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Crystallographic space group symmetry (CPGS) such as polar and nonpolar crystal classes have long been 

known to classify compounds that have spin-orbit-induced spin splitting. While taking a journey through 

the Brillouin Zone (BZ) from one 𝑘-point to another for a fixed CPGS, it is expected that the wavevector 

point group symmetry (WPGS) can change, and consequently a qualitative change in the texture of the 

spin polarization (the expectation value of spin operator 𝑆𝑛𝑘0
 in Bloch state 𝑢(𝑛, 𝑘) and the wavevector 

𝑘0). However, the nature of the spin texture (ST) change is generally unsuspected. In this work, we 

determine a full classification of the linear-in-𝑘 spin texture patterns based on the polarity and chirality 

reflected in the WPGS at 𝑘0. The spin-polarization vector 𝑆𝑛𝑘0
 controlling the ST is bound to be parallel 

to the rotation axis and perpendicular to the mirror planes and hence, symmetry operation types in 

WPGSs impose symmetry restriction to the ST. For instance, the ST is always parallel to the wavevector 

𝑘 in non-polar chiral WPGSs since they contain only rotational symmetries. Some consequences of the 

ST classification based on the symmetry operations in the WPGS include the observation of ST patterns 

that are unexpected according to the symmetry of the crystal. For example, it is usually established that 

spin-momentum locking effect (spin vector always perpendicular to the wavevector) requires the crystal 

inversion symmetry breaking by an asymmetric electric potential. However, we find that polar WPGS 

can have this effect even in compounds without electric dipoles or external electric fields. We use the 

determined relation between WPGS and ST as a design principle to select compounds with multiple ST 

near band edges at different 𝑘-valleys. Based on high-throughput calculations for 1481 compounds, we 

find 37 previously fabricated materials with different ST near band edges. The ST classification as well as 

the predicted compounds with multiple ST can be a platform for potential application for spin-

valleytronics and the control of the ST by accessing to different valleys. 
 

 

 

 

 

 

 

 

 

 

 

I. Introduction 
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Whereas symmetry generally allows or forbids numerous effects in solid state and molecular science, 

a recurring question is what aspect of group symmetries is responsible for given type of phenomena. For 

example, symmetries contained in the Crystallographic Point Group Symmetry (CPGS) establish the 

enabling conditions for macroscopic properties, such as electric polarization [1], magnetization [2], 

circular dichroism [3], and pyroelectricity [4]. The CPGS is, however, insufficient to universally describe 

all materials properties in crystals. In fact, wavevector dependent effects are enabling by other elements 

of symmetry such as the wavevector point group symmetry (WPGS) – the little point group of specific 

wavevectors 𝑘0 in the Brillouin zone (BZ). For instance, symmetry protection of exotic Fermions [5,6] 

and energy band anti-crossing [7] depends on the WPGS. The Zeeman-type spin splitting (SS) [8,9] is an 

example of enabling physical mechanisms that seem to contradict the macroscopic crystal symmetry. 

Specifically, in contrast to the Zeeman effect in magnetic compounds, the Zeeman-type effect is 

observed in non-magnetic compounds (i.e., CPGS preserving the time-reversal symmetry) but at 𝑘-point 

with WPGS breaking the time-reversal (TR) symmetry. Naturally, effects enabled by the CPGS are only 

allowed at those special wavevectors at which the two symmetries coincide (WPGS=CPGS). However, it 

is expected that other wavevectors lead to very different effects.  

Overlooking the distinction between different physics enabled by WPGS vs that enabled by the CPGS 

has often created an incompleteness of the symmetry classification of spin-related phenomena and 

their wavevector dependence. A curious historical development in this regard has been the association 

of the CPGS with the ‘texture’ of the spin-polarization 𝑆𝑛𝑘0
 – the expectation values of spin operators 𝑆̂𝑖 

in a given Bloch wavefunction 𝑢(𝑛, 𝑘) that is centered at a specific 𝑘0 with 𝑛 referring to a Bloch band. 

Specifically, figure 1 illustrates different shapes of spin texture (ST) that have been observed, including 

radial ST (𝑆𝑛𝑘 ∥ 𝑘⃗⃗) [10–12], or tangential ST (𝑆𝑛𝑘0
⊥ 𝑘⃗⃗) [13–15], or the tangential-radial ST [16,17]. 

These observations were generally established for highly specific wavevectors 𝑘0  that satisfy 

WPGS=CPGS, e.g., the Γ point in GaAs (F4̅3m) [16] and the Z point in GeTe (R3m) [13,14]. For this 

reason, ST shapes were often associated with the presence or absence of crystallographic inversion 

symmetry in the CPGS, rather than with the WPGS of the specific wavevector 𝑘0. Furthermore, when 

different ST shapes were noted in different functional materials, it was tempting to associate the specific 

ST with the particular underlying functionality. For instance, the observation of tangential ST in some 

ferroelectrics has been associated with the physics of electric polarization [14,18,19]. However, not all 

ferroelectrics have such ST type [20]. Similarly, the observation of tangential ST in some topological 

insulators has been associated with their topological character; however, normal insulators can also 

have this very same ST [21].  

In 𝑘 ∙ 𝑝 effective Hamiltonians ℋ(𝑘 → 𝑘0), for wavevectors 𝑘 around the origin 𝑘0 of the expansion,  

the ST is properly determined by the little point group of wavevector 𝑘0  [22,23]. However, despite 

extensive applications of the 𝑘 ∙ 𝑝 effective Hamiltonians to study STs for particular wavevectors 𝑘0, 

associations of the resulting ST behavior with the crystallographic CPGS symmetry rather than the 

wavevector symmetry WPGS abound. For example, the tangential ST (Fig1.b) seen in bulk compounds is 

often associated with the Rashba physics of breaking the crystallographic inversion symmetry via 

asymmetric electric potentials (i.e., electric field or bulk electric polarization) [24], rather than with the 

WPGS of the particular wavevector studied. Although it is properly expected that while taking a journey 
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through the BZ from one point 𝑘0 to another, the 𝑘 vector symmetry and the thus the ST might 

qualitatively change, the nature of the change is generally unsuspected. This position was clearly 

expressed in a recent paper studying the radial spin texture of Weyl fermions in chiral Tellurium [11] 

concluding that "A full classification of the spin vector field geometry is beyond the scope of this study, 

and it will be the subject of a future investigation."   

 

 
Figure 1: Schematic representation of the (a) tangential texture S⃗⃗nk ⊥ k⃗⃗, (b) radial texture S⃗⃗nk ∥ k⃗⃗, and (c) 
tangential-radial texture at a two-dimensional plane 𝑘𝑥𝑦 normal to a rotation axis 𝑅𝑖.  

 

The present paper discusses a direct resolution of the classification problem of STs. We show that the 

enabling symmetries underlying the ST types are not a reflection of material functionalities, nor are they 

caused by the presence or absence of polar fields in the CPGS [24]. Instead, ST shapes are caused by a 

symmetry principle cutting across different material functionalities: the existence of specific proper 

(rotations) and improper symmetries (reflections and inversion) in the wavevector point group symmetry 

(a subgroup of the CPGS). Specifically, we show that the spin-polarization vector 𝑆𝑛𝑘0
 controlling the ST 

is bound to be parallel to the rotation axis and perpendicular to the mirror planes. This imposes a 

prediction on the ensuing ST patterns according to the polarity and chirality of the 𝑘0 WPGS. For 

example, for 𝑘0 with non-polar chiral WPGS having more than one rotation symmetry and no mirror 

symmetry we expect 𝑆𝑛𝑘0
 to be parallel to the rotation axis i.e., that 𝑆𝑛𝑘0

(𝑘) ∥ 𝑘⃗⃗. Here, chiral (non-

chiral) point groups have only proper (both proper and improper) symmetries, while polar (non-polar) 

point groups have one (more than one) rotation axis. Thus, a journey throughout the Brillouin zone of a 

fixed compound reveals ST types corresponding to different rotation and reflection symmetries of the 

little group of 𝑘. For instance, we expect (and confirm) that compounds with non-polar crystallographic 

symmetry (i.e., without electric dipoles or electric fields) can show the tangential ST (i.e., Rashba-like ST) 

at the wavevector 𝑘0 whose WPGS is polar. This illustrates that the breaking of the inversion symmetry 

mediated by and electric dipole or external electric field being a defining feature of Rashba effect is not 

a necessary condition for the Rashba ST (Fig. 1), contrary to what is generally assumed by the 

macroscopic CPGS and used to investigate the formation of spin spirals [24–27] for different classes of 

materials.  

Understanding the association of ST with the WPGS (rather than with the wavevector-independent 

CPGS) could be a productive basis for design of compounds with target ST and its control by accessing 

different valleys in the BZ. Thus, we explore the potential application to spin-valleytronics of the 

proposed journey throughout the BZ to access multiple ST types in the same compound. The application 

of our study is based on the inverse design approach  [28] for the selection of compounds with single 
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and co-functionalities [7,20]. Contrary to the “direct approach” based on the calculation for all possible 

materials candidates, the inverse design aims first the establishment of the physical mechanisms (or 

design principles) behind the target property, i.e., compounds with multiple ST shapes in the BZ. In the 

second step of this approach, the design principles are used as filters for the screening of compounds 

from known materials databases, e.g., the aflow-ICSD database [29]. In the first step, for BZs of 3D non-

centrosymmetric Bravais lattices, we apply the relations between the ST shapes and the WPGS polarity 

and chirality, determining all possible symmetrically allowed WPGS in all 21 non-centrosymmetric CPGS 

(i.e., 139 crystallographic space groups). Only polar non-chiral, non-polar chiral, and non-polar non-

chiral CPGS can have CPSG allowing high-symmetry 𝑘-points with different STs. Based on the CPGS and 

WPGS, we select 1481 fabricated compounds and perform high-throughput DFT band structure 

calculations for them. Focusing on bands structures in which the relative energy at different valleys is 

smaller than 100 meV and SS larger than 1 meV, we identify 37 compounds with multiple ST shapes. 

