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CaFe2O4 is an S = 5/2 antiferromagnet exhibiting two magnetic orders which shows regions of
coexistence at some temperatures. Using a Green’s function formalism, we model neutron scattering
data of the spin wave excitations in this material, ellucidating the microscopic spin Hamiltonian. In
doing so, we suggest that the low temperature A phase order (↑↑↓↓) finds its origins in the freezing
of antiphase boundaries created by thermal fluctuations in a parent B phase order (↑↓↑↓). The
low temperature magnetic order observed in CaFe2O4 is thus the result of a competition between
the exchange coupling along c, which favors the B phase, and the single-ion anisotropy which
stabilizes thermally-generated antiphase boundaries, leading to static metastable A phase order at
low temperatures.

I. INTRODUCTION

The manipulation of the domain-wall motion of ferro-
magnets via a coupling to external fields has been sug-
gested as a promising mechanism for the design of logic
gates [1] and racetrack memory devices [2, 3] for the
next generation of quantum devices. Additional atten-
tion has been paid to the control of antiferromagnetic
domain walls, which overcome the practical difficulties
of the large stray fields associated with their ferromag-
netic counterparts, yet cannot be controlled with a simple
external field [4]. Nonetheless, mechanisms have been
suggested for the control of antiferromagnetic domain
walls ranging from thermal activation [5] to spin-orbital
torques [6] and magnon-driving [7].

One antiferromagnetic system which may prove in-
structive in the study of magnon-soliton interactions and
antiphase boundary effects is the S = 5

2 antiferromag-
net CaFe2O4. Polarized neutron diffraction data show
the existence of spatially extended Bloch walls separat-
ing antiphase regions of antiferromagnetic order [8]. The
antiphase boundaries have been found to carry an un-
compensated local moment and are hence tunable in field
[8]. Furthermore, the low energy magnetic excitation
spectrum was found to exhibit discrete modes [9], per-
haps indicative of confinement of solitons within a non-
linear potential which arises due to frustration between
domains on weakly coupled chains [10]. Knowledge of the
microscopic spin Hamiltonian is a necessity before a full

understanding of the antiphase boundaries can be gained,
yet a consistent picture of the magnetic interactions in
CaFe2O4 has proved elusive.

CaFe2O4 exhibits two magnetically ordered phases.
The high temperature B phase, consists of two-
dimensional networks of coupled zig-zag chains which
are stacked along c in the (↑↓↑↓) pattern (see Fig. 1
(a)). As temperature is decreased, the A phase develops,
which differs only in its (↑↑↓↓) c axis stacking [9, 11].
These two phases are observed to coexist, yet the tem-
perature range of this coexistence and the ultimate low
temperature structure differ between single crystal and
powder samples [12, 13]. In single crystals the ordered
moment does not saturate at 5µB , with spectral weight
redistributed to momentum-broadened rods of scatter-
ing along c∗, confirmed by polarization analysis to be
magnetic in origin [9], indicative of antiphase bound-
aries along c. From polarized diffraction data of the
momentum-broadened component, at T = 5 K the cor-
relation length along c was determined to be ∼ 1 − 2
unit cells [9] indicating highly localized correlations. The
ability to measure magnetic diffuse scattering in powders
without polarization analysis or a large amount of dif-
fuse spectral weight is limited, making the presence of
antiphase boundaries in powder samples difficult to de-
tect. However, the ordered moment is observed to be
suppressed in polycrystalline samples [13]. A full charac-
terization of the magnetic excitations at both high and
low temperature has not yet been presented.

In this paper, we address the nature of the magnetic or-
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der in CaFe2O4 and offer an explanation for the differing
behavior observed in powders and single crystals. The
low temperature A phase is shown to be metastable, with
short range correlations, analogous to the field-induced
metastable states recently reported in CoV2O6 [14], in
which antiphase boundaries order to form a new phase
with a different translational symmetry [15]. These argu-
ments are supported by neutron scattering data at both
high and low temperatures, demonstrating the nature
of the magnetic fluctuations in single crystal CaFe2O4.
Finally, using a random phase approximation (RPA)
Green’s function formalism, we model the magnetic exci-
tations in CaFe2O4 and determine the spin Hamiltonian.

II. ANTIPHASE BOUNDARIES

A. Structure

CaFe2O4 crystallizes in the orthorhombic Pnma space
group (a=9.230Å, b=3.017Å, c=10.689Å), with coupled
zig-zag chains of Fe3+ (S=5/2, L=0) ions in the a − b
plane [11, 16–18]. Previous studies have reported the sta-
bilization of two competing magnetic orders below TN ≈
200 K [9, 11–13, 19]. In the low temperature A phase
(Fig. 1 (a)) the stacking along c is (↑↑↓↓) with the cou-
plings J2a and J2b connecting parallel spins. In the high
temperature B phase (Fig. 1 (b)), the c axis stacking is
(↑↓↑↓) with J2a and J2b coupling antiparallel spins.

The behavior observed is qualitatively different be-
tween powder and single crystal samples and is summa-
rized in Table I. To examine the magnetic structure of
the powder samples, we used the BT-1 diffractometer
at the NIST Center for Neutron Research (NCNR) with
wavelength λ=2.0782 Å(Ge 311 monochromator). The
low and high temperature diffraction patterns are shown
in Fig. 2 (a) and (b) respectively. In the powder sam-
ples, B phase order, as indicated by the presence of the
Q = (1, 0, 1) peak, is observed on cooling below T ≈
200 K and is maximal at T ≈ 175 K. Below this tem-
perature, the Q = (1, 0, 2) peak begins to accumulate
spectral weight, overtaking the B phase in intensity at T
≈ 150 K (Fig. 2 (c)). The B phase peaks are observed
to disappear at around T = 125 K after a brief tempera-
ture window of coexistence between T ≈ 125 K and T ≈
175 K. The powder diffraction data would thus indicate
a preferential A phase ordering at low temperature, with
(↑↑↓↓) stacking along c, rather than the B phase order
with its (↑↓↑↓) arrangement. This result is in agreement
with the findings of Songvilay et al [13] who have further
shown that chemical doping with Cr prevents the sta-
bilization of A phase order, observing only the B phase
in CaCr0.5Fe1.5O4. Pure CaCr2O4 shows an altogether
different magnetic structure, with an incommensurate cy-
cloidal propagation vector [20–22].

The story is somewhat different in single-crystal sam-
ples. Between T ≈ 200 K and T ≈ 100 K, B phase
magnetic order is dominant as seen in Fig. 1 (d). This is

confirmed by magnetic susceptibility measurements [12]
showing a feature at the onset of B phase order. Below
T ≈ 100K the A phase becomes the more prevalent mag-
netic order (Fig. 1 (d)). The existence of a transition
to the A phase is argued on the grounds of the appear-
ance of the peak at Q = (1, 0, 2), however it is important
to note that no thermodynamic measurements have been
reported showing the existence of a second phase tran-
sition, and only a single order parameter was detected
in the Mössbauer spectroscopy measurements, showing a
power law temperature dependence [23]. Observing the
relative intensities of the (1, 0, 2) and (1, 0, 1) peaks, the
two phases can be seen to saturate in a 2:1 ratio at low
temperature (Fig. 1 (d)).

It has previously been suggested that the phase
coexistence could originate from a fine balancing
of the exchange parameter J2a/b on the ferromag-
netic/antiferromagnetic threshold which is sensitive to
subtle changes in the bond angle as a function of temper-
ature [13]. However, these arguments rely on an element
of exchange disorder to account for the persistence of B
phase order down to low temperatures in the single crys-
tal samples, and the region of phase coexistence in the
high temperature phase of the powder. Moreover, the
discrepancy between the powder and single crystal data
remains unexplained. We now present an alternative ex-
planation for the temperature dependence of the phase
coexistence based on antiphase domain formation.

