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We apply modern methods in computational topology to the task of discovering and characterizing
phase transitions. As illustrations, we apply our method to four two-dimensional lattice spin models:
the Ising, square ice, XY, and fully-frustrated XY models. In particular, we use persistent homology,
which computes the births and deaths of individual topological features as a coarse-graining scale
or sublevel threshold is increased, to summarize multiscale and high-point correlations in a spin
configuration. We employ vector representations of this information called persistence images to
formulate and perform the statistical task of distinguishing phases. For the models we consider, a
simple logistic regression on these images is sufficient to identify the phase transition. Interpretable
order parameters are then read from the weights of the regression. This method suffices to identify
magnetization, frustration, and vortex-antivortex structure as relevant features for phase transitions
in our models. We also define “persistence” critical exponents and study how they are related to
those critical exponents usually considered.

I. INTRODUCTION

Given an unknown condensed matter system sitting
in front of you, the zeroth order question you may ask
is: what is its phase structure? With sufficient technical
ability, one may vary the various coupling constants, ex-
ternal temperature, etc, and measure its ensuing equilib-
rium configurations. One way to understand the phase
structure is to carefully search through the entire pa-
rameter space, and deduce for which parameter regimes
the system looks similar (i.e., the system remains in the
same phase). In doing so, one may occasionally encounter
boundaries where some symmetry is broken or some spe-
cific heat diverges, indicating a new phase. Having iden-
tified these phases, a natural next question is how to
distinguish them in practice, i.e. what order parameters
describe the various phase transitions. These questions
are naturally phrased in the language of machine learn-
ing (ML). Namely, the question “how many phases are
there” is an exercise in unsupervised learning, while the
question “how are different phases distinguished” is an
exercise in supervised learning. Note that this is an ex-
ericise in distinguishing statistical ensembles, and incurs
some amount of uncertainty.

Recently, ML techniques have been applied to these
very tasks. Unsupervised methods such as Principal
Component Analysis, clustering algorithms, and autoen-
coders have been used to identify phase transitions (see,
e.g., [1–8]). Support vector machines have been shown
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to be a useful tool in quantifying characteristics of phase
transitions [9–12]. Supervised learning with neural net-
works has proven useful in this classification task (see,
e.g., [13–21]), but often lacks the desired level of inter-
pretability.

In this paper we use persistent homology [22, 23] (see
[24–26] for reviews) as a tool for detecting and charac-
terizing phase transitions using a supervised learning ap-
proach, although is is amenable to unsupervised learn-
ing as well. As illustrations, we apply our method to
study two-dimensional lattice spin systems. Persistent
homology is a technique from Topological Data Analysis
(TDA) that identifies the births and deaths of topolog-
ical features throughout a family of discrete complexes.
This family often corresponds to the data set at various
coarse-graining scales. By now, persistent homology has
been fruitfully applied in a wide variety of fields, includ-
ing sensor networks [27], image processing [28], genomics
[29], protein structure [30, 31], neuroscience [32, 33], cos-
mology [34, 35] and string theory [36, 37], to name only a
few. In the context of spin systems, persistent homology
encodes multiscale and high-order correlations in a data
set. The main takeaway from our work is that this repre-
sentation of a spin system configuration is not only suffi-
cient to distinguish phases in spin systems, but addition-
ally provides interpretable order parameters for the phase
transitions. For example, we find that persistent homol-
ogy identifies such varied phenomena as magnetization,
frustration, and (anti)vortices in spin systems. Addition-
ally, as a multiscale technique, persistent homology can
capture a system’s approach towards scale-invariance, i.e.
its critical behavior. We work with persistence images
[38], which are vectorized representations of persistent
homology information. This framework allows us to de-
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FIG. 1: Overview of the considered models. Example spin configurations in the low- and high-temperature phases
are shown for each model.

fine quantitative order parameters and quantify the un-
certainty that a particular spin configuration belongs to
a particular phase.

Persistent topological methods have been applied to
statistical mechanics in a few cases, but so far these ap-
plications have been largely qualitative in terms of statis-
tics. Ref. [39] studied the relationship between phase
transitions and topology changes in configuration space.
More recently, [40] studied the relaxation dynamics of a
two-dimensional Bose gas with persistent homology, and
[41] performed unsupervised learning on persistence di-
agrams to visualize their phase structure. [42] explores
the properties of a lattice model by computing pairwise
distances under a particular metric on the persistence
diagrams and visualizes the phase diagram via a dimen-
sional reduction. However, the use of persistent topolog-
ical methods in obtaining quantitative information about
statistical mechanics systems is in our view an underde-
veloped subject. The purpose of this paper is to provide
an early foray in this important direction.

