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We theoretically demonstrate microwave-induced dynamical switching of magnetic topology in
centrosymmetric itinerant magnets by taking the Kondo-lattice model on a triangular lattice, which
is known to exhibit two types of skyrmion lattices with different magnetic topological charges of
|Nsk|=1 and |Nsk|=2. Our numerical simulations reveal that intense excitation of a resonance mode
with circularly polarized microwave field can switch the magnetic topology, i.e., from the skyrmion
lattice with |Nsk|=1 to another skyrmion lattice with |Nsk|=2 or to a nontopological magnetic order
with |Nsk|=0 depending on the microwave frequency. This magnetic-topology switching shows vari-
ous distinct behaviors, that is, deterministic irreversible switching, probabilistic irreversible switch-
ing, and temporally random fluctuation depending on the microwave frequency and the strength
of external magnetic field, variety of which is attributable to different energy landscapes in the
dynamical regime. The obtained results are also discussed in the light of time-evolution equations
based on an effective model derived using perturbation expansions.

PACS numbers:

INTRODUCTION

FIG. 1: Schematics of a skyrmion lattice in the itinerant mag-
net irradiated with circularly polarized microwave field. The
thin solid arrows represent local magnetizations, whereas the
light blue spheres with thick solid arrows represent itinerant
electrons with spins.

Topological magnetisms exemplified by several types of
skyrmions [1–6], merons [7], hedgehogs [8–12], and hop-
fions [13] are currently attracting enormous research in-
terest from the viewpoints of both fundamental sciences
and potential applications [14–21]. These nontrivial mag-
netic textures with spatially modulated magnetization
are often caused by the Dzyaloshinskii-Moriya interac-
tions [22–24], which have a relativistic origin and are ac-
tive when the system has no spatial inversion symmetry.
Therefore, the above topological magnetic textures are
usually hosted in magnets having non-centrosymmetric
crystal structures or magnetic heterostructures having
interfaces. In such magnets, structural symmetries and
anisotropies determine the way of magnetization align-
ment in magnetic textures through governing the spa-
tial configuration of Dzyaloshinskii-Moriya vectors [25–

27]. Consequently, the helicity, chirality, and vorticity of
the magnetic textures are inherently fixed and thus are
not variable [15].

Exchange coupling between itinerant electrons and lo-
cal magnetizations is another source of topological mag-
netisms [28–43]. Recent theoretical studies have pre-
dicted possible emergence of topological magnetisms such
as skyrmion lattices [30–37], meron lattices [28, 37], and
hedgehog lattices [28, 42, 43] in the Kondo-lattice model
and its effective model which describe localized magne-
tizations on a lattice coupled to itinerant electron spins
via (anti)ferromagnetic exchange interactions. In such
magnets, spatial modulation of magnetization is caused
by effective long-range interactions among local mag-
netizations mediated by conduction electrons (e.g., the
RKKY interactions [44–46]). Therefore, in the case of the
Kondo-lattice magnets, even the centrosymmetric sys-
tems with spatial inversion symmetry can host topologi-
cal magnetisms, despite the Dzyaloshinskii-Moriya inter-
actions are absent [28, 30–39]. These magnetic textures
are superpositions of magnetic helices with multiple prop-
agation vectors (Q vectors), which are determined by the
effective electron-mediated interactions among magneti-
zations governed by multiple nesting vectors of the Fermi
surfaces. This fact enables us to have a variety of topolog-
ical magnetic textures and their controllability via mate-
rial variations or by tuning material parameters [47]. Re-
cent experiments have indeed observed three-dimensional
hedgehog lattices in SrFeO3 [12], triangular skyrmion
lattices in Gd2PdSi3 [48–51] and Gd3Ru4Al12 [52, 53],
and square skyrmion lattices in GdRu2Si2 [54, 55], all of
which are itinerant magnets with centrosymmetric crys-
tal structure.

In addition to their rich variety, topological magnetic
textures in centrosymmetric metallic magnets have an
interesting feature, that is, several degrees of freedom
such as helicity and vorticity remain to be unfrozen be-
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cause the Dzyaloshinskii-Moriya interaction is absent.
Thereby, their low-energy excitations and continuous
variations are possible, which provide us a unique op-
portunity to control and switch the magnetic topology
with an external stimulus such as static magnetic field,
electric currents [56], and microwave magnetic field. It
has been revealed that topological magnetisms such as
skyrmions and skyrmion tubes in chiral magnets have pe-
culiar collective modes or spin-wave modes at microwave
frequencies [57–62], and they have turned out to cause in-
teresting physical phenomena and potential device func-
tions [63–79]. We expect that the topological magnetisms
in centrosymmetric magnets can also host interesting dy-
namical phenomena and functionalities associated with
their microwave-active collective modes.

In this paper, we theoretically demonstrate that mag-
netic topology in a centrosymmetric itinerant magnet can
be switched dynamically by application of circularly po-
larized microwave field by taking the Kondo-lattice model
on a triangular lattice as an example. This model is
known to exhibit two distinct skyrmion-lattice phases
with different skyrmion numbers or magnetic topologi-
cal charges |Nsk|=1 and |Nsk|=2 [31]. We numerically
simulate microwave-driven magnetization dynamics in
this model using a combined technique of the micromag-
netic simulation and the kernel polynomial method. We
first find that a single spin-wave mode can be activated
by an in-plane microwave field in all the three phases.
We then demonstrate that by intensely activating this
spin-wave mode with circularly polarized microwave field,
the skyrmion lattice with |Nsk|=1 can be switched to
that with |Nsk|=2 or a nontopological magnetic state of
Nsk=0 depending on the microwave frequency. During
the switching processes, we observe emergent topological
magnetic patterns characterized by half-integer skyrmion
numbers of |Nsk|=1/2 and |Nsk|=3/2 (i.e., meron lat-
tices) as transient states. We examine such dynami-
cal transitions for various initial magnetic configurations
in equilibrium and find several different behaviors, that
is, deterministic irreversible switching, probabilistic irre-
versible switching, and temporally random fluctuations
under continuous microwave irradiation. This variety
of behaviors is attributable to difference of the energy
landscape in the dynamical regime. We also discuss the
obtained results on the basis of an effective model de-
rived using perturbation expansions [32]. Note that mag-
netic frustration is another important mechanism to real-
ize topological magnetism in centrosymmetric magnets.
The phenomena revealed in this work can also be ex-
pected in the frustrated systems although fine tuning of
the exchange interactions is required to produce topolog-
ical magnetic textures of frustration origin [80–88].