TABLE I. Magnetic structures observed in CaFe2O4. Data
from Cr doped sample reproduced from Ref. [13].

Sample B phase A phase Coexistence?

CaFe2O4 single crystal 200-5 K 175-5 K 175-5 K

CaFe2O4 powder 200-150 K 175-5 K 175-150 K

CaCr0.5Fe1.5O4 powder 200-5 K × ×

We first discuss the single crystal before turning our
attention to the powder samples. The single crystals
described in this paper are the same as those used in
Refs. [8–10] and were grown using a mirror furnace, as
described in the Supplemental Material of Ref. [9]. Pre-
vious studies of these single crystals [8, 9] have demon-
strated the presence of rods of diffuse magnetic scatter-
ing along [0,0,L] indicating that correlations along c are
short-range. Furthermore, at T = 200 K neutron spin
echo (NSE) measurements reveal the dynamical nature
of this diffuse scattering [8, 9], with the static compo-
nent increasing rapidly as the sample was cooled below
T = 100 K (Fig. 1 (d)). By examining the magnetic
structure in the two phases, we can see that the creation
of an antiphase domain boundary in global B phase or-
der gives rise to a local A phase stacking (and vice versa)
as demonstrated in Fig. 1 (c) [8]. Consequently, we ar-
gue that the phase coexistence at low temperature can
be understood as arising due to the freezing-in of an-
tiphase boundaries in a parent B phase order. In order
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FIG. 1. Structure of CaFe2O4 in the A (a) and B (b) phases, which differ in their c axis stacking. The couplings J1a and
J1b link parallel spins along b, with the J2a and J2b linking parallel and antiparallel spins in the A and B phases respectively.
The exchanges J3 and J4 define antiferromagnetically aligned chains in both phases. (c) Magnetic structure along the c axis
showing the (↑↑↓↓) and (↑↓↑↓) configuration of the A and B phases respectively. The effect of an antiphase boundary (APB)
in the B phase order is illustrated, giving rise to local A phase order (golden rectangle). The mapping onto the matrix M
is demonstrated, with each spin pair mapped onto ±1. (d) Temperature dependence of the order parameters of the A and B
phases, Q=(1,0,2) and Q=(1,0,1) respectively. Black points show the temperature dependence of the static component, α, of
neutron spin echo (NSE) at Q=(1,0,1.5), data reproduced from Ref. [9].

to demonstrate this, we introduce the following toy model
of domain formation.

The chain along c is split into pairs of spins, with each
pair assigned the value of +1 or -1 depending on the ori-
entation of the spin pair (Fig. 1 (c)). In a pure B phase
arrangement the magnetic structure can be represented
by the infinite array, M = ±[1, 1, 1, 1, ...]. Where ± labels
the two degenerate spin configurations (of which we se-
lect the positive state from now on, for definiteness). To

introduce a domain wall at position i, we flip the signs
from position i + 1 onwards, M = [1, 1,−1,−1, ...], for
example. Let F(i, p) be the operator that has a p(%)
chance of flipping the signs on all sites after site i, hence
creating an antiphase boundary at site i. After operating
on each element of the array with the nonlocal operator

M′ =

N∏
i

F(i, p)M, (1)
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FIG. 2. (a) Neutron diffraction data of a powder sample of CaFe2O4 measured on BT-1 at (a) T = 7 K and (b) T = 230 K. (c)
Magnetic moment of the Q = (1, 0, 1) and Q = (1, 0, 2) Bragg peaks in the powder sample. The small window of coexistence
and loss of the B phase at low temperature shows a qualitatively different behavior to the single crystal sample [9].

we then analyze the local order by examining the relative
signs on each site. Each occurrence of the pattern M′ =
[...,±1,±1, ...] can be assigned to the B phase, with M′ =
[...,±1,∓1, ...] belonging to the A phase, leading to an
array of length N − 1, P = [A,B,B,A, ...], for example,
describing the local order.

For p = 67%, the ratios of A to B phase are found to
be 2:1 in agreement with the low temperature neutron
diffraction data [9]. The B phase magnetic unit cell con-
sists of along two spins along c (or one element of M) and
hence a flipping ratio of p = 67% gives rise to domains
with an average size of 1.5 elements, corresponding to 1.5
unit cells, in agreement with the measured correlation
length of 1-2 unit cells, from neutron diffraction [9]. The
same analysis can be applied to a parent A phase order,
with p = 33%, leading to an average domain size of four
elements of M which, again corresponds to a correlation
length of 1.5 unit cells (owing to the doubled magnetic
unit cell of the A phase). However, the appearance of the
Q = (1, 0, 1) peak at TN along with a significant com-
ponent of magnetic dynamical diffuse scattering, which
becomes static on the onset of A phase order is sugges-
tive of the former scenario. We thus conclude that the
single crystal data are consistent with a parent B phase
order with antiphase domain boundaries that freeze-in at
low temperature leading to local A phase order. This is
still suggestive of a small J2a/b so that the energy cost
of creating an antiphase boundary is of the order of the
temperature, but we conclude that this bond must be
strictly antiferromagnetic, in order that the parent mag-
netic order is B phase.

The persistence of the B phase (1, 0, 1) peak down to

low temperature in the single crystal sample is indica-
tive of domain pinning effects arising due the presence of
oxygen vacancies, known to be present in CaFe2O4 single
crystals [12, 24]. If the flipping ratio were to tend towards
p = 100%, we would expect pure A phase order at low
temperature and a disappearance of the B phase Bragg
peaks, precisely as observed in the CaFe2O4 powder sam-
ples [13]. This is to be expected if the powder samples
were to have fewer oxygen vacancies and hence facilitate
the full conversion of B phase to A phase order. The
magnetization measurements of Das et al [12] demon-
state that vacancy-driven disorder alone cannot account
for the discrepancy between the powder and single crystal
samples, indeed another ingredient is needed.

Crucial to the survival of the low temperature A phase
is the presence of an anisotropy gap that stabilizes the A
phase structure at low temperature despite the frustra-
tion of J2a/b. We note that the neutron scattering mea-
surements of Songvilay et al suggest a significant reduc-
tion in the anisotropy gap in the Cr doped samples [13],
which may explain the failure to stabilize A phase order
at low temperatures. In the 3d5 high spin complexes,
owing to the absence of an orbital moment, the spin
Hamiltonian is expected to be isotropic. The observed
anisotropy gap is thus evidence of the mixing of higher
energy multiplets into the ground state orbital singlet,
6S. This mixing occurs due to higher order processes
such as a second order process involving the spin-spin in-
teraction and an axial crystal field via the 6D state [25]
or to fourth order via squares of the spin-orbit and dis-
tortion terms [26]. Ultimately, the anisotropy terms that
appear in the effective spin Hamiltonian must respect the
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crystal symmetry [27] and hence should be proportional
to the Steven’s parameter, µ ∼ B0

2 [28, 29]. The vital
role of the axial distortion term in mixing higher order
multiplets into the 6S ground state indicates that the
anisotropy should couple strongly to strain in CaFe2O4,
which exhibits a significant distortion of the local octa-
hedral environment [16]. It is therefore unsurprising that
doping suppresses the magnitude of the anisotropy [13]
and that the magnetic behavior shows a strong depen-
dence on the density of oxygen vacancies [12], since both
processes affect the local axial crystal field. The role
that anisotropy plays in the stabilization of the A phase
in turn suggests an explanation for the differing behavior
in powder and single crystal samples. In powder sam-
ples, the grinding process introduces strain which would
indicate an enhancement of the single ion anisotropy pa-
rameter, µ, promoting the stabilization of A phase order.
We now further explore the temperature dependence of
the anisotropy gap in single crystal samples using neu-
tron scattering.

