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A Ginzburg-Landau model embedded into a vibrational model is used to study the flexocaloric
effect in a beam near a ferroelastic transition. The caloric response upon bending is characterized
by the isothermal entropy change and the adiabatic temperature change of the beam. We obtain
a larger response relative to the strength of the applied forces at temperatures slightly above the
transition temperature. It is also obtained that the maximum caloric response is almost linear with
the bending angle of the beam whereas the relation between the bending angle and the applied
forces is highly nonlinear. Small hysteresis associated with the phase transition is obtained for
sufficiently large bending forces due to the existence of a critical point in the temperature-stress
phase diagram of the ferroelastic material. Finally, the microstructure changes with bending in the
beam are consistent with previous experimental observations.

I. INTRODUCTION

In recent years there has been a great deal of inter-
est in developing environmentally friendly cooling tech-
niques that can efficiently replace the current technol-
ogy based on vapor compression, which uses fluids with
strong global warming adverse effects. Among the differ-
ent possibilities, solid state technologies, based on mate-
rials exhibing giant caloric effects, are nowadays consid-
ered the most promising1.

Caloric effects rely on the reversible thermal response
of solid materials to changes induced by an externally ap-
plied field, either electric, magnetic or mechanical. The
corresponding effects are denoted as electro-, magneto-
and mechanocaloric effects, respectively. The caloric re-
sponse is in general quantified by either the change of
entropy induced by isothermal application of the field or
the change of temperature that occurs when the field is
applied or removed adiabatically2. A number of ferroic
(and multiferroic) materials display very large caloric ef-
fects close to the phase transition where the relevant fer-
roic property spontaneously emerges. Particularly inter-
esting are first order transitions which can be induced by
externally applied fields with an associated large latent
heat1,3,4. This is the class of materials that has been ac-
knowledged to be potentially interesting for solid state
cooling and energy harvesting applications5.

Among the caloric materials, mechanocaloric materi-
als have opened up excellent promise for applications6,7.
In this class of materials caloric effects are usually in-
duced by uniaxial stress or by hydrostatic pressure. How-
ever, in practical applications flexion, bending or twisting
is a very convenient stress mode since it is much eas-
ily implemented in refrigeration or harvesting devices8,
the required force decreases at the expense of increased
displacement9,10, and has the advantage of localizing the
areas where large changes of temperature may occur. In
addition, the large surface to volume ratio of thin beams
or fibers is conducive to efficient heat transfer. Com-

pared with the homogeneous deformation induced by uni-
axial stress or hydrostatic pressure, bending or twisting
induces stress gradients strongly concentrated in the re-
gions of maximum curvature. The caloric effect associ-
ated with the application of a field that couples to the
gradient of the strain is known as the flexocaloric effect.
In a broader context, caloric effects associated with bend-
ing or twisting a material are also known as flexocaloric as
these deformation modes involve large strain gradients.

Recently there has been an incipient interest in study-
ing the caloric response of materials subjected to inhomo-
geneous stress modes. Specifically, the caloric response of
NiTi shape-memory alloy, rubber and plastic fibers10–12

subjected to bending or twisting has been demonstrated.
Nevertheless, studies dealing with the thermodynamics
of mechanocaloric materials subjected to inhomogeneous
stress modes are still scarce. In the present paper we pro-
pose a model for a ferroelastic transition that is adequate
for studying flexocaloric effects in the vicinity of the fer-
roelastic transition. The model is formulated in two di-
mensions for a system undergoing a square-to-rectangle
transition, that can be considered as the analogue of
a three-dimensional (3D) cubic-to-tetragonal transition,
commonly occurring among many ferroelastics. In fact,
the former can be conceived as the cross-section of the
latter and, therefore, the obtained results are expected
to be meaningful for the study of flexocaloric effects in a
variety of real materials.

