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The search for novel entangled phases of matter has lead to the recent discovery of a new class of
“entanglement transitions”, exemplified by random tensor networks and monitored quantum circuits.
Most known examples can be understood as some classical ordering transitions in an underlying
statistical mechanics model, where entanglement maps onto the free energy cost of inserting a
domain wall. In this paper, we study the possibility of entanglement transitions driven by physics
beyond such statistical mechanics mappings. Motivated by recent applications of neural network-
inspired variational Ansätze, we investigate under what conditions on the variational parameters
these Ansätze can capture an entanglement transition. We study the entanglement scaling of short-
range restricted Boltzmann machine (RBM) quantum states with random phases. For uncorrelated
random phases, we analytically demonstrate the absence of an entanglement transition and reveal
subtle finite size effects in finite size numerical simulations. Introducing phases with correlations
decaying as 1/rα in real space, we observe three regions with a different scaling of entanglement
entropy depending on the exponent α. We study the nature of the transition between these regions,
finding numerical evidence for critical behavior. Our work establishes the presence of long-range
correlated phases in RBM-based wave functions as a required ingredient for entanglement transitions.

I. INTRODUCTION

The past decade has seen growing interest in identify-
ing new phases of entangled, out-of-equilibrium quantum
matter. A sufficiently generic, isolated quantum system
is expected to approach thermal equilibrium under its
unitary dynamics, and develop an extensive amount of
entanglement entropy [1–3]. The eigenstates of such sys-
tems feature entanglement entropy scaling as a volume
law. On the other hand, the presence of disorder or a
quasiperiodic potential is capable of drastically chang-
ing the dynamical properties of the system, leading to
many-body localization (MBL). MBL systems represent
a different dynamical phase of matter characterized by
area-law entangled eigenstates. The existence of distinct
dynamical phases characterized by qualitatively different
scaling of entanglement entropy naturally raises the ques-
tion of the nature of the so-called MBL phase transition
separating the ergodic and MBL phases. While the MBL
transition received significant attention [4, 5], it was later
realized to be a particular example of an entanglement
transition, which separates phases with different entan-
glement scalings.

Beyond MBL, examples of an entanglement transi-
tion are provided by measurement-induced entanglement
transitions in random unitary circuits under random lo-
cal measurements [6–38], random tensor networks [32,
39–42], Jastrow-Gutzwiller wavefunctions [43, 44] and
Rokshar-Kivelson [45] (RK) inspired wave functions [46].
While all these phase transitions (except MBL) feature
different tuning parameters and phenomenology, they of-
ten can be mapped onto classical ordering (spontaneous
symmetry-breaking) phase transitions. For instance, the
measurement-induced transition, resulting from a com-
petition between local random unitary dynamics and the
rate of local projective measurements at random points in

space and time, was shown [9, 10] to be related to a clas-
sical ordering transition in a replicated two-dimensional
statistical model. Changing the measurement rate tunes
the effective temperature of the classical model, driving
it from an ordered phase at small measurement rate (cor-
responding to volume-law entanglement) to a disordered
phase at large measurement frequency (area-law). Simi-
lar entanglement transitions and mappings also were re-
ported in random tensor networks [39, 40].

A different approach to entanglement transitions was
considered in [46]. There, the authors considered a vari-
ational Ansatz state inspired by the Rokhsar-Kivelson
wave function [45], in which the weights for the config-
urations are chosen from the Gibbs weights of a classi-
cal spin-glass model. Since states with positive weights
can only sustain an area-law worth of entanglement [47],
an additional random sign structure was also considered.
The entanglement transition in this scenario was proven
to be related to the geometric localization of the wave
function due to the classical spin glass transition.

Thus, on the one hand, both random tensor net-
works and measurement-induced entanglement transi-
tions can be understood as an ordering transition in a
two-dimensional statistical mechanical model, with the
transition being induced by changing the tensor network
bond dimension or the measurement rate. On the other
hand, the transition observed in the RK-inspired wave
function is closely related to a spin glass transition in
an all-to-all spin-glass model. This motivates the ques-
tion if entanglement transitions can be driven by physics
beyond classical ordering transitions. The MBL transi-
tion as mentioned above could be one example of this.
However, investigating the MBL transition is particu-
larly challenging, see [5] and references therein for recent
progress.

