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Studies of the current-induced spin polarization (CISP) have been recently reinvigorated due to the discoveries of CISP 

in some burgeoning materials such as oxide interfaces, van der Waals and topological quantum materials. Here, we 

investigate the CISP in two-dimensional systems for different types of spin-orbit coupling (SOC) using the Boltzmann 

transport theory. We find an anisotropic response of CISP to the current direction which strongly depends on the type of 

SOC. We demonstrate that the CISP is non-linear with respect to the SOC magnitude, depends on the Fermi energy, and 

exhibits two different transport regimes for low or high carrier density. Finally, we propose a magnetoresistance device 

which can exploit the predicted CISP anisotropy. 

I. INTRODUCTION 

Current-induced spin polarization (CISP) is a non-

equilibrium spin polarization induced in a conductor with spin-

orbit coupling (SOC) by passing an electric current1,2. Jointly 

with the anomalous Hall effect (AHE)3 and the spin Hall effect 

(SHE) 4 , 5 , the CISP represents a charge-to-spin conversion 

which is interesting for spintronics 6 . However, unlike the 

AHE/SHE and tunneling AHE/SHE 7 , 8  generating spin 

accumulation at the edges of the conductor, the CISP is spatially 

homogeneous. The CISP effect was originally proposed by 

Ivchenko and Pikus 9  for semiconductors lacking space-

inversion symmetry. Later, it was theoretically explored in a 

two-dimensional electron gas (2DEG) with Dresselhaus SOC 

(DSOC) by Aronov et al.10,11 and Rashba SOC (RSOC) by 

Edelstein12. The latter phenomenon is known as the Edelstein 

effect. Owing to the spin polarization being generated and 

controlled in nonmagnetic materials by purely electrical means, 

the CISP offers promising applications in all-electric spintronic 

devices13,14 ,15 ,16 ,17. Recently, CISP has been experimentally 

observed in various 2D systems such as a Bi/Ag bilayer18,19, 

surface of topological insulator Bi2Se3
20 ,21 , oxide interfaces 

LaAlO3/SrTiO3
22,23,24, a van der Waals heterostructure25, and 

ferroelectric materials 26 , 27 . In the above systems, the 

combination of broken inversion symmetry and strong SOC 

derived from heavy elements results in RSOC, which is critical 

for generation of CISP.  

On the theoretical side, CISP has been extensively studied 

for 2DEGs28,29,30,31,32,33,34. For example, Silsbee developed a 

theoretical model for the detection of CISP via electrical 

measurements28. Trushin and Schliemann investigated the 

anisotropy of CISP for the 2DEG with RSOC and DSOC in the 

high-density limiting case29. Johansson et al. explored the 
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anisotropy of electron mass and RSOC on the CISP within the 

semiclassical Boltzmann transport theory33. Most of these 

works, however, focused on RSOC and derived formula for 

CISP formula up to the linear order in SOC magnitude and 

under high-density regime approximation. Here, using 

Boltzmann transport theory, we provide a systematic 

investigation of anisotropic CISP for different types of SOC and 

explore the Fermi energy dependence beyond the linear order 

in SOC approximation. We show that the CISP is highly 

anisotropic, both in magnitude and direction, and strongly 

depends on the type of SOC. We demonstrate a very different 

behavior of the CISP as a function the Fermi energy, depending 

on the Fermi contour topology.  

The rest of the paper is organized as follows. In Sec. II, we 

describe the Hamiltonian model and present the theoretical 

formalism and general formula for CISP calculation. In Sec. III, 

we present the results for spin textures and discuss the topology 

of the Fermi contours. In Sec. IV, we present the analytical 

results of CISP for different types of SOC based on the 

Boltzmann transport theory. Finally, in Sec. IV, we discuss the 

obtained results and make conclusions. 

II. THEORETICAL FORMALISM 

We consider a single-particle Hamiltonian describing a 2D 

system with SOC as follows  
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Here the first term is the kinetic energy with m being the 

electron effective mass, ℏ  the reduced Planck's constant, and 

𝐤 = (𝑘𝑥, 𝑘𝑦) = 𝑘(𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜙)  the wavevector given in the 

Cartesian or polar coordinates where 𝜙 is the azimuthal angle. 
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The second term represents the SOC with 𝛀 being the spin-

orbit field (SOF) defined in k space and 𝛔 = (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧) the 

Pauli vector. Note that m is assumed to be isotropic in k space. 