Actually, the present study represents a first step in
the quest for new caloric materials since, as it is well
known, in some materials strain gradients can induce
strong polar and magnetic response13, which suggests
that the combined application of flexion and electric or
magnetic fields in this class of materials might be a very
convenient strategy to induce an enhanced multicaloric
response14. Additionally, it would be worthwhile to ex-
plore caloric effects in flexoelectric15–17, flexomagnetic18

and flexomagnetoelectric19,20 materials.

The paper is organized as follows. In Sec. II we intro-
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duce the model, a strain based free energy and the corre-
sponding dynamical equations. The elastic and thermo-
dynamic properties obtained from the model for a bent
(ferroelastic) beam are presented in Sec. III. The change
in microstructure is found to be consistent with experi-
mental observations21. Finally, in Sec. IV we summarize
our main results and draw specific conclusions.

II. MODEL

In this section we present a mesoscopic model for a fer-
roelastic material as the constituent of a two-dimensional
(2D) macroscopic beam of size Lx×Ly with free bound-
ary conditions [Fig. 1(a)]. The beam is considered to be
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FIG. 1: (a) Beam of size Lx × Ly in the absence of external
forces, and (b) with applied external forces, fy.

the projection onto a 2D space of a 3D sheet of width
Lx, thickness Ly and with no boundaries in z direction.
Thus, all results will be given per unit length in z direc-
tion, assuming that all physical variables describing the
beam are constant along this direction.

The Helmholtz free energy of the beam is written as the
free energy of a set of 3N classical harmonic oscillators
with frequency ωi which are the building blocks of the
3D sheet,

Fvib = kBT

3N∑
i=1

ln

(
h̄ωi

kBT

)
. (1)

This free energy is divided into two terms,

Fvib = Fω + FT , (2)

the first term, Fω, containing the dependence of the vi-
brational free energy on the frequencies of the oscillators,
and the second term, FT , that depends on temperature

only,

Fω = kBT

3N∑
i=1

ln

(
h̄ωi

U

)
,

FT = −3NkBT ln

(
kBT

U

)
,

(3)

where U is the reduced unit of energy. The free energy
term Fω is modeled using a Ginzburg-Landau expansion
in the components of the strain tensor. To this end, the
beam is discretized onto a Nx ×Ny = 1024× 32 mesh.

The distortion of the beam is described by the dis-
placement field,

u(X) = x(X)−X, (4)

where X are the positions of the cells of the discretized
beam in the undistorted or reference configuration, and
x are their positions in the distorted state. These dis-
placement fields, which are the variables of the model,
are used to compute the Lagrangian strain field,

εij(X) =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∑
k

∂uk
∂Xi

∂uk
∂Xj

)
, (5)

which in turn will be used to compute the elastic free
energy, Fω.

The beam is a single crystal of a ferroelastic material
with a square-to-rectangle phase transition that can be
bent by applying external forces. The order parameter
(OP) of the transformation, which is of first order, is

the deviatoric strain, e2 = (εxx − εyy)/
√

2. Thus, the
Ginzburg-Landau expansion of the free energy density is
written up to sixth order in the OP. In addition, we in-
clude the lowest order contribution of the non-OP compo-
nents of the strain tensor, dilatation e1 = (εxx +εyy)/

√
2

and shear e3 = εxy, which play an important role in het-
erogeneous strain configurations, and the lowest order
contribution of the gradient of all strain components,

fω ≈ 1
2A(T − Tc)e22 + 1

4βe
4
2 + 1

6γe
6
2 + 1

2A1e
2
1

+ 1
2A3e

2
3 + 1

2κ1|∇e1|
2 + 1

2κ2|∇e2|
2 + 1

2κ3|∇e3|
2,
(6)

where T is the temperature and Tc is the stability limit
of the square phase. In summary, the free energy term
Fω in Eq. (3) is evaluated as,