MODEL

Kondo-Lattice Model

We consider the Kondo-lattice model on a triangular
lattice. The Hamiltonian is given by

H = HKL +HZeeman, (1)

with

HKL =
∑

ijσ

ti,j ĉ
†
iσ ĉjσ + JK

∑

i,σ,σ′

ĉ†iσσσσ′ ĉiσ′ · Si, (2)

HZeeman = −
∑

i

[Hext +H(t)] · Si. (3)

Here ĉ†iσ (ĉiσ) denotes the creation (annihilation) opera-
tor of an itinerant electron with spin σ(=↑, ↓) on the ith
site, and Si denotes localized magnetization on the ith
site. The first term of HKL represents kinetic energies of
itinerant electrons where the nearest-neighbor hopping t1
and the third-nearest-neighbor hopping t3 are set to be
t1 = −1 and t3 = 0.85, respectively. The second term of
HKL represents the exchange coupling between itinerant
electron spins and local magnetizations where the cou-
pling constant is set to be JK = −0.5. The term HZeeman

represents the Zeeman couplings associated with both a
static external magnetic field Hext = (0, 0, Hz) and a
time-dependent magnetic field H(t) acting on the local
magnetizations. For the time-dependent field H(t), we
consider a short-period pulse or circularly polarized mi-
crowave field in the present study. Note that we neglect
the coupling between the magnetic fields and the itiner-
ant electrons. In fact, we have examined the effects of
the coupling and have found that consideration of the
coupling does not alter the results even quantitatively.
We set the chemical potential µ = −3.5, which corre-
sponds to the electron filling of 0.2 approximately. The
above parameter values are the same as those used in the
previous work [31].
This model is known to exhibit various magnetic or-

ders including topological ones as superpositions of three
magnetic helices. The propagation vectors of the three
helices are Q1 = (π/3, 0), Q2 = R̂(2π/3)Q1, and Q3 =
R̂(4π/3)Q1 where R̂(φ) is an operator to rotate the vec-
tor by the angle φ around the z-axis. A ground-state
phase diagram was studied in Ref. [31] as a function of
the strength of external magnetic field Hz when the mi-
crowave field H(t) is absent [Fig. 2(a)]. We find that
three magnetic phases, i.e., a skyrmion-lattice phase with
|Nsk| = 2, another skyrmion-lattice phase with |Nsk| = 1
and a nontopological phase with Nsk = 0 successively
emerge as Hz increases. Note that the skyrmion-lattice
with |Nsk| = 2 emerges even at Hz = 0 in striking con-
trast to the case of the Dzyaloshinskii-Moriya magnets
in which topological magnetisms usually appear in the
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FIG. 2: (a) Ground-state phase diagram of the Kondo-lattice model in Eq. (1) on the triangular lattice as a function of static
magnetic field Hz perpendicular to the lattice plane when the microwave magnetic field is absent (i.e., H(t) = 0) [31]. The
model parameters are set to be t1 = −1, t3 = 0.85, JK = −0.5, and µ = −3.5. Successive two phase transitions among three
phases, i.e., the skyrmion-lattice (SkL) phase with |Nsk| = 2, another SkL phase with |Nsk| = 1, and the nontopological phase
with Nsk = 0 take place at Hz = 0.00325 and Hz = 0.0065. Several degrees of freedom of magnetic textures such as helicity
and vorticity are not frozen in the centrosymmetric system without Dzyaloshinskii-Moriya interactions, which results in infinite
degeneracy of magnetic textures (see text). (b), (c) Spatial profiles of local magnetizations (upper panels) and local scalar spin
chiralities (lower panels) of two degenerate SkLs with |Nsk| = 2, i.e., (b) SkL with Nsk = −2 and (c) SkL with Nsk = +2.
(d)-(f) Those of SkLs with |Nsk| = 1, i.e., (d) Néel-type SkL with Nsk = −1, (e) Bloch-type SkL with Nsk = −1, and (f)
antivortex-type SkL with Nsk = +1.

presence of an external magnetic field. More importantly,
several degrees of freedom remain unfrozen in the present
system with spatial inversion symmetry. For example,
the helicity and the signs of vorticity are not frozen for
the skyrmion-lattice phase with |Nsk| = 1 in the presence
of the spatial inversion symmetry. Thereby, the magnetic
structures in the present system have infinite degeneracy
[see Figs. 2(b)-(f)].

It should be mentioned that the present triangular-
lattice system is favorable for the emergence of the
skyrmion lattices with a higher topological number of
|Nsk| = 2. In the centrosymmetric Kondo-lattice sys-
tem, the skyrmion lattices emerge as a superposition of
three spiral or sinusoidal states of local magnetizations,
which are stabilized by the long-ranged and frustrated
RKKY interactions. The RKKY interactions originate
from the coupling between conduction electrons and local
magnetizations and thus are governed by the electronic
structure of conduction electrons, e.g., the Fermi-surface
geometry and the density of states. Consequently, the
modulation vectors Qν determined by the RKKY inter-
actions also depend on the Fermi-surface geometry. More

specifically, these modulation vectors correspond to nest-
ing vectors of the Fermi surface(s) and, thereby, reflect
the symmetry of the lattice structure. In addition, it has
turned out that the skyrmion lattices with |Nsk| = 2 re-
quires, at least, three magnetization spiral or sinusoidal
states, while the skyrmion lattices with |Nsk| = 1 can
be produced only with two magnetization spiral or si-
nusoidal states. Hence, the triangular lattices and the
Kagome lattices with triangular or hexagonal symmetries
have more opportunity to host the skyrmion lattices with
|Nsk| = 2 as compared to the simple square lattices.