B. Anisotropy

Temperature-dependent constant Q scans at the Q =
(−1, 0, 2) position were conducted on the RITA-II triple-
axis spectrometer at the Paul Scherrer Institute (Villi-
gen, Switzerland) [30] (Fig. 3 (a)). The asymmetric line-
shape arises from the finite resolution and the curvature
of the dispersion curve. The peaks are resolution-limited
and for convenience we approximate the asymmetric line-
shape with an antisymmetric Lorentzian function,

I(E) ∝ [n(ω) + 1]

(
1

1 +
(
E−Ω0

Γ

)2 − 1

1 +
(
E+Ω0

Γ

)2
)

(2)

whose peak width is allowed to vary sigmoidally

Γ(E) =
2Γ0

1 + exp [a(E − Ω0)]
(3)

such that the degree of asymmetry is controlled by a
single parameter, a and for a = 0, the width becomes
symmetric, Γ = Γ0 [31]. The value of the asymmetry pa-
rameter, along with Γ0, Ω0 and an overall scaling factor
were fitted using the HORACE package [32]. The value of
the gap follows a power law behavior, vanishing above
T ≈ 200 K, concomitant with the loss of order along c.
This is in good agreement with the temperature at which
the Q = (1, 0, 1) peak vanishes (Fig. 1 (d)). At T = 1.5
K a second peak is seen above the gap ∼ 4 meV, in Fig.
3 (b), which can be understood in terms of the discrete
non-classical excitations reported previously in this sys-
tem [8–10]. By plotting the gap as a function of reduced
temperature t = (T − Tc)/Tc, we can fit a dimension-
less scaling exponent and critical temperature according
to ∆ ∼ |t|β . The fitted value of β = 0.28(3) is below
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FIG. 3. (a) Temperature dependence of the gap at Q =
(−1, 0, 2) measured on the RITA-II spectrometer. Solid lines
are fits to asymmetric Lorentzians. (b) Anisotropy gap at
T=1.5 K with ∆ = 3.14(5)meV. A low intensity peak at 1
meV is seen originating from in-gap mode, discussed in Ref.
[8] in addition to a discrete mode at 3.9 meV originating from
non-classical excitations [8–10]. (c) Extracted magnitudes of
the gap as a function of reduced temperature, t. The data
have been corrected for the Bose-Einstein population factor
at each temperature.

the expected scaling exponent for the 3d Ising model
(β = 0.3265(15)) [33]. The departure of the gap’s scaling
exponent from the expected critical exponent of the order
parameter indicates the presence of some temperature de-
pendence of the anisotropy parameter, beyond a simple
renormalization due to a thermal fluctuation-driven re-
duction of the magnetization, and hence a decoupling of
the magnetic order parameter and the anisotropy param-
eter. Such a temperature dependence has been observed
in other ferrites and materials exhibiting strong magne-
tostrictive effects [34–36]. The ramifications of this tem-
perature dependence of the anisotropy parameter will be
discussed further later in the paper. We now analyze
the phonon excitations which would be sensitive to any
structural domains.

C. Acoustic phonons

The spin-wave analysis presented here shows that the
magnetic excitations in CaFe2O4 can be consistently un-
derstood in terms of the same exchange constants in the
high (B phase) and low (A phase) temperature phases,
up to a small temperature renormalization. To confirm
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the lack of temperature dependent structural effects, we
discuss the transverse acoustic phonons.

The lifetime and energy positions of acoustic phonons
are sensitive to the formation of structural defects or
localized structural domains. This has been shown
in scattering studies of, for example, localized po-
lar domains [37] in relaxor ferroelectrics such as
Pb(Zn,Mg)1/3Nb2/3O3 [38–41] and the disordered per-
ovskite K1−xLixTaO3 [42]. To confirm the lack of
any structural domains forming that may drive either
the antiphase boundaries discussed above or the tran-
sition from the B phase to the A phase, on cooling,
we investigated the temperature dependence of trans-
verse acoustic phonons propagating both along c and
a axes in CaFe2O4. Acoustic phonon measurements
were performed on the EIGER triple-axis spectrome-
ter (PSI, Switzerland) [43]. The incident neutron beam
was monochromated with a vertically focused PG(002)
monochromator defining Ei and the final energy was fixed
to Ef = 14.6 meV with a PG(002) analyzer, with the en-
ergy transfer defined by E=Ei-Ef . Collimation was set
to 80 minutes before and after the sample position and
a pyrolytic graphite filter was used after the sample to
remove higher order contamination of the neturon beam.
The sample was aligned such that Bragg reflections of
the form (H K 0) lay within the horizontal plane.
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FIG. 4. The transverse acoustic phonons propagating along
(a) the c and (b) the a axes. The resolution is depicted by
the solid horizontal lines. (c) illustrates the temperature de-
pendence of both phonon modes. No measurable anisotropy
or temperature dependence is observed.

Constant momentum cuts through the transverse
acoustic phonons propagating along the c and a axes
are illustrated in Fig. 4 (a) and (b). The solid line is
a fit to a damped simple harmonic oscillator character-
ized by the antisymmetric Lorentzian lineshape (Eqn. 2),
with Ω0 defining the energy position of the phonon and
Γ the half-width in energy, inversely proportional to the
lifetime τ . The full width 2Γ is shown in Fig. 4 (c) for
phonons propagating along both directions. The function
defined in Eqn. 2 consists of the Bose factor multiplying
an odd function which ensures that the scattering cross
section satisfies the principle of detailed balance [44].

In analogy to the relaxor ferroelectrics mentioned
above where nanoregions of polar order are present, we
would expect that phonons travelling along the caxis,
where antiphase domain boundaries exist, to possibly be
damped and this damping to be temperature dependent.
Fig. 4 shows three key results; first, the acoustic phonons
are not measurably broader than the resolution defined
by the spectrometer; second, there is no observable tem-
perature dependence to the linewidth; third, there is
no observable anisotropy to the linewidth with phonons
travelling along both the a and c axes showing similar
responses. While we are constrained by the energy res-
olution of the spectrometer and also the possibility that
any effect from the domains affects lower energy phonons,
this result does support the idea presented in this paper
that there is no observable structural changes with tem-
peratures that drive the magnetism.

III. FLUCTUATIONS AND NEUTRON
SCATTERING

The arguments presented in Sect II rely on knowledge
of the exchange parameters in the spin Hamiltonian. In
order to validate our model of A phase formation through
antiphase boundary freezing we turn to the low energy
dynamics.

We present neutron scattering data for CaFe2O4 show-
ing the magnetic fluctuations in both the high and low
temperature phases. Following Refs [45–48], we apply
a Green’s function formalism to model the low energy
excitations in both phases, demonstrating the utility of
this method in systems without an orbital degree of free-
dom. A complete derivation of the Green’s function for a
general collinear system can be found in Appendix A. In
applying the Green’s function formalism to CaFe2O4, we
show that, in the case of a single-ion Hamiltonian that
consists solely of a mean field term, the Green’s function
collapses to a simple expression allowing the calculation
of the dispersion relation and dynamical structure factor.
Finally, we fit the neutron scattering data, extracting ex-
change constants and determining the microscopic spin
Hamiltonian.
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A. Magnon excitations

We now discuss the dynamics of CaFe2O4. Previous
studies have shown the presence of rods of diffuse scatter-
ing, indicating the presence of antiphase boundaries and
revealing the short range nature of correlations along c
[8, 9]. Despite this, at low temperature, a measurable dis-
persion along L is observed [9]. We now present data from
the cold chopper spectrometer LET [49] at ISIS Pulsed
Neutron and Muon Source (Didcot, UK), concerning the
low energy dynamics along L. The incident energy was
selected to be Ei = 8 meV, with the high flux chopper in
the 280/140 configuration, giving an elastic resolution of
∆E = 0.2 meV.