Fω =

∫
fωdX, (7)

with fω given by Eq. (6). The temperature dependence
of the free energy is thus limited to the quadratic term
in the Landau free energy density and to the free energy
term FT . We also note that fω includes physical non-
linearities (fourth and sixth order elastic constants) and
thus, the phonon frequencies in Eq. (3) need to be inter-
preted as being effective and temperature dependent in
an anharmonic system.
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An efficient and simple way of obtaining the equilib-
rium state of the beam under an applied external force is
by solving the dynamical equations of the displacement
field,

ρüi = ρgi +
∑
j

∂σij
∂xj

, (8)

where the dots stand for time derivative, ρ is the density
of the deformed configuration, gi is the i-th component of
an external force (per unit mass), σij are the components
of the Cauchy stress tensor, and we recall that xj is the j-
th component of the position vector of a unit cell of the
discretized beam in the deformed configuration. Using
more appropriate variables the dynamical equations can
be written as22,

ρ0üi = ρ0gi +
∑
j

∂τij
∂Xj

, (9)

where ρ0 is the density of the undistorted beam, τij are
the components of the first Piola-Kirchhoff stress tensor
and Xj is the j-th component of the position vector of
a unit cell of the discretized beam in the reference con-
figuration. The first Piola-Kirchhoff stress tensor is the
work conjugate of the deformation gradient, Fij , defined
as,

Fij =
∂xi
∂Xj

=
∂ui
∂Xj

+ δij = dij + δij , (10)

where we define,

dij =
∂ui
∂Xj

. (11)

Thus, using the chain rule the first Piola-Kirchhoff stress
tensor can be obtained from the Helmholtz free energy,

τij =
δFvib

δFij
=

3∑
m=1

δFω

δem

∂em
∂Fij

, (12)

where the free energy,

Fω =

∫
fω(em, ∂em/∂Xi)dX, (13)

is a functional of the strain fields and the strain gradients.
Thus we have,

τij =

3∑
m=1

(
∂fω
∂em

−
∑
k

∂

∂Xk

∂fω
∂(∂em/∂Xk)

)
∂em
∂Fij

, (14)

which yields,

τxx =
[
A(T − Tc)e2 + βe32 + γe52 +A1e1

]
× 1√

2
(1 + dxx) +A3e3

1
2dxy −

(
κ1∇2e1 + κ2∇2e2

)
× 1√

2
(1 + dxx)− κ3

(
∇2e3

)
1
2dxy,

τxy =
[
−
(
A(T − Tc)e2 + βe32 + γe52

)
+A1e1

]
× 1√

2
dxy +A3e3

1
2 (1 + dxx)−

(
κ1∇2e1 − κ2∇2e2

)
× 1√

2
dxy − κ3

(
∇2e3

)
1
2 (1 + dxx),

τyx =
[
A(T − Tc)e2 + βe32 + γe52 +A1e1

]
1√
2
dyx

+A3e3
1
2 (1 + dyy)−

(
κ1∇2e1 + κ2∇2e2

)
1√
2
dyx

−κ3
(
∇2e3

)
1
2 (1 + dyy),

τyy =
[
−
(
A(T − Tc)e2 + βe32 + γe52

)
+A1e1

]
× 1√

2
(1 + dyy) +A3e3

1
2dyx −

(
κ1∇2e1 − κ2∇2e2

)
× 1√

2
(1 + dyy)− κ3

(
∇2e3

)
1
2dyx.

(15)
In geometrically linear elasticity the stress tensor is some-
times defined as the partial derivative of the free energy
density with respect to the linear strain tensor, and the
partial derivative of the free energy density with respect
to the strain gradient is referred to as the hyperstress or
the double stress23. In this case, the functional deriva-
tive of the free energy with respect to the linear strain
tensor, which is a combination of the stress and the hy-
perstress is referred to as the total stress. In the present
work we introduce the first Piola-Kirchhoff stress tensor
as the functional derivative of the free energy with re-
spect to the deformation gradient. Thus, this definition
corresponds to the total stress and contains the depen-
dence of the free energy density on both the strain and
the strain gradients. Consequently, the divergence of the
first Piola-Kirchhoff stress tensor yields the total elastic
force in a volume element of the beam.