In this manuscript we use persistent homology to quan-
titatively characterize phase transitions in four different
lattice spin systems. We consider discrete and contin-
uous spin models with and without frustration in the
ground state: see Fig. 1. Each example contains a dis-
tinct lesson. We begin with an obligatory analysis of the
two-dimensional Ising model (Is). We are able to eas-
ily identify the model’s phase transition relying only on
training data far from the critical temperature. The mag-
netization as order parameter is immediately extracted
from the weights of the corresponding logistic regres-
sion. Additionally, we examine the multiscale nature of

the information probed by persistence images. In par-
ticular, we define “persistence” critical exponents that
capture the model’s approach towards criticality, find-
ing interesting connections to the critical exponents usu-
ally considered. We then turn to the square-ice model
(SI), for which there is no local order parameter due to
frustrated low-energy dynamics. We again find a suc-
cessful classification and are able to identify an order
parameter associated with the low-temperature phase’s
“scale of frustration.” Our technique quickly picks up
on the scale of this feature. We subsequently turn to
continuous spin models, beginning with the XY model,
where a simple logistic regression on the persistence im-
ages discovers the Kosterlitz-Thouless (KT) phase tran-
sition and corresponding vortex-antivortex structure in
the low-temperature phase. Vortex-antivortex pairs are
shown to give a distinctive signature in the persistence
images that the logistic regression discovers and decides
to use on its own. Finally, we consider the fully-frustrated
XY model (FFXY), where frustration prevents the for-
mation of (anti)vortices in the low-temperature phase.
In this case, our method identifies small scale correla-
tions between next-to-nearest neighbors that reflect the
system’s attempt to satisfy competing constraints.

An important feature of our analysis is the simplicity
of our machine learning architecture. Once the relevant
spin configurations are reduced to persistence images, the
phase classification and extraction of order parameters
can be achieved via a simple logistic regression. This re-
flects the fact that persistent homology condenses these
data sets into their most relevant (and interpretable) fea-
tures.
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The code and data used in our analysis are made avail-
able in [43]. The organization of this manuscript is as
follows. In Sec. II we give a brief introduction to per-
sistent homology, persistence images, and our computa-
tional choices for applying these techniques to spin mod-
els. In Sec. III we apply our methods to spin models of
increasing complexity. We conclude in Sec. IV.

II. PERSISTENT HOMOLOGY &
PERSISTENCE IMAGES

We are interested in developing general interpretable
order parameters for phase transitions in spin systems.
Some inspiration can be drawn from the hallowed two-
dimensional (ferromagnetic) Ising model. In this case,
spontaneous magnetization in the low-temperature phase
leads to large, continuous domains where all spins are
aligned. As the temperature is decreased towards T = 0,
these domains grow, so that at sufficiently low tempera-
ture, the entire system is aligned. On the other hand, in
the high-temperature phase, spins receive enough ther-
mal energy to be randomly oriented. In the language of
ML, the (non)existence and scale of magnetic domains
manifests as a pattern in the hierarchical clustering of
aligned spins. In other words, if we consider the set
of aligned spins and perform successive coarse-graining
transformations, we would be able to distinguish these
two phases by the number of domains at different coarse-
graining scales. Note that this is a multiscale concept
that probes high-order correlation functions.

In fact, clustering can be viewed as the most basic
topological information about a data set, giving the to-
tal number of “connected components.” We may then
consider the hierarchical (i.e. multiscale) topologies cor-
responding to higher-dimensional features as well: for
example, loops. A unified description of topological fea-
tures of all dimensions is given by algebraic topology, and
the hierarchical or multiscale version of algebraic topol-
ogy is persistent homology [22–26].

We now give a brief description of simplicial homology,
referring the reader to [24, 25] for details. We begin by
embedding our data in a discrete complex. We use both
simplicial and cubical complexes in this work. In a sim-
plicial complex, points (0-simplices) may be connected in
pairs by edges (1-simplices), in triples by triangular faces
(2-simplices), and so on. Simplicial complexes must be
closed under taking faces: for example, if a 2-simplex is
in the complex then so too must be its three edges and
three vertices. A cubical complex is similar, but it con-
sists of points (0-cubes), line segments (1-cubes), squares
(2-cubes), and so on. Topological aspects of the simpli-
cial or cubical complex are then captured by its homol-
ogy groups. These groups, denoted Hp (p = 0, 1, 2, . . .),
consist of equivalence classes of p-cycles, where two p-
cycles are in the same equivalence class if they can be
smoothly deformed into one another. H0 consists of con-
nected components, H1 consists of noncontractible loops,

α

FIG. 2: (Top) Four steps in the α-filtration for a grid of
points, such as appears in our discrete-spin models. The
filtration parameter when a p-simplex is included is α2,

where α is the radius of the simplex’s circumsphere.
The α-complexes are pictured in black/red, with the
most recently added p-simplices being shown in red.

The nontrivial 1-cycle around the “gap” in the grid of
points is born in the second step and dies in the last

step. (Bottom) Four steps in the sublevel filtration for a
scalar function (represented by grayscale, with darker
squares corresponding to larger values) defined on a
4× 3 grid, such as appears in our continuous-spin

models. The filtration parameter is the threshold, ν, for
the sublevel sets and the cubical complexes are pictured
in red. A nontrivial 1-cycle around the largest value is

born and then dies in the last two steps.

and so on, with the Betti numbers bp giving the number
of inequivalent, nontrivial p-cycles.