The eigenvalues 𝐸𝐤𝑠  with s = ±1 being the spin index and 

normalized eigenstates 𝜓𝐤𝑠 of Hamiltonian (1) take the form   
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respectively, where 2 2 2

x y z    . The expectation 

values of the spin operator can be obtained as 

  , , .
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Being considered as a function of wave vector k, Eq. (4) 

determines the spin texture in k space.  

At the equilibrium conditions, the system is characterized 

by the equilibrium Fermi distribution function 𝑓𝐤𝑠
0  and the net 

spin polarization is zero namely 0 0s s

s

f d  k ks s k . This 

follows from time-reversal symmetry, which enforces 𝐬𝐤 =

−𝐬−𝐤  and  𝑓𝐤𝑠
0 = 𝑓−𝐤𝑠

0 . When an external electric field 𝛆  is 

applied, the Fermi contour in k space is displaced by 𝛿𝐤, which 

is antiparallel to the direction of 𝛆 . The magnitude of 𝛿𝐤  is 

determined by the collisions of electrons with impurities and 

phonons35. Under the non-equilibrium conditions, time reversal 

symmetry breaks and the distribution function 𝑓𝐤𝑠  deviates 

from 𝑓𝐤𝑠
0 , so that 𝑓𝐤𝑠 = 𝑓𝐤𝑠

0 +𝛿𝑓𝐤𝑠 resulting in the non-zero net 

spin polarization 𝛿𝐬 given by 
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To obtain 𝛿𝐬 from Eq. (5), one needs first to calculate 𝑠𝐤𝑠 using 

Eq. (4) and 𝛿𝑓𝐤𝑠 by solving the Boltzmann transport equation. 

The latter is generally given by35 
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where
skv  is the group velocity and ' '

s

sQk

k
 is the scattering 

probability from state |𝒌′𝑠′⟩  to state |𝒌𝑠⟩. According to the 

Fermi golden rule, ' '

s

sQk

k
 takes the form  
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where V is an impurity scattering potential. Assuming that the 

scattering potential is short-ranged, i.e.    0V V r r ,  and 

using Eq. (3), we arrive at the following equation for 
' '
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Here n is the impurity concentration,  1tan y x   
k , and 

we assume Ω𝑧 = 0. Plugging Eq. (8) into Eq. (6), we obtain  
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In the following, we adopt the constant relaxation time 

approximation, which has been widely used previously1,28,31,36. 

Within such approximation,    0

s s s sf e f E    
k k k k

v ε , 

where τ is the constant relaxation time. In a zero-temperature 

limit, − 𝜕𝑓𝒌𝑠
0 𝜕𝐸𝒌𝑠⁄ = 𝛿(𝐸𝒌𝑠 − 𝐸𝐹), and the integration in Eq. 

(5) can be carried out over the Fermi contour 𝑆𝐹, namely31,36 
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Analogously, the current density 𝐣𝑒 is given by35 
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Since 𝛿𝐬 is an implicit function of 𝐣𝑒 , one can obtain 𝛿𝐬 as a 

function of 𝐣𝑒 by combing Eqs. (10) and (11). 

III. SPIN TEXTURE AND FERMI CONTOUR 

TOPOLOGY 

TABLE I. The SOFs Ω and spin textures s for four different SOC types. 

𝛼, 𝛽, 𝛾 and 𝜆 are the linear SOC parameters. 

SOC Ω 𝐬 (in ℏ 2⁄ ) 