In this work, we focus on the variational wave func-
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tion approach. Specifically, in this paper, we consider a
neural-network inspired variational Ansatz for the quan-
tum wave function [48]. Machine learning techniques
have been proved fruitful to the field of many-body quan-
tum physics [48–59]. Specifically, progress has been made
in identifying quantum phases and transitions among
them, either symmetry-broken phases [51–54, 60] or topo-
logical phases [61], establishing connections to renormal-
ization group techniques [62, 63] and perturbation the-
ory [64]. In addition, machine learning ideas have also
been used in measuring quantum entanglement and wave
function tomography [59, 65, 66]. We focus on a par-
ticular neural network variational state, referred to as
restricted Boltzmann machines (RBM) quantum states
which have been proven [58, 67] to capture both an area-
law as well as volume-law worth of entanglement depend-
ing on the locality of the neural network. In addition,
recent work [56] showed that RBM states can also be
used to parametrize quantum wave functions with non-
Abelian symmetries. Having in mind the representabil-
ity power of neural network Ansätze, and in particular, of
the simple RBM Ansatz, we ask under what conditions it
is capable of capturing an entanglement transition while
continuously varying some parameters used to define the
state.

Since our motivation lies in entanglement transitions
not driven by classical phase transitions, we consider
RBM quantum states where the real part of the wave
function is a local function of the spin degrees of freedom.
Since no classical phase transition can exist in local one-
dimensional statistical models, in this way we exclude
any possible entanglement phase transition driven by a
classical phase transition in the wave function weights.
Our main results and structure of this paper are as
follows: After introducing short-range RBM quantum
states and discussing their entanglement capabilities in
Sec. II, we proceed with the study of short-range RBM
states with uncorrelated random phases in Sec. III. There
we demonstrate the volume-law entanglement scaling for
all values of the variational parameter β that plays a role
of inverse effective temperature, indicating the absence
of an entanglement transition. Next, in Sec. IV we study
the phase diagram for short-range RBM quantum states
but with power-law correlated phases as a function of
inverse temperature β and power-law exponent α. We
numerically show the existence of three different scaling
regimes of the entanglement entropy and discuss the exis-
tence of a possible entanglement transition in the two di-
mensional phase diagram characterized by α and β. We
conclude in Sec. V with brief discussions of our results
and comments on directions for future work.

II. RESTRICTED BOLTZMANN MACHINES

In this section, we introduce restricted Boltzmann ma-
chines in the context of their usage as a variational state
for many-body quantum physics. Moreover, we discuss

the entanglement properties of the resulting wave func-
tion which depends on the locality of the RBM Ansatz.

A. RBM as a wave function Ansatz

A restriction from a Boltzmann machine [68], the so-
called restricted Boltzmann machine (RBM) is one of the
simplest cases of an artificial neural network that can
learn a distribution over the set of their input. In the
context of quantum many-body physics [48], RBMs are
often used to approximate the wave function that is in-
terpreted as a (complex) marginal probability distribu-
tion. Assuming that the wave function is defined on the
many-body Hilbert space of spin-1/2 degrees of freedom,
the spin configurations σ ∈ {−1, 1} represent an input
referred to as “physical spins”.

The RBM is defined on a bipartite graph, whose ver-
tices are grouped into two classes: the hidden spins and
the physical (visible) spins, see Fig. 1. Suppose there are
N visible spins and M hidden spins, and we associate the
N variables σ ∈ {−1, 1} and M variables h ∈ {−1, 1} to
the physical and hidden spins respectively. The spins in
the hidden layer are connected to those in the physical
layer, but there is no connection among spins in the same
layer (see Fig. 1 for an illustration). The RBM represen-
tation of the amplitudes of a quantum many-body wave
function is obtained by tracing out the hidden spins:

ΨΩ(σ) =
∑
hj=±1

e
∑N
i=1 aiσi+

∑M
j=1 bjhj+

∑
ij σiWijhj , (1)

and is fully specified by a set of variational parameters de-
noted as Ω = {W,a, b} that can assume complex values.
Here non-zero interactions between hidden and physi-
cal spins Wij induce correlations between physical spins,
whereas constants ai renormalize the wave function am-
plitudes depending on the state of individual spins and do
not induce correlations. The presence of either non-zero
ai or bi leads to a breaking of the Z2 symmetry asso-
ciated with flipping all physical spins. The summation
over hidden spins in Eq. (1) can be performed analyti-
cally, resulting in

ΨΩ(σ) = e
∑N
i=1 aiσi

M∏
j=1

2 cosh

(
bj +

N∑
i=1

Wijσi

)
. (2)

Since the quantum many-body wave function typically
contains complex parameters, we rewrite each term in
the sum in its polar form ΨΩ(σ) = eiφσe−EΩ(σ)/2, where
both φσ and EΩ(σ) are real, with the latter playing an
analogue of an energy in the partition function that deter-
mines the norm of the state. More specifically, we intro-
duce the partition function Z = 〈ψΩ|ψΩ〉 =

∑
σ e
−EΩ(σ),

thus corresponding to a statistical model characterized
by the energy function EΩ(σ). In the remaining of the
paper, we will explore the structure of entanglement in
this wave function, depending on the different choices of
the variational parameters Ω.
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(a) (b)

Figure 1. General and local RBM. (a) Most generic
connectivity of RBM with a dense interaction Wij matrix. (b)
Example of “local” RBM network. Only nearest neighbour
interactions between physical and hidden spins are considered.