The core insight of persistent homology is that such a
procedure can be significantly enhanced in its stability
and information content if instead of a single complex, a
monotonically growing family, called a filtration, is con-
sidered. We will generally use ν to denote the scale pa-
rameterizing the filtration. Often the growing of the fil-
tration corresponds to the increasing of a coarse-graining
scale, so that multiscale information is captured. See
Fig. 2. As this coarse-graining scale increases, p-cycles
are created (for example, loops form) and destroyed (for
example, loops are “filled in”). The mathematics of per-
sistent homology allows us to track the births and deaths
of individual topological features, where birth refers to
the value of the filtration parameter when the cycle ap-
pears and similarly for death. This information is usually
summarized via a persistence diagram (see Fig. 3), which
is a scatter plot of these births and deaths.

While persistence diagrams are often suitable for vi-
sualization, they are not very well suited for statistical
analysis. In the end, we are interested in the statistical
task of quantifying the probability that a given spin con-
figuration belongs to a particular phase of the system.
Therefore, rather than scatter plots, we might prefer a
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(a) Ising model on 16× 16 square lattice, T = 3.0. Simplices of radius less than
√
ν are included in the complex. At ν = 4.0

there remain nontrivial 1-cycles around the holes in the symplicial complex – these correspond to the long-lived blue points in
the upper left region of the persistence diagram and the shaded region around a persistence of three in the H1 persistence

image.

(b) XY model on 16× 16 square lattice, T = 1.4. At low values of the threshold ν, added spins are largely isolated, leading to
a number of 0-cycles (connected components) in the cubical complex which then die as they are connected to other

components via intermediate spins being added. These 0-cycles correspond to the red points in the lower left region of the
persistence diagram and the shaded region in the H0 persistence image.

FIG. 3: Example filtrations along with their corresponding persistence diagrams, showing the individual births and
deaths of topological features, and persistence images.

summary statistic that lives in a vector space. These
also aid us in quantitatively characterizing the change in
the system’s persistent homology as some parameter is
varied. We therefore use persistence images for our anal-
ysis, which are formed by appropriately smoothing the
persistence diagram and binning so as to have a low(er)-
dimensional representation of the persistence data. That
is, for a persistence diagram consisting of a number of
points {(bk, dk)} one chooses a number of bins {bini}
and forms

PIi =

∫
bini

dbdp
∑
k

w(pk)

2πσ2
exp

(
− (b−bk)2+(p−pk)2

2σ2

)
, (1)

where the sum in k runs over all points in the persistence
diagram, and the persistence, pk, for each point is its
“lifetime”, dk − bk. The weight w(p) should be chosen
to vanish at zero persistence in order to highlight those
more important features which are longer-lived. In what
follows we use w(p) = log (1 + p). (See [38] for more
details on the stability properties of persistence images.)

A. Filtrations

The data we consider come from square-lattice spin
models, some with discrete, ±, Ising spins and others
with continuous angles. In all models we employ periodic
boundary conditions. We now describe the filtrations we

use for these two cases, and give examples of how features
of the spin configurations are captured by the persistence
data.

a. Filtrations for discrete spins With discrete spins
on a square lattice (Ising and square-ice) we choose to
represent our data via a point cloud, taking the locations
of all spins aligned with a pre-determined direction as
the data. We choose to take all spins which are aligned
with the total magnetization (no matter how small). Af-
ter creating the point cloud from a given spin configura-
tion, we then use an α-filtration to create the persistence
diagram/image. The filtration corresponds to a coarse-
graining of the point cloud, parameterized by the areas
of balls enclosing the simplices: see Fig. 2 for a small
example.

As an example, Fig. 3a shows several steps in the α-
filtration for an example Ising model spin configuration
in the disordered phase, along with the derived persis-
tence diagram and H1 persistence image. To compute
the persistence of α-complexes we use the GUDHI class
AlphaComplex [44].

b. Filtrations for continuous spins We also consider
models where the spins are continuous (XY and fully-
frustrated XY). In these cases, a spin configuration is a
function f : Λ → S1 from the lattice, Λ, of N spin sites
to their angles. We consider models with global O(2)
symmetry so that we may place the total magnetization
(no matter how small) at angle θ = 0 and think of the
function f as mapping Λ into (−π, π]. The sublevel sets
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with threshold ν ∈ (−π, π], f−1(−π, ν] ⊆ Λ, consisting
of all lattice sites with angles less than ν then give a
filtration of (periodic) cubical complexes. (Here cubical
complexes are natural because of the underlying cubical
lattice.) These sublevel sets experience topology change
when the threshold ν passes a critical point of f , as is
familiar from Morse theory [45]. In this case 0-cycles have
nontrivial births, corresponding to spin values where f
has a local minimum. As such we include both 0- and
1-cycles in the derived persistence images.