Examples include non-polar chiral SiO2 (P6522), CPGS=D6, that have radial ST at the high-symmetry point 

A (WPGS=CPGS) and tangential-radial ST at the high-symmetry point H (WPGS=D3). The SS at these 𝑘-

points are 26 and 6 meV, respectively. The proposed classification of the ST based on the WPGS and the 

selected compounds in the inverse design process are a potential platform for spin-valleytronics 

applications. 

 

II. Classic 𝒌 ∙ 𝒑 Hamiltonians used to provide the ST type for the special 

case of WPGS=CPGS  

 

We next illustrate three linear-in-𝑘 relativistic Hamiltonians (Rashba, Weyl, and Dresselhaus) set to a 

specific wavevector 𝑘0  with WPGS equaled that of the crystallographic CPGS, which is not 

representative of other parts of the BZ, as summarized in Table I. Figure 2 shows the DFT calculated STs 

at different wavevectors 𝑘0 with both WPGS=CPGS and WPGS≠CPGS for the representative compounds 

described in Table I.  

 

Table I. When the wavevector point group symmetry (WPGS) of 𝑘0 equals the global crystallographic crystal point 
group symmetry (CPGS), i.e., 𝑘0 with WPGS=CPGS (shown here for GaAs, GeTe, and Te), then ST type has the 
highest symmetry. But a journey through the BZ shows the more typical cases where 𝑘0 has WPGS≠CPGS, leading 
to many different types of ST.  

Compounds CPGS 𝒌𝟎 with 

WPGS=CPGS 

ST for 𝒌𝟎 with 

WPGS=CPGS 

𝒌𝟎 with 

WPGS≠CPGS 

ST for 𝒌𝟎 with 

WPGS≠CPGS 

GeTe (R3m) C3v 𝛤 (C3v), Z(C3v) Rashba L(Cs) Dresselhaus-Rashba 

Te (P3121) D3 𝛤 (Td), A(Td) Weyl M(C2) Undefined 

GaAs (F4̅3m) Td 𝛤 (Td) Dresselhaus   L (C3v) Rashba 

 

In 1984, Bychkov and E. Rashba established [30–32] that “if a crystal has a single high-symmetry axis 

(at least threefold)”, i.e., crystals with polar CPGS, spin bands are described by the linear-in-k spin-orbit 

coupling (SOC) Hamiltonian,  

ℋ𝑅(𝑘 → 𝑘0) = 𝜆𝑅(𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥), 



 5 

where the 𝑧 component of the momentum 𝑘⃗⃗ is set along the high-symmetry axis and 𝜎𝑖 are the Pauli 

matrixes. The Hamiltonian ℋ𝑅 was historically used to study both two-dimensional compounds with 

perpendicular electric fields and heterojunctions with interfacial electric dipoles. In these systems, only 

wavevectors 𝑘0 with WPGS=CPGS (e.g., 𝑘0 = 𝛤) satisfy the Hamiltonian ℋ𝑅 . The diagonalization of ℋ𝑅 

leads to the tangential ST (i.e. 𝑆𝑛𝑘  always perpendicular to the momentum ( 𝑆𝑛𝑘0
(𝑘) ⊥ 𝑘⃗⃗  ) or 

equivalently 𝑆𝑛𝑘0
(𝑘) = (−𝑘𝑦, 𝑘𝑥, 0)/|𝑘⃗⃗|), which is usually referred to as Rashba ST or spin-momentum 

locking effect. In the three-dimensional analogue, i.e., the bulk Rashba effect, compounds with polar 

CPGS (e.g., BiTeI (R3m) and GeTe (R3m)) [13,15,33], have an intrinsic non-zero electric dipole that 

effectively plays the role of the interfacial dipole in heterojunctions. As shown in the first line of Table I, 

in GeTe (R3m), the BZ wavevector 𝑘0 = 𝑍 has the Rashba-like ST, as illustrated via relativistic DFT 

calculations in Fig. 2b. This spin-momentum locking effect is also observed in the surface states near the 

𝛤 point of BZ of three-dimensional topological insulators [34].  

 

 

Figure 2. Variations of DFT-calculated Spin Texture (ST) prototypes at different wavevector point group symmetries 
(WPGS) viewed as a journey through the Brillouin zone of fixed given compounds. We show the Brillouin Zone for 
(a) GeTe, (d) Tellurium, and (g) GaAs, which are respectively non-polar, polar, and chiral compounds according to 
their crystallographic point group symmetry (CPGS). The journey departure points for GeTe (b), Te (e), and GaAs 
(h), are wavevectors 𝑘0 that have a point group symmetry equal to the macroscopic CPGS, so the ST are the ones 
expected from the CPGS, i.e., tangential ST for GeTe, radial ST for Te, and tangential-radial ST for GaAs. However, 
shifting to 𝑘-points of lower wavevector symmetries [(c), (f), (i), respectively] shows greatly altered ST shapes for 
the same compounds. 
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In crystals with chiral CPGS, at wavevectors 𝑘0 with WPGS=CPGS, spin bands are described by the 

effective Hamiltonian,  

ℋ𝑤(𝑘 → 𝑘0) = 𝜆𝑤(𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦), 

which was first proposed by H. Weyl in 1929 [35]. The diagonalization of ℋ𝑤 results in the radial ST (i.e., 

the spin always parallel to the wavevector, 𝑆𝑛𝑘0
(𝑘) ∥ 𝑘⃗⃗, or equivalently 𝑆𝑛𝑘0

(𝑘) = (𝑘𝑥 , 𝑘𝑦, 0)/|𝑘⃗⃗|), 

which is historically know as Weyl ST. As shown in the second line of Table I, in the two equivalently 

chiral enantiomers of bulk Tellurium (P3121 and P3221) [10–12] , at the high-symmetry 𝑘-points Γ and A 

(with WPGS=CPGS), the Weyl ST is observed (Fig. 2e). The Hamiltonian ℋ𝑤 also describe topological 

Weyl semimetals [36,37]. 

In compounds with non-polar CPGS, in 1955 G. Dresselhaus determined [38] that for 𝑘0 = Γ 

(WPGS=CPGS), spin bands are described by the Hamiltonian, 

𝐻𝐷 = 𝜆[(𝑘𝑦
2 − 𝑘𝑧

2)𝑘𝑥𝐽𝑥 + (𝑘𝑧
2 − 𝑘𝑥

2)𝑘𝑦𝐽𝑦 + (𝑘𝑥
2 − 𝑘𝑦

2)𝑘𝑧𝐽𝑧],  

where 𝐽𝑖 are the components of the total angular momentum operator and 𝑘𝑧 is fixed along a rotation 

axis 𝑅𝑖 in the BZ. In the normal plane to 𝑅𝑖, the linear-in-𝑘 Hamiltonian is given by the Dresselhaus term, 

ℋ𝐷(𝑘 → 𝑘0) = 𝜆𝐷(𝑘𝑥𝜎𝑥 − 𝑘𝑦𝜎𝑦).  

The diagonalization of ℋ𝐷 leads to the tangential-radial ST (i.e., 𝑆(𝑛, 𝑘0) = (𝑘𝑥 , −𝑘𝑦, 0)), which is 

usually known as Dresselhaus ST. In the third line of Table I, we present GaAs (F4̅3m) with non-polar 

CPGS 𝑇𝑑, at 𝑘0 = Γ (WPGS=𝑇𝑑), as an historical example of the Dresselhaus ST, as illustrated via 

quantitative relativistic DFT calculations in Fig. 2h.  

Hereafter, we will refer to ℋ𝑅, ℋ𝑊, and ℋ𝐷 as linear-in-𝑘 SOC Rashba, Weyl, and Dresselhaus 

Hamiltonians, respectively. The ST resulting from these Hamiltonians are routinely observed in specific 

high-symmetry k-points with WPGS=CPGS of compounds with non-polar CPGS (such as the Γ point in 

GaAs (F4̅3m) [16] and IrBiSe (P213)) [17]) and compounds with polar CPGS (such as the Z point in GeTe 

(R3m) [13,14] and BiTeI (P3m1) [15]).  

 

III. 𝒌𝟎 dependent effects are reflected in the WPGS whereas macroscopic 

symmetry effects are reflected in the CPGS 

 
A journey through wavevectors in a BZ can visit symmetries different than the macroscopic CGPS. 

Specifically, for each CPGS, there exists another layer of symmetries of particular wavevectors 𝑘0 (show 

in Table I) in the corresponding BZ [39–41]. This layer of symmetries consist of subgroups of the CPGS 

and enable specific momentum and band dependent properties in the crystal such as band crossing, 

anti-crossing [42], topological band inversion [43–45], and topological protection [46]. The inspection to 

STs at other 𝑘-points reveals patterns that are not predicted by the CPGS. For instance, for the 

traditional ferroelectric compound GeTe (R3m) with Rashba ST at 𝑘0 =Z (polar WPGS and CPGS) [47], 

Fig. 2c shows the ST obtained from the same relativistic calculation in Fig. 2b, but this time at another 

wavevector 𝑘0 = 𝐿 (first line in Table I). The ST reveals a pattern that is not a Rashba-like ST (Fig. 2c). 

Likewise, in bulk Te, Fig. 2e presents the traditional Weyl ST at 𝑘0 =A, which is deformed in another 

wavevector 𝑘0 = 𝑀 showing an apparently undefined pattern (Fig. 2f). We will discuss this undefined 
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pattern in the next sections. Finally, for the non-polar compound GaAs with Dresselhaus ST at 𝑘0 = 𝛤 

(WPGS=CPGS), Fig. 2i shows the typical Rashba-like ST obtained quantitatively from the same relativistic 

band structures used in Fig 2b, but this time at another wavevector 𝑘0 = 𝐿. The latter example of GaAs 

illustrates a Rashba ST in a compound without electric dipoles (i.e., compound with non-polar CPGS). 