Global Symmetry in Skyrmion Lattices

Let us discuss the degeneracy of topological magnetic
textures in the present centrosymmetric system in more
detail. We first consider the cases without external mag-
netic field. The local magnetizations Si for the skyrmion-
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lattice phases with |Nsk| = 1 and |Nsk| = 2 are given by,

S
NSk=±1
i ∝

3
∑

ν=1





sinQν cosφν

λv sinQν sinφν

cosQν



 , (4)

S
NSk=−2
i ∝





cosQ1

cosQ2

cosQ3



 , (5)

SNSk=+2
i ∝





cosQ1

cosQ3

cosQ2



 , (6)

where

Qν = Qν · ri + θν , φν = 2π(ν − 1)/3. (7)

Here the angles θν (ν=1,2,3) represent phase shifts, and

Θ =
∑3

ν=1 θν is an internal degree of freedom called pha-
son [38, 39]. The variable λv(= ±1) is called vorticity,
and λv = +1(−1) corresponds to Nsk = −1(+1). Be-
cause the variation of Θ is accompanied by a change in
energy, we set θν=0 hereafter. These formulae represent
that the skyrmion-lattice with |Nsk| = 1 is a superposi-
tion of the three helices, while that with |Nsk| = 2 is a
superposition of the three cosine waves.
These two skyrmion lattices break different symme-

tries. Specifically, the skyrmion lattices with |Nsk| = 1
break the U(1) symmetry associated with the in-plane
rotational invariance and thus have a degree of freedom
called helicity. The variation of magnetic texture upon
the helicity shift by φ1 is given, e.g., by,

SNSk=±1
i ∝ R̂z(φ1)

3
∑

ν=1





sinQν cosφν

λv sinQν sinφν

cosQν



 (8)

where R̂γ(ϕ) is an operator to rotate the vector by the an-
gle ϕ around the γ-axis. On the other hand, the skyrmion
lattices with |Nsk| = 2 break the SO(3) symmetry. The
variation of magnetic texture upon the SO(3)-invariant
rotational operations by angles θ2 and φ2 is given, e.g.,
by,

S
NSk=−2
i ∝ R̂x(θ2)R̂z(φ2)





cosQ1

cosQ2

cosQ3



 . (9)

Note that the energy of the skyrmion lattice with |Nsk| =
1 does not change upon the variation of φ1, whereas that
with |Nsk| = 2 does not change upon the variations of θ2
and φ2.
Then we consider the effects of external magnetic field.

When a magnetic field is applied, some of the symmetries
mentioned in the above discussion would be violated.
The U(1) symmetry around the z-axis in the skyrmion
lattice with |Nsk| = 1 becomes absent when the external
magnetic field has in-plane components. Therefore, the

magnetic structures of the |Nsk| = 1 skyrmion lattice do
not have any global symmetries when irradiated with cir-
cularly polarized microwave field. In addition, the SO(3)
symmetry in the skyrmion lattice with |Nsk| = 2 is par-
tially violated by the external magnetic field, whereas the
U(1) symmetry around the magnetic field remains. More
specifically, the |Nsk| = 2 skyrmion lattice has the U(1)
symmetry around the total magnetic field at every mo-
ment, and thus its symmetry axis temporally varies. We
also note that a magnetic field also modulates a degree
of freedom associated with phasons Θ.

METHOD

We simulate time evolution of the local magnetiza-
tions in the Kondo-lattice system by numerically solving
the Landau-Lifshitz-Gilbert (LLG) equation. The LLG
equation is given by,

dSi

dt
= −Si ×Heff

i +
αG

S
Si ×

dSi

dt
, (10)

where αG(= 0.05) is the dimensionless Gilbert-damping
constant, and S(= 1) is the saturation magnetization.
The effective magnetic field Heff

i acting on the local mag-
netization at the ith site is calculated by,

Heff
i = − ∂Ω

∂Si

+Hext +H(t). (11)

Here Ω is the grand canonical potential of HKL, which is
given by,

Ω =

∫

ρ(ε, {Si})F (ε− µ) dε, (12)

with

ρ(ε, {Si}) =
1

2N

2N
∑

k=1

δ(ε− εk({Si})). (13)

Here F (ε − µ) is the free energy of the system, and
ρ(ε, {Si}) is the density of state of conduction electrons
for a given set of the local magnetizations {Si}. To cal-
culate Ω and its magnetization-derivatives ∂Ω/∂Si, we
adopt the kernel polynomial method, which is based on
the Chebyshev polynomial expansion of Ω and the auto-
matic differentiation [89–95].