RSOC 𝛼(−𝑘𝑦 , 𝑘𝑥 , 0) ± (−𝑘𝑦 , 𝑘𝑥 , 0) 𝑘⁄  

DSOC 𝛽(𝑘𝑥 , −𝑘𝑦 , 0) ± (𝑘𝑥 , −𝑘𝑦 , 0) 𝑘⁄  

WSOC 𝛾(𝑘𝑥 , 𝑘𝑦 , 0) ± (𝑘𝑥 , 𝑘𝑦 , 0) 𝑘⁄  

PSOC 𝜆(𝑘𝑥 − 𝑘𝑦)(1,1,0) ± sgn(𝑘𝑥 − 𝑘𝑦)(1,1,0) √2⁄  

Here we consider four different types of SOC, namely 

RSOC, DSOC, Weyl (WSOC) and persistent-spin-texture 

(PSOC) types. The corresponding SOFs Ω and calculated spin 

textures 𝐬 are listed in Table I. Fig. 1 shows the schematic plots 

of the Fermi contours and spin textures when Fermi energy 

𝐸𝐹 > 0. From Eq. (2) and Table 1, the energy splitting 𝐸+ − 𝐸− 

for RSOC, DSOC, and WSOC is proportional to k, indicating 

the isotropic energy splitting in k space, as seen from Figs. 1(a), 
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(b) and (c). While for PSOC, the energy splitting 𝐸+ − 𝐸− is 

proportional to 𝑘|𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙| , indicating that the energy 

splitting is maximum at 𝜙 = 3 𝜋 4⁄ , 7𝜋 4⁄ , and zero at  𝜙 =

𝜋 4⁄ , 5𝜋 4⁄ ,  as seen from Fig. 1(d). For RSOC, when moving 

over the Fermi contour, the spin rotates in the same direction as 

𝜙 and is always perpendicular to k. In the case of DSOC, the 

spin rotates in the opposite direction to 𝜙 and thus can make 

any angle to k depending on 𝜙. For WSOC, the spin is ether 

parallel or antiparallel to k. In the case of PSOC, the spin is 

unidirectional and thus independent of k. The above different 

types of SOC appear in realistic materials37, such as RSOC in 

2D materials38,39, DSOC in ferroelectric HfO2
40 , WSOC in 

elemental Te and Se41,42, and PSOC in BiInO3
43. 

 

FIG. 1. Schematic Fermi contours (𝐸𝐹 > 0 case) and spin textures for 

(a) RSOC, (b) DSOC, (c) WSOC, and (d) PSOC. Arrows indicate the 

spin directions while the red and blue contour lines represent the 𝐸+ 

and 𝐸− energy branches, respectively. 

      It is noteworthy that the topology of the Fermi contour 

depends on 𝐸𝐹 . Fig. 1 assumes that the Fermi energy 𝐸𝐹  crosses 

both energy branches 𝐸+  and 𝐸− , i.e. 𝐸𝐹 > 0 . However, for 

𝐸𝐹 < 0, as shown in Fig. 2(a) for RSOC, DSOC, and WSOC, 

the 𝐸𝐹  crosses only the lower band 𝐸−  and the Fermi contour 

is an annulus. 𝐸𝐹  crosses both bands only when 𝐸𝐹 > 0, where 

the Fermi contour evolves into two circles (Fig. 2(b)). In the 

case of PSOC, for 𝐸𝐹 < 0, the EF crosses only the lower band 

𝐸−  and the Fermi contours are two well-separated circles 

centered at wave vectors 𝑚𝛼 ℏ2⁄ (−√2, √2) and 𝑚𝛼 ℏ2⁄ (√2,

−√2), which are 𝐸𝐹  independent (Fig. 2(c)). For 𝐸𝐹 > 0, the 

𝐸𝐹  crosses both 𝐸+  and 𝐸− , and the Fermi contour is 

characterized by two intersecting circles centered at 

√2𝑚2𝛼2 + 𝑚𝐸𝐹 ℏ⁄ (−1, 1)  and √2𝑚2𝛼2 + 𝑚𝐸𝐹 ℏ⁄ (1, −1) , 

which are 𝐸𝐹  dependent. We see that the topology of the Fermi 

contour changes as 𝐸𝐹  varies, and there is a topological 

transition point at 𝐸𝐹 = 0 . As we will demonstrate in the 

following sections, the topology of the Fermi contour strongly 

affects the CISP.   

 

FIG. 2. Schematic Fermi contours for (a, b) RSOC, DSOC or WSOC 

and (c, d) PSOC. (a, c) for 𝐸𝐹 < 0, and (b, d) for 𝐸𝐹 > 0. The gray 

shaded regions represent the electron occupied states. In (c), 𝜙1,2 

(𝜙1 + 𝜙2 = 3𝜋 2⁄ ) denotes the critical angles separating the electron 

occupied and unoccupied states. Red and blue contour lines represent 

the 𝐸+ and 𝐸− energy branches, respectively. 