B. Entanglement of RBM states

As supported by representability theorems [69], RBM
can approximate any many-body quantum state. How-
ever, such approximation may require an exponential in
system size number of hidden spins and parameters, thus
rendering the representation impractical. The interest
lies then in finding types of many-body quantum states
that can be efficiently described by RBM Ansatz with a
number of hidden spins and parameters scaling polynomi-
ally in the number of physical spins N . Throughout this
work, we restrict to Ansätze that have the same number
of physical and hidden spins, N = M .

Entanglement is a crucial feature of the quantum
wave function. Hence, to understand the representabil-
ity power of Ansätze that are polynomial in system size,
a study of the entanglement structure of such quantum
states is required. The entanglement properties of RBM
were first studied in [67], where it was demonstrated that
RBM states with short-range interactions between hid-
den and visible spins feature an area law of entanglement
in any dimension and for arbitrary network geometry.
More precisely, it was proven (see Theorem 1 of [67])
that if the wave function (2) has Wij = 0 for |i− j| > R,
its Renyi entropies with an index n of a region A are
bounded by Sn(A) ≤ (2R log 2)∂A for all values of n.
Here ∂A denotes the surface area of subsystem A and
the Renyi entropy with index n is defined as

Sn(ρA) =
1

1− n
ln Tr ρnA,

where ρA is a density matrix of the region A, obtained by
tracing out all complementary degrees of freedom. This
bound on all Renyi entropies indicates interesting con-
nections between short-range RBM states and quantum
states represented by a matrix-product state (MPS) [70–
72]. In particular, it was shown that all 1D short-range
RBM [67, 73], as well as sufficiently sparse [74] RBM can
be efficiently described in terms of MPS. It is interest-
ing to note that the validity of the inverse statement is
to the best of our knowledge unknown, that is, given a
generic MPS with a small bond dimension it is unknown
whether there exists a representation in terms of a short-
range RBM.

Moreover, Ref. [67] demonstrated via an explicit exam-
ple that long-range RBM states can exhibit volume-law
entanglement. This further implies that the correspond-
ing MPS representation of such a state would require an
exponential scaling of the bond dimension with the sys-
tem size.

As we discussed above, RBM Ansätze are capable of
representing quantum states with both area- and volume-
law entanglement. This suggests the natural hypothesis
that RBM may provide a potential Ansatz for a varia-
tional wave function that exhibits an entanglement tran-
sition. Inspired by this hypothesis, in the remainder of
this work we explore entanglement structure of the RBM
quantum states and its dependence on the variational
parameters.

III. UNCORRELATED RANDOM PHASES

In this section we motivate and introduce the first fam-
ily of variational RBM Ansätze with random uncorre-
lated phases. After that we discuss results for the an-
nealed average of the second Renyi entropy which shows
the absence of an entanglement transition in this family
of wave functions.

A. RBM ansatz wave function

In this work, we only consider ansatzes that do not
allow for a description of the entanglement transition in
terms of a classical phase transition in the wave function
weights. Is it then natural to restrict to local RBM quan-
tum states. However, such construction cannot encode
volume law entanglement due to result of Ref. [67] dis-
cussed above. Thus we introduce a minimal extension to
the short-range RBM ansatz and include an additional
contribution coming from independent and identically
distributed (i.i.d) random phases. In this aspect, our con-
struction is similar to that of Ref. [46] that extended the
variational wave function of the Rokshar-Kivelson type
with random phases. Crucially, here we keep the inter-
actions between spins strictly local.