All the simulations are performed at zero temperature
with no thermal fluctuations in order to demonstrate that
the microwave application can solely induce the magnetic
topological switching and to capture the physics of this
field-induced phenomenon. For the simulations, a lattice
with N = 362 sites, on which periodic boundary condi-
tions are imposed, is adopted. We use 324 correlated ran-
dom vectors [95, 96] for simulating relaxation dynamics
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to obtain initial magnetic configurations through mini-
mizing the energy, whereas we adopt complete orthonor-
mal basis states for the simulations of microwave-induced
dynamics. We use Chebyshev polynomials up to the
2000th-order for the expansion of Ω and adopt the fourth-
order Runge-Kutta method with a time slice of ∆t = 4
to solve the LLG equation in Eq. (10). The spatiotempo-
ral dynamics of local magnetizations Si and local scalar
spin chiralities Ci are computed. The spin chirality Ci is
calculated by,

Ci = Si · Si+â × S
i+â+b̂

+ Si · Si+â+b̂
× S

i+b̂
, (14)

where â and b̂ are the primitive lattice vectors of trian-
gular lattice. We also compute time profiles of the net
magnetization S and the skyrmion number Nsk, which
are respectively calculated by [97],

S =
1

N

N
∑

i=1

Si, (15)

Nsk =
1

4πNm

N
∑

i=1
[

2 tan−1

(

Si · Si+â × S
i+â+b̂

1 + Si · Si+â + Si+â · Si+â+b̂
+ S

i+â+b̂
· Si

)

+ 2 tan−1

(

Si · Si+â+b̂
× S

i+b̂

1 + Si · Si+â+b̂
+ S

i+â+b̂
· S

i+b̂
+ S

i+b̂
· Si

)]

.

(16)

Here Nm(= 27) is the number of magnetic unit cells
where one unit cell contains 48 sites. Note that the sizes
of magnetic unit cells are common for all the magnetic
patterns which appear in the present simulations because
they are all constituted with three magnetic helices with
the same wave vectors Qν (ν = 1, 2, 3) determined by the
Fermi-surface nesting.

RESULTS

Spin-Wave Modes

First, we study microwave-active resonance modes in
each magnetic phase by numerically calculating the dy-
namical magnetic susceptibilities,

χγ(ω) =
∆Sγ(ω)

Hγ(ω)
(γ = x, y, z), (17)

where Hγ(ω) and ∆Mγ(ω) are Fourier components of
the time-dependent magnetic field H(t) and those of the
time-profile of total magnetization ∆S(t) = S(t)−S(0).
Here we particularly focus on the resonance modes ac-
tive to the in-plane polarized microwave field and thus
set γ = x. To calculate these quantities, we adopt a
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FIG. 3: (a)-(c) Microwave-absorption spectra for in-plane mi-
crowave magnetic fields in respective magnetic phases, i.e., (a)
the skyrmion-lattice phase with |Nsk| = 2, (b) the skyrmion-
lattice phase with |Nsk| = 1, and (c) the nontopological phase
with Nsk = 0. (d) Hz-dependence of resonance frequency
ωres for spin-wave modes active to an in-plane microwave field
(corresponding to peak positions of the microwave-absorption
spectra).

spatially uniform short-time pulse of magnetic field for
H(t), which is given by,

H(t) =

{

(Hpulse, 0, 0) 0 ≤ t ≤ 1

0 others
(18)

where t = (t1/~)τ is the dimensionless time with τ and t1
respectively being the real time and the nearest-neighbor
hopping interhral. We compute time evolutions of local
magnetizations Si(t) and their sum S(t) after applying
this pulse field to the system. The usage of the short-time
pulse is advantageous because the Fourier components
Hγ(ω) become constant being independent of ω up to
the first order of ω∆t for a sufficiently short duration ∆t
(i.e., ω∆t ≪ 1). The Fourier components are calculated
as

Hγ(ω) =

∫ ∆t

0

Hpulsee
iωtdt =

Hpulse

iω

(

eiω∆t − 1
)

∼ Hpulse∆t. (19)

As a result, we obtain the relationship χγ(ω) ∝ ∆Mγ(ω).

In Figs. 3(a)-(c), we present the calculated microwave
absorption spectra, i.e., imaginary part of the dynamical
magnetic susceptibility Imχx, for (a) the skyrmion-lattice
phase with |Nsk|=2, (b) the skyrmion-lattice phase with
|Nsk|=1, and (c) the nontopological phase with Nsk=0.
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Each of the spectra has a single peak, indicating the ex-
istence of a single resonance mode in each phase. The
mode in the skyrmion-lattice phase with |Nsk|=1 is a
rotational mode in which all the skyrmions constitut-
ing the skyrmion lattice rotate uniformly in the coun-
terclockwise fashion. It is known that skyrmion lattices
in the Dzyaloshinskii-Moriya magnets without inversion
symmetry exhibit two rotation modes with opposite ro-
tation senses (i.e., counterclockwise and clockwise) at dif-
ferent frequencies [57], whereas skyrmion lattices stabi-
lized by frustrated exchange interactions in centrosym-
metric Heisenberg magnets exhibit a counterclockwise
mode only [82]. The situation in our centrosymmetric
metallic magnets with the RKKY interactions resembles
the latter case. Figure 3(d) presents the resonance fre-
quency ωres as a function of external magnetic field Hz.
We find that a relation ω = Hz (i.e., ω = gµBHz/~ in di-
mensionfull units) holds in the phases with |Nsk|=1 and
Nsk=0.

Microwave-Induced Dynamics

Next we simulate the magnetization dynamics un-
der irradiation with circularly polarized microwave field,
which is given by,

H(t) = Hωβ(t)(cosωt, sinωt, 0), (20)

with

β(t) = tanh

(

t

τd

)

. (21)