IV. CURRENT-INDUCED SPIN POLARIZARION 

In this section, we derive the expressions for CISP for four 

different types of SOC. The electric field is assumed to have 

form 𝛆 = 휀(𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜑), where 𝜑 is the azimuthal angle in the 

polar coordinate system. 

A. Rashba type 

From Eq. (2) and Table 1, the eigenvalue 𝐸𝑠 for RSOC is 

given by 𝐸𝑠 = ℏ2(𝑘 + 𝑠𝑘𝑅)2 (2𝑚)⁄ − 𝐸𝑅 , where 𝑘𝑅 =

𝑚𝛼 ℏ2⁄  and 𝐸𝑅 = 𝑚𝛼2 (2ℏ2)⁄ . Accordingly, the group 

velocity can be calculated as 𝐯𝑠 = ℏ𝐤 𝑚⁄ + 𝑠 𝛼𝐤 (ℏ𝑘)⁄ . From 

𝐸𝑠 = 𝐸𝐹 , we obtain the Fermi wave vector as follows 
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where 𝜂 = ±1 , 𝐸𝑐 = −𝐸𝑅  denotes the band minimum and 

𝑘0 = √2𝑚|𝐸𝐹| ℏ2⁄ .  

When 𝐸𝑐 < 𝐸𝐹 ≤ 0 , from Eqs. (10) and (11), 𝛿𝐬  is 

calculated as 
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and 𝐣𝑒 is calculated as 
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When 𝐸𝐹 > 0, in a similar way, 𝛿𝐬 is calculated as 
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and 𝐣𝑒 is calculated as 
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Thus, 𝛿𝐬 as a function of 𝑗𝑒 and 𝐸𝐹  for RSOC is given by 
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In the high-density regime, i.e. when 𝐸𝐹 ≫ 𝐸𝑅 , 𝛿𝐬  becomes 

linearly dependent on the RSOC parameter 𝛼 , which is 

consistent with the previous work30,31,32. In general, however,  

𝛿𝐬 is a non-linear function of 𝛼. Moreover, as follows from Eq. 

(17), 𝛿𝐬 is inversely proportional to 𝛼 in the low density regime 

when  𝐸𝑐 < 𝐸𝐹 ≤ 0. It is noteworthy that the relaxation time τ 

is assumed to be spin dependent in some previous works1,28,31, 

namely  𝜏𝑠 = 𝜏(1 − 𝑠 𝑘𝑅 𝑘0⁄ )  up to linear order in α when 

𝐸𝐹 ≫ 𝐸𝑅 . Taking this into account, 𝛿𝐬  will be modified 

accordingly as 
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Eq. (17) is thus modified as 
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It is seen that there is a factor of 2 difference when 𝐸𝐹 ≫ 𝐸𝑅 

between Eq. (17) and Eq. (20), which is in line with previous 

work31. On the other hand, as seen from Eqs. (13), (15) 

describing 휀 dependence of 𝛿𝑠  and (17) describing 𝑗𝑒 

dependence of 𝛿𝑠 , the 𝐸𝑅  dependence of 𝛿𝑠  is completely 

different for a constant-voltage experiment and a constant-

current experiment. For the former, 𝛿𝑠~√𝐸𝐹 + 𝐸𝑅 when 𝐸𝑐 <

𝐸𝐹 ≤ 0 and 𝛿𝑠~√𝐸𝑅 when 𝐸𝐹 > 0. For the later, 𝛿𝑠~ 1 √𝐸𝑅⁄  

when 𝐸𝑐 < 𝐸𝐹 ≤ 0 and 𝛿𝑠~ √𝐸𝑅 (𝐸𝐹 + 𝐸𝑅)⁄  when 𝐸𝐹 > 0. 

B. Dresselhaus type 

For DSOC, the eigenvalue 𝐸𝑠  is given by 𝐸𝑠 =

ℏ2(𝑘 + 𝑠𝑘𝐷)2 (2𝑚)⁄ − 𝐸𝐷 , where 𝑘𝐷 = 𝑚𝛽 ℏ2⁄  and 𝐸𝐷 =

𝑚𝛽2 (2ℏ2)⁄ . In a similar way as in Sec. A above, we obtain for 

𝛿𝐬 a function of 𝑗𝑒 and 𝐸𝐹: 
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where 𝐸𝑐 = −𝐸𝐷 denotes the band minimum.  

