NΦ

e−iNΦθ = 3δθ,0 for NΦ = 0,±1)

Z = ∑
Nφ

A(0,Φ)→(β,Φ+NΦ2π) = tr[e−β[ĤMF−Γ(τΦ+τ−1
Φ )]]

(D10)
We now restore the matrix space of different vacua. In

total we obtain

Heff = ∑
x

[−tcc†αm(x)cαm(x + 1) + h.c. − µc†αm(x)cαm(x)]1Φ

+[tσΦf
†
α,mfα,m+1 + h.c.] + λf †

αmfαm1Φ

+[V f †
α,mcα,m + h.c.]1Φ − Γ(τΦ + τ−1

Φ ). (D11)

This concludes the derivation of Eq. (17) of the main
text.

3. Orthogonality catastrophe using bosonization

We start from the effective Hamiltonian derived in the
previous section

H =H0 +HΓ, HΓ = −ΓÔ, Ô = τΦ + τ−1
Φ . (D12)

We are going to treat this problem perturbatively to
second order in Γ and diagonalize H0 in the helicity
h basis. Then, considering that λh[Φ] is different for
Φ = −2π,0,2π we have

H0 = ∑
Φ=0

∑
h

∣Φ⟩H0h[Φ] ⟨Φ∣ ,

H0h[Φ] = ( c

f
)

†

h

( εc V

V λh[Φ]
)( c

f
)
h

. (D13)

Note that c-electrons have another momentum k along
the wires, which is implicit here. This problem as is, is
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difficult to treat. We are forced to i) go to the scattering
basis ψhσ and ii) assume that the phase shift is indepen-
dent of the energy, i.e. the electrons in scattering basis
experience a potential scattering Ṽh[Φ] which depends
on the flux Φ. In that case we can unfold the conduction
electrons to right-movers only and write

H0h[Φ] =H0h +
√

2πṼh[Φ]ψ†
hσ(0)ψhσ(0),

H0h = −ivF ∫ dxψ†
hσ∂xψhσ (D14)

where the relation between the potential scattering Ṽh[Φ]
and the phase shift is shown below in Eq. (D18) and the

factor of
√

2π is introduced for future convenience. Next,
we bosonize, i.e. express the fermions as

ψh(x) ∼ ei
√

2πϕh(x), [ϕh(x), ϕh′(y)] =
i

2
sgn(x − y)δhh′ .

(D15)
The Hamiltonian becomes

H0h[Φ] =H0h+(∂xϕh)Ṽh[Φ], H0h =
vF
2
∫

∞

0
dx(∂xϕh)2.

(D16)
It is easy to see that the potential scattering term can be
eliminated

H0h[Φ] ≡ vF
2
∫ dx{∂xϕh + δ(x)Ṽh[Φ]/vF}

2

,

i.e. ϕh(x) → ϕh(x) + θ(x)Ṽh[Φ]/vF . (D17)

By plugging this into ψ ∼ ei
√

2πϕ we can see that this
corresponds to the phase shift

ψout,h = ψin,he2iδh , δh =
√
π

2

Ṽh
vF

(D18)

Each flux configuration corresponds to a different phase
shift in a given helicity sector and these configurations
are related to each other via the so-called Schotte-Schotte
transformation [90]

Uh[Φ,∆Φ] = exp{ − iϕ(0)(Ṽh[Φ +∆Φ] − Ṽh[Φ])/vF}.
(D19)

Using the commutation relation of bosons and the fact
that esXY e−sX = Y + s[X,Y ], for [X,Y ] c-number, we
can check that

H0h[Φ +∆Φ] = U †
h[Φ,∆Φ]H0h[Φ]Uh[Φ,∆Φ] (D20)

=H0h + (∂xϕ)Ṽh[Φ]

− i[Ṽ (Φ +∆Φ) − Ṽ (Φ)]∫
x
∂xϕ[ϕ(0), ∂xϕ]

=H0h + Ṽ [Φ +∆Φ](∂xϕ)∣x=0. (D21)