Here the time-dependent prefactor β(t) with τd = 2π/ω is
introduced to avoid unexpected artifacts due to impact-
force effects through gradually increasing the microwave
amplitude.
Figures 4(a) and (b) present simulated time profiles of

the net magnetization S = (Sx, Sy, Sz) and the skrmion
number Nsk in a system irradiated with circularly polar-
ized microwave field with (a) ω=0.005 and (b) ω=0.01
when Hz = 0.005. We start the simulation with a
skyrmion-lattice configuration with Nsk = −1 as an ini-
tial state for both cases, which is the ground state at
Hz = 0.005. We observe a microwave-induced switching
of the magnetic topology from Nsk = −1 to Nsk = 0 in
Fig. 4(a), whereas that from Nsk = −1 to Nsk = −2 in
Fig. 4(b). The phase with Nsk = −1 and the phase with
Nsk = 0 in respective cases appear as nonequilibrium
steady phases where the net magnetizations show steady
oscillations.
Although the skyrmion number Nsk is constant, the

spatial magnetic configurations in these nonequilibrium
steady phases under irradiation with microwave field vary
periodically in time. Figures 4(c) and (d) present a series
of snapshots of the temporally varying local magnetiza-
tions Si for (c) the nontopological phase Nsk = 0 and (d)

the skyrmion-lattice phase with Nsk = −2 under irradi-
ation with the microwave field at selected moments. In
fact, as long as the skyrmion number is constant, these
magnetic configurations are connected to each other by
certain rotational operations. For example, the four mag-
netic configurations with Nsk = −2 shown in Fig. 4(d)
are all connected to each other via the SO(3)-invariant
rotational operations by angles θ2 and φ2 represented by
Eq. (9). Note that the local scalar spin chiralities Ci are
time-independent in contrast to the local magnetizations
Si. In Figs. 4(e) and (f), we present the spatial profiles
of Ci in the microwave-induced Nsk = 0 and Nsk = −2
phases, respectively, which do not change temporally.

Then we study nonequilibrium magnetic phases af-
ter sufficient a duration of the microwave irradiation
by varying the microwave frequency ω and the applied
static magnetic field Hz. Figure 5 presents the obtained
nonequilibrium phase diagram in plane of ω and Hz for
a system under continuous irradiation with microwave
field given by Eq. (20). We trace time-evolutions of
the magnetizations for a sufficiently long duration up to
t=48000 at most. Here we take the microwave ampli-
tude Hω = 0.01 for the simulations. Note that when the
microwave field is absent (i.e., Hω=0), the system ex-
hibits ground-state phases shown in Fig. 1(a) where the
three magnetic phases with different skyrmion numbers
|Nsk|=2, |Nsk|=1, and Nsk=0 successively emerge as Hz

increases. We select a ground-state magnetic configura-
tion as an initial state for the time-evolution simulations
at a given field strength of Hz. We present this ground-
state phase diagram also in Fig. 5 for a reference. We also
note that in the static limit of ω=0, all these phases turn
into the nontopological phase with Nsk=0 in the presence
of static in-plane magnetic field of Hω=0.01. Thus, the
phases on the Hz-axis are all assigned to Nsk=0.

To discuss the phase diagram in Fig. 5, we should first
note that a circularly polarized microwave field generates
an effective static magnetic field ±ωez perpendicular to
the polarization plane [77, 98]. The amplitude is equal to
ω (i.e., ~ω/gµB in real units), while the sign is determined
by the sense of the circular polarization, i.e., positive
(negative) for the clockwise (counterclockwise) polariza-
tion. In the present case, the sign is negative because
the microwave field circulating in counterclockwise sense
is applied. Thereby, a static component of the total mag-
netic field acting on the system is Htot

z = Hz − ω. This
means that the application of this microwave field effec-
tively work to shift the system towards a low-field regime
in the equilibrium phase diagram. Thus, the nonequilib-
rium phase withNsk=0 in the low-frequency regime tends
to change into the skyrmion-lattice phase with |Nsk|=1
and further into the skyrmion-lattice phase with |Nsk|=2
as ω increases. Indeed, the skyrmion-lattice phase with
|Nsk|=2 appears in the right area of the phase diagram
where ω is large, whereas the skyrmion-lattice phase with
|Nsk|=1 can emerge when ω is intermediate in the areas
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FIG. 4: Simulated time profiles of the net magnetization S = (Sx, Sy, Sz) and the skrmion number Nsk in the Kondo-lattice
model under irradiation with circularly polarized microwave field with (a) ω=0.005 and (b) ω=0.01 when Hz = 0.005. For
both cases, we start with a skyrmion-lattice configuration with Nsk = −1 as an initial state, which is the ground state at
Hz = 0.005. (c),(d) Snapshots of the temporally varying spatial profiles of local magnetizations Si in the microwave-induced
nonequilibrium steady phases, i.e., (c) the nontopological phase Nsk = 0 and (d) the skyrmion-lattice phase with Nsk = −2 at
selected moments indicated by inverted triangles in (a) and (b), respectively. (e), (f) Spatial profiles of the local scalar spin
chiralities Ci in each nonequilibrium steady phase, which do not change temporally.

referred to as “the probabilistic irreversible switching”
regime and “the temporally random fluctuation” regime
in the phase diagram.

Importantly, the ways of the emergence of the |Nsk|=1
phase are distinct from those of the |Nsk|=2 phase and
the Nsk=0 phase. The latter two phases emerge in a de-
terministic and irreversible way under irradiation with
microwave field. In contrast, the |Nsk|=1 phase emerges
in a probabilistic but irreversible way when Hz is low,
whereas either the |Nsk|=1 phase or the |Nsk|=2 phase
randomly emerges in a temporally fluctuating manner
when Hz is high. These peculiar behaviors might be at-
tributable to the energy landscapes characterized by the
energy minima and the energy barriers. We expect an

energy landscape in Fig. 5(b) for the areas where the
system enters the |Nsk|=2 phase or the Nsk=0 phase in
a deterministic and irreversible manner. On the other
hand, we expect energy landscapes in Figs. 5(c) and
(d) for the probabilistic-irreversible-switching regime and
the temporally-random-fluctuation regime, respectively,
in which the energy minima are nearly degenerate. For
the probabilistic irreversible regime, the energy barrier
is rather high [see Fig. 5(c)], with which the system be-
comes settled down once it falls into one of the minima,
resulting in the probabilistic irreversible switching. In
contrast, we expect a small energy barrier in the tem-
porally fluctuating regime where the system fluctuates
between the two minima under irradiation with the mi-
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ergy landscapes for different switching behaviors, i.e., (b) the
deterministic irreversible switching, (c) the probabilistic ir-
reversible switching, and (d) the temporally random fluctua-
tion.