Additionally, in contrast to the previous suggestion that Rashba ST is attributed to an intrinsic electric 

dipole and strong atomistic SOC [48], we see that even with relatively weak atomic SOC in the GaAs, the 

spin can be perpendicular to the momentum 𝑘 (Fig. 2i).  

Interestingly, despite the potential applications in spintronics and valleytronics, the general 

description of how the little group of 𝑘-vectors determines the spin-polarization pattern has remained 

unappreciated. Indeed, the full classification of the spin vector field geometry is an open problem [11]. 

The common characterization of ST patterns in terms of the CPGS (e.g., the existence or absence of 

electric polarization [49]) applies only for WPGS 𝒢(𝑘) equal to the CPGS (e.g., the 𝛤 point in all lattices, 

or the Z point in the BZ of GeTe), as shown in Table I. From the examples of ST prototypes in GeTe, Te, 

and GaAs (Table I and Fig. 2), we can directly anticipate some physical consequences: i) The existence of 

different symmetries of a particular wave vectors 𝑘0 in the BZ leads to the possibility of having more 

than one spin-polarization prototype pattern in the same compound. This suggests that a ST assignment 

based only on the CPGS can lead to a misclassification of the ST shapes; and ii) Compounds without 

electric dipoles can have Rashba-like ST (Fig. 2i), meaning that contrary to what has been traditionally 

established, the asymmetry of the electric polarization is not a necessary condition for the Rashba ST. 

 

IV. Derivation of the relation between the point group of the 𝒌-point and 

spin-polarization patterns 

 

Examples of the connection between the WPGS in the BZ and macroscopic properties include the 

notion of “elementary band representation”, proposed by Zak [50–52], and its extension [43] including 

SOC that distinguish compounds having symmetry protected topological phases. Inspired by this idea, 

we investigate how specific symmetry operations in the WPGS 𝒢∗(𝑘) imposes rules on the 𝑆𝑛𝑘. These 

symmetry operations contained in WPGS 𝒢∗(𝑘) can be orientation-preserving symmetries termed first 

kind, such as rotations 𝑅𝑚 of an angle 𝜃 = 2𝜋/𝑚 (with 𝑚 being an integer), or orientation-reversing 

symmetries (e.g., reflections 𝑀𝑖 and roto-inversions) termed second kind [4]. We use two equivalent 

approaches to establish the relation between little point groups 𝒢∗(𝑘) and ST shapes for a given 

wavevector 𝑘0, namely: A. We derive the linear-in-k SOC Hamiltonian ℋ(𝑘 → 𝑘0) for all possible WPGS 

in the BZ of non-centrosymmetric compounds. After diagonalizing all Hamiltonian prototypes, the 

eigenvectors 𝜓𝑛(𝑘) are then used to calculate the expectation value 〈𝑆𝑛𝑘0
(𝑘)〉; and B. based on the 

symmetry transformation properties of pseudo-vectors, we determine how the specific proper and 

improper symmetry operations determine the direction of the spin-polarization.  
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A. Linear-in-k SOC Hamiltonian for WPGS in the BZ of non-censtrosymmetric compounds 

 

 The symmetry operations contained in a specific WPGS 𝒢∗(𝑘)  induce a set of irreducible 

representations 𝛾𝑚(𝑑𝑚), which are described in the character table of the point group 𝒢∗(𝑘)  [53]. 

Here, 𝑑𝑚 is the dimension of the representation 𝛾𝑚, which in turns corresponds to the trace of identity 

symmetry operation 𝐸. In Table II, the character table of the point group 𝐶3𝑣 is represented. Using the 

symmetry operators in a given basis (the matrix form of the symmetry operators), one can then evaluate 

under which irreducible representation of 𝒢∗(𝑘), a specific object or property 𝑃 is transformed. For 

instance, in table III, the irreducible representations of functions 𝑓𝛾𝑛
(𝑘) and Pauli matrices 𝜎𝑖 are shown 

for irreducible representations 𝛾1,2 = 𝐴1,2 and 𝛾3 = 𝐸. In general, bands at the wavevector 𝑘0 can also 

be characterized by the irreducible representations 𝛾𝑚 of the point group 𝒢∗(𝑘0). If a band 𝑛 transforms 

under the irreducible representation 𝛾𝑚, the dimension 𝑑𝑚 correspond to the degeneracy of the given 

band.  

 

Table II. Character table of the double point group 𝐶3𝑣 [53]. The headers are the symmetry operations contained in 
the point group 𝐶3𝑣, namely: the identity 𝐸, the threefold rotation symmetry 𝑅3, the diagonal mirror plane 𝑀_𝜎, 
and the time-reversal symmetry 𝜏. For each irreducible representation (𝛾 = 𝐴1, 𝐴2, 𝐸, 𝐸1/2, 𝐸 

1
3/2, 𝐸 

2
3/2), the 

characters are shown. 

𝑪𝟑𝒗 𝑬 2𝑹𝟑 3𝑴𝒗 𝝉 

𝑨𝟏 1 1 1 𝑎 

𝑨𝟐 1 1 -1 𝑎 

𝑬 2 -1 0 𝑎 

𝑬𝟏/𝟐 2 1 0 𝑐 

𝑬 
𝟏

𝟑/𝟐 1 -1 𝑖 𝑏 

𝑬 
𝟐

𝟑/𝟐 1 -1 - 𝑖 𝑏 

 

The Hamiltonian must be invariant, so it transforms under the identity irreducible representations 

𝛾1– the representation in which all characters are one (e.g., the representation 𝐴1 for the point group 

𝐶3𝑣 in Table II). From the tables of the direct product of representations [53], we see that the tensor 

product 𝛾𝑚⨂𝛾𝑚  has usually at least one scalar that transform according to identity irreducible 

representations 𝛾1. The Hamiltonian can thus be constructed by considering the sum of products 

between a function 𝑓𝛾𝑛
(𝑘) and a basis matrix 𝑋𝛾𝑚

 (e.g., Pauli matrices 𝜎𝑖 (𝑖 = 0, 1, 2, 3) are the basis for 

Hermitical matrices with 𝑛 = 2) that transform under the same irreducible representation 𝛾𝑚. For 

instance, for a two-bands effective Hamiltonian, e.g., one orbital with spin ↑ and ↓, we have, 

ℋ(𝑘) = ∑ 𝑐𝑚𝑓𝛾𝑛
𝑖 (𝑘)𝜎𝑖

𝛾𝑚
𝑚,𝑖 𝛿𝑛𝑚, 

where 𝑐𝑚 are real coefficients. As an illustrative example of these products, we use the point group 𝐶3𝑣. 

For example, 𝜎𝑧 transforms under the irreducible representation 𝛾2 = 𝐴2 (Table III) and there are no 

functions 𝑓𝐴2
(𝑘) that transform under the representation 𝛾2, so there are no terms obtained from the 

product 𝛾2⨂𝛾2 in the Hamiltonian. Considering all products containing Pauli matrices that are even 

under the time-reversal symmetry, the resulting Hamiltonian for 𝒢∗(𝑘0) = 𝐶3𝑣 is given by: 
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                                            ℋ(𝑘 → 𝑘0) = 𝑐1𝕝𝑘2 + 𝑐3(𝑘𝑥𝜎𝑦 − 𝑘𝑦𝜎𝑥),           (1) 

where 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2. The physical interpretation of the Hamiltonian allows to directly determine 

the coefficients 𝑐𝑚. The first term of the Hamiltonian is obtained from 𝛾1⨂𝛾1 (with 𝛾1 = 𝐴1) and gives 

the kinetic energy, meaning that 𝑐1 = −ℏ/2𝑚∗. Similarly, the second term in Eq. 1 (obtained from 

𝛾3⨂𝛾3 with 𝛾3 = 𝐸) corresponds to the linear-in-𝑘 Rashba SOC Hamiltonian ℋ𝑅  with 𝑐3 = 𝜆𝑅 . This 

simple analysis not only allows to determine that the Rashba Hamiltonian ℋ𝑅 is symmetrically allowed 

in the WPGS 𝒢∗(𝑘0) = 𝐶3𝑣, but it also indicates that the Weyl and Dresselhaus Hamiltonians are 

symmetrically forbidden. A detailed description of this method can be found in Ref  [22]. This method of 

invariants has been used to study the linear-in-𝑘 Rashba SOC Hamiltonians allowed by the symmetry 

operations of polar point groups, as well as the high-order contributions to the Rashba-Bychkov 

effect [54,55]. Here, we extend this approach to determine the effective SOC Hamiltonian for all possible 

wavevector point groups 𝒢∗(𝑘0) that are non-centrosymmetric (NCS).  

 
Table III. Cartesian tensors 𝜎𝑖  and 𝑠, 𝑝, 𝑑, and 𝑓 functions (𝑙 = 0, 1, 2, 3)  [53].  