To dissipate the excess free energy of the beam during
its relaxation to equilibrium we introduce the Rayleigh
potential,

R =
1

2

3∑
m=1

Amė
2
m, (16)

which yields the damping stress tensor,

τ ij =
δ

δḞij

∫
RdX =

∂R

∂Ḟij

, (17)

and the associated damping force,

hi =
1

ρ0

∑
j

∂τ ij
∂Xj

. (18)
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Applying the chain rule the damping stresses are,

τxx =
(
A1ė1 +A2ė2

)
1√
2
(1 + dxx) +A3ė3

1
2dxy,

τxy =
(
A1ė1 −A2ė2

)
1√
2
dxy +A3ė3

1
2 (1 + dxx),

τyx =
(
A1ė1 +A2ė2

)
1√
2
dyx +A3ė3

1
2 (1 + dyy),

τyy =
(
A1ė1 −A2ė2

)
1√
2
(1 + dyy) +A3ė3

1
2dyx.

(19)

Finally, to bend the beam we apply a distribution of
external forces to its long edge that vary linearly with the
position where they are applied, as shown schematically
in Fig. 1(b). Analytically the forces are given by the
expression,

fy(X,Y = 0) =

{
2f0X/Lx, X ≤ Lx/2

2f0 − 2f0X/Lx, X > Lx/2,

fy(X,Y = Ly) =

{
−f0 + 2f0X/Lx, X ≤ Lx/2

f0 − 2f0X/Lx, X > Lx/2,

(20)
where X = Xx, Y = Xy, and f0 is a parameter.

Expanding Eq. (9) and taking into account the damp-
ing force as an external force we obtain,

ρ0üx =
∂(τxx + τxx)

∂X
+
∂(τxy + τxy)

∂Y
,

ρ0üy = ρ0fy +
∂(τyx + τyx)

∂X
+
∂(τyy + τyy)

∂Y
,

(21)

where the first Piola-Kirchhoff stress tensor is given by
Eq. (15), the damping stress tensor is given by Eq. (19),
and the external forces that are applied to bend the beam
are given in Eq. (20).

Equation (21) is integrated using the leap-frog Verlet
algorithm24. As the damping force in a volume element
of the beam is written as the divergence of a damping
stress tensor, the friction force is large for short wave-
length oscillations of the beam, but is inefficient to dissi-
pate the energy associated with long wavelength distor-
tions. Thus, to reach the equilibrium configurations in
reasonably short times, every 104 − 105 integration time
steps the velocity of all volume elements of the beam is
set to zero.

The parameters A, Tc, κ2 and ρ0 are set to unity,
which define reduced units of length, energy, mass and
temperature. Some other parameters are taken from a
fit to Fe-Pd by Kartha et al.25, and in reduced units
are β = −2.76 × 102, γ = 4.86 × 105, A1 = 2.27,
and A3 = 4.54. The remaining model parameters are
κ1 = κ3 = 1 and A1 = A2 = A3 = 0.2. The size of
the beam is Lx × Ly = 2000 × 62.5 (in reduced units)
which leads to a number of oscillators per unit length in
Fe-Pd of 3N = 3.746× 105, where we have used that Fe-
Pd has an fcc crystal structure with lattice parameter26

a = 0.3758 nm. With these model parameters the square-
to-rectangle phase transition in the absence of applied
forces occurs at T0 = Tc + 3β2/16Aγ = 1.029Tc.