At T = 5 K, a broad gapped low energy mode is ob-
served, extending up to ∼ 7 meV as seen in Fig. 5 (a).
The gap is ∼ 3 meV, in agreement with the data from
RITA-II (Fig. 3 (b)). Upon heating to T = 190 K, the
gap closes in agreement with the RITA-II data (Fig. 3
(c)), and the scattering broadens becoming incoherent,

a) LET, T= 5 K b) LET, T= 190 K

c) MERLIN, T= 5 K d) MERLIN, T= 175 K

e) MERLIN, T= 5 K f) MERLIN, T= 175 K

FIG. 5. Dispersion along c∗ at (a) T = 5 K and (b) T =
190 K. Overlaid is the calculated low temperature dispersion,
with the fitted exchange constants from Sect. III B. Spectral
weight is concentrated in the mode whose minimum is at Q =
(2, 0, 0). As temperature is increased, the signal broadens
and becomes incoherent as correlations along c are lost. (c)
Dispersion along H at T = 5 K and (d) 175 K, measured on
MERLIN. (e) Dispersion along K at T = 5 K and (f) 175
K. The intensities for both datasets on each instrument have
been corrected for the Bose-Einstein population factor.

consistent with the loss of correlations along c. It is im-
portant to note that our calculations for the dispersion
(in both the pure A phase and pure B phase structures)
suggest that two modes are present, crossing at L = 0.5
(Fig. 5 (a)). Only one of these modes is observed to
carry any spectral weight.

In order to map out the excitations to higher energies
in the (H,K) plane, neutron scattering was carried out on
the time-of-flight spectrometer MERLIN at ISIS Neutron
and Muon Source (Didcot, UK) [50]. The sample was
cooled to T = 5 K and an incident energy of 70 meV was
selected, with a gadolinium chopper spinning at ν = 300
Hz, allowing for an elastic resolution of ∆E = 3.6 meV.
Strongly dispersive modes were observed along H (Fig. 5
(c)), extending up to ∼ 35 meV, in agreement with Ref.
[9]. Steeply dispersing spin waves were also measured
along K (Fig. 5 (e)) confirming the three-dimensional
nature of the spin waves in this system.

The sample was then warmed to T = 175 K and the
measurement repeated (Fig 5 (b, d, f)). The excitations
broaden at this temperature, along with a small renor-
malization of the bandwidth. The dispersion remains
qualitatively similar at this temperature, with similar
structure factor modulation. Fig. 6 shows the disper-
sion along [-H,H]. At low temperature, two modes are
seen with two peaks observed at the zone boundary (Fig.
6 (b)). At high temperature, once again the dispersion
looks qualitatively similar, but the broadening obscures
many of the features seen at low temperature, and the
two peaks at the zone boundary are no longer resolved.
We now construct a microscopic spin Hamiltonian to
model the spin wave excitations measured at high and
low temperatures.

B. Theory

The Fe3+ (S = 5
2 , L = 0) ions in CaFe2O4 are sur-

rounded by an octahedron of oxygen ions [16]. The dis-
torted nature of these octahedra allows for the presence
of an easy-axis anisotropy term µ ∼ B0

2 [28, 29], break-
ing spin rotational symmetry and aligning the spins along
b. The dependence of the anisotropy parameter on the
Steven’s parameter, B0

2 , suggests an origin for the anoma-
lous temperature dependence of the anisotropy gap pre-
sented in Sect. II B, as the anisotropy parameter is cou-
pled to the local crystalline environment of the Fe3+ spins
due to the mixing of higher energy multiplets into the
ground state orbital singlet [25–27]. As such, very subtle
changes in lattice parameters originating from magnetoe-
lastic coupling, as reported for CaFe2O4 in Ref. [13], can
be expected to have a marked effect on the strength of
the anisotropy, despite having only a small effect on the
Fe-O-Fe bond angle.

The absence of an orbital degree of freedom motivates
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FIG. 6. (a) Cut along [H,-H] at T = 5 K, showing the presence of two modes, with non-trivial structure factor variation. (b)
Constant Q cut at the zone boundary. Red line is the fit to the Green’s function model. (c) Constant energy cut at E = 27.5
meV with fitted Green’s function model. (d)− (f) T = 175 K data showing a broadening of excitations and a small bandwidth
renormalization. The intensities for both datasets have been corrected for the Bose-Einstein population factor.

a spin-only Hamiltonian,

H =
∑
ij

JijSi · Sj + µ
∑
i

(
Ŝzi

)2

(4)

where µ < 0 represents an easy axis single-ion anisotropy.
The existence of two crystallographically inequivalent
Fe3+ sites, in conjunction with the magnetic order, ne-
cessitates the use of an enlarged magnetic supercell of
four sites in the B phase. The breaking of inversion sym-
metry in the low temperature A phase further enlarges
the unit cell to eight sites and necessitates the averaging
of the spin-inverted structure factors since S+−(q, ω) 6=
S−+(q, ω). The spin Hamiltonian can be separated into
single and inter-ion terms, H = H1+H2, by performing a
mean field decoupling, Si,γ → 〈Siγ〉+δSiγ and discarding
terms ∼ O(δSiγ)2

H1 =
∑
iγ

Ŝziγ

2
∑
jγ′

Jγγ
′

ij 〈Ŝ
z
jγ′〉+ 2µ〈Ŝziγ〉

 (5a)

H2 =

γγ′∑
ij

J γγ
′

ij Ŝziγ

(
Ŝzjγ′ − 2〈Ŝzjγ′〉

)

+
1

2

γγ′∑
ij

J γγ
′

ij

(
Ŝ+
iγ Ŝ
−
jγ′ + Ŝ−iγS

+
jγ′

)
.

(5b)

The first term is Zeeman term describing the molecular
mean field felt by each site H1 =

∑
iγ h

MF
iγ Ŝziγ . This

splits the 2S + 1 degenerate energy levels (Fig. 7). The

commutators [Ŝαi′γ̃ ,H] can be calculated to mean field
level; only the transverse elements survive

[Ŝ+
i′γ̃ ,H] =

∑
jγ′

Aγ̃γ
′

i′j Ŝ
+
jγ′ (6a)

Aγ̃γ
′

i′j = −hMF
i′γ̃ δi′jδγ̃γ′ + 2J γ̃γ

′

i′j 〈Ŝ
z
i′γ̃〉. (6b)

This commutator can be inserted into the Green’s func-
tion equation of motion (Appendix A) to yield the
Green’s functions,

ωG+−
γ̃γ̃′ (i

′j′, ω) =〈[Ŝ+
i′γ̃ , Ŝ

−
j′γ̃′ ]〉

+
∑
jγ′

Aγ̃γ
′

i′j G
+−
γ′γ̃′(jj

′, ω). (7)

This can be written as∑
jγ′

G+−
γ′γ̃′(jj

′, ω)
[
ωδi′jδγ̃γ′ −Aγ̃γ

′

i′j

]
= 〈[Ŝ+

i′γ̃ , Ŝ
−
j′γ̃′ ]〉.