𝑪𝟑𝒗 𝟎 1 2 𝟑 

𝑨𝟏 𝕝2×2 𝑘𝑧 𝑘𝑥
2 + 𝑘𝑦

2, 𝑘𝑧
2 𝑘𝑥(3𝑘𝑥

2 − 𝑘𝑦
2), 𝑘𝑧(𝑘𝑥

2 + 𝑘𝑦
2), 𝑘𝑧

2 

𝑨𝟐  𝜎𝑧   𝑦(3𝑘𝑥
2 − 𝑘𝑦

2) 

𝑬  (𝑘𝑥 , 𝑘𝑦)(𝜎𝑦 , −𝜎𝑥) (𝑘𝑥𝑘𝑦, 𝑘𝑥
2 − 𝑘𝑦

2), (𝑘𝑧𝑘𝑥 , 𝑘𝑦𝑘𝑧)  {𝑘𝑥(𝑘𝑥
2 + 𝑘𝑦

2), 𝑘𝑦(𝑘𝑥
2 + 𝑘𝑦

2)}, 

𝑘𝑧
2(𝑘𝑥, 𝑘𝑦), 

{𝑘𝑥𝑘𝑦𝑘𝑧, 𝑘𝑧(𝑘𝑥
2 − 𝑘𝑦

2)} 

 

Figure 3 summarizes all SOC Hamiltonians that are symmetrically allowed by the specific WPGSs 

𝒢∗(𝑘0), which according to the polarity and chirality are classified in four categories, namely: polar 

chiral ( 𝐶1, 𝐶2, 𝐶3, 𝐶4 , and 𝐶6 ), polar non-chiral ( 𝐶𝑠, 𝐶2𝑣, 𝐶3𝑣, 𝐶4𝑣,  and 𝐶6𝑣 ), non-polar chiral 

(𝐷2, 𝐷3, 𝐷4, 𝐷6, 𝑇, and 𝑂), and non-polar non-chiral (𝐷2𝑑, 𝑆4, 𝐶3ℎ, 𝐷3ℎ, and 𝑇𝑑). These four categories are 

based on the existence of specific proper (rotations) and improper symmetries (reflections and 

inversion) in the wavevector point group symmetry. Specifically, polar and non-polar PGs have a single 

and more than one rotation axis, respectively. On the other hand, chiral PGs have only proper 

symmetries, while non-chiral have both proper and improper symmetries. Thus, the WPGS classification 

according to polarity and chirality groups the kind of symmetry operations contained in the WPGS, 

which has implications in the symmetry enforced ST shapes. Specifically, we identify two extreme 

behaviors for the ST, i.e., 𝑆𝑛𝑘 ⊥ 𝑘⃗⃗  (tangential ST) and 𝑆𝑛𝑘 ∥ 𝑘⃗⃗  (radial ST), resulting from the 

diagonalization of the Hamiltonians ℋ𝑅 and ℋ𝑊, respectively. The other possible STs are combinations 

of these two extreme behaviors as in the radial-tangential ST associated to the Hamiltonian ℋ𝐷. As 

summarized in Figure 3, there is a trend in the symmetrically allowed Hamiltonians for the four WPGS 

categories: (a) polar chiral WPGS 𝐶3, 𝐶4, and 𝐶6 symmetrically allow the Hamiltonians ℋ𝑅 and ℋ𝑊, while 

in 𝐶1 and 𝐶2 have no constrains; (b) polar non-chiral WPGS 𝐶3𝑣, 𝐶4𝑣, and 𝐶6𝑣 only allow the Rashba 

Hamiltonian, while polar non-chiral point groups 𝐶𝑠 and 𝐶2𝑣 lead to the SOC terms ℋ𝑅 and ℋ𝐷; (c) non-

polar chiral WPGS 𝐷3, 𝐷4, 𝐷6, 𝑇, and 𝑂 leads to the SOC term ℋ𝑤, but the non-polar chiral WPGS 𝐷2 

leads to both ℋ𝑤 and ℋ𝐷; and (d) all non-polar non-chiral WPGS 𝐷2𝑑, 𝑆4, 𝐶3ℎ, 𝐷3ℎ, and 𝑇𝑑 symmetrically 

impose the Hamiltonian ℋ𝐷. Additional symmetry constraints can be imposed by high-order-in-𝑘 SOC 
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terms, which usually results from functions 𝑓𝛾𝑚
(𝑘) related to 𝑑 and 𝑓 functions (e.g., functions in 

columns with 𝑙 > 1 in Table III). Since we focus here only on non-magnetic compounds, i.e., compounds 

preserving the time-reversal symmetry 𝒯, the ST in anti-ferromagnetic compounds [56] as well as the 

Zeeman-type effect at 𝑘0 breaking 𝒯  [8,9] are not included. Thus, all ST prototypes above described are 

assumed to intrinsically satisfy the condition 𝑆𝑛,−𝑘 = 𝒯𝑆𝑛,𝑘 = −𝑆𝑛,𝑘 (i.e., the pseudo-vector 𝑆𝑛𝑘 at the 

inverted k-vector is also inverted). In general, the SOC Hamiltonian terms allowed at 𝑘0  [55] intrinsically 

satisfy the symmetry constraints to the ST, as shown in the next phenomenological discussion. 

 

 
Figure 3: Classification of the WPGS and the respective linear-in-𝑘 Hamiltonian that is symmetrically allowed by the 
polarity and chirality of the WPGS. 

 

B. Analysis of how the specific proper and improper symmetry operations determine the 

direction of the spin-polarization  

 

Using the symmetry constrains imposed by the symmetry operations contained in the WPGS 𝒢∗(𝑘), 

we identify the allowed spin-polarization patterns in the BZ of NCS compounds. This phenomenological 

analysis is based on the pseudo-vector properties of 〈𝑆𝑛𝑘0
(𝑘)〉.  

If a vector property 𝑝, such as the ferroelectric polarization, is perpendicular to a rotation axis, only 

𝑅𝑚 with 𝑚 = 1 preserves the crystal unchanged (i.e., rotation of 𝜃 = 2𝜋/𝑚, which by definition is the 

identity operation 𝐸). Equivalently, if 𝑅𝑚 with 𝑚 ≠ 1 is a symmetry operation of the crystal, the physical 

property 𝑝 must be parallel to the rotation axis. The spin-polarization 𝑆𝑛𝑘 is a pseudo-vector that locally 

must be parallel to the rotation symmetry operations contained in the WPGS 𝒢∗(𝑘). On the other hand, 

if a reflection plane 𝑀𝑖 is a symmetry operation of 𝒢∗(𝑘), a pseudo-vector (vector) property 𝑝 must be 

perpendicular (parallel) to the mirror plane. Thus, 𝑆𝑛𝑘 must be perpendicular to the rotation symmetry 

operations contained in the WPGS 𝒢∗(𝑘). The SOC Hamiltonian terms symmetrically allowed at 𝑘0  [55] 

intrinsically satisfy above-noted constraints imposed by rotations 𝑅𝑚 and mirror symmetries 𝑀𝑖 in the 
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ST (i.e., 𝑆𝑛𝑘 ⊥ 𝑀𝑖  and 𝑆𝑛𝑘 ∥ 𝑅𝑖). Interestingly, the four WPGS categories defined by the polarity and 

chirality lead to group of rules (i.e., symmetry constrains) for the spin-polarization vector 𝑆𝑛𝑘0
, as 

described in the four respective quadrants (a)-(d) in Figure 4. To illustrate the relations between 

categories of little point group symmetry 𝒢∗(𝑘0) of a particular wavevector 𝑘0 and the spin-polarization 

pattern around it, we explain below how simultaneous symmetry restrictions such as 𝑆𝑛𝑘 ⊥ 𝑀𝑖 and 

𝑆𝑛𝑘 ∥ 𝑅𝑖  can determine the ST described by the specific SOC terms ℋ𝑅, ℋ𝑤, and ℋ𝐷:  

 

 

Figure 4. Classification of the WPGS and STs according to the polarity and chirality of the WPGS. Blue and red 
arrows represent the ST of the inner and outer energy contour of spin split bands. Green solid and green dashed 
lines stand for the rotation axis and mirror plane projections in a plane perpendicular to the rotation axis, 
respectively. In each panel, examples of ST at different high-symmetry wavevectors are presented. In the specific 
case of the WPGSs C1 and C2 (polar chiral WPGS – panel (a)), there is no defined ST pattern, as shown in Fig. 3. For 
Cs (only one mirror plane) and C2v (no mirror planes), which are polar non-chiral WPGS (panel (b)), a combination 
of ST prototypes with near zero out-plane ST is expected, rather than a perfect tangential ST.  

 

(a) k points having polar chiral WPGSs can be characterized by the absence of limiting spin textures: 

In the polar chiral WPGS (Fig. 3a), there is only one rotation axis 𝑅𝑚 (a polar axis). As a result there are 

no constrains on the in-plane directions of the polarization 𝑆𝑛𝑘 (Fig. 4a). We refer to this condition as 

the absence of pure limiting ST behaviors  [either 𝑆𝑛𝑘 ⊥ 𝑘⃗⃗ or 𝑆𝑛𝑘 ∥ 𝑘⃗⃗].  Group symmetry analysis indicate 

that for 𝐶3, 𝐶4, and 𝐶6, the linear-in-𝑘 SOC Hamiltonian at 𝑘0 can be written as a superposition of the 

Rashba ℋ𝑅 and Weyl ℋ𝑤 SOC terms  [55]. The spin-polarization pattern observed in WPGS 𝒢∗(𝑘0) =

𝐶𝑚 (with 𝑚= 3, 4, and 6) depend on the strength of Rashba and Weyl SOC terms 𝜆𝑅 and 𝜆𝑤, respectively 

(all combinations between 𝜆𝑅  and 𝜆𝑤  are symmetry allowed). Rashba and Weyl SOC intrinsically 

imposes that at the rotated momentum vector 𝑘⃗⃗ (i.e., 𝑅̂𝑚 𝑘⃗⃗), the spin-polarization 𝑆𝑛𝑘 near 𝑘0 is also 

rotated, i.e., 𝑅̂𝑚𝑆𝑛𝑘 (with 𝑅̂𝑚 being the rotation symmetry operator), as required by the existence of the 
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polar axis 𝑅𝑚. In figure 4a, the ST expected in k-points with point groups having rotation symmetry 𝑅4 

(i.e, 𝐶4) is illustrated. Due to the absence of limiting behaviors (i.e., pure Rashba or Weyl STs) and 

possible arbitrary 𝜆𝑅 and 𝜆𝑤, in polar chiral WPGS, there are no defined patterns for the in-plane spin-

polarization. 