Specifically, we consider the following ansatz state as
our starting point:

|ψΩ(β)〉 =
1√
Z

∑
σ

eiφσΨΩ(σ, β)|σ〉, (3)

where each phase φσ is i.i.d and drawn from a uniform
distribution in the [−π, π] interval. This wave function
is parametrized by the parameter β that plays the role
of effective inverse temperature in the RBM-type state
ΨΩ(σ, β),

ΨΩ(σ, β) =

N∏
j

cosh
(
β(λ+ σj + σj+1)

)
.
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(a) (b) (c)

Figure 2. Absence of entanglement transition in model with uncorrelated random phases. (a) The apparent finite-
size crossing in the plot s2 = 〈S2〉/SA vs β, for the RBM state with constant energy function and i.i.d random phases, that
could be attributed to a possible entanglement transition. Points correspond to the quenched average computed numerically,
and they nearly perfectly agree with the lower bound (lines) calculated analytically. The inset shows the drift of the crossing
point for analytic curves for different system sizes. (b) Difference of the 2nd-Renyi entropy density for system sizes N and
N + 2, showing that the crossing points shift to higher values of β with system size N , indicating the absence of a transition.
(c) At large system sizes we observe a slow, logarithmic dependence of βcross with system size, i.e., βcross(δ,N) ∼ lnN in the
N � 1 limit, indicating the absence of a transition. Here we considered system size spacings δ = 2, 4 and 6.

This state is a particular example of RBM wave function
from Eq. (2), where the network geometry includes only
nearest neighbor interactions between physical and hid-
den spins, see Fig. 1(b). We note that ΨΩ(σ, β) > 0 for
all states |σ〉 in the computational basis, and hence it can
be written as ΨΩ(σ, β) = e−EΩ(β)/2, where

EΩ(β) = −2
∑
j

ln cosh
(
β(λ+ σj + σj+1)

)
, (4)

can be interpreted as the energy of some underlying sta-
tistical mechanical model. In what follows we fix the
value of lambda such that λ = 0.1.

B. Bounding Renyi entropies

We are interested in studying average Renyi entropies,

〈Sn(ρA)〉 =
1

1− n
(
〈ln Tr

(
ρ̄A
)n〉 − n〈lnZ〉), (5)

where ρA = 1
Z ρ̄A represent the normalized quantum state

of the subsystem A. The averaging is performed over the
random phases φσ in Eq. (3). However, in general cal-
culating 〈ln ρ̄nA〉 is analytically intractable and hence we
resort to computing a lower bound. The lower bound,
〈Sn(ρA)〉 ≥ 〈Sn(ρA)〉ann, uses the so-called annealed av-
erage of the same Renyi entropy

〈Sn(ρA)〉ann =
1

1− n
(

ln〈Tr
(
ρ̄A
)n〉 − n ln〈Z〉

)
, (6)

where the disorder-averaged density matrix and partition
function enter the logarithm.

It is possible to show that for any state of the form
of Eq. (3) all annealed Renyi entropies can expressed via
modified partition functions depending on the Renyi in-

dex n. In particular, focusing on the second Renyi en-
tropy we obtain

〈S2(ρA)〉ann = − ln

(
TrAZ

2
A + TrBZ

2
B

Z2(β)
− Y (β)

)
, (7)

where ZA,B = TrA,Be
−EΩ(β) are the partition function on

region A and its complement B, and Y = Z(2β)/Z2(β)
corresponds to the inverse participation ratio. Such rep-
resentation of the second Renyi entropy opens the door
to analytical calculations of Eq. (7). The final results
is then an analytical function of the system size N and
the variational parameter β. This allows us to obtain
the value of 〈S2(β)〉ann for an arbitrary system sizes N .
We relegate the detailed derivation to Appendix A and
instead discuss results below.

C. Absence of entanglement transition

In Fig. 2(a) we compare the numerical results for the
average bipartite second Renyi entropy with the corre-
sponding lower bound. We observe a good agreement
between the average second Renyi entropy and its lower
bound throughout the full range of considered values of
β. At low β the bipartite second Renyi entropy scales ex-
tensively with system size, S2 ∼ N which further implies
the same scaling for the entanglement entropy. At larger
values of β we observe an apparent crossing for curves
corresponding to different system sizes. While this may
suggest the existence of an entanglement transition tuned
by β, below we will argue that this crossing originates
from strong finite size effects.

To explore the fate of the crossing between normalized
second Renyi entropy curves as the number of spins is
increased, we first compute the difference between the
annealed second Renyi entropy for systems consisting of
N and N − 2 spins. Figure 2(b) shows that the crossing
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point shifts toward larger values of β when the number of
spins N is increased, suggesting the absence of an entan-
glement transition in the present case. The absence of
transition is further supported by Fig. 2(c), that shows a

logarithmic increase of the value of β
(δ,N)
cross defined as the

point where crossing occurs between normalized second
Renyi entropy for N and N + δ spins. The logarithmic

increase with N holds for β
(δ,N)
cross irrespective of the sep-

aration δ between the system sizes considered, giving a
strong indication that the crossing shifts to β =∞ in the
thermodynamic limit.