Fig. 3b shows an example spin configuration for the XY
model in the disordered phase, along with its correspond-
ing persistence diagram and the combined H0, H1 persis-
tence image. To compute the presistence of cubical com-
plexes we use the GUDHI class PeriodicCubicalComplex
[46].

III. PHASE CLASSIFICATION & CRITICAL
PHENOMENA

In this section we apply our methods to the task of
phase classification in simple two-dimensional lattice spin
models. We consider four such models: the Ising and
square-ice models have discrete, ±, spins and the XY
and fully-frustrated XY models have continuously vary-
ing spins. Sample spin configurations for each model are
generated at a number of temperatures using standard
Monte-Carlo sampling techniques. Example spin config-
urations at low and high temperatures for each model are
shown in Fig. 1.

For each model considered, classification into two
phases is performed using only the persistence images. A
subset of samples with extreme temperatures are used to
train a logistic regression and then the accuracy of the re-
gression is evaluated using the known temperatures of all
samples. We normalize our persistence images using the
`1-norm, so they may be interpreted as probability densi-

ties for finding cycles with particular births/deaths for a
given system. Unnormalized persistence images contain
information about the total number of p-cycles and also
lead to a successful classification.

A. Logistic regression

In the following sections we will be classifying spin con-
figurations based on their persistence images. Since the
persistence images are information-rich, we are able to
use perhaps the simplest classification scheme, logistic
regression, to great effect. Here we quickly recall the
procedure of logistic regression. One benefit of logistic
regression is that it is easy to tell what aspects of the
data are used by the classification algorithm. We will
use these to extract order parameters for the phase tran-
sitions under consideration.

Persistence images PI ∈ Rn (n ∼ O(400) in our ex-
amples) are vectors of positive numbers representing the
distribution of cycles at different values of birth and per-
sistence. A logistic regression depends on parameters λ0

and λ ∈ Rn and the sigmoid function σ : R → (0, 1),
given by

σ(z) =
1

1 + e−z
. (2)

The sigmoid interpolates between σ(−∞) = 0 and
σ(∞) = 1. A persistence image is declared to be in
“category 0” if σ(λ0 + λ · PI) < 1

2 and in “category 1”

if σ(λ0 + λ · PI) > 1
2 . In our examples “category 0” will

correspond to a low-temperature phase and “category 1”
will correspond to a high-temperature phase. The pa-
rameters λi=0,...,n are learned by training on a subset of

the persistence images, PI(k), which are labeled into the
two categories (i.e. phases) with y(k) ∈ {0, 1}. Training
amounts to maximizing the log-likelihood,

∑
k

(
y(k) log

[
σ(λ0 + λ · PI(k))

]
+ (1− y(k)) log

[
1− σ(λ0 + λ · PI(k))

])
− C

∑
i

λ2
i (3)

with respect to λ0 and λ, where the constant C = 0.1
controls the `2-regularization used to prevent overfitting.
By training on extreme temperatures, we incur some in-
accuracy due to our extrapolating to intermediate tem-
peratures; these will not concern us too much, as we will
find successful classification regardless.

Upon training, the regression can be applied to the rest
of the persistence images to give an “average classifica-
tion” at each temperature. This can be interpreted as
quantifying the regression’s certainty that a particular
temperature belongs to a particular phase. The tem-
perature at which the average classification on testing

data is 0.5 gives an estimate of the critical temperature.
In addition, the learned coefficients λi may be investi-
gated to learn which bins (i.e. regions) of the persis-
tence images are most discerning when it comes to dis-
tinguishing the low- and high-temperature data. Bins
where λi � 0 will identify features prevalent in the high-
temperature phase, while λ � 0 will identify features
that are prevalent in the low-temperature phase. Bins
where λi � 0 (λi � 0) will identify the dimensionality,
size and longevity of features which are characteristic of
the high-temperature (low-temperature) phase. These
will constitute our order parameters.
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(a) T = 2.0, N = 50 (b) T = 2.4, N = 50 (c) T = 3.0, N = 50

(d) Learned logistic regression
coefficients for N = 50.

(e) Average classification for N = 15, 25, 50. An estimate for Tc is
where the interpolating line crosses 0.5 (Tc ≈ 2.59, 2.50, 2.37,
respectively). The red dashed line indicates the exact critical

temperature for N →∞.

FIG. 4: Phase classification for the Ising model on an N ×N square lattice. In (a-c) are shown example persistence
images for the first homology group below, near and above the critical temperature. In (d,e) are shown the results of

classifying these persistence images into two phases, having trained a logistic regression only on a subset of
persistence image with temperatures in the highlighted regions in (e). The learned coefficients in (d) indicate that

the low-temperature phase is characterized by small, short-lived features.

B. Ising model

The Ising model on a two-dimensional square lattice is
very well understood, largely in part to Onsager’s exact
solution [47]. Spins si ∈ {−1, 1} live at the vertices of
the lattice with ferromagnetic interactions governed by
the local Hamiltonian

HIs = −
∑
〈i,j〉

sisj , (4)

where the sum is over nearest-neighbor pairs. In the ther-
modynamic limit there is a second-order phase transition
at TIs = 2

log (1+
√

2)
≈ 2.27. At low temperatures there is

spontaneous magnetization, while there is a disordered
phase at high temperatures. While this model is well-
understood, it provides a good first application of our
method. We are able to easily extract the magnetization
as order parameter from a simple logistic regression. We
additionally study the relationship of new “persistence”
critical exponents to those usually studied.