crowave field.
Interestingly, we find dynamical formations of topolog-

ical magnetic patterns with half-integer skyrmion num-
bers during the switching processes. We present snap-
shots of their spatial configurations in Figs. 6(a) and (b).
Specifically, Fig. 6(a) shows the dynamical magnetic pat-
tern with Nsk = −1/2 emerging during the process of
magnetic-topology switching from Nsk = −1 to Nsk = 0
in Fig. 4(a), whereas Fig. 6(b) shows that with Nsk =
−3/2 emerging during the switching from Nsk = −1 to
Nsk = 0 in Fig. 4(b). Topological magnetic textures hav-
ing a half-integer topological charge are referred to as
merons or antimerons, and their crystallized states have
been an issue of intensive research [7, 37, 88, 102, 103].
Clarifications of the observed dynamical topological mag-
netic patterns in the transient processes are left for future
studies.

DISCUSSION

In this section, we discuss our results in the light of an
effective model introduced in literature [30, 32, 100, 101],

Ci
-1.5                 0                 1.5

Siz
-1                  0                  1

(a)

(b)

FIG. 6: (a) Snapshots of the local magnetizations Si (left
panel) and the scalar spin chiralities Ci (right panel) for
the dynamical magnetic pattern with a half-integer skyrmion
number of Nsk = −1/2 emerging in the transient process in
Fig. 4(a). (b) Those for the dynamical magnetic pattern with
Nsk = −3/2 emerging in the transient process in Fig. 4(b).

which is called the effective bilinear-biquadratic (BBQ)
model. This model is derived from the original Kondo-
lattice model in Eq. (2) using the perturbation expan-
sions when the hopping term dominates the Kondo-
coupling term. We argue that effective three-body in-
teractions originating from the third-order perturbation
processes might be of essential importance for the ob-
served microwave-induced switching of magnetic topol-
ogy in the centrosymmetric itinerant magnets.
The Hamiltonian of the effective BBQ model is given

by,

H = HBBQ +HZeeman, (22)

with

HBBQ =

3
∑

ν=1

[

−J |SQν
|2 + K

N
|SQν

|4
]

. (23)

The first term of Eq. (23) represents the effective inter-
actions originating from the second-order perturbation
processes, which is often referred to as the RKKY in-
teractions. On the other hand, the second term repre-
sents parts of the contributions from the fourth-order
perturbation processes [100, 101]. Note that contribu-
tions from the odd-order perturbation processes usually
vanish when magnetic fields are absent because of the
time-reversal symmetry, whereas they should appear in
the presence of magnetic fields. For the Zeeman-coupling
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FIG. 7: Simulated time profiles of the net magnetization S = (Sx, Sy , Sz) and the skrmion number Nsk in the effective BBQ
model under irradiation with circularly polarized microwave field with (a) ω=0.2 and (b) ω=0.4 when Hz = 0.2. For both
cases, we start with a skyrmion lattice with Nsk = −1 as an initial state, which is the ground state at Hz = 0.2. The skyrmion
number remains constant to be Nsk = −1 even after a sufficient duration, indicating that the switching of magnetic topology
does not occur in contrast to the case of the Kondo-lattice model. (c),(d) Snapshots of the local magnetizations Si (left panels)
and the scalar spin chiralities Ci (right panels) in the microwave-induced nonequilibrium steady phases at selected moments.
The magnetic configuration in (c) corresponds to the bimeron crystal with Nsk = −1, whereas that in (d) corresponds to the
antiskyrmion crystal with Nsk = −1

term HZeeman, we consider both the static perpendicular
magnetic field Hex = (0, 0, Hz) and the circularly po-
larized microwave field with amplitude of Hω. When
the microwave field is absent (i.e., Hω = 0), this effec-
tive BBQ model is known to host two different skyrmion-
lattice phases with |Nsk| = 1 and |Nsk| = 2 as well as the
nontopological phase with Nsk = 0 in the ground state
depending on the strength of external magnetic field Hz.
The coupling constants J and K in Eq. (23) de-

pend on the electronic structures of conduction elec-
trons such as Fermi surfaces and density of states, which
are governed by the lattice structure, the transfer inte-
grals, and the electron filling. The values of J and K
can be evaluated from the original Kondo-lattice model
by the perturbation-expansion calculations in principle.
Through the second-order perturbation expansions, we
obtain the following formula for the coupling constant J ,

J = J2
K

∑

q∈BZ

χ0(q)e
iq·r1 . (24)

Here χ0(q) is the bare susceptibility of conduction elec-
trons, and r1 denotes the Bravis vectors of the triangu-
lar lattice. For the Kondo-lattice model in Eq. (2) and
the parameters used in the present work (i.e., t1 = −1,
t3 = 0.85, JK = −0.5, and µ = −3.5), we evaluate
the value as J ∼ 0.0035t1, which is much smaller than
unity and thus supports the validity of the perturbational
treatment. We can also evaluate the coupling constant K
microscopically from the Kondo-lattice model. However,
to get a general insight into the effective BBQ model,
we treat the model rather phenomenologically by regard-
ing J , K, Hz and Hω as parameters and by setting the
constant J as energy units (i.e., J = 1) in the following
discussion.