III. ELASTIC AND THERMODYNAMIC
PROPERTIES OF THE BENT BEAM

In this section we present the elastic and thermody-
namic properties of the beam obtained from fully relaxed
static configurations. In Fig. 2 we show the shape of
the beam obtained at T = 1.05Tc, above the transition
temperature, for five different values of the parameter f0
which controls the strength of the applied forces. The
corresponding OP deviatoric strain field is also plotted
using a gray scale, where gray stands for the high tem-
perature square phase and white/black stand for the two
variants of the rectangular phase. The nucleation of the
rectangular phase induced by stress is obtained in the
curved regions of the beam, the horizontal variant nucle-
ating in the stretched external part of the curved regions,
and the vertical variant nucleating in the compressed in-
ternal part of the curved regions, as shown schematically.

  

f 0=1×10−5

f 0=2×10−5

f 0=5×10−5

f 0=1×10−4

f 0=2×10−4

FIG. 2: Bent beam at T = 1.05Tc for several values of the
parameter f0, which controls the strength of the distribution
of applied forces. The corresponding deviatoric strain field is
shown using a gray scale, where gray stands for the square
phase and white/black stand for the two variants of the rect-
angular phase, as shown schematically.
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A macroscopic or integral quantity that characterizes
the deformation of the beam is the bending angle. This
is defined as the change of the angle between the direc-
tions where the ends of the beam point when the external
forces are applied. The bending angle as a function of the
strength of the applied forces is shown in Fig. 3 at three
different temperatures above T0. The relation obtained
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FIG. 3: Bending angle of the beam vs the strength of the
distribution of applied forces at three different temperatures.

is highly nonlinear. In addition, the strength of the ap-
plied forces that is needed to bend the beam by a given
angle decreases as the transition temperature, T0, is ap-
proached. This is a consequence of the softening of the
elastic constant C ′ = (C11 − C12)/2 = A(T − Tc)/2.

In Fig. 4 we show the bent beam and the correspond-
ing OP deviatoric strain field at different temperatures
for f0 = 5×10−5. In this case, below the transition tem-
perature there is a competition between the stress and
temperature to induce the rectangular phase. If the effect
of the stress is larger than the effect of temperature, we
obtain a strain configuration similar to the one obtained
above T0, with one variant of the rectangular phase nu-
cleating in the external part of the curved regions and the
other variant nucleating in the internal part. However,
when the effect of temperature dominates over the stress
we obtain a twin microstructure with twin boundaries
oriented along 〈11〉 directions in order to minimize the
elastic energy, which results in a zig-zag microstructure.
Still, to accommodate the stress in this microstructure,
one of the variants of the rectangular phase is dominant
in the external part of the curved regions of the beam and
the other variant is dominant in the internal part. These
results are consistent with the experimental observation
of microstructure changes associated with bending21 in
CuAlNi.

Given the equilibrium displacement field of the bent
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T=1.1T c
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T=0.9T c

T=0.8T c

FIG. 4: Bent beam at several temperatures under an external
force distribution with f0 = 5 × 10−5. The corresponding
deviatoric strain field is shown using a gray scale, as in Fig.
2.

beam, its entropy is obtained as,

S = −∂Fvib

∂T
= −A

2

∫
e22dX + 3NkB

[
1 + ln

(
kBT

U

)]
.

(22)
In Fig. 5 we plot the entropy of the beam as a function
of temperature for several values of f0. The results are
given relative to the entropy at T = 1.5Tc in the ab-
sence of applied forces. In the absence of external forces
the entropy curve is discontinuous due to the first order
character of the phase transition. However, in the whole
range of applied forces we have used the entropy curve
is continuous within numerical precision. This is related
to the existence of a critical point in the temperature-
stress phase diagram of the model, where the square-to-
rectangle phase transition ends. The existence of a criti-
cal point has been observed experimentally in Fe-31.2Pd
(at. %) and is expected to exist in materials where the
transformation strain has a strong dependence on the
applied stress27. Nonhysteretic superelasticity similar to
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FIG. 5: Entropy of a bent beam vs temperature for f0 =
0, 1 × 10−5, 2 × 10−5, 5 × 10−5, 1 × 10−4, and 2 × 10−4 (from
top to bottom above T0). Results are given with respect to
the entropy at T=1.5Tc in the absence of applied forces.

the one expected above a critical point has also been ob-
served in NiCoFeGa28.