Going to interaction picture w.r.t. H0 and expanding the
partition function in Γ we have

Z/Z0 = ⟨Tτe−∫
1/2T
−1/2T dτHΓ(τ)⟩0

= 1 + Γ2

2
∫ dτ1dτ2 ⟨Tτeτ1H0Ôe(τ2−τ1)H0Ôe−τ2H0⟩0

= 1 + Γ2

2
∫ dτ1dτ2 ⟨Tτe(τ1−τ2)H0e(τ2−τ1)ÔH0Ô⟩0

= 1 + Γ2

2
∑
Φ

∑
α=±1
∫ dτ1dτ2∏

h

×⟨Tτe(τ1−τ2)H0h[Φ]e(τ2−τ1)H0h[Φ+2πα]⟩0 (D22)

where Ô = τ+1 + τ−1, we used that the linear-in-Γ term
vanishes due to trace and use the cyclic property of the
trace with the Boltzmann factor e−βH0/Z0 to shuffle the
time-evolutions. Using Eq. (D20):

eτH0h[Φ+∆Φ] = U †
h[Φ,∆Φ]eτH0h[Φ]Uh[Φ,∆Φ] (D23)

we can write

⟨Tτe−∆τH0h[Φ]U †
h[Φ,∆Φ]eτH0h[Φ]Uh[Φ,∆Φ]⟩

0

= ⟨TτU †
h[Φ,∆Φ; τ]Uh[Φ,∆Φ]⟩

0
(D24)

= ⟨Tτeiϕ(τ)∆Vh[Φ,∆Φ]/vF e−iϕ(0)∆Vh[Φ,∆Φ]/vF ⟩

∼ ∣τ ∣
− (∆Ṽh[Φ,∆Φ])2

2πv2
F

where we used that

⟨eiγϕ(τ)e−iγϕ(0)⟩ = 1

∣τ ∣γ
2/2π . (D25)

As a reminder, ∆Ṽh can be related to the phase shift

∆Ṽh[Φ,∆Φ] ≡ Ṽh[Φ +∆Φ] − Ṽh[Φ]

= vF

√
2

π
(δh[Φ +∆Φ] − δh[Φ]) (D26)

which leads to

Z/Z0 = 1 + 1

T
Γ2∑

Φ

∑
α=±1
∫

1/2T

−1/2T
d∆τ ∣∆τ ∣−κ ,

κ = ∑
h

(δh[Φ +∆Φ]/π − δh[Φ]/π)2. (D27)

Up to subleading terms in small t (which are not im-
portant near the transition), this exactly reproduces
Eq. (D6). The time-integral leads to

Z/Z0 = 1 + C′Γ2Tκ−2 (D28)

where C′ is a constant. The corrections to free energy
F0 = −T logZ0 is

F − F0 = −C′Γ2Tκ−1. (D29)
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4. ⟨σΦ(τ)σΦ(0)⟩ correlation function

In this section we compute the correlator ⟨σΦ(τ)σΦ(0)⟩
which is related to the order parameter ⟨Os(τ)Os(0)⟩ or
⟨Φ(τ)Φ(τ)⟩ in the paper, within the t − Γ Hamiltonian
H = H0 +HΓ. In the Γ/t ≫ 1 regime (FL phase) this is
exponentially decaying. This can be seen easily in a basis
in which the −ΓO term is diagonal. In the limit of large
Γ, we can use a unitary transformation UO to diagonalize
O

O = τΦ + τ−1
Φ =

⎛
⎜⎜
⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎟
⎠
→ U †

OOUO =
⎛
⎜⎜
⎝

−1

−1

2

⎞
⎟⎟
⎠

(D30)

and go to the interaction picture w.r.t. −Γτx. In this
picture σ(τ) is time-dependent and is given by