Now we examine the microwave-induced magnetiza-
tion dynamics in this effective BBQ model by deriving
a time-evolution equation for the Fourier components of
magnetization Sq. The equation is given by,
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dSq

dt
=

i

~
[HBBQ +HZeeman,Sq]−

= −
3
∑

ν=1

(

−J +
K

N
|SQν

|2
)

(SQν
× S−Qν+q − SQν+q × S−Qν

) + Sq × [Hext +H ′(t)] . (25)

By numerically solving the derived equation, we examine
two cases with ω = 0.005 and ω = 0.01, for which we have
respectively observed the switching of magnetic topology
in the original Kondo-lattice model, i.e., the switching
from Nsk = −1 to Nsk = 0 [Fig. 4(a)] and the switching
from Nsk = −1 to Nsk = −2 [Fig. 4(b)]. We set the
parameter values as J = 1, K = 0.5, Hz = 0.2 and Hω =
0.4. Surprisingly, the switching of magnetic topology is
not observed for both cases [see Figs. 7(a) and (b)].
The failure of the effective BBQ model in reproduc-

tion of the topology switching may be ascribed to in-
gredients which are incorporated in the original Kondo-
lattice model but missing in the effective BBQ model.
One missing ingredient is effective interactions originat-
ing from the third-order perturbation processes. The ef-
fective BBQ model contains only terms bilinear and bi-
quadratic with respect to SQν

and S−Qν
, which come

from the second-order and fourth-order perturbation pro-
cesses, respectively. We infer that the other-order terms
might contribute to the topology switching. Among those
terms, the lowest-order terms, i.e., the third-order terms
are most likely, which are three-body interactions with
respect to SQν

and S−Qν
and thus have no time-reversal

symmetry. Therefore, the third-order terms are forbid-
den and should vanish in the absence of magnetic field.
However, they are allowed to appear once a magnetic
field is applied, although they are not incorporated in
the effective BBQ model even under a magnetic field.
Contributions of the third-order terms to the magnetiza-
tion dynamics are described by the following Heisenberg
equation of motion for the Fourier component Sq,

dSq

dt
=

i

~

[

F (3),Sq

]

.
(26)

There are five kinds of third-order terms F (3) as de-
rived in Ref. [32], and they turn out to contribute to
the time evolution of Sq as shown in the appendix. An-
other missing ingredient is contributions from momenta
apart from Qν . The effective BBQ model contains only
the Fourier components of magnetization SQν

with Qν

being the modulation wavevectors. However, the bilinear
and biquadratic interactions originally have components
of other wavevectors. These neglected components of the
interactions may play a key role in the topology switch-
ing. The issue requires further investigations and is left
for future studies.
In the meanwhile, the counterclockwise circularly po-

larized microwave field considered in the present study
generates an effective static magnetic field perpendicu-
lar to the polarization plane −ωez [77, 98]. Therefore,
a perpendicular component of the total magnetic field is
Htot

z = Hz − ω. In the case of Fig. 7(a), the effective
static component Htot

z vanishes (i.e., Htot
z = 0) because

we set Hz = ω = 0.2. Under this circumstance, the
bimeron crystal with |Nsk| = 1 [102, 103] appears as a
nonequilibrium steady state after a sufficient duration of
the microwave irradiation [Fig. 7(c)]. Note that the effec-
tive BBQ model in Eq. (23) exhibits the skyrmion-lattice
phase with |Nsk| = 1 in the equilibrium case when both
the static and microwave magnetic fields are absent (i.e.,
Hz=Hω=0). On the other hand, the effective static com-
ponent Htot

z is negative (i.e., Htot
z = −0.2) because we

set Hz = 0.2 and ω = 0.4. We observe the antiskyrmion
lattice with |Nsk| = 1 [Fig. 7(d)] after a sufficient du-
ration of the microwave irradiation, in which the core
magnetizations point upwards.

CONCLUSION

In summary, we have theoretically proposed possible
microwave-induced switching of magnetic topology in
centrosymmetric itinerant magnets by numerically ana-
lyzing the magnetization dynamics in the Kondo-lattice
model on a triangular lattice using a combined method
of the micromagnetic simulation and the kernel polyno-
mial expansion technique. We have demonstrated that
the intense excitation of spin-wave mode with circularly
polarized microwave field can switch the skyrmion lat-
tice with |Nsk|=1 into that with |Nsk|=2 or the non-
topological magnetic state with Nsk=0 depending on the
microwave frequency. During these switching processes,
transient topological magnetic patterns with half-integer
skyrmion numbers of |Nsk|=1/2 and |Nsk|=3/2 were ob-
served. These fractionalizations of magnetic topological
charges in the dynamical regime are an issue of inter-
est, which should be clarified in future studies. We have
found several different switching behaviors under con-
tinuous microwave irradiation, that is, deterministic ir-
reversible switching, probabilistic irreversible switching,
and temporally random fluctuation depending on the mi-
crowave frequency and the strength of external magnetic
field, which is attributable to difference of the energy
landscape in the dynamical regime. We have also ex-
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amined the effective BBQ model derived from the per-
turbation expansions of the Kondo-lattice model and
have found that this model fails to reproduce the dy-
namical switching of magnetic topology. The failure
of the effective model containing only the even-order
terms conversely indicates that contributions from the
odd-order perturbation processes, which break the time-
reversal symmetry, are important to understand the ob-
served magnetic topology switching. Here we emphasize
that various unfrozen degrees of freedom inherent in cen-
trosymmetric magnets are sources of rich magnetic tex-
tures and their controllability with external parameters.
Our work will open a new research field to manipulate
magnetic topologies in centrosymmetric magnets.