Using a Gibbs free energy density f = fw−e2σ2 where
σ2 = (σxx−σyy)/

√
2 is the deviatoric stress, we have de-

termined that in the model the critical point is located
at Tcri = 1.070Tc and σcri

2 = 4.89 × 10−4 in reduced
units. Strictly speaking, the work conjugate of the Lan-
grangian strain tensor is the second Piola-Kirchhoff stress
tensor. However, we will compare this critical stress to
the first Piola-Kirchhoff stresses obtained in the simula-
tions. Thus, this comparison is made in the approxima-
tion of geometrically linear elasticity, in which the two
Piola-Kirchhoff stress tensors and the Cauchy stress ten-
sor are equivalent.

In Fig. 6 we plot the deviatoric stress field in the bent
beam relative to the critical stress for several strengths of
the applied forces at T = 1.03Tc. The regions where the
local stress is larger than the critical stress are plotted
in white/black according to its positive/negative sign. In
the remaining parts of the beam the strength of the local
deviatoric stress is represented using a gray scale. It is
found that in the range of external forces used in Fig. 5
the local deviatoric stress is above the critical stress in
large parts of the beam which is sufficient to prevent the
existence of discontinuities and hysteresis in the whole
system. For smaller values of the applied forces several
discontinuities in the entropy curves are obtained (not
shown in the figure). These may be associated with the
nucleation of the rectangular phase at the center of the
beam or at its ends where the curvature and thus the
local stress may be very small.

From the entropy curves we have computed the isother-
mal entropy change of the beam when the external forces

  

f 0=1×10−5

f 0=2×10−5

f 0=5×10−5

f 0=1×10−4

f 0=2×10−4

FIG. 6: Deviatoric stress field in the bent beam relative to
the critical deviatoric stress. Regions with a positive/negative
stress larger than the critical stress are plotted in white/black
whereas in the remaining parts of the beam the local devi-
atoric stress is represented using a gray scale. The results
correspond to T = 1.03Tc for several values of the parameter
f0, which controls the strength of the distribution of applied
forces.

are applied, ∆S = S(f0, T ) − S(f0 = 0, T ) (Fig. 7).
Due to the continuity of the entropy curves when the
external forces are applied there is a single discontinu-
ity in the isothermal entropy change associated with the
discontinuity of the entropy curve in the absence of ap-
plied forces. This yields a temperature dependence of
the isothermal entropy change that is somewhat differ-
ent from the usual peak at the transition temperature.
Above the transition temperature we obtain that the en-
tropy change increases with the strength of the applied
forces. In the vicinity of the phase transition the ratio be-
tween the entropy change and the strength of the applied
forces is larger for small forces, and the temperature de-
pendence of the entropy change is smaller if the applied
forces are large.

We have also computed the adiabatic temperature
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FIG. 7: Stress-induced isothermal entropy change as a func-
tion of temperature for selected values of the applied external
forces from 0 to f0.

change as a function of the initial temperature when
the external forces are applied to the beam, ∆T =
T (f0, S)−T (f0 = 0, S). The results are shown in Fig. 8.
As before, in the curves of the temperature change there
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FIG. 8: Stress-induced adiabatic temperature change as a
function of the initial temperature for selected values of the
applied external forces from 0 to f0.

is a single discontinuity associated with the discontinuity
of the entropy curve in the absence of applied forces. We
also find that the larger the applied forces the larger the
thermal response. In addition, for large forces the tem-
perature dependence of the adiabatic temperature change

obtained above the transition temperature is very weak.
As the bending angle can be easily measured in ex-

periments we also present the thermal response of the
beam upon bending in terms of this quantity. In Fig.
9(a) we plot the isothermal entropy change of the beam
at T = 1.03Tc as a function of the bending angle. The
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FIG. 9: Stress-induced isothermal entropy change (a) and
adiabatic temperature change (b) as a function of the bending
angle at T = 1.03Tc.