Summarizing, the above results imply that short-range
RBM quantum states with uncorrelated random phases,
Eq. (3), always display a volume-law entanglement at ar-
bitrary large but finite values of β. Therefore this ansatz
does not have an entanglement transition as a function
of β. While the result here was obtained for a simple
class of RBM states with only nearest neighbor interac-
tions, we also numerically confirmed it for longer-range
local RBM states. Thus we believe that arbitrary local
(finite-range) RBM states feature volume-law entangle-
ment for any finite values of β, and thus do not have an
entanglement transition.

IV. CORRELATED RANDOM PHASES

As we discussed in Sec. III, the presence of uncorrelated
random phases does not allow for an entanglement tran-
sition in the local RBM variational Ansatz. Two natural
directions towards an entanglement transition consist in
relaxing either the locality of the energy function EΩ(β)
or introducing correlations between random phases in
Ansatz (3). In order to avoid a spin-glass transition in
the classical Hamiltonian, leading to the geometric local-
ization of the wave function, we keep the local structure
of RBM and relax the condition of uncorrelated random
phases. In particular, below we consider a short-range
RBM ansatz with power-law correlated random phases,
controlled by a power-law exponent α.

A. RBM Ansatz wave function

We introduce correlations between random phases us-
ing the RBM description of the wave function with com-
plex parameters. Specifically, we consider the Ansatz
Eq. (2) with ai = 0 and complex values of Wij written

as Wij = W
(1)
ij + iW

(2)
ij . The real part of the couplings

is taken to be local with constant nearest neighbors in-

teraction, that is, W
(1)
ij is the same as in Eq. (3). The

imaginary part of couplings, W
(2)
ij , is a random number

that is suppressed with distance between points i and j,

W
(2)
ij =

wij
|i− j|α

, with wij ∈ [−π, π]. (8)

Here the power-law exponent α > 0 controls the decay
of correlations in real space. In addition, we consider a

longitudinal magnetic field of the form bj = λ + ib
(2)
j ,

with b
(2)
j ∈ [−π, π].

Translating the above choice of complex Wij into the
wave function and keeping only the local part of the en-
ergy function we obtain the following expression:

|ψΩ(β)〉 =
1√
Z

∑
σ

ei
∑N
j=1 arg(zj(β))

N∏
j=1

cosh(βX
(1)
j )|σ〉.

(9)
where zj depends on the complex parameters of the RBM
under consideration,

zj = cosh(βX
(1)
j ) cosX

(2)
j + i sinh(βX

(1)
j ) sinX

(2)
j ,

with X
(1,2)
j = b

(1,2)
j +

∑N
i=1 σiW

(1,2)
ij . From this repre-

sentation we see that the presence of non-zero imaginary
part of the RBM parameters translates into correlated
phases entering in the expression for the RBM wave func-
tion, Eq. (9).

The presence of non-local random phases in this model
makes it impossible to find an exact expression for the
lower bound of 〈S2(β)〉 as done in Section. III. Hence,
we resort to perturbative expansions in the the high-β
regime of the state in Eq. (9).

B. High-β limit

In the limit of large β we expand Eq. (9) to first non-

trivial order in β|X(1)
j |, which gives following expression

|ψΩ(β � 1)〉 ≈ 1√
Z(β)

∑
σ

eiφσe−EΩ(β)/2|σ〉, (10)

where φσ =
∑N
j=1 sign[X

(1)
j ]X

(2)
j and EΩ(β) is given by

Eq. (4). We can think of the state Eq. (10) as the result of
time evolving the state |Φ〉 = 1√

Z

∑
σ e
−EΩ(β)/2|σ〉 that

has no phases with a Hamiltonian HZ that is diagonal in
the computational basis and has eigenvalues φσ. Since
the state |Φ〉 features an area-law entanglement [67], the
structure of entanglement of the state |ψΩ(β � 1)〉 is
determined by the phases encoded in HZ . Below we will
consider the structure of HZ and use it to understand
the entanglement of the resulting state.