1. Logistic regression and order parameter

For temperatures T ∈ {1.00, 1.05, . . . , 3.50} we gener-
ate 1000 sample spin configurations for a N ×N square
lattice of N2 spins for N = 15, 25, 50. For each sam-
ple we construct the persistence image using a weight
log (1 + p) and σ = 0.5 (see Eqn. (1)). Training of a lo-
gistic regression on the persistence images is conducted
only on a subset of samples with extreme temperatures,
well within the expected phases (see the left-hand side
of Fig. 4). The classification extrapolates very well to
the intermediate temperatures and for N = 50 gives an
estimate of T ≈ 2.37 for the critical temperature. The
discrepancy from the known critical temperature may be
attributed to finite-size effects.

The coefficients of the trained logistic regression (see
the right-hand side of Fig. 4) show that the low-
temperature configurations are identified by their having
many small, short-lived cycles. These may be understood
as arising both from 2× 2 blocks of aligned spins (which
lead to very short-lived 1-cycles) as well as 1-cycles wrap-
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FIG. 5: Ising model death distributions, N = 50. The
slight horizontal stripes in the figure on the right (e.g. at
death = 25) are symptomatic of the underlying lattice.

ping small groups of isolated spins which are flipped rel-
ative to the large domains of aligned spins: the latter
become more and more important as the temperature is
increased. In the high-temperature phase, spins are ori-
ented randomly, leading to a more uniform distribution
of 1-cycle sizes. Using persistent homology we are able to
easily identify the magnetization as the order parameter,
as is well known.

2. Multiscale behavior near criticality

Since persistent homology contains multiscale informa-
tion about a spin configuration it seems reasonable that
one should be able to probe a model’s approach towards
scale-invariance via critical exponents. Indeed, we are
able to see aspects of scale-invariance appearing at crit-
icality by looking at statistics derived from the persis-
tence diagram. One-dimensional statistics such as the
Betti numbers, births and deaths can be found by count-
ing points in different regions of the persistence diagrams.
In this way we may compute the 1-cycle death probabil-
ity density, DT (d), at each temperature, which quantifies
the distribution of feature sizes in the spins. In Fig. 5 we
see that deaths are exponentially distributed with a long
tail forming at criticality, indicative of a diverging corre-
lation length and the emergence of power-law behavior.

To be more quantitative, we may fit each DT (d) to a
function of the form

DT (d) = Ad−µe−d/adeath . (5)

Here d is the filtration parameter at the death scale of a
cycle, and A is a numerical constant. There are two crit-
ical exponents to be extracted: µ gives the power-law be-
havior at criticality, while the correlation area adeath di-
verges at criticality according to adeath ∼ |T −Tc|−νdeath .
We are limited by the IR cutoff of the model, namely
the finite area of the lattice, but we may still estimate
these exponents. As a consistency check, we ask how
these might be related to previously studied critical ex-
ponents. Using scaling arguments, one can show that at
criticality the proportion of clusters of k aligned spins

FIG. 6: µ and adeath for Ising death distributions,
N = 50. The red dashed lines indicate the previously

estimated critical temperature T ≈ 2.37. Error
estimates are derived from fitting multiple simulations.

goes as

P(cluster of size k) ∼ k−τ , (6)

where the critical exponent is τ ≈ 2.032 [48, 49]. The
function DT (d) is not directly measuring the size of clus-
ters, since the death of a 1-cycle around an island of
spins is influenced nontrivially by the shape and “nest-
ing” of clusters. Nevertheless, it seems reasonable to ex-
pect that at criticality the distribution of 1-cycle deaths
should follow a similar power-law distribution. Recall
that the value of the filtration parameter at the death
of a 1-cycle is the area of the disks placed on each point
in the point cloud, and so roughly corresponds to the
number, k, of spins enclosed by the 1-cycle.

The fit parameters µ and adeath are shown in Fig. 6,
where we see clearly the diverging correlation area as
criticality is approached from above. The value of µ at
our previously estimated critical temperature, T ≈ 2.37,
is consistent with µ ≈ τ = 2.032 as anticipated above,
although a more detailed study would be needed to de-
termine the value of µ more exactly. We see also the
linear behavior of a−1

death with temperature, indicating
νdeath ≈ 1. That this is the same degree of divergence as
the correlation length of the spin-spin correlation func-
tion 〈s(0)s(r)〉 ∼ e−r/ξ, ξ ∼ |T−Tc|−1 can be understood
by the following rough argument.