(8)

Taking the Fourier transform and performing the sum-
mation, we can write Eqn. 8 as a matrix equation. On
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a) b) c)

FIG. 7. (a) Visualization of the splitting of the 2S+1 single-
ion energy levels for an S = 5/2, L = 0 ion, due to a molecular
mean field. The separation between energy levels is given by
ω01 = ω1 − ω0. (b), (c) The effect of the operation of Ŝ− on
sites in the ↑ (b) and ↓ (c) state [53].

doing so, the Green’s functions take the convenient form

G+−(q, ω) = B
[
Iω −A(q)

]−1
. (9)

where Bγ̃γ̃
′

= δγ̃γ̃′〈Ŝγ̃〉. This expression for the trans-
verse Green’s function is similar to the expression found
by dynamical mean field theory [51], where the correla-
tion function is found from the Landau-Lifshitz equation.
The dispersion relation can be found analytically by di-
agonalizing the matrix Aγ̃γ̃

′
(q) and the Green’s function

found by calculating the matrix product on the right-
hand side of Eqn. 9 on a grid in energy-momentum space.
The dynamical structure factor can then be calculated
via the fluctuation-dissipation theorem [52]

S(q, ω) = − 1

π
(1 + n(ω)) ImG(q, ω). (10)

Expressions for A(q) and B can be found in Appendix B.
We add a small imaginary offset to the energy, ω → ω+iε
to give the intensity peak a finite width. The resultant
lineshape takes the form of a Lorentzian of width 2Γ = 2ε,
which in our low temperature analysis will be set to a
value smaller than the instrument resolution.

The six shortest bonds have bond lengths of between
3.01-3.66Å, therefore it is not clear by distance alone
which should be the strongest. The shortest two bonds
J1a and J1b are of the same length, both linking parallel
spins along b, but are crystallographically inequivalent,
with J1a and J1b forming the legs of the blue and cyan
zig-zag chains respectively. The presence of antiphase
domain boundaries, and the near 90◦ Fe-O-Fe exchange
path along a shared octahedral edge, indicates that the
next two shortest bonds J2a and J2b are likely to be small
[54]. The measurable dispersion along H and L (Fig. 5)
is suggestive of a non-negligible J3 and J4. Thus in order
to write down the minimal physically-motivated model,

we must include the six shortest bonds (Fig. 1 (a)),

J =



J1a J2a 0 J3 0 J4 0 0

J2a J1a J3 0 J4 0 0 0

0 J3 J1b J2b 0 0 0 J4

J3 0 J2b J1b 0 0 J4 0

0 J4 0 0 J1b J2b 0 J3

J4 0 0 0 J2b J1b J3 0

0 0 0 J4 0 J3 J1a J2a

0 0 J4 0 J3 0 J2a J1a


. (11)

The MERLIN data at T = 5 K were fitted using HORACE
[32] with values of µ, J2a and J2b fixed. The TOBYFIT
package was used to account for the resolution function
on MERLIN and contributions from the guide, chopper
and moderator were considered. In accordance with our
conclusion that the underlying magnetic order is B phase,
we used a B phase only model. These parameters were
then refined by fitting the LET data using the values
obtained from the MERLIN fit. This process was iter-
ated until good agreement was achieved. The effect of
taking J2a 6= J2b is to open a gap at the crossing point
along L (Fig. 8). Such a gap is not seen in the data so
we therefore set J2a = J2b = J2. The refined values of
the exchange constants are listed in Table II. The dom-

TABLE II. Fitted exchange constants, Ji, and anisotropy
parameter, µ, for the bonds labelled in Fig. 1 (a).

Ji Distance (Å) Value (meV)

J1a 3.018 0.03(1)

J1b 3.018 0.38(1)

J2a 3.077 0.047(2)

J2b 3.096 0.047(2)

J3 3.570 3.4(3)

J4 3.659 3.2(3)

µ - -0.035(1)

inant exchange couplings were determined to be J3 and
J4, with J2 confirmed to be small. The frustrated na-
ture of the bonds J1a and J1b gives rise to the arch-like
dispersion at (-2,0,L) (Fig. 6), which is well reproduced
in our model (Fig. 9) . Crucially, J2 was determined to
be small, J2 < 0.05 meV, meaning that the creation of
an antiphase boundary carries a small energy cost and
thermal fluctuations at high temperature can overcome
this barrier, thus explaining the significant fraction of
dynamical diffuse scattering [8].

The effect of nonzero J2 warrants some consideration.
In one of the two magnetic structures, this bond is ex-
pected to be frustrated and hence two copies of the dis-
persion curve along c∗ would be expected (with a dif-
ferent gap and bandwidth) if both phases were to con-
tribute to the signal along c∗. No such duplication of
modes is observed (Fig. 8 (a)). Furthermore, we can
rule out J2 < 0 since the mode whose minimum lies at
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a) LET data b) B phase

c) A phase d) A+B phase

FIG. 8. Comparison of calculated dispersion along c∗ against
(a) the data from LET at T = 5 K for a model consisting of (b)
B phase order with antiferromagnetic J2, (c) A phase order
and (d) A and B phase order in a 2:1 ratio. It is clear that for
J2 < 0 the mode that is maximal at Q = (2, 0, 0) lights up, in
contrast to the data. Furthermore, for J2 > 0 and two modes
are seen and the A phase leads to imaginary eigenvalues (red
dispersion) using the fitted values unless µ is large.

Q = (2, 0, 0) carries the most spectral weight contrary to
the simulation (Fig. 8 (c)). This is in agreement with our
conclusion based on the neutron diffraction data. Finally,
the dispersion along all other directions, along with the
measured anisotropy gap put strong constraints on the
values of the exchange parameters. With positive J2, the
magnitude of anisotropy required to stabilize spin waves
in the A phase is inconsistent with the observed gap from
RITA-II (Fig. 3), LET (Fig. 5 (a, b)) and MERLIN (Fig.
5 (c − f)). We thus conclude that the the low tempera-
ture A phase is metastable in our single crystal sample.
This phase obtains a long lifetime due to the anisotropy,
which prevents the relaxation of the antiphase domain
boundary disordered high temperature state into the B
phase ground state structure. The extracted exchange
constants do not give rise to stable A phase spin waves,
as shown in Fig. 8 (d). Note that in the powder sam-
ples, the story need not be identical, with an expected
increased value of µ due to the inevitable finite strain in-
duced by the grinding of the powders, it may in fact be
possible to stabilize spin waves in the A phase, despite
the lower energy of the B phase configuration. Indeed,
the smaller magnitude of the anisotropy gap measured
in the low temperature phase [13] as compared to single
crystals (Fig. 3) could be due to the suppression of the
gap originating from the frustrated J2 bond. We now

turn our attention to the T = 175 K data.
We explained earlier in Sect. II A how the magnetic A

phase arises, not as a distinct phase in the bulk but lo-
cally in antiphase boundaries between different B phase
domains. This explanation, of the low temperature A
phase not existing in bulk, means that its formation is
not driven by, for example, a change in sign of J2 aris-
ing from a change in crystal structure. We note that
although the c lattice constant does show some temper-
ature dependence [13], this is on the order of 10−2Å and
hence is unlikely to affect either the sign or magnitude of
J2. In the absence of temperature dependence of the ex-
change parameters, the primary effects of the increased
temperature should be the damping and renormalization
of the spectrum due to higher order terms in the Dyson
series. The damping can be accounted for phenomeno-
logically by increasing the value of ε, thereby increas-
ing the Lorentzian linewidth [55]. The renormalization
takes the form of a reduced spin moment and can be
treated straightforwardly by renormalizing the exchange
parameters and the anisotropy parameter, {Jij , µ} →
{γJij , γµ}, where γ is some constant between zero and
unity. This follows from the fact that S is a dimensionless
parameter and so only appears in the dispersion as a mul-
tiple of an exchange or anisotropy parameter, allowing us
to absorb the renormalization factor into the exchange
parameters. As discussed in Sect. II B, the anisotropy
gap shows an anomalous temperature dependence and
so we expect a further suppression of µ beyond that ex-
pected by spin moment renormalization alone. Fixing the
fitted low temperature exchange parameters and setting
ε = 2.5 meV, we fitted an overall renormalization factor,
γ = 0.930(4), showing excellent agreement with the data
(Fig. 9). At high temperature, the Q = (1, 0, 1) neutron
diffraction peak is not resolution limited and the width
is expected to vary in both energy and momentum due
to magnon-magnon and magnon-soliton interactions [56].
The value of ε was selected according to the approximate
width of the peak at the zone boundary. Using the value
of the anisotropy gap at T = 175 K, we diagonalized the
Hamiltonian with the fitted renormalized exchange pa-
rameters and solved for the high temperature anisotropy
parameter µ175K = −0.0098(2) meV.