 (b) k points having polar non-chiral WPGS can be characterized by pure Rashba spin texture: In 𝑘0 

with polar non-chiral WPGS (Fig. 3b), there is one polar rotation axis 𝑅𝑛 and vertical mirror planes (𝑀𝑣), 

i.e., planes containing the polar axis. For instance, the 𝒢∗(𝑘0) = 𝐶3𝑣 is formed by threefold rotation 

symmetries 𝑅3 and three vertical mirror planes 𝜎𝑣 (i.e., the planes containing the rotation axis 𝑅3). Thus, 

𝑆𝑛𝑘 is required to be perpendicular to the planes 𝑀𝑣 (as represented at the green dashed lines in Fig. 

4b). Like in polar chiral WPGS, the spin-polarization pattern is also required to satisfy the rotation 

symmetry at all 𝑘-points around the polar axis. Thus, the coexistence of polar rotation symmetries and 

vertical mirror planes implies that 𝑆𝑛𝑘 is perpendicular to the momentum 𝑘⃗⃗ (𝑆𝑛𝑘 ⊥ 𝑘⃗⃗), which is referred 

to as spin-momentum locking effect. This effect characterizing the “Rashba- ST” is enforced by 

symmetry rather than a consequence of the magnitude of the SOC or electric dipoles. In summary, non-

Sohncke polar PGs are required to have 𝑆𝑛𝑘 ⊥ 𝑘⃗⃗ – the pure Rashba ST. The Hamiltonian describing this 

extreme behavior is then given by the “pure” Rashba SOC term ℋ𝑅. 

In actual compounds, high symmetry k-points having 𝒢∗(𝑘0) = 𝐶3𝑣, 𝐶4𝑣, and 𝐶6𝑣are expected to have 

this limiting behavior. Examples include 𝑘0 = L in GaAs (F4̅3m) and 𝑘0 = Z in GeTe (R3m), as shown in 

Fig. 3c and 3e, respectively. Although first predicted for surfaces with perpendicular external field, the 

Rashba ST has recently been generalized for bulk compounds, which has motivated the search of this 

compounds with large spin splitting [7].  

(c) k points having non-polar chiral WPGS can be characterized by pure Weyl spin texture: For 

𝒢∗(𝑘0) = 𝐷2, 𝐷3, 𝐷4, 𝐷6, 𝑇, or 𝑂 (Fig. 3c), there is a single polar rotation axis 𝑅𝑚  and at least one 

additional rotation axis (𝑅𝑚
′  and 𝑅𝑚

′′  ) lying in the plane perpendicular to the polar rotation axis 𝑅𝑚. Here  

𝑆𝑛𝑘 is then required to be parallel to the rotation axis 𝑅𝑚
′  and 𝑅𝑚

′′  (as represented at the green solid 

lines in Fig. 3c). Additionally, at the rotated momentum 𝑘⃗⃗ (corresponding to 𝑅̂𝑚 𝑘⃗⃗ or 𝑅′̂𝑚 𝑘⃗⃗), the pseudo-

vector 𝑆𝑛𝑘 is also rotated (𝑅̂𝑚𝑆𝑛𝑘 or 𝑅′̂𝑚𝑆𝑛𝑘). The existence of rotation symmetries perpendicular to the 

polar axis 𝑅𝑚 implies that 𝑆𝑛𝑘 is parallel to the momentum 𝑘⃗⃗ (as in 𝑆𝑛𝑘 ∥ 𝑘⃗⃗), as shown in Fig. 3c. This 

radial ST (Fig. 1c) is locally given by SOC Weyl term ℋ𝑤. The “Weyl ST” is usually associated to 

topological Weyl semimetal [36,37] and Kramers-Weyl fermions in chiral compounds [10–12].  

In actual compounds, high symmetry k-point having non-polar chiral WPGS include the 𝛤 and A point 

in chiral Te bulk [10–12], as well as the 𝛤 point of the insulators OsSi (P213) and SeF4 (P212121).  As 

predicted by our description, these k-points indeed have the Weyl ST (Fig. 2h). In general, all non-polar 

chiral compounds can have the Weyl ST prototype around the 𝛤 point (or other k-point whose WPGS is 

equal to the CPGS).  

(d) k points having non-polar non-chiral WPGS will show a mixture of pure spin textures: The ST 

around k-point having WPGS 𝒢∗(𝑘0) = 𝐷2𝑑, 𝑆4, 𝐶3ℎ, 𝐷3ℎ, or 𝑇𝑑 can be seen as a combination of the Weyl 

and Rashba STs, as shown in Fig. 4d. The reason is that these PGs contain one polar axis (𝑅𝑚), additional 

rotation axes (𝑅𝑚
′  and 𝑅𝑚

′′  ) perpendicular to 𝑅𝑚 as required by Weyl ST, and mirror planes as required 

by Rashba ST. These reflection planes can be perpendicular to the polar rotation axis (horizontal mirror 

planes 𝑀ℎ) or can bisect the angle between a pair of rotational axis (diagonal mirror planes 𝑀𝑑). Thus, 
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𝑆𝑛𝑘 is required to be parallel to the in-plane rotation axis 𝑅𝑚
′  and 𝑅𝑚

′′  and also perpendicular to mirror 

planes 𝑀𝑑 and 𝑀ℎ, leading to a combination of the extreme behaviors 𝑆𝑛𝑘 ⊥ 𝑘⃗⃗ and 𝑆𝑛𝑘 ∥ 𝑘⃗⃗ (e.g., the 𝛤 

point of GaAs, which is described by the SOC term ℋ𝐷). 

 

C. Some consequences of the relation between the k-point point group and spin texture 

prototypes 

 

The above-noted ST classification and the existence of symmetries of particular wave vectors 𝑘0 in 

the BZ leads to the possibility of having more than one spin-polarization prototype pattern in the same 

compound. Some additional consequences include: (i) Compounds without electric dipoles can have the 

tangential ST (Rashba ST), meaning that contrary to what has been traditionally established, the 

asymmetry of the electric polarization is not a necessary condition for the Rashba effect (Fig. 2c); (ii) 

compound with electric dipoles can have the Dresselhaus SOC term ℋ𝐷 at polar chiral WPGS (Fig. 2f); 

(iii) Spin split bands can have vanishing ST. The tangential-radial ST is not the only way to combine pure 

Rashba 𝑆𝑛𝑘 ⊥ 𝑘⃗⃗ and Weyl 𝑆𝑛𝑘 ∥ 𝑘⃗⃗ STs. For instance, when a rotation axis 𝑅𝑚 is contained in a diagonal 

𝑀𝑑 or horizontal 𝑀ℎ mirror plane, the spin-polarization is simultaneously imposed to be parallel and 

perpendicular to the rotation axis. This contradiction implies that the pseudo-vector 𝑆𝑛𝑘 must vanish 

(even in spin split bands), as in two-dimensional SnTe thin film [57]; and (iv) another interesting 

consequence is the symmetry-enforced radial ST (𝑆𝑛𝑘 ∥ 𝑘⃗⃗) in bulk compounds. This ST is believed to be a 

characteristic only linked to symmetry protected topological phases [36,37]. We find that polar chiral 

compounds can possess a radial ST 𝑆𝑛𝑘 ∥ 𝑘⃗⃗ at the 𝛤 point, even without symmetry protected topological 

phase. For instance, Figure 5 shows DFT ST for the valence band maximum at the 𝛤 point of OsSi (P213). 

Our finding explain the experimental observation via spin-angle-resolved photoemission spectroscopy of 

the radial ST in Bulk Te [10–12].  

 

 
Figure 5. Relativistic density functional band structure (a) for the “Dresselhaus compound“ OsSi (P213) and (b) Spin 

texture (ST) for the CBM at the 𝛤 point showing typical Weyl-like texture 
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Figures 3 and 4 provide a complete classification of the ST in terms of the symmetry conditions 

intrinsically imposed by WPGSs without symmetry inversion. Although we can directly identify some 

consequences from the ST classification, the relation between WPGS and ST do not establish all STs that 

can be find in single compound with a given CPGS. Indeed, one may erroneously believe that any 

compound can have any ST shape. In the next section, we thus complete this description by relating the 

CPGS to a set of symmetrically imposed STs. 

 

V. Description of the design principles imposed by the wavevector point 

group symmetries on the spin-texture of a single compound 

 

The developed classification for ST shapes for WPGSs without inversion symmetry ratifies that the ST 

for wavevectors 𝑘0 at which WPGS=CPGS can be predicted by the CPGS. However, this classification 

does not disclose all ST shapes that can be observed near high-symmetry 𝑘-points in the BZ of a given 

NCS crystalline compound with a specific CPGS 𝒢. This is a fundamental problem for potential spintronic 

and valleytronic applications. In order to answer this question, we examine the subgroups for all CPGS 𝒢 

without inversion symmetry. As very well established, for a given point group 𝒢, there is a limited set of 

subgroups, which are imposed to have lower symmetry than 𝒢, e.g., the subgroups of the point group 

𝑇𝑑 are 𝐶1, 𝐶2, 𝐶𝑠, 𝐶2𝑣, 𝐶3𝑣, 𝐷2, 𝑇, 𝑆4, and 𝐷2𝑑. Since WPGSs are subgroups of the CPGS (including also 

the case WPGS=CPGS), the CPGS imposes a limited set of ST shapes in the BZ. The matrix illustrated in 

Fig. 6 summarizes the symmetrically allowed STs for each CPGS. The columns and lines stand for the 

CPGS and WPGS classified according to the polarity and chirality, respectively. The matrix component 

corresponding to the intersection of a CPGS with a WPGS are yellow (gray) when the WPGS is (is not) a 

subgroup of the CPGS. In other words, the yellow components indicate the WPGS that can exist in the 

BZ of a compound having any of the considered CPGS. For instance, since the subgroups have lower 

symmetry than the point group, there is no high-symmetry 𝑘-point with WPGS that have larger 

symmetry than the CPGS and hence, the lower triangle of the square matrix in Fig. 6 is completely gray. 