The death of a 1-cycle in the α-filtration roughly
corresponds to the area of the cluster of spins that it
encloses and DT (d) roughly corresponds to the prob-
ability that a contiguous region of spins with area d
is aligned. Consider for simplicity looking to estimate
the probability that a disk of spins with radius R are
all aligned. At infinite temperature where the spins
are randomly aligned, this probability would simply be

2−πR
2/`2 , where ` is the lattice spacing. If we suppose

that Pdisk(R) ∼ e−R
2/a for some “correlation area” a

even at finite temperature, then how is a related to ξ as
defined by 〈s(R)s(0)〉 ∼ e−R/ξ in the disordered phase?

To estimate Pdisk(R + `) ∼ e−(R+`)2/a ≈ e−R
2/a−2`R/a,

imagine asking that a circle of ∼ R spins all be aligned
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(a) T = 0.5 (b) T = 1.9 (c) T = 4.0

(d) Learned logistic regression
coefficients. (e) Average classification of persistence images. An estimate for

Tc is where the interpolating line crosses 0.5 (Tc ≈ 1.9).

FIG. 7: Phase classification for the square ice model on a 50× 50 lattice. In (a-c) are shown example persistence
images for the first homology group below, near and above the estimated critical temperature. In (d,e) are shown
the results of classifying these persistence images into two phases, having trained a logistic regression only on a
subset of persistence images with temperatures in the highlighted regions in (e). The learned coefficients in (d)

indicate that the phase transition involves a subtle shift to the characteristic length scale in the spin configurations.

with the disk of (aligned) spins of radius R that they
encircle. For simplicity, we ignore conditional aspects of
the probability and subleading terms. This should then

take the form e−R
2/ae−#R/ξ, from which we conclude

that a ∼ `ξ: in particular, a ∼ ξ ∼ |T − Tc|−ν with
the same critical exponent as the critical temperature is
approached from above.

It would be interesting to further understand the re-
lationship between the persistence critical exponents we
defined and those typically studied.

C. Square-ice model

The square-ice model places spins, si ∈ {−1, 1}, on
the edges rather than vertices of a square lattice and is
governed by the local Hamiltonian

HSI =
∑
v∈Λ

(∑
i:v

si

)2

, (7)

where i : v denotes those spins on edges adjacent to the
vertex v. This is a particular instance of the 16-vertex

model which in general has a rich phase structure (e.g. see
[50, 51]). In contrast to the Ising model there is no spon-
taneous magnetization at low temperatures. Rather, the
ground state is highly degenerate: any configuration with
exactly two up and two down spins adjacent to every ver-
tex has zero energy. This leads to frustration in the low-
energy dynamics, as adjacent vertices v compete to min-
imize (

∑
i:v si)

2
. This competition takes place at small

scales, so that many 1-cycles die very quickly in the filtra-
tion. Nevertheless, we are still able to identify a shift in
the distribution of p-cycle births and deaths and reliably
classify samples into two phases. In this case, the frus-
tration introduces a particular length scale to the topo-
logical features in the low-temperature phase, while the
distribution of sizes in the high-temperature phase is less
restricted.

1. Logistic regression and order parameter

We generate 1000 sample spin configurations for a
50 × 50 lattice with 5000 spins at temperatures T ∈
{0.0, 0.1, . . . , 4.0}. Each sample gives a persistence im-
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(a) T = 0.5, N = 20 (b) T = 0.9, N = 20 (c) T = 1.4, N = 20

(d) Learned logistic regression coefficients for
N = 20.

(e) Average classification for N = 10, 15, 20. An estimate
for Tc is where the interpolating line crosses 0.5

(Tc ≈ 0.69, 0.88, 0.90, respectively). The red dashed line
indicates the critical temperature for N →∞.

FIG. 8: Phase classification for the XY model on an N ×N square lattice. In (a-c) are shown example persistence
images for both the zeroth and first homology groups below, near and above the critical temperature. The grey

dashed lines visually separate the infinite persistence 0- and 1-cycles from those which have finite death. In (d,e) are
shown the results of classifying these persistence images into two phases, having trained a logistic regression only on

a subset of persistence images with temperatures in the highlighted regions in (e).

age with a weight log (1 + p). Again training a logistic
regression only on those persistence images with extreme
temperatures (Fig. 7), we find an estimate of T ≈ 1.9
for the critical temperature. From the logistic regression
coefficients presented Fig. 7d we see that as the tem-
perature increases there is a tendency for 1-cycles to be
born later or to be longer-lived. Both are indicative of
a changing local structure in the spin configurations. In
the low-temperature phase, it is energetically beneficial
for neighboring vertices to coordinate, resulting in a reg-
ular patterns of alternating up and down spins. This
regularity forces 1-cycles to live at smaller scales than in
the high-temperature phase. More precisely, the domains
of alternating spins result in many 1-simplices of radius
1/2 which are filled in at ν = 1/

√
2 ≈ 0.7 – this is re-

flected in the location of the negative logistic regression
coefficients shown in Fig. 7d.