The explicit form of HZ depends on the range R of the

real part of RBM couplings W
(1)
ij . However, for any finite

R it features long-range power-law interactions between
spins determined by the parameter α. As an example, it
is possible to show that for the present ansatz

HZ =
∑
ij

Jij
|i− j|α

σzi σ
z
j +

∑
i

hiσ
z
i , (11)

where Jij ∝ w2
ij and hi is a random number uniformly

distributed in the [1/2, 1/2 + π] interval. In order to un-
derstand the entanglement created by HZ , we use results
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Figure 3. Phase diagram: (a) The phase diagram derived from the implications of the analytical bound, which implies
S ∼ N2−α for α < 2 and S ∼ const for α > 2 for large values of β. For smaller β we use the finite size scaling of the numerical
data, which lead to the tentative critical line βc = β(α) (grey and black). Here the arrows refer to the different finite size
behaviors of the tentative critical line βc, and could be consistent with its disappearance in the thermodynamic limit. The use
of different colours in the critical line for α < 1 (grey) and α > 1 (black) is to signal that the former corresponds to a crossover,
and hence is it a finite size effect. (b-e) Illustration of finite size scaling of 〈S2〉/SA for different fixed values of β and number of
physical spins ranging between N = 12 and N = 20. (b-c) For values of α < 1.5 the presence of crossings is observed suggesting
the existence of a critical line separating two regions with different scaling for the entanglement entropy. However, the stability
of this observation in the thermodynamic limit cannot be fully established within the current reach of our numerics; see the
main text for a further discussion. (d) For 1.5 < α < 2 numerics suggest the entropy to scale sub-extensively with system size
N in agreement with the analytical bounds predicting the entanglement entropy to be, at large values of β, upper bounded by
N2−α. (e) For α > 2 numerical results show the entropy becomes independent of system size N hence satisfying an area-law
of entanglement.

of Ref. [75]. This work obtained an upper bound on the
rate of production of entanglement entropy, Γ = dSA/dt.
The entanglement rate scales as the area of the bound-
ary’s subregion when α > 2 (α > D + 1 in arbitrary
dimensions). Since the initial state |Φ〉 is an area-law
state, the aforementioned result guarantees that the state
|ψΩ(β � 1) has an area-law entanglement if α > 2. In
contrast, for α < 2 the results of Ref. [75] imply that the
entangling rate that scales as Γ ∼ N2−α

A , where NA is
the size of the subregion A which here we always take as
NA = N/2 since we focus on the bipartite entanglement.
Note that when α ∈ (1, 2) we get that 2 − α < 1 and
hence, the entangling rate scaling is sub-extensive in the
system size N .

The application of the upper bound from Ref. [75] re-
sults in the high-β phase diagram boundaries shown at
the top part of Fig. 3(a). For α > 2 the bound implies
area-law scaling of entanglement. For the intermediate
values of 1 < α < 2 we expect at most a subextensive
amount of entanglement, S ∝ N2−α

A . Finally, for the
values of α < 1 the upper bound has volume-law entan-
glement and thus is not very useful.

C. Phase diagram

Although the bound discussed above provides expec-
tations for the phase diagram at high values of β, the
expansion breaks down at small values of β. Therefore,
we resort to numerical simulations to determine the phase

boundaries at intermediate and small values of β. To be
consistent with our previous approach, we focus on the
second Renyi entropy and perform numerical simulations
for systems with up to N = 20 physical spins. The results
of these simulations are summarized in Fig. 3.

To begin with, let us explore the region determined by
α < 1, where according to summary shown in Fig. 3(a)
we expect the volume law entanglement. In this region,
the analytical bound does not provide any useful infor-
mation. We compare the numerical results for average
second Renyi entropy 〈S2(α, β)〉 with fixed α < 1 to the
analytical result from Eq. (7) for the annealed average
obtained under assumption of i.i.d random phases and
the same non-random energy function. Remarkably, we
observe a good agreement between both quantities at all
values of β ∈ [0, 1.5] considered in the numerical simu-
lations, see an example in Fig. 3(b). In particular, we
find that for every β in the considered range the differ-
ence between the analytical expression and numerically
averaged second Renyi entropy is on average ∼ 10−7 and
assumes the maximal value of ∼ 10−4 in the worst case,
achieved for small values of β. This result suggests that,
in this regime, the average second Renyi entropy in the
presence of long-range phase correlations nearly coincides
to its annealed average value in the case of uncorrelated
random phases. This case was considered in Section III,
where we demonstrated an absence of entanglement tran-
sition.

Therefore, although the finite size scaling reveals a
crossing in Fig. 3(b), we expect this crossing to shift to
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larger values of β with increasing system size. This is
further supported by Fig. 4, that shows the increase of
the point βcross, defined at the point where curves corre-
sponding to different system sizes cross, for α < 1. This
result is along the line with our expectations of a volume
law entanglement at all finite β. However, the available
range of N is insufficient to check if βc grows logarithmi-
cally with N as we demonstrated in Sec. III.