When the WPGS lead to a ST with a defined shape, we include letters indicating the symmetrically 

allowed linear-in-𝑘 SOC Hamiltonians: Rashba (R), Dresselhaus (D), Weyl (W), Rashba and Weyl (RW), 

Rashba and Dresselhaus (RD), and Weyl and Dresselhaus (WD).  

As illustrated in Fig. 6, the design principles (DP) for multiple ST shapes in a single compound can be 

summarized as follows:  

a. Polar chiral CPGS could only have high-symmetry 𝑘-points with polar chiral WPGS (first column in 

Fig. 6). Thus, in compounds with these CPGS, the ST has no pure limiting ST behaviors [either 

𝑆𝑛𝑘 ⊥ 𝑘⃗⃗ or 𝑆𝑛𝑘 ∥ 𝑘⃗⃗], resulting from the superposition of the SOC terms ℋ𝑅 and ℋ𝑤. 

b. Polar non-chiral CPGS could have high-symmetry 𝑘-points with polar WPGS that are chiral and 

non-chiral (second column in Fig. 6). The tangential ST, imposed by Rashba Hamiltonian ℋ𝑅, is 

thus the only limiting behavior that can be observed in polar non-chiral compounds. In these 

compounds with CPGSs 𝐶𝑠 and 𝐶2𝑣, the ST is a combination of the patterns arising from Rashba 

and Dresselhaus SOC terms (ℋ𝑅 + ℋ𝐷). Besides this ST, in polar non-chiral compounds with 

CPGSs 𝐶3𝑣, 𝐶4𝑣, and 𝐶6𝑣, it is also possible to have a ST arising from the simultaneous presence of 

Rashba and Weyl SOC terms (ℋ𝑅 + ℋ𝑤). 
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c. Non-polar chiral CPGS can have high-symmetry 𝑘-points with chiral WPGS that are polar and 

non-polar (third column in Fig. 6). The radial ST, imposed by the Weyl Hamiltonian ℋ𝑤, is the 

only limiting behavior in non-polar chiral compounds. Additionally, compounds with CPGSs 𝐷3, 

𝐷4, 𝐷6, 𝑇, and 𝑂 can also have ST arising from the simultaneous presence of Rashba and Weyl 

SOC terms (ℋ𝑅 + ℋ𝑤), as well as Dresselhaus and Weyl SOC terms (ℋ𝐷 + ℋ𝑊). 

d. Non-polar non-chiral CPGS can have WPGS with all possible combinations of polarity and chirality 

(four column in Fig. 6). The radial-tangential ST can be found in all non-polar chiral compounds. 

Additionally, both limiting behaviors for tangential and radial STs could be observed in non-polar 

chiral compounds. 

 

 
Figure 6. Classification of CPGS (columns) and WPGS (lines) according to the polarity and chirality. The intersection 

between CPGS and WPGS are discriminated by yellow and gray colors. Yellow (gray) means that the specific WPGS 

is (is not) a subgroup of the CPGS 𝒢 and hence, the WPGS can (cannot) be in the BZ of a compound having crystal 

point group 𝒢. For each matrix element, we specify the linear-in-𝑘 SOC Hamiltonian symmetrically allowed by the 

WPGS: Rashba (R), Dresselhaus (D), Weyl (W), Rashba and Weyl (RW), Rashba and Dresselhaus (RD), and Weyl and 

Dresselhaus (WD). 

 

According to this description, only polar non-chiral, non-polar chiral and non-polar non-chiral CGPS 

can have multiple ST in the BZ. In order to illustrate these design principles (a-d), we study the DFT 

calculated valley-dependent ST in GaAs as represented in Fig. 7. These compounds have Td CPGS, and 

hence, the PG of high-symmetry k-points in the BZ of GaAs correspond to the subgroups of Td (i.e., 

𝐶𝑠, 𝐶2, 𝐶3, 𝐷2, 𝐶2𝑣, 𝐶3𝑣, 𝐷2𝑑, 𝑆4, and 𝑇). However, there is no unequivocal correspondence between the 
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number of high-symmetry k-points and the number of subgroups of the lattice. For instance, high 

symmetry k-points Γ, X, L, W, K, and U have PGs Td, D2d, C3v, S4, Cs, and Cs (see Fig. 2g), respectively, 

meaning that there is no k-point in the BZ of GaAs with PG symmetry T, as illustrated by hierarchical 

decomposition of the subgroups of the PG Td represented in Fig. 7. The little PGs of k-points impose 

specific STs, represented only for high symmetry k-points Γ, X, and L (Fig. 7): the L point is required to 

have spin-polarization perpendicular to the momentum k (𝑆𝑛𝑘 ⊥ 𝑘⃗⃗), and the 𝛤 point can have a mixing 

of the extreme behaviors 𝑆𝑛𝑘 ⊥ 𝑘⃗⃗ and 𝑆𝑛𝑘 ∥ 𝑘⃗⃗. In other words, while the 𝛤 point in GaAs has the 

tangential-radial ST, as expected, the L point has radial-like ST (Fig. 2h-i). Similarly, the high symmetry 

points X, W, and K have ST (not shown in Fig. 7) similar to the one expected at the 𝛤 point. 

 

 

Figure 7. The Bärnighausen tree provides a hierarchical decomposition of PG Td into its subgroups (i.e., 
𝐶𝑠, 𝐶2, 𝐶3, 𝐷2, 𝐶2𝑣, 𝐶3𝑣 , 𝐷2𝑑 , 𝑆4, and 𝑇), e.g., PG Td can be decomposed in the lower symmetry PGs 𝐶3𝑣, 𝐷2𝑑 , and 𝑇. 
Subgroups T can in turn be decomposed into PGs 𝐶3 and 𝐷2. For each PG, the high-symmetry k-points are 
specified, i.e., Γ, X, L, W, K, and U for the PGs Td, D2d, C3v, S4, Cs, and Cs, respectively. The spin texture expected by 
the subgroup is represented for Γ, X, and L points.  

 

VI. DFT illustrations of the journey through the Brillouin Zone and high-

throughput calculations 

 
The DPs establishing the relationship between each non-magnetic NCS CPGS and the possible ST 

shapes (Fig. 6) gives the possibility of rationally selecting compounds that have different spin textures in 

the BZ. In this section, we apply the previously described theory for the design of compounds that can 

potentially be used in spintronic devices. Besides the symmetry conditions established in Fig. 6 (i.e., 

enabling design principles (EDP)), we also consider DPs for the optimization of the target functionalities, 

e.g., multiple ST shapes, its position in the BZ and energy. Optimizing DPs (ODP) depend on the specific 

application. Here, we focus on spin-valleytronics, a rapid growing area based on the use of the spin-

polarization patterns that are controllable by the degree of freedom of the 𝑘-valleys in the BZ. Figure 8 
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summarizes the EDPs for different ST shapes in the same compound as well as ODPs for the control of 

these STs shapes for spin-valleytronics. Specifically, the starting point is a list of materials that are non-

magnetic and gapped. The EDPs for compounds having multiple ST shapes in the BZ are (i) EDP1: NCS 

CPGS, and (ii) EDP2: CPGS should also be polar non-chiral, non-polar chiral or non-polar non-chiral. 

Finally, as we discuss below, the ODP includes ODP1: linear-in-𝑘 SSs larger than 1 meV at band edges 

and 𝑘-valleys with different WPGSs, and ODP2: enough small energy difference between states at 

different valleys. After selecting compounds using the DPs as filters (Tables V and VI), we focus on the 

illustration of some specific prototypes. 

 

A. Inverse design of compounds with multiple spin texture shapes that can potentially be 

controlled by the valley degree of freedom 

 

In spin-valleytronics, one wants to have an association between valleys and spin-polarization as 

established in previous sections based on the WPGS. The basic idea is that if two high symmetry 𝑘1 and 

𝑘2 in the BZ have different WPGS, the ST shapes can also be different around these wavevectors. In 

experiments, 𝑘1 and 𝑘2 can independently be accessed in order to select different STs. Additionally, 

since the electronic transport and spin-currents are governed by the electronic states near the band 

edges, the spin-currents also depend on the WPGS of the 𝑘-point at which the band edges take place. 

The controllable valley energy requires a sufficiently small energy difference between states at different 

valleys. The use of this ODP as a filter requires the evaluation of the DFT SOC band structure for a 

relatively large set of compounds. For this reason, in order to reduce the computation cost, before 

applying the EDPs, we delimit the list of compounds by selecting non-magnetic gapped materials based 

on previous DFT calculations without SOC, as described below. Below, we describe the three steps of the 

materials selection process, namely: materials filtering based on the previous DFT calculations, materials 

selection based on the symmetry conditions (i.e., enabling DPs), and materials optimization (i.e., 

optimizing DPs).  