ρΓ = e−Γ/T

2e−Γ/T + e2Γ/T

⎛
⎜⎜
⎝

1

1

e3Γ/T

⎞
⎟⎟
⎠
→

⎛
⎜⎜
⎝

0

0

1

⎞
⎟⎟
⎠
,

σΓ(τ) =
ω2

2

⎛
⎜⎜
⎝

1 i −x−1
√

2

i −1 ix−1
√

2

−x
√

2 ix
√

2 0

⎞
⎟⎟
⎠
, (D31)

in terms of x = e3τΓ. With this density matrix tr[ρΓO] =
o33. Therefore to leading order in tunnelling t,

⟨σΓ⟩ = ⟨TτσΓ(τ)σΓ(0)⟩ = 0,

⟨TτσΓ(τ)σ†
Γ(0)⟩ = ⟨Tτσ†

Γ(τ)σΓ(0)⟩ = e−3∣τ ∣Γ. (D32)

This is the origin of the fact that t is irrelevant in the
Γ/t≫ 1 regime, within t−Γ Hamiltonian. In the opposite
regime of Γ/t ≪ 1, we can use the same technique as in
previous section to compute the Since σΦ commutes with
H0, to zero order in Γ we have

⟨σΦ(τ)σ†
φ(0)⟩ =

1

3
tr[σΦσ

†
φ] = 1. (D33)

To second order in Γ we have (we have neglected the
disconnected part, since it does not depend on τ)

⟨σΦ(τ)σ†
φ(0)⟩ =

1 + Γ2 ∫
1/2T

−1/2T
dτ1dτ2 ⟨TτσΦ(τ)σ†

Φ(0)Ô(τ1)Ô(τ2)⟩ (D34)

We can divide the integration range into 6 configurations
(assuming τ1 > τ2):

θ1 ≡ θ(τ1 > τ2 > τ > 0) ∶ ∑
αα′

⟨eτ1H0ταΦe
(τ2−τ1)H0τα

′
Φ e−τ2H0σΦσ

†
Φ⟩ = G(∆τ) (D35)

θ2 ≡ θ(τ > 0 > τ1 > τ2) ∶ ∑
αα′

⟨σΦσ
†
Φe

τ1H0ταΦe
(τ2−τ1)H0τα

′
Φ e−τ2H0⟩ = ωG(∆τ) (D36)

θ3 ≡ θ(τ > τ1 > τ2 > 0) ∶ ∑
αα′

⟨σΦe
τ1H0ταΦe

(τ2−τ1)H0τα
′

Φ e−τ2H0σ†
Φ⟩ = G(∆τ) (D37)

θ4 ≡ θ(τ1 > τ > 0 > τ2) ∶ ∑
αα′

⟨eτ1H0ταΦe
−τ1H0σΦσ

†
Φe

τ2H0τα
′

Φ e−τ2H0⟩ = ω̄G(∆τ) (D38)

θ5 ≡ θ(τ > τ1 > 0 > τ2) ∶ ∑
αα′

⟨σΦe
τ1H0ταΦe

−τ1H0σ†
Φe

τ2H0τα
′

Φ e−τ2H0⟩ = G(∆τ) (D39)

θ6 ≡ θ(τ1 > τ > τ2 > 0) ∶ ∑
αα′

⟨eτ1H0ταΦe
−τ1H0σΦe

τ2H0τα
′

Φ e−τ2H0σ†
Φ⟩ = G(∆τ) (D40)

Here, α,α′ = +1,−1 and we have used the σΦτΦ = ωτΦσΦ

and similar commutation relations to eliminate σΦ and τΦ
and express the correlators in terms of a single correlator

(∆τ ≡ τ1 − τ2)

G(∆τ) = ∑
α
∑
Φ

∏
h

⟨e∆τH0[Φ]e−∆τH0[Φ+2πα]⟩ , (D41)
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which is the correlator was computed in the previous sec-
tion The integration over these ranges appear with a in-
tegrand that is only a function of τ1 − τ2. Denoting,

Ii ≡ ∫ dτ1dτ2θiG(τ1 − τ2) (D42)

we have typical integrals of the form

I ∼ τ ∫
τ

0
d∆τG(∆τ), G(∆τ) ∼ ∣∆τ ∣−κ (D43)

in terms of κ defined before, which gives us

⟨σΦ(τ)σ†
Φ(0)⟩ ∼ 1 + C′′Γ2τ2−κ. (D44)

where C′′ is another constant. This demonstrates that the
⟨σΦ(τ)σΦ(0)⟩ correlator disorders at the deconfinement
quantum phase transition, defined by κ = 2.