D. XY model

The XY model is a continuous-spin generalization of
the Ising model. At each site of the square lattice spins

take values in S1 and are governed by

HXY = −
∑
〈i,j〉

cos (θi − θj) . (8)

There is a well-known KT phase transition at TXY ≈
0.892 (see [52, 53], among others). This is an infinite-
order phase transition where at low temperatures there
are bound vortex-antivortex pairs while at high temper-
atures free vortices proliferate and spins are randomly
oriented.

1. Logistic regression and order parameter

With continuous spins each spin configuration im-
plicitly contains much more information about the
underlying dynamics. For temperatures T ∈
{0.05, 0.10, . . . , 1.50} we generate 200 sample spin con-
figurations on a N × N lattice with N2 spins for N =
10, 15, 20. Persistence images are created for each sam-
ple, as in Fig. 3b. The zeroth homology, in contrast to
the α-complexes used for discrete spins, is very rich for
the cubical complexes and we include both H0 and H1

persistence data in the persistence images. There is al-
ways a single 0-cycle and two 1-cycles which never die:
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FIG. 9: Example spin configuration with three vortex-antivortex pairs, with seven steps in the sublevel filtration
shown. Each vortex-antivortex pair corresponds to a number of 0-cycles which are born very early and 1-cycles

which die late.

FIG. 10: XY 0- and 1-cycle death distributions.

these correspond to the p-cycles of the torus on which
the lattice lives. We distinguish these immortal p-cycles
from those cycles with late deaths (d ≈ π) by giving the
former a death of d = 5π

2 by hand. Omitting these in-
finite persistence “torus cycles” results in a comparable
phase classification.

Performing a logistic regression of the concatenated H0

and H1 persistence images by training on configurations
with temperatures far away from the anticipated tran-
sition leads to the classification of Fig. 8. The critical
temperature is estimated as TXY ≈ 0.90 for N = 20.
We see that the low-temperature phase is characterized
by p-cycles on the “boundary” of the persistence images.
This we can understand in the following way. A (small
enough) loop around an isolated vortex has nontrivial
winding number, which ensures that there are spins with
angles close to both −π and π if a vortex is present. This
explains the strong blue regions in the corners of the lo-
gistic regression coefficients: for ν ≈ −π a number of 0-
cycles are born very early for each vortex and antivortex,
giving the lower-left corner of the H0 coefficients. One
of these 0-cycles lives forever, giving the upper-left cor-
ner of the H0 coefficients. In addition, there are 1-cycles
which are born close to ν ≈ π, again corresponding to the
extreme angles associated with the (anti)vortices. See
Fig. 9 for an example of this interpretation in practice.
When vortex-antivortex pairs happen to not be present
at low temperatures, then all of the spins are aligned
close to θ = 0, giving the short-lived features centered
around a birth of zero along the bottom edges of both
the H0 and H1 coefficients.

As before we may consider the distribution of p-cycle

FIG. 11: Average counts of 0- and 1-cycle deaths for
fixed number of vortex-antivortex pairs at low

temperatures (T ≤ 0.20).

deaths as a function of temperature. In Fig. 10 we see
that low-temperatures there are two “populations” of
both 0- and 1-cycles which merge into one as we pass
into the high-temperature phase. This again can be at-
tributed to the presence of vortex-antivortex pairs in the
following way. Using the raw spin configurations we may
count the number of (anti)vortices simply by looking for
nontrivial winding in 2 × 2 blocks of the lattice. This
can be compared with the number of 0-cycles with early
death (e.g. d ≤ − 3π

4 ) and the number of 1-cycles with

late death (e.g. d ≥ 3π
4 ). Averaging over samples with

temperatures below 0.20 where the number of vortex-
antivortex pairs is reasonably small on the 20×20 lattice
leads to Fig. 11. There is a clear correlation between
the number of extreme-death p-cycles and the number
of vortex-antivortex pairs as determined directly from
the spins. This topological signature of vortex-antivortex
pairs should exist rather generally.

Previous investigations of the XY model and its KT
phase transition using neural networks and PCA have
faced difficulties in identifying vortices at low tempera-
tures [54, 55]. It is worth emphasizing the relative ease
with which persistent homology identifies (anti)vortices
as an important feature at low temperatures.
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(a) T = 0.1 (b) T = 0.4 (c) T = 1.0

(d) Learned logistic regression coefficients. (e) Average classification of persistence images. An estimate
for Tc is where the interpolating line crosses 0.5 (Tc ≈ 0.39).

FIG. 12: Phase classification for the FFXY model on a 20× 20 square lattice. In (a-c) are shown example
persistence images for both the zeroth and first homology groups below, near and above the critical temperature.

The grey dashed lines visually separate the infinite persistence 0- and 1-cycles from those which have finite death. In
(d,e) are shown the results of classifying these persistence images into two phases, having trained a logistic

regression only on a subset of persistence images with temperatures in the highlighted regions in (e).