APPENDIX

When the electron hoppings dominate the Kondo ex-
change coupling in the Kondo-lattice model, we can de-

rive effective interactions among the local magnetizations
from this model by using the perturbation expansion
technique. In the main text, we have argued that the ef-
fective interactions originating from the third-order per-
turbation processes can contribute to the time-evolutions
of the Fourier components Sq. In Ref. [32], the effective
interactions from the third-order perturbation processes
have been derived, which have turned out to be three-
body interactions among the Fourier components SQν

and S−Qν
with three different Qν vectors. The third-

order contributions are given by,

F (3) = F
(3)
1 + F

(3)
2 + F

(3)
3 + F

(3)
4 + F

(3)
5 , (27)

with

F
(3)
1 = −2

J3
K√
N

∑

ν

(C1 − C2)
[

Sz
Qν

(

Sx
0
Sx
−Qν

+ Sy
0
Sy
−Qν

)

+ h.c.
]

, (28)

F
(3)
2 = −2

J3
K√
N

∑

ν

(C3 − C4)
[

Sz
0

(

Sx
Qν

Sx
−Qν

+ Sy
Qν

Sy
−Qν

)

+ h.c.
]

, (29)

F
(3)
3 = −2

J3
K√
N

∑

ν

(C5 − C6)S
z
0
Sz
Qν

Sz
−Qν

, (30)

F
(3)
4 = −2

J3
K√
N

(D1 −D2)
[

Sz
Q1

(

Sx
Q2

Sx
Q3

+ Sy
Q2

Sy
Q3

)

+ h.c.
]

+ (Q1 → Q2, Q2 → Q3, Q3 → Q1)

+ (Q1 → Q3, Q2 → Q1, Q3 → Q2), (31)

F
(3)
5 = −2

J3
K√
N

(D3 −D4)
[

Sz
Q1

Sz
Q2

Sz
−Q3

+ h.c.
]

. (32)

Here the coefficients Cν and Dν (ν = 1, 2, 3, 4) are calculated by the convolution of Green’s functions. Detailed
formulae of these coefficients are given in Ref. [32].

Equations of the time evolution of Sq due to the third-order contributions are given by,

dSq

dt
=

i

~

[

F
(3)
1 ,Sq

]

−

= 2
J3
K

N

∑

ν

(C1 − C2)
[

(Sq+Qν
× ez)

(

Sx
0
Sx
−Qν

+ Sy
0
Sy
−Qν

)

+









−Sz
Qν

(

Sy
0
Sz
q−Qν

+ Sz
qS

y
−Qν

)

Sz
Qν

(

Sx
0
Sz
q−Qν

+ Sz
qS

x
−Qν

)

−Sz
Qν

(

Sx
0
Sy
q−Qν

+ Sy
qS

x
−Qν

)

+ Sz
Qν

(

Sy
0
Sx
q−Qν

+ Sx
qS

y
−Qν

)

















+ (Qν → −Qν), (33)
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dSq

dt
=

i

~

[

F
(3)
2 ,Sq

]

−

= 2
J3
K

N

∑

ν

(C3 − C4)
[

(Sq × ez)
(

Sx
Qν

Sx
−Qν

+ Sy
Qν

Sy
−Qν

)

+









−Sz
0

(

Sy
Qν

Sz
q−Qν

+ Sz
q+Qν

Sy
−Qν

)

Sz
0

(

Sx
Qν

Sz
q−Qν

+ Sz
q+Qν

Sx
−Qν

)

−Sz
0

(

Sx
Qν

Sy
q−Qν

+ Sy
q+Qν

Sx
−Qν

)

+ Sz
0

(

Sy
Qν

Sx
q−Qν

+ Sx
q+Qν

Sy
−Qν

)

















+ (Qν → −Qν), (34)

dSq

dt
=

i

~

[

F
(3)
3 ,Sq

]

−

= 2
J3
K

N

∑

ν

(C5 − C6)





Sx
qS

z
Qν

Sz
−Qν

+ Sz
0
Sx
q+Qν

Sz
−Qν

+ Sz
0
Sz
Qν

Sx
q−Qν

−Sy
qS

z
Qν

Sz
−Qν

− Sz
0
S

y
q+Qν

Sz
−Qν

− Sz
0
Sz
Qν

S
y
q−Qν

0



 , (35)

dSq

dt
=

i

~

[

F
(3)
4 ,Sq

]

−

= 2
J3
K

N
(D1 −D2)

[

(Sq+Q1
× ez)

(

Sx
Q2

Sx
Q3

+ Sy
Q2

Sy
Q3

)

+









−Sz
Q1

(

Sy
Q2

Sz
q+Q3

+ Sz
q+Q2

Sy
Q3

)

Sz
Q1

(

Sx
Q2

Sz
q+Q3

+ Sz
q+Q2

Sx
Q3

)

−Sz
Q1

(

Sx
Q2

Sy
q+Q3

+ Sy
q+Q2

Sx
Q3

)

+ Sz
Q1

(

Sy
Q2

Sx
q+Q3

+ Sx
q+Q2

Sy
Q3

)

















+ (Q1 → Q2, Q2 → Q3, Q3 → Q1)

+ (Q1 → Q3, Q2 → Q1, Q3 → Q2)

+ (Q1 → −Q1, Q2 → −Q2, Q3 → −Q3)

+ (Q1 → −Q2, Q2 → −Q3, Q3 → −Q1)

+ (Q1 → −Q3, Q2 → −Q1, Q3 → −Q2), (36)

dSq

dt
=

i

~

[

F
(3)
5 ,Sq

]

−

= 2
J3
K

N
(D3 −D4)





Sx
q+Q1

Sz
Q2

Sz
−Q3

+ Sz
Q1

Sx
q+Q2

Sz
−Q3

+ Sz
Q1

Sz
Q2

Sx
q−Q3

−S
y
q+Q1

Sz
Q2

Sz
−Q3

− Sz
Q1

S
y
q+Q2

Sz
−Q3

− Sz
Q1

Sz
Q2

S
y
q−Q3

0





+ (Q1 → Q2, Q2 → Q3, Q3 → Q1)

+ (Q1 → Q3, Q2 → Q1, Q3 → Q2)

+ (Q1 → −Q1, Q2 → −Q2, Q3 → −Q3)

+ (Q1 → −Q2, Q2 → −Q3, Q3 → −Q1)

+ (Q1 → −Q3, Q2 → −Q1, Q3 → −Q2). (37)
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