C. Weyl type 

For WSOC, the eigenvalue 𝐸𝑠  is given by 𝐸𝑠 =

ℏ2(𝑘 + 𝑠𝑘𝑊)2 (2𝑚)⁄ − 𝐸𝑊 , where 𝑘𝑊 = 𝑚𝛾 ℏ2⁄  and 𝐸𝑊 =

𝑚𝛾2 (2ℏ2)⁄ . Using a similar calculation, we obtain for 𝛿𝐬 a 

function of 𝑗𝑒 and 𝐸𝐹: 
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where 𝐸𝑐 = −𝐸𝑊 denotes the band minimum.  

D. PST type 

For PSOC, the eigenvalue 𝐸𝑠  is given by 𝐸𝑠 =

ℏ2(𝑘 + 𝑠𝑘𝜙)
2

(2𝑚)⁄ − 𝐸𝜙 , where 𝑘𝜙 =

√2𝑚𝜆|𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙| ℏ2⁄  and 𝐸𝜙 = 𝑚𝜆2(𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙)2 ℏ2⁄ . 

Accordingly, the group velocity is calculated as 𝐯𝑠 = ℏ𝐤 𝑚⁄ +

s√2 𝜆 ℏ⁄ sgn(𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙)(1, −1). From 𝐸𝑠 = 𝐸𝐹 , we obtain 

for the Fermi wave vector  
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where 𝐸𝑐 = − 2𝑚𝜆2 ℏ2⁄ = −𝐸𝑃 denotes the band minimum. 

When 𝐸𝑐 < 𝐸𝐹 ≤ 0, 𝛿𝐬 can be calculated as 
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and 𝐣𝒆 is calculated as 
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For 𝐸𝐹 > 0 , analytic expressions for 𝛿𝐬  and 𝐣𝒆  can be 

obtained within the high-density regime assumption, i.e. 𝐸𝐹 ≫

𝐸𝑃. For 𝛿𝐬 we find  
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and for 𝐣𝒆 we find 
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Details of the derivation of Eqs. (24)-(27) are presented in 

Appendix A. Noteworthy is the fact that, although the analytic 

expressions given by Eqs. (26) and (27) are derived within the  

high-density regime, the 𝜑 dependent functional relationships 

𝛿𝐬~(𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛𝜑) and 𝐣𝑒~𝑠𝑖𝑛2𝜑 hold exactly, as seen from 

Eqs. (A3) and (A4). 

 

Fig. 3. 𝛿𝐬 as a function of the direction of the electric field  𝜑 in polar 

coordinates for (a) RSOC, (b) DSOC, (c) WSOC and (d) PSOC. Blue 

lines represent the magnitude while the red arrows indicate the 

direction of 𝛿𝐬. 

Fig. 3 shows 𝛿𝐬  as a function of 𝜑 including magnitude 𝛿𝑠 

(blue lines) and direction (red arrows). For RSOC, DSOC, and 

WSOC, shown in Fig. 3(a-c), from Eqs. (17), (21), and (22), we 

see that 𝛿𝑠  is 𝜑  independent, indicating that 𝛿𝑠  is isotropic.  

However, the direction of 𝛿𝐬 is strongly 𝜑 dependent. In fact, 

the 𝛿𝐬 orientation mirrors the spin textures shown in Figs. 1(a-

c) (the inner branches indicated by red lines). In the case of 

PSOC, from Eqs. (24) and (26), 𝛿𝑠  as a function of 𝜑  is 

determined by |𝑐𝑜𝑠 𝜑 − 𝑠𝑖𝑛 𝜑|, indicating perfect anisotropy 

of 𝛿𝑠, so that 𝛿𝑠 is zero at 𝜑 = 𝜋 4,⁄ 5𝜋 4⁄  and 𝛿𝑠 is maximum 

at 𝜑 = 3𝜋 4,⁄ 7𝜋 4⁄ . Like for the other types of SOC, the 

direction of 𝛿𝐬 for PSOC mirrors the spin texture (Fig. 1(d), the 

inner branch indicated by red line).  
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Fig. 4. (a) CISP efficiency 𝛿𝑠 𝑗𝑒⁄  as a function of 𝐸𝐹  (in units of |𝐸