adiabatic temperture change at the same initial temper-
ature is shown in Fig. 9(b). In both cases we obtain an
almost linear behavior. This is surprising since as shown
in Fig. 3 the relationship between the applied forces and
the bending angle is highly nonlinear. It is also worth
noting that the thermal response obtained for bending
angles smaller that 30◦ is very small, as this bending an-
gle can be obtained with very small forces that are insuf-
ficient to induce the phase transition. In this small force
regime we obtain discontinuities in the entropy curves
and hysteresis.

Considering the reduced unit of temperature that cor-
responds to the Fe-30.0Pd (at. %) alloy25,29, Tc = 257 K,
the average temperature change of the simulated beam
for a bending angle θ = 60◦ is ∆T = 1.7 K. This result
will strongly depend on the ratio Ly/Lx of the beam.
Short and thick beams require large forces to be bent.
On the contrary, long and thin beams can be easily bent
but lead to a more localized deformation and caloric re-
sponse.

The effect of the external forces on the phase trans-
formation can be visualized by plotting the fraction of
the beam that has transformed to the rectangular phase
versus the bending angle. This is shown in Fig. 10 at
three different temperatures. A local area of the beam is
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considered to have transformed to the rectangular phase
if the local deviatoric strain is larger than 50% of the
transformation strain that is obtained at the transition
temperature in the absence of stress, eT2 = 0.0206. The
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FIG. 10: Transformed fraction of the beam vs bending angle
at three different temperatures.

minimum bending angle that is needed to nucleate the
rectangular phase is almost independent of temperature,
although the forces needed to bend the beam by such an
angle increase with temperature. Once the rectangular
phase nucleates the transformed fraction increases with
the bending angle up to a maximum value that is reached
for large bending angles (> 90◦). We expect the elastic
and thermodynamic response of the beam to such large
bending angles to strongly depend on how the external
forces are applied.

IV. SUMMARY AND CONCLUSIONS

We have used a Ginzburg-Landau model embedded
into a vibrational model to study the flexocaloric effect
in a beam near a ferroelastic transition. The equilibrium
strain configurations of the beam at several temperatures

and strengths of the applied forces have been obtained by
solving the corresponding dynamical equations, and the
associated entropy has been computed. It is found that
the entropy-temperature curves are continuous for ap-
plied forces above a given threshold. This is related to
the existence of a critical point in the stress-temperature
phase diagram of ferroelastic materials. If the applied
forces are sufficiently large the local deviatoric stress is
larger than the critical stress in large parts of the beam.
This leads to a reduction of the hysteresis associated with
the phase transition that in small systems is completely
suppressed.

The flexocaloric effect is characterized by the isother-
mal entropy change and the adiabatic temperature
change obtained from the entropy curves1–4. A larger
thermal response relative to the applied forces is obtained
at temperatures slightly above the transition tempera-
ture. The maximum caloric response is also plotted in
terms of the bending angle of the beam and an almost
linear relation is obtained, whereas the relation between
the bending angle and the applied forces is highly non-
linear. The peculiar morphology of the microstructure
in the beam is found to be similar to that observed in
experiments21.

It is also obtained that there is a minimum bending an-
gle that is necessary to induce the nucleation of the low
symmetry phase by stress. This minimum bending an-
gle has a weak dependence on temperature. Finally, as a
natural extension of the present study, it would be note-
worthy to study twistocaloric effect in ferroelastic beams
or rods subjected to a torque (or twisting strain11) as well
as caloric effects in flexoelectric15–17, flexomagnetic18,
flexomagnetoelectric19,20 and other flexoelastic30 mate-
rials.
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