E. Fully-frustrated XY model

A frustrated version of the XY model is obtained by
changing some of the nearest-neighbor interactions to be
antiferromagnetic. One such choice which is fully frus-
trated is

HFFXY = −
∑
〈i,j〉

Jij cos (θi − θj) , (9)

where Jij = −1 on every other row of horizontal edges
and Jij = +1 everywhere else. There are two phase tran-
sitions that occur at temperatures which are very close
together: a phase transition at T ≈ 0.454 is associated
with the loss of Z2 symmetry, and a phase transition at
T ≈ 0.446 is associated with the loss of the SO(2) rota-
tional symmetry [56]. Because of their proximity we are
unable to identify both transitions without an extensive
set of simulations.

1. Logistic regression and order parameter

We generate 200 sample spin configurations on a
20 × 20 lattice with 400 spins for temperatures T ∈
{0.05, 0.10, . . . , 1.20}. As before with the XY model, the
zeroth homology is quite rich and we include it in the

persistence images. Training the logistic regression leads
to the classification in Fig. 12, where the critical tem-
perature is estimated as TFFXY ≈ 0.39. A more accu-
rate estimation can be achieved by using training data
closer to the phase transition. The learned coefficients
show a strong tendency for both 0- and 1-cycles to shift
to have persistence around 3π

4 in the high-temperature
phase. As in the square-ice model, our order parameter
probes the small-scale structure of the frustration pat-
tern. In particular, the low-temperature phase exhibits
“pseudo-domains” where many next-to-nearest neighbors
take similar spin values. The alternating structure in-
duced by the antiferromagnetic bands therefore leads to
more isolated local minima (i.e. 0-cycles in the sublevel
filtration) in the low-temperature phase. In the high-
temperature phase, most of the local minima are born
at θ ≈ −π, while in the low-temperature phase there
are local minima at higher θ protected by these pseudo-
domains. This explains the blue band at the bottom of
the H0 logistic regression coefficients. The lack of vor-
tices can be seen from the death distribution as a function
of temperature in Fig. 13.

In our discussion we have used a sublevel filtration with
cubical complex to quantify the homology of continuous-
spin configurations. Another approach would be to con-
struct point clouds by taking the locations of spins in
a (sub)levelset and using an α-filtration. By scanning
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FIG. 13: FFXY 0- and 1-cycle death distributions.

through levelsets one can capture the topological features
of f : Λ→ S1 in a different way. For the fully-frustrated
XY model this leads to a comparable classification and
estimate for the critical temperature.

IV. DISCUSSION

In this paper we have explored the use of persistent ho-
mology in quantitatively analyzing the phase structure
and critical behavior of lattice spin models. While the
models we consider can be understood via other means,
the use of persistent homology provides an interesting
perspective into their statistical properties. Nonlocal fea-
tures are naturally accounted for in this framework and
could prove to be useful in more complex systems as well.
As mentioned in the introduction, the ideas exemplified
in this work can be and have been applied to a wide va-
riety of data sets: for other condensed matter systems
one need only find a suitable representation of the data
and choice of accompanying filtration. What we hope
to have conveyed with the examples considered is that
even the most simple-minded choice of data representa-
tion (spin locations or spin directions) can be successful,
in part because the topological summary statistic which
is the persistence image is quite rich. We are hopeful
that TDA and persistent homology will continue to grow
as tools in many areas of physics.

Phase classification using persistence images alone is
accomplished successfully for the Ising, square-ice, XY
and fully-frustrated XY models, providing a mix of exam-
ples with discrete/continuous spins and some with frus-
tration. The resulting trained logistic regressions reveal
those regions of the persistence image/diagram which are
characteristic of low- and high-temperature phases. This

allows for an easily interpretable classification, where
(sometimes drastic) shifts in the distributions of p-cycle
births and deaths are associated with a phase transition.
In the case of the XY model, there is a clear correlation
between the number of early-death 0-cycles, late-death 1-
cycles and the number of bound vortex-antivortex pairs
at low temperatures. In our classifications we relied on
supervised learning, namely there being two phases and
labeled samples with “extreme” temperatures on which
to train. If the number of phases is unknown or labeled
samples are unavailable, then unsupervised techniques
will need to be used, but we expect the techniques uti-
lized here to still prove useful in such cases. For example,
clustering algorithms may be used in a straightforward
way on the vector-valued persistence images.

The persistence data also display features of critical
phenomena. For the Ising model one observes the emer-
gence of power-law behavior in the distribution of 1-
cycle deaths as the critical temperature is approached.
We are able to estimate two critical exponents associ-
ated with this behavior: the correlation area diverges as
adeath ∼ |T − Tc|−νdeath with νdeath ≈ 1 as expected for
the 2D Ising model, and we estimate the critical expo-
nent µ, introduced through DT (d) ∼ d−µ, to be µ ≈ 2, in
agreement with expectations from the known power-law
behavior of cluster sizes at criticality.

We have demonstrated the quantitative statistical ca-
pabilities of persistent homology for relatively simple 2D
lattice spin systems. It would interesting to apply these
ideas and techniques to more complicated lattice spin
models in higher dimensions or with no known order pa-
rameter. In more than two dimensions the higher ho-
mology groups may serve useful in quantifying nonlocal
structures. We leave such work for the future.
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