Next, we continue with the region 1 < α < 2. Here
the bound suggests the existence of a sub-extensive scal-
ing of the entropy at large β, as indicated at the top of
Fig. 3(a). Numerical simulations in Fig. 3(c) show the
presence of crossings for values of α that are sufficiently
close to one, for example α = 1.15. For larger values
of α, for instance α = 1.66 no crossing is observed and
instead we find a good agreement with a sub-extensive
N2−α scaling of the entropy shown in Fig. 3(d). This
result suggests the existence of a critical region separat-
ing the volume-law and sub-extensive scaling regimes, as
is illustrated by the black line in Fig. 3(a) that shows
the position of the crossing. The inset of Fig. 4 shows
the scaling collapse for α = 1.15 with critical exponents
(βc, ν) = (0.42, 0.5).

We observe the crossing and performed scaling collapse
for the region of 1 < α < 1.53 that is suggestive of en-
tanglement transition. However, as observed in Fig. 4,
finite size scaling of data shows that in the region α > 1
the critical line shifts toward smaller α when consider-
ing larger system sizes. Such finite size drift may again
suggest this region might be associate with a crossover
rather than an actual entanglement transition, but due
to our limited system size points, we cannot rule out any
of the two possibilities.

Finally, for α > 2, numerical simulations in Fig. 3(e)
show the entanglement entropy to be independent of sys-
tem size for all finite values of β, signaling the existence
of area-law scaling for the entanglement entropy. This is
reflected in Fig. 3(a) by the shaded region for α > 2.

In summary, the phase diagram proposed in Fig. 3(a)
agrees with our numerical findings for the existence of
three different scaling regimes for the entanglement en-
tropy. The possible entanglement transition tuned by
parameter β could be realized in this phase diagram for
an intermediate range of α, 1 < α . 1.53. However,
the example of strong finite-size effects and eventual ab-
sence of transition for α < 1 suggests that one has to
interpret these findings with care, and additional studies
maybe needed to rule out the possibility of this being a
crossover rather than a true entanglement transition.

V. DISCUSSIONS

Motivated by recent studies of entanglement transi-
tions, we considered a neural-network inspired variational
Ansatz for the quantum wave function. We used RBM
quantum states, which have been proven capable of rep-
resenting ground states of many-body Hamiltonians with

Figure 4. Finite size scaling for the critical curve:
Clearly distinct behavior in the finite size scaling results for
the critical β(α) (α(β)) is observed for regions α ≶ 1. For
α < 1 with increasing system size the crossing point shifts
towards larger β, which is in agreement with our previous
expectations. Moreover, for α > 1 with increasing N the
crossing point shifts towards smaller α. Circles (triangles)
correspond to cuts at constant β (α). Inset : Example of scal-
ing collapse of numerical data at fixed α = 1.15. We find the
critical exponets to be (βc, ν) = (0.42, 0.5). Scaling collapses
of data were performed using the pyfssa [76, 77] package.

polynomial-size gap and quantum states generated by
any polynomial-size quantum circuits [49, 78]. We stud-
ied whether such variational states can capture an en-
tanglement transition while continuously varying some
parameters used to define the underlying neural network.

First, we considered a short-range RBM state with in-
dependent random phases parametrized by β that plays
the role of an inverse temperature. For this Ansatz we an-
alytically calculated a lower bound on the second Renyi
entropy. We found numerically that the averaged sec-
ond Renyi entropy is very close to the analytic lower
bound for all numerically accessible number of spins (up
to N = 20). Although both the analytical lower bound
and the numerically averaged Renyi entropy display fi-
nite size crossings, we demonstrate that they are associ-
ated with a crossover rather than an actual entanglement
transition. Using the analytical lower bound we observe
that the crossing point βcross scales very slowly, as lnN
for large N , a scaling that would be extremely hard to
recognize from numerical simulations due to the limited
range of accessible number of spins. We conclude that the
short-range RBM Ansatz with random phases features a
volume law entanglement at all finite values of β, thus
ruling out the possibility of an entanglement transition.

As a more general example, we relaxed the assumption
of uncorrelated random phases, and considered random
power-law correlated phases controlled by the exponent
α. The presence of long-range correlated phases did not
allow to apply the analytic approach and we instead re-
sorted to numerical simulations of the second Renyi en-
tropy. Using known bounds on the entangling rate for
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systems with power-law interactions, we derived a hy-
pothetical phase diagram with three regions of different
scaling of entanglement entropy for large values of β. For
small and intermediate values of β, our numerical simula-
tions suggest the existence of a critical curve in the (β, α)
plane. However, the limited range of number of spins we
can access does not allow us to exclude the presence of a
crossover rather than an actual phase transition.