[1] Lucile Savary and Leon Balents, “Quantum spin liquids:
a review,” Reports on Progress in Physics 80, 016502
(2016).

[2] Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng, “Quantum
spin liquid states,” Rev. Mod. Phys. 89, 025003 (2017).

[3] Xiao-Gang Wen, “Colloquium: Zoo of quantum-
topological phases of matter,” Rev. Mod. Phys. 89,
041004 (2017).

[4] T. Senthil, Ashvin Vishwanath, Leon Balents, Subir
Sachdev, and Matthew P. A. Fisher, “ Deconfined Quan-
tum Critical Points,” Science 303, 1490–1494 (2004).

[5] P. W. Anderson, Science 235, 1196–1198 (1987).
[6] Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda,

and G. Saito, “Mott transition from a spin liquid to
a Fermi liquid in the spin-frustrated organic conductor
κ−(ET)2Cu2(CN)3,” Phys. Rev. Lett. 95, 177001 (2005).

[7] Satoshi Yamashita, Yasuhiro Nakazawa, Masaharu
Oguni, Yugo Oshima, Hiroyuki Nojiri, Yasuhiro Shimizu,
Kazuya Miyagawa, and Kazushi Kanoda, “Thermody-
namic properties of a spin-1/2 spin-liquid state in a κ-
type organic salt,” Nature Physics 4, 459 (2008).

[8] Piers Coleman, Yashar Komijani, and Elio J. König,
“Triplet resonating valence bond state and superconduc-
tivity in Hund’s metals,” Phys. Rev. Lett. 125, 077001
(2020).

[9] A Dönni, G Ehlers, H Maletta, P Fischer, H Ki-
tazawa, and M Zolliker, “Geometrically frustrated mag-
netic structures of the heavy-Fermion compound cep-
dal studied by powder neutron diffraction,” Journal of
Physics: Condensed Matter 8, 11213 (1996).

[10] Akito Sakai, Stefan Lucas, Philipp Gegenwart, Oliver
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[46] I. Paul, C. Pépin, and M. R. Norman, “Kondo break-
down and hybridization fluctuations in the Kondo-
Heisenberg lattice,” Phys. Rev. Lett. 98, 026402 (2007).

[47] Matthias Vojta, “Orbital-selective mott transitions:
Heavy fermions and beyond,” Journal of Low Temper-
ature Physics 161, 203–232 (2010).

[48] Victor Drouin-Touchette, Elio J König, Yashar Komijani,
and Piers Coleman, “Emergent moments in a Hund’s im-
purity,” arXiv:2101.10332 (2021).

[49] Yu. B. Kudasov and V. M. Uzdin, “Kondo state for a
compact cr trimer on a metallic surface,” Phys. Rev. Lett.
89, 276802 (2002).

[50] Bruce C Paul and Kevin Ingersent, “Frustration-induced
non-fermi-liquid behavior in a three-impurity Kondo
model,” arXiv preprint cond-mat/9607190 (1996).

[51] Fabian Eickhoff and Frithjof B. Anders, “Strongly corre-
lated multi-impurity models: The crossover from a single-
impurity problem to lattice models,” Phys. Rev. B 102,
205132 (2020).

[52] Andrew K. Mitchell, Thomas F. Jarrold, and David E.
Logan, “Quantum phase transition in quantum dot
trimers,” Phys. Rev. B 79, 085124 (2009).

[53] P. P. Baruselli, R. Requist, M. Fabrizio, and E. Tosatti,
“Ferromagnetic Kondo effect in a triple quantum dot sys-
tem,” Phys. Rev. Lett. 111, 047201 (2013).
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