From our fitted exchange parameters we can estimate
the Curie-Weiss temperature

kBΘCW =
1

3
S(S + 1)

∑
n

Jn, (12)

where we sum over nearest neighbors. Due to the in-
equivalence of J1a and J1b, we take the average of their
fitted values. The expression above stems from a mean
field treatment of the single-ion, and hence we attach a
minus sign to the frustrated J1a and J1b bonds. Evalu-
ating Eqn. 12, we find ΘCW ≈ 435 K. We note that this
is significantly larger than that found by Das et al [12],
and much larger than the magnetic ordering tempera-
ture of T ≈ 200 K. However, one should note that the
loss of correlations along c, owing to the small value of J2
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FIG. 9. (a) Constant Q plot of a path through reciprocal space at T = 5 K, showing strongly dispersing excitations in the
(H,K) plane. (b) Simulation of the data using the resolution convoluted Green’s function model and the fitted parameters. (c)
T = 175 K data. (d) Simulation at T = 175 K. The intensities for both datasets have been corrected for the Bose factor.

renders CaFe2O4 quasi-two-dimensional at high temper-
atures. The absence of spontaneous symmetry breaking
for d ≤ 2 [57] thus makes long range order marginal.
Long range order is stabilized by the presence of single-
ion anisotropy, however the vanishing of the gap at T
= 200 K, due to the cooperative effect of spin moment
renormalization and subtle magnetoelastic changes to the
local crystalline environment, precludes any long range
magnetic order above this temperature. The large Curie-
Weiss temperature also explains the relatively modest
renormalization of the bandwidth, with an observed mo-
ment reduction of ∼ 10% at T = 175 K, despite the
proximity to the magnetic ordering temperature.

IV. CONCLUSION

In this paper we have shown that the magnetic phase
coexistence in CaFe2O4 can be understood as originating
from a parent B phase magnetic order with local A phase
order arising due to the freezing of antiphase boundaries
which become static below T ≈ 100 K. This is consistent
with the lack of temperature dependence of the acous-
tic phonon linewidth, which is sensitive to instabilities
in the crystal structure which would lead to changes in
the magnetic structure. We have presented neutron scat-
tering data showing the temperature-dependent opening
of the anisotropy gap, which stabilizes the low temper-
ature A phase order. We then showed that the magnon
excitations are qualitatively consistent at high and low
temperature, albeit broadened at high temperature by
the dynamical antiphase boundaries. Using a Green’s

function formalism, we showed that the spectrum can
be modeled with the same exchange constants in both
phases, save for a renormalization factor at high temper-
ature, but with two different anisotropy parameters ow-
ing to the anomalous temperature dependence of µ. The
extracted exchange constants are consistent with the pic-
ture of antiphase boundary freezing, with a small value of
J2. By analysis of the spectrum, it was shown that sta-
ble spin waves cannot exist in the A phase and that this
phase is metastable, frozen-in at low temperatures due to
the growth of the single-ion anisotropy. The anisotropy
acts to lock the antiphase boundaries in place, preventing
relaxation of the magnetic structure back to the ground
state B phase order.
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Appendix A: Calculation of Green’s Functions for a
General Collinear System

In inelastic neutron scattering experiments, the dy-
namical two-point spin correlation function is probed,
which through the fluctuation-dissipation theorem [52],
can be related to the system’s linear response function.
This underlying connection between the the dynamical
structure factor, measured in experiment, and the lin-
ear response function of the system makes Green’s func-
tions the natural language to describe the neutron scat-
tering response. Previous studies [45–47] have shown the
utility of describing systems comprising inequivalent sub-
lattices or those exhibiting non-trivial single-ion physics
using the Green’s function formalism. Here we present
a general form of the Green’s function formalism for in-
teracting spins within the random phase approximation.
The approach presented is similar to the SU(N) spin
wave theory or “flavor wave” approaches [58–63], however
the direct calculation of the Green’s function lends itself
to the calculation of the neutron response and by way
of Wick’s theorem, the calculation of magnon-scattering
terms.

For a system consisting of interacting spins, the Hamil-
tonian can be written as

H =

γγ′∑
ij

{
J γγ

′

ij Siγ · Sjγ′ +H′ (i, γ)
}
, (A1)

where H′ is the single-site Hamiltonian which may in-
clude contributions from spin-orbit coupling and crystal-
field distortions. The labels γ and γ′ index the sublattice,
allowing for the treatment of lattices with multiple atoms
within the unit cell. Treating the system at mean-field
level, one can separate the Hamiltonian into single-ion,
H1 and inter-ion, H2, terms

H =H1 +H2 (A2a)

H1 =
∑
iγ

Ŝziγ

[
2
∑
jγ′

J γγ
′

ij 〈Ŝ
z
jγ′〉
]

+
∑
iγ

H′ (i, γ) (A2b)

H2 =
1

2

γγ′∑
ij

J γγ
′

ij

(
Ŝ+
iγ Ŝ
−
jγ′ + Ŝ−iγ Ŝ

+
jγ′

)

+

γγ′∑
ij

J γγ
′

ij Ŝziγ

[
Ŝzjγ′ − 2〈Ŝzjγ′〉

]
.

(A2c)

The equation of motion for the Green’s function,

Gαβγ̃γ̃′(i′j′, t) = −iΘ(t)〈[Ŝαi′γ̃(t), Ŝβj′γ̃′ ]〉, can be written as

i∂tG
αβ
γ̃γ̃′(i

′j′, ω) =δ(t)〈[Ŝαi′γ̃(t), Ŝβj′γ̃′ ]〉

− iΘ(t)〈[i∂tŜαi′γ̃(t), Ŝβj′γ̃′ ]〉.
(A3)

Using the Heisenberg equation of motion, the time-
dependent spin operator in the second term can be re-
placed with a commutator, and after a temporal Fourier

transform, the Green’s function can be recast as a func-
tion of energy

ωGαβγ̃γ̃′(i
′j′, ω) =〈[Ŝαi′γ̃ , Ŝ

β
j′γ̃′ ]〉+

Gγ̃γ̃′([Ŝαi′γ̃ ,H], Ŝβj′γ̃′ , ω).
(A4)

In the case where H1 consists solely of a mean field
term, and Ŝz is conserved, the only nonzero Green’s func-
tions within the random phase approximation scheme
are transverse. In the general case, the commutators,
[Ŝαi′γ̃ ,H] must be calculated. We can write the spin oper-
ators in terms of the creation operators of the single-ion
Hamiltonian

Ŝαiγ =
∑
pq

Sγαpqc
†
p(i)cq(i) (A5)

where Sγαpq = 〈p| Ŝαγ |q〉, with the single-ion eigenstates,
|p〉. Using this transformation, the commutator within
the Green’s function can be calculated. Each term is
quartic in bosonic operators but can be decoupled into
quadratic terms through the random phase decoupling
scheme,

c†p(i)cq(i)c
†
m(j)cn(j) =fp(i)δpqc

†
m(j)cn(j)