 

1. Find the subset of materials that are non-magnetic gapped compounds  

 

In order to reduce the computational cost of high-throughput density functional calculations, we 

delimit the studied compounds according to their atomic features, i.e., the number of atoms in the unit 

cell and the orbital type. Our starting point is thus a list from the aflow-ICSD database containing 20,831 

unique compounds with less than 20 atoms per unit cell [29] and restricted to atoms having only s, p 

and d orbitals. In the aflow-ICSD database, there were initially 58,276 entries (32,115 removing 

duplicated entries). Since we focus on gapped compounds preserving the time-reversal symmetry, we 

restrict the materials selection to non-magnetic compounds with non-zero bandgap. The screening of 

non-magnetic insulators has the bias of the DFT calculations performed in the aflow-ICSD database, 

where the charge density is usually initialized with a ferromagnetic configuration. This could make anti-

ferromagnetic compounds to be reported as ferromagnetic. In the aflow-ICSD database, we use the 

spin_cell feature, which correspond to the total magnetic moment per unit cell, to filter nonmagnetic 

compounds. This materials screening divides the initial database in two groups: 6,993 magnetic 
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materials and 13,838 non-magnetic compounds. On the other hand, in the aflow-ICSD, non-spin-

polarized calculations classify compounds as direct gap insulators, indirect gap insulators, metals, and 

half metals. Based on this classification, the 13,838 non-magnetic compounds are then divided into 

7,483 non-gapped and 6,355 gapped compounds (i.e., band gap larger that 1 meV), as represented in 

line 1 of Fig. 8. These 6355 non-magnetic insulator were previously obtained by us [7,20].  

 

 
Figure 8. Data-mining approach to select materials with multiple spin texture shapes near the band edges. The 

different filters and design principles are indicated in the left, and the number of selected materials for each filter 

are shown in the right side of the sketch. 

 

2. Find the subset of non-magnetic gapped compounds that can have different ST in the BZ 

 

We use the crystal point group of the compounds to filter materials satisfying EDP1 and EDP2. Table 

IV presents the space group index for each CPGS for different polarity, chirality, and Bravais lattices. We 

notice that there are Bravais lattices with symmetry forbidden CPGS categories. For instance, in 

orthorhombic and cubic (triclinic and cubic) lattices, there are no polar chiral (non-chiral) CPGS, and in 

triclinic and monoclinic (triclinic, monoclinic, orthorhombic, and rhombohedral) lattices, there are no 

non-polar chiral (non-chiral) CPGS. All these point groups are necessarily NCS (EDP1 in Fig. 8). We thus 

filter from the list of non-magnetic insulators those compounds having NCS CPGS. We find 1709 

compounds with NCS CPGSs and other list of 4645 compounds with CS crystal point groups, as 

represented in line 2 of Fig. 8. The 1709 compounds with NCS CPGS are divided into 228 polar chiral, 723 

polar non-chiral, 253 non-polar chiral, and 505 non-polar non-chiral compounds. In previous papers, we 

study the spin splitting and ferroelectric properties of the 951 polar (chiral and non-chiral) 

compounds [7,8,20]. In Table IV, we specify the abundance of compounds for each NCS CPGS. Curiously, 

there are no non-magnetic insulators having the NCS non-polar chiral CPGS 𝑂. Besides the CPGS 𝐶2𝑣 

with 320 compounds, the point groups 𝐷2𝑑, 𝑇𝑑, and 𝐶3𝑣 are the most abundant NCS CPGS with 194, 183, 

and 176 compounds, respectively (Table IV). Selecting compounds that can have multiple ST in the BZ 

(i.e., those with polar non-chiral, non-polar chiral or non-polar non-chiral CPGS), we obtain 1481 

compounds (EDP2 in Fig. 8).  
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Table IV. Space group indexes for 3D Bravais lattices classified according to the inversion symmetry as 

centrosymmetric, NCS non-polar, and NCS polar.   

Space groups indexes for the 3D Bravais lattices 

  Chiral Non-chiral 

 Triclinic 𝐶1: 1 (48)  -- 

 Monoclinic 𝐶2: 3-5 (131) 𝐶𝑠: 6-9 (112) 

 Orthorhombic -- 𝐶2𝑣: 25-46 (320) 

Polar Tetragonal 𝐶4: 75-80 (7) 𝐶4𝑣: 99-110 (31) 

 Rhombohedral 𝐶3: 143-146 (30) 𝐶3𝑣: 156-161 (176) 

 Hexagonal 𝐶6: 168-173 (12) 𝐶6𝑣: 183-186 (84) 

 Cubic -- -- 

 Triclinic -- -- 

 Monoclinic -- -- 

 Orthorhombic 𝐷2: 16-24 (88) -- 

 

 

Tetragonal 𝐷4: 89-98 (22) 𝑆4: 81-82 (68)  

𝐷2𝑑: 111-122 (194) 

Non-polar Rhombohedral 𝐷3: 149-155 (87) -- 

 Hexagonal 𝐷6: 177-182 (18) 𝐶3ℎ: 174 (4) 

𝐷3ℎ: 187-190 (56) 

 Cubic 𝑇: 195-199 (38) 

𝑂: 207-214 (0) 

𝑇𝑑: 215-220 (183) 

 

Although polar compounds usually have an intrinsic electric polarization, polar CPGS is as necessary 

but not sufficient condition for electric polarization. The cancelation of dipoles in polar compounds can 

be geometrically determined for each atomic site by considering vectors along the atomic bonds. 

Specifically, the electron transfer given by the atomic bonding of two different elements creates a 

microscopic dipole whose direction is opposite to electron transfer direction. For a given atomic site, if 

all neighbor atoms were locally distributed in such a way that the dipole vectors generated by each 

bonding cancel each other, then the local atomic site dipole would be zero, e.g., non-polar atomic sites. 

Local dipoles can add up to zero for first or second neighbors or be near zero dipole for more distant 

atomic neighbors (e.g., atomic distances larger than the sum of Van der Waals radius for two given 

elements), which can also be verified geometrically. Thus, polar compounds with non-polar atomic sites 

cannot have a total non-zero electric dipole, i.e., non-zero local dipoles can only be found in compounds 

with polar atomic sites. This gives an intuitive way to verify the local cancelation of dipoles using only 

the atomic positions and lattice vectors. From the 1481 NCS non-magnetic insulator, 1018 compounds 

have at least one polar site. We identify 867 compounds with non-zero dipole and 151 compounds in 

which local dipoles cancel each other. The proposed approach based on the geometrical information can 

result in false positives non-zero dipole, since the electron dipole also depends on the specific chemical 

species, which requires more exhaustive first principles calculations. Therefore, we retain this list of 

1481 non-magnetic NCS insulators for our next step. 
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3. Find the subset of non-magnetic NCS gapped compounds with ST that can potentially be 

controlled by the valley  

 

Since controllable valley energy requires a sufficiently small energy difference between states at 

different valleys 𝛥𝑘1𝑘2
, we restrict the materials selection based on this ODP (ODP2 in Fig. 8). In order to 

evaluate 𝛥𝑘1𝑘2
, we perform high-throughput DFT band structure calculations for the previously selected 

1481 non-magnetic NCS insulators with CPGS allowing multiple ST shapes in the BZ. The DFT calculations 

with SOC are performed using Perdew-Burke-Ernzenhof generalized gradient approximation (PBE) [58] 

as the exchange-correlation functional and the Coulomb self-repulsion on-site term U for transition 

metals [59] as implemented in the Vienna Ab-initio Simulation Package (VASP) [60,61]. Based on the 

high-throughput calculations for the 1481 non-magnetic NCS insulators that potentially have multiple ST 

shapes in the BZ, we evaluate the ODPs. We find that there are 64 compounds within ODP1 (i.e., linear-

in-𝑘 SSs larger than 1 meV at band edges and 𝑘-valleys with different CPGS categories). The final 

number of selected compounds depends on the threshold used for 𝛥𝑘1𝑘2
, which in turns depends on the 

resolution of the measurement and the specific device application. For instance, only 37 compounds 

have enough small energy difference between states at different valleys (ODP2), when we use 𝛥𝑘1𝑘2
=

100 meV. Tables V and VI show the experimentally synthetized compounds at the convex hull (i.e., 

energy above the convex hull equal to zero Ech=0 meV) obtained in the inverse design process. For each 

compound we present the ICSD code, energy above the convex hull (Ech) given by the materials project 

(meV/fu), spin splitting  (SS) in meV, and R-factor for refinement of the experimental structure. The 

double entries stand for compounds with the same atomic composition but different ICSD number and 

different SS.  

 

B. Discussion of the predicted compounds for potential spin-valeytronics applications 

 

The list of compounds identified to have multiple ST shapes in the BZ includes known ferroelectrics as 

GeTe and also 36 previously synthesized compounds potentially allowing the spin-polarization control 

based on the 𝑘-valley energy. Table V and VI show the 12 binary and 25 ternary rationally selected 

compounds. Here, we explore in details some of these compounds.  

Our inverse design approach confirms the multiple STs in GeTe (Rashba Hamiltonian at the Z and 

Rashba-Dresselhaus Hamiltonian at the A point), which is very well known because of its ferroelectric 

properties [13,19,25] (Table V). We find other fabricated compound with giant SS near band edges. For 

example, AsSe3Tl3 and SrIr2P2 have SS larger than 70 and 80 meV, respectively. While AsSe3Tl3 has 

Rashba and Rashba-Dresselhaus STs at the Z and L high-symmetry 𝑘-points, respectively, in SrIr2P2 the 

Weyl ST is found at the 𝛤 point and an undefined ST at the M point (Table VI). On the other hand, the 

DFT calculated Weyl, Rashba and Dresselhaus coefficients (𝜆𝑊, 𝜆𝑅, and 𝜆𝐷) are usually small (< 1 eV/Å). 