As a future research direction, it would be interest-
ing to go beyond RBM states. In particular, a recent
work [57] suggested that contemporary deep learning ar-
chitectures, in the form of deep convolutional and recur-
rent networks, can also efficiently represent highly entan-
gled quantum systems. Moreover, it was shown that such
architectures can support volume-law entanglement scal-
ing, polynomially more efficiently O(N) than presently
employed RBM, O(N2). Hence, it would then be in-
teresting to carry out the same study we pursued in this
work but using these state-of-the-art neural-network base
wave functions.
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Appendix A: Analytic calculation of the annealed
second Renyi entropy

The goal of this section is to explicitly derive the ex-
pression (7) for the annealed average of the second Renyi

entropy. As we already stated, this results holds for states
of the form:

|ψ(β)〉 =
1√
Z

∑
σ

e−iφσe−E(β)/2|σ〉,

where E(β) is a non-random function, and φσ is i.i.d
uniformly distributed in the [−π, π] interval.

We are then interested in computing the following
quantity

SA2 (ρA) = − ln〈Trρ2
A〉.

Given a bipartition of the system (A,B), the reduced
density matrix is given by the following expression

ρA =
1

Z

∑
a,a′

ca,a′ |σa〉〈σa′ |,

and consequently

Trρ2
A =

1

Z2

∑
a,a′

ca,a′ca′,a

=
1

Z2

∑
a,a′

∑
b,c

ra,br
∗
a′,br

∗
a,cra′,ce

− β2
(
Ea,b+Ea′,b+Ea,c+Ea′,c

)
(A1)

where ra,b = e−iφa,b . In order to average over disorder
realizations we need to compute 〈ra,br∗a′,br∗a,cra′,c〉. For
this, note that since ra,b is a phase the only way to get
a non-zero contribution is by cancelling out the phases.
Hence, it is quite easy to check that

〈ra,br∗a′,br∗a,cra′,c〉 = δa,a′ + δb,c − δa,a′δb,c.

Finally, substituting the above expression into Eq. (A1)
leads to the desired result

〈Trρ2
A〉 =

TrA
(
TrBe

−βH)2 + TrB
(
TrAe

−βH)2
Z2(β)

− Y2(β).
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[72] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Annals of Physics
326, 96 (2011), january 2011 Special Issue.

[73] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. I. Cirac, Neural-network quantum states, string-bond
states, and chiral topological states, Physical Review X
8, 10.1103/physrevx.8.011006 (2018).

[74] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, Equiv-
alence of restricted boltzmann machines and tensor net-
work states, Phys. Rev. B 97, 085104 (2018).

[75] Z.-X. Gong, M. Foss-Feig, F. G. S. L. Brandão, and A. V.
Gorshkov, Entanglement area laws for long-range inter-
acting systems, Phys. Rev. Lett. 119, 050501 (2017).

[76] A. Sorge, pyfssa 0.7.6 (2015).
[77] O. Melchert, autoscale.py - a program for automatic

finite-size scaling analyses: A user’s guide (2009),
arXiv:0910.5403 [physics.comp-ph].

[78] Y. Huang and J. E. Moore, Neural network repre-
sentation of tensor network and chiral states (2017),
arXiv:1701.06246 [cond-mat.dis-nn].

https://arxiv.org/abs/1506.08858
https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevResearch.2.023358
https://doi.org/10.1103/physrevlett.124.097201
https://doi.org/10.1103/physrevlett.124.097201
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevLett.122.065301
https://arxiv.org/abs/2010.14514
https://arxiv.org/abs/2010.14514
https://doi.org/10.1103/PhysRevB.96.195145
https://arxiv.org/abs/1301.3124
https://arxiv.org/abs/1410.3831
https://doi.org/10.1103/PhysRevB.101.195141
https://arxiv.org/abs/1609.08142
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1162/neco.2008.04-07-510
https://arxiv.org/abs/https://doi.org/10.1162/neco.2008.04-07-510
https://arxiv.org/abs/quant-ph/0608197
https://arxiv.org/abs/quant-ph/0608197
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/physrevx.8.011006
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevLett.119.050501
https://doi.org/10.5281/zenodo.35293
https://arxiv.org/abs/0910.5403
https://arxiv.org/abs/1701.06246

	Entanglement transitions from restricted Boltzmann machines
	Abstract
	Introduction
	Restricted Boltzmann Machines
	RBM as a wave function Ansatz
	Entanglement of RBM states

	Uncorrelated random phases
	RBM ansatz wave function
	Bounding Renyi entropies
	Absence of entanglement transition

	Correlated random phases
	RBM Ansatz wave function
	High- limit
	Phase diagram

	Discussions
	Acknowledgments
	Analytic calculation of the annealed second Renyi entropy 
	References