+ fm(j)δmnc
†
p(i)cq(i),

(A6)

with fp(i
′), the Bose occupation factor of level p on site

i′. Following the mean-field decoupling, we are left with
four terms from the commutator [Ŝαi′γ̃ ,H] =

∑4
s=1 Cs,

C1 =

lkpq∑
jγγ′

φqp(i
′)c†k(j)cl(j)S

γ̃
αqpS

γ
+pqS

γ′

−klJ
γγ′

ij (A7a)

C2 =

lkpq∑
jγγ′

φqp(i
′)c†k(j)cl(j)S

γ̃
αqpS

γ
−pqS

γ′

+klJ
γγ′

ij (A7b)

C3 =

lkpq∑
jγγ′

φqp(i
′)c†k(j)cl(j)S

γ̃
αqpS

γ
zpqS

γ′

zklJ
γγ′

ij (A7c)

C4 =
∑
pq

(ωp − ωq) c†q(i′)cp(i′)Sγ̃αqp, (A7d)

where φqp(i
′) = (fq(i

′) − fp(i
′)). Taking advantage of

the linearity of the Green’s function, we can now insert

the commutators into Eqn. A4. Setting J γγ
′

ij = 0, we
recover the single-ion susceptibility

gαβγ̃γ̃′(ω) =
∑
qp

Sγ̃αqpS
γ̃′

βpqφqp

ω − (ωp − ωq)
, (A8)

where we assume that single-ion eigenstates are the same
for all sites and drop the site index on fp. For the cal-
culation of one-magnon processes the sum is performed
over transitions to and from the ground state. This step
is equivalent to the elimination of the ground state oper-
ators in SU(N) spin wave theory via the local constraint,
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b0(i) = b†0(i) =
√

1−
∑N−1
m=1 b

†
m(i)bm(i) [58, 60, 63]. Af-

ter a spatial Fourier transform, the full expression for the
Green’s function can be found

Gαβγ̃γ̃′(q, ω) = gαβγ̃γ̃′(ω)

+
∑
γγ′

Jγγ′(q)gα+
γ̃γ (ω)G−βγ′γ̃′(q, ω)

+
∑
γγ′

Jγγ′(q)gα−γ̃γ (ω)G+β
γ′γ̃′(q, ω)

+ 2
∑
γγ′

Jγγ′(q)gαzγ̃γ (ω)Gzβγ′γ̃′(q, ω).

(A9)

The symmetry of the single-ion environment can signifi-
cantly simplify Eqn. A9. For octahedral and tetragonal
crystalline environments S+pq = S−pq = 0, even in the
presence of a trigonal or tetragonal distortion. However,
a rhombic distortion, for example, gives rise to nonzero
terms in these matrices [45]. Assuming a sufficiently sym-
metric single-ion environment, the g++

γγ′ (ω) and g−−γγ′ (ω)
terms vanish and the three nonvanishing Green’s func-
tions can be written as

G+−
γ̃γ̃′ (q, ω) =g+−

γ̃γ̃′ (ω)

+
∑
γγ′

Jγγ′(q)g+−
γ̃γ (ω)G+−

γ′γ̃′(q, ω) (A10a)

G−+
γ̃γ̃′ (q, ω) =g−+

γ̃γ̃′ (ω)

+
∑
γγ′

Jγγ′(q)g−+
γ̃γ (ω)G−+

γ′γ̃′(q, ω) (A10b)

Gzzγ̃γ̃′(q, ω) =gzzγ̃γ̃′(ω)

+ 2
∑
γγ′

Jγγ′(q)gzzγ̃γ(ω)Gzzγ′γ̃′(q, ω). (A10c)

In RPA, fluctuations on different sites are taken to be
uncorrelated so that g+−

γγ′ = 0, for γ 6= γ′. These coupled
equations can be solved analytically and summed in order
to calculate the total Green’s function for the system [46].
The coupled equations are most straightforwardly solved
as matrix equations,

G+− =g+− + g+− · J ·G+− (A11a)

G−+ =g−+ + g−+ · J ·G−+ (A11b)

Gzz =gzz + 2gzz · J ·Gzz. (A11c)

By examining Eqn. A10, the reasoning behind our de-
cision to label gαβ(ω) as the single-ion susceptibility be-
comes clear. The equations for G have the form of a
Dyson equation [64], where the single-ion susceptibil-
ity plays the role of the bare propagator, and the self-
energy is the Fourier transform of the exchange interac-
tion, J (q) (Fig. 10 (a)). The single ion Hamiltonian was
treated according to the harmonic approximation and the
inter-ion interaction can be considered as a first order
perturbative correction, which we decoupled in the di-
rect channel by way of the mean field decoupling, from
which the random phase approximation derives its name.

The magnon propagator itself satisfies a Dyson equa-
tion and hence by performing this calculation in terms of
Green’s functions, we can go beyond the single magnon
picture and calculate the effect of magnon-magnon scat-
tering on the inelastic neutron response by using Feyn-
man diagram rules. The effect of these higher order terms
is, at one-loop level, to dress the magnon propagator with
a self energy depending on the magnon density. At higher
orders in perturbation theory we add corrections this self
energy. Two irreducible topologically distinct Feynman
diagrams can be written down [65], with their interac-
tion potentials calculable from the Dyson Maleev or Hol-
stein Primakoff Hamiltonian [66, 67], since the single-ion
physics has been treated in the bare magnon propagator,
and the spin correlator can equally be written in terms
of magnon creation operators. These higher order terms
each carry a factor of 1/S per vertex [66] and are small
for S →∞. The two-loop diagram (Fig. 10 (b)) provides
a real contribution to the self energy [65] and hence it
renormalizes the spectrum. The next diagram contains
a real part and an imaginary part which represents a
damping term. This gives an energy broadening to the
magnon linewidth, which depends on momentum [65].

In some cases, there are further vertices that should
be considered. In systems where gzz(ω) is nonzero, that

is to say, 〈Ŝz〉 is not conserved, the extension beyond
the harmonic approximation yields vertices where three
lines meet. These terms are absent from spin rotationally
symmetric models, as is evident from the absence of cubic
terms in the Holstein Primakoff Hamiltonian for collinear
systems. Similar terms appear in noncollinear systems
where SO(2) symmetry is broken [68]. These terms rep-
resent two magnon decays into a single magnon or vice
versa. Using Wick’s theorem, any n-point correlator can
be decomposed into a sum of all possible contractions of
the two-point correlators, thus we can calculate the ef-
fect of these decay vertices from the Green’s functions
evaluated by the approach outlined here (Eqn. A9),

Sαβ(q, ω) ∝ −Im

[ ∑
θφτν

{
Gαβ(q, ω)

∫
dq1

∫
dq2

∫
dω1

∫
dω2G

θφ(q1, ω1)Gτν(q2, ω2)

×δ(ω − ω1 − ω2)δ(q− q1 − q2)
}]
,

(A12)
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a)

b)

c)

FIG. 10. (a) Feynman diagrams showing the Dyson series
structure of the expression for the Green’s function obtained
in Eqn. A9. (b) Dyson series for the magnon Green’s function
showing the first and second order perturbative corrections to
the magnon propagator for a collinear spin system. (c) Decay
and source channels for three magnon interactions.

where we have ensured conservation of momentum and
energy. The decay amplitudes are governed by kinemat-
ics. In particular, it has been argued that the the lon-
gitudinal mode, Gzz is particularly susceptible to decay
into two lower energy transverse spin waves [69]. Though
the calculation of these terms has been simplified by for-
mulating the spin wave calculation in terms of Green’s
functions, it still remains a formidable task to evaluate
this integral in systems which disperse in more than one
direction. This is especially true for the fitting of neutron
scattering data measured on a time-of-flight spectrome-
ter where one typically integrates over a finite window in
momentum space to improve statistics.