Indeed, only few compounds have large 𝜆 coefficient, e.g., NTlO2 with Weyl coefficient 𝜆𝑊 of 1.94 eV/Å 

at the 𝛤 point and 1.10 eV/Å at the high-symmetry point H. A remarkable example of a avery well knos 

compound with relatively weak SOC is the non-polar chiral SiO2 (P6522), CPGS=D6, that have radial ST at 

the high-symmetry point A (WPGS=CPGS) and tangential-radial ST at the high-symmetry point H 

(WPGS=D3), as shown in Fig. 9. The SS at these 𝑘-points are 26 and 6 meV, respectively. 
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Table V. Binary selected compounds with multiple ST shapes in the BZ. The energy difference between states at 

different valleys is Δk1k2
= 100 meV. The space group (SG), SG index, CPGS, and high symmetry k-points with non-

zero spin splitting (SS) are given for each compound, as well as the ratio between the SS and momentum offset 

𝜆 = Δss/k (eVÅ). The SOC Hamiltonian predicted by the WPGS (Fig. 3) is given for each high-symmetry k-point. 

Material ICSD SG index  CPGS k-point WPGS SOC 
Hamiltonian 

SS (meV) 𝜆 (eVÅ) 

Bi2O3 168810 R3m (160) 𝐶3𝑣 
F 𝐶3𝑣 R 7 0.20 

L 𝐶𝑠 RD 1 0.06 

GeTe 56040 R3m (160)  𝐶3𝑣 
L 𝐶𝑠 RD 28 3.00 

Z 𝐶3𝑣 R 209 4.25 

PbS 183243 R3m (160)  𝐶3𝑣 
L 𝐶𝑠 RD 20 2.12 

Z 𝐶3𝑣 R 56 1.95 

BaTe3 36366 P4̅21m (113) 𝐷2𝑑  

X 𝐶2𝑣 RD 11 1.09 

G 𝐷2𝑑  D 2 0.26 

Z 𝐷2𝑑  D 23 0.54 

Bi2O3 
 

41764 
 

P4̅21c (114) 
 

𝐷2𝑑  

X 𝐷2 WD 16 0.40 

G 𝐷2𝑑  D 1 0.09 

R 𝐷2 WD 13 0.36 

Bi2O3 168808 P4̅m2 (115) 𝐷2𝑑  
X 𝐷2𝑑  D 46 0.37 

R 𝐷2 WD 36 0.32 

B2O3 16021 P3121 (152) 𝐷3 
A 𝐷3 W 13 0.35 

L 𝐶2 Undefined 21 0.22 

SiO2 170542 P6522 (179) 𝐷6 

M 𝐷2 WD 3 0.11 

A 𝐷6 W 26 0.46 

H 𝐷3 D 6 0.12 

BeF2 
 

9481 
 

P6222 (180) 
 

𝐷6 
 

K 𝐷3 D 1 0.03 

A 𝐷6 D 6 0.11 

L 𝐷2 WD 1 0.05 

SnI4 

 

18010 

 

P4̅3m (215) 

 

𝑇𝑑  

 

X 𝐷2𝑑  D 19 0.64 

M 𝐷2𝑑  D 9 0.21 

G 𝑇𝑑  D 7 0.10 

R 𝑇𝑑  D 4 0.12 

SiO2 75647 P4̅3m (215) 𝑇𝑑  
X 𝐷2𝑑  D 2 0.31 

M 𝐷2𝑑  D 5 0.12 

H2O2 34253 P41212 (92) 𝐷4 
X 𝐷2 WD 22 0.32 

Z 𝐷4 W 4 0.37 

 

 

Table V. Ternary selected compounds with multiple ST shapes in the BZ. The energy difference between states at 

different valleys is Δk1k2
= 100 meV. The space group (SG), SG index, CPGS, and high symmetry k-points with non-

zero spin splitting (SS) are given for each compound, as well as the ratio between the SS and momentum offset 

𝜆 = Δss/k (eVÅ). The SOC Hamiltonian predicted by the WPGS (Fig. 3) is given for each high-symmetry k-point. 

Material ICSD SG index CPGS k-point WPGS SOC 
Hamiltonian 

SS (meV) 𝛼𝑅  (eVÅ) 

Nb3Sb2Te5 417101 I4̅3m (217) 𝑇𝑑  
H 𝑇𝑑  D 6 0.23 

N 𝐶2𝑣 RD 24 0.86 

AsSe3Tl3 15148 R3m (160) 𝐶3𝑣 
L 𝐶𝑠 RD 77 1.22 

Z 𝐶3𝑣 R 12 0.53 
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LaTlO3 200088 P63mc (186) 𝐶6𝑣 
M 𝐶2𝑣 RD 8 1.06 

G 𝐶6𝑣 R 8 0.56 

Ag5SbS4 16987 Cmc21 (36) 𝐶2𝑣 

S 𝐶2 Undefined 5  0.67 

G 𝐶2𝑣 RD  3  0.41 

Y 𝐶2𝑣 RD  10  0.39 

BaZnF4 182605 Cmc21 (36) 𝐶2𝑣 
R 𝐶2 Undefined  2  0.24 

Y 𝐶2𝑣 RD  9  0.11 

BaF4Zn 402926  Cmc21 (36) 𝐶2𝑣 
R 𝐶2 Undefined  2  0.23 

Y 𝐶2𝑣 RD  10  0.13 

ClMnO3 416749  Cmc21 (36)   𝐶2𝑣 
G 𝐶2𝑣 RD  2  0.06 

A1 𝐶2 Undefined  2  0.06 

LaTaO4  97688 Cmc21 (36)  𝐶2𝑣 

R 𝐶2 Undefined  40  0.48 

G 𝐶2𝑣 RD  1  0.03 

A1 𝐶2 Undefined  31  0.37 

Na2PtS2 87219 Cmc21 (36) 𝐶2𝑣 

S 𝐶2 Undefined  1  0.11 

R 𝐶2 Undefined  10  0.70 

G 𝐶2𝑣 RD  7  0.14 

Y 𝐶2𝑣 RD  1  0.07 

Na2PtSe2  40429 Cmc21 (36) 𝐶2𝑣 

S 𝐶2 Undefined  1  0.09 

R 𝐶2 Undefined  9  0.85 

Y 𝐶2𝑣 RD  1  0.09 

AgC2N3 843 P3121 (152) 𝐷3 

L 𝐶2 Undefined  1  0.09 

M 𝐶2 Undefined  1  0.09 

G 𝐷3 W  2  0.56 

AlAsO4 33834 P3121 (152) 𝐷3 

A 𝐷3 W  2  0.61 

L 𝐶2 Undefined  22  0.15 

BF4Li 171375  P3121 (152) 𝐷3 

A 𝐷3 W  5  0.10 

L 𝐶2 Undefined  6  0.06 

G 𝐷3 W  8  0.17 

BaZnO2 25812 P3121 (152) 𝐷3 

M 𝐶2 Undefined  1  0.05 

A 𝐷3 W  4  0.34 

G 𝐷3 W  9  0.19 

L 𝐶2 Undefined  13  0.79 

CsNO2 50327 P3121 (152) 𝐷3 
L 𝐶2 Undefined  1  0.10 

G 𝐷3 W  5  1.02 

NTlO2 50325  P3121 (152) 𝐷3 

L 𝐶2 Undefined  1 0.13 

H 𝐷3 W  6  1.10 

G 𝐷3 W  10  1.94 

A 𝐷3 W  80  0.83 

CaIr2P2 95756 P3221 (154) 𝐷3 
G 𝐷3 W  40  0.96 

M 𝐶2 undefined  77  0.85 

SrIr2P2 73531 P3221 (154) 𝐷3 
G 𝐷3 W  53  0.96 

M 𝐶2 undefined  87  0.84 

LaPO4 31564 P6222 (180) 𝐷6 
M 𝐷2 WD  3  0.49 

A 𝐷6 W  4  0.14 

Hg3Te2Br2 27402 I213 (199) 𝑇 
N 𝐶2 undefined  6  0.56 

G 𝑇 W  10  0.27 

Cl2Hg3S2 28159 I213 (199) 𝑇 
G 𝑇 W  3  0.14 

N 𝐶2 undefined  4  0.17 

Cl2Hg3Te2 27401 I213 (199) 𝑇 G 𝑇 W  9  0.31 
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N 𝐶2 undefined  32  0.68 

PtSnTh 108712 F4̅3m (216) 𝑇𝑑  
G 𝑇𝑑  D  4  0.33 

X 𝐷2𝑑  D  6  0.76 

GaPO4 30881 P3121 (152) 𝐷3 
G 𝐷3 W  2  0.54 

L 𝐶2 undefined  3  0.17 

GaPO4 33253 P3121 (152) 𝐷3 
G 𝐷3 W  2  0.50 

L 𝐶2 undefined  3  0.17 

 

 

VII. Conclusions  

 

Despite the fact that the crystal point group symmetry (CPGS) (e.g., absence or presence of 

electric dipoles) does not unequivocally determine the spin texture (ST), we find that the 

wavevector point group symmetry (WPGS) 𝒢∗(𝑘0) can be a descriptor for this functionality. The 

important consequence of this discovery is that the selectivity in types of STs can be 

rationalized on the basis of symmetry (not spin-orbit physics neither the mere existence of 

electric fields/dipoles), and therefore the ST can be designed. These consequences are 

extended to other spin related phenomena. For instance, the spin-momentum locking effect is 

enforced by symmetry, rather than a consequence of strong SOC or topological effects.  

Additionally, our findings suggest the possibility of accessing different ST in the same compound 

by controlling the relative energy position of states in different valleys of the Brillouin zone, 

which has potential application for spin-valleytronics. We use the symmetry conditions defining 

the ST to establish all possible ST prototypes in the 21 NCS crystal point group symmetry for 

three-dimensional crystals. Using these symmetry relations as design principles, we select 1481 

compounds from the aflow-ICSD database [29]. Performing DFT band structure calculations for 

the selected compounds, we predict 37 materials unnoticed to have multiple ST shapes at 

different 𝑘-valleys. The ST symmetry classification as well as the predicted compounds with multiple 

ST can be a platform for potential application for the control of the ST by accessing to different valleys. 
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