Appendix B: Expressions for Aγ̃γ̃
′
and Bγ̃γ̃

′

The calculation of the transverse Green’s function
(Eqn. 9) requires knowledge of the matrix elements, Aγ̃γ̃

′

and Bγ̃γ̃
′
. The low temperature A phase structure neces-

sitates an eight site model, owing to the broken inversion
symmetry. The matrix B encodes the magnetic structure
of the ground state in each phase (Fig. 1 (a, b)), and can
be written as

B
A

=



−S 0 0 0 0 0 0 0

0 −S 0 0 0 0 0 0

0 0 S 0 0 0 0 0

0 0 0 S 0 0 0 0

0 0 0 0 S 0 0 0

0 0 0 0 0 S 0 0

0 0 0 0 0 0 −S 0

0 0 0 0 0 0 0 −S


(B1a)

B
B

=



S 0 0 0 0 0 0 0

0 −S 0 0 0 0 0 0

0 0 S 0 0 0 0 0

0 0 0 −S 0 0 0 0

0 0 0 0 S 0 0 0

0 0 0 0 0 −S 0 0

0 0 0 0 0 0 S 0

0 0 0 0 0 0 0 −S


(B1b)

in the A and B phase respectively, where S = 5
2 . Note

that the site labeling has been chosen to match that of
Eqn. 11. The matrix for the B phase can be written as
a scalar matrix whose elements are 4 × 4 matrices, re-
flecting the inversion symmetry of the B phase magnetic
structure. The mean molecular field can be calculated
by expanding the spin operators around their expectation
values (Eqn. 5). The presence of the bond inequivalence,
J1a 6= J1b, and J2a 6= J2b, gives rise to two molecular
mean field terms,

hMF
a =− 2J1aS + 2J2aS + 2J3S + 2J4S − 2µS (B2a)

hMF
b =− 2J1bS + 2J2bS + 2J3S + 2J4S − 2µS (B2b)

where the minus sign in front of the first term reflects
the fact that J1a and J1b couple parallel spins, whilst
the other exchanges couple spins that are anti-parallel.
The matrix Aγ̃γ

′
(q) consists of a contribution from the

molecular mean field and from the Fourier transform of
the exchange interaction (Eqn. 11), A = AMF + Aexch.
Its matrix elements can be calculated using Eqn. 6b
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AMF

A
=



−hMF
a 0 0 0 0 0 0 0

0 −hMF
a 0 0 0 0 0 0

0 0 hMF
b 0 0 0 0 0

0 0 0 hMF
b 0 0 0 0

0 0 0 0 hMF
b 0 0 0

0 0 0 0 0 hMF
b 0 0

0 0 0 0 0 0 −hMF
a 0

0 0 0 0 0 0 0 −hMF
a


(B3a)

AMF

B
=



hMF
a 0 0 0 0 0 0 0

0 −hMF
a 0 0 0 0 0 0

0 0 hMF
b 0 0 0 0 0

0 0 0 −hMF
b 0 0 0 0

0 0 0 0 hMF
b 0 0 0

0 0 0 0 0 −hMF
b 0 0

0 0 0 0 0 0 hMF
a 0

0 0 0 0 0 0 0 −hMF
a


. (B3b)

Finally, the contribution from the exchange term can be
calculated by taking the product of 2B and the Fourier
transform of Eqn. 11, which is the same for both phases,

Aexch
A/B

= 2B
A/B
· J (q). (B4)

By diagonalizing the matrix A one can obtain an expres-
sion for the spin wave dispersion and the Green’s function
can be calculated using Eqn. 9.
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menov, Bull. Soc. franç. Minér. Crist. 89, 206 (1966).

[20] F. Damay, C. Martin, V. Hardy, A. Maignan, G. André,
K. Knight, S. R. Giblin, and L. C. Chapon, Phys. Rev.
B 81, 214405 (2010).

[21] F. Damay, C. Martin, V. Hardy, A. Maignan, C. Stock,
and S. Petit, Phys. Rev. B 84, 020402(R) (2011).

https://doi.org/10.1126/science.1070595
https://doi.org/10.1126/science.1070595
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1039/C8RA01597J
https://doi.org/10.1103/RevModPhys.90.015005
https://doi.org/10.1103/PhysRevB.92.020402
https://doi.org/10.1103/PhysRevB.92.020402
https://doi.org/10.1103/PhysRevLett.113.157201
https://doi.org/10.1103/PhysRevB.90.104406
https://doi.org/10.1103/PhysRevB.90.104406
https://doi.org/10.1103/PhysRevLett.119.257204
https://doi.org/10.1103/PhysRevLett.119.257204
https://doi.org/10.1103/PhysRevLett.117.017201
https://doi.org/10.1103/PhysRevB.102.024437
https://doi.org/10.1103/PhysRev.160.408
https://doi.org/10.1103/PhysRev.160.408
https://doi.org/10.1103/PhysRevB.98.144404
https://doi.org/10.1103/PhysRevB.101.014407
https://doi.org/10.1103/PhysRevB.101.014407
https://doi.org/10.1103/PhysRevB.102.195136
https://doi.org/10.1103/PhysRevB.102.195136
https://doi.org/10.1103/PhysRevLett.44.1502
https://doi.org/10.1103/PhysRevLett.44.1502
https://doi.org/10.1107/S0365110X5700095X
https://doi.org/10.1107/S0365110X5700095X
https://doi.org/10.1107/S0365110X56002862
https://doi.org/10.1107/S0365110X56002862
https://doi.org/10.1103/PhysRevB.81.214405
https://doi.org/10.1103/PhysRevB.81.214405
https://doi.org/10.1103/PhysRevB.84.020402


16

[22] M. Songvilay, S. Petit, F. Damay, G. Roux, N. Qureshi,
H. C. Walker, J. A. Rodriguez-Rivera, B. Gao, S.-W.
Cheong, and C. Stock, Phys. Rev. Lett. 126, 017201
(2021).

[23] S. Damerio, P. Nukala, J. Juraszek, P. Reith,
H. Hilgenkamp, and B. Noheda, npj Quantum Mater.
5, 33 (2020).

[24] To our knowledge, no samples with excess oxygen have
been reported.

[25] M. H. L. Pryce, Phys. Rev. 80, 1107 (1950).
[26] H. Watanabe, Prog. Theor. Phys. 18, 405 (1957).
[27] B. Bleaney and R. S. Trenam, Proc. R. Soc. Lond. Ser.

A 233, 1 (1954).
[28] K. Yosida, Theory of Magnetism (Springer, Berlin, 1991).
[29] A. Abragam and B. Bleaney, Electron Paramagnetic Res-

onance of Transition Ions (Dover, New York, 1986).
[30] K. Lefmann, D. McMorrow, H. Rønnow, K. Nielsen,

K. Clausen, B. Lake, and G. Aeppli, Physica B 283, 343
(2000).

[31] A. L. Stancik and E. B. Brauns, Vib. Spectrosc. 47, 66
(2008).

[32] R. Ewings, A. Buts, M. Le, J. van Duijn, I. Bustinduy,
and T. Perring, Nucl. Instrum. Methods Phys. Res. 834,
132–142 (2016).

[33] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[34] H. Shenker, Phys. Rev. 107, 1246 (1957).
[35] R. M. Bozorth, E. F. Tilden, and A. J. Williams, Phys.

Rev. 99, 1788 (1955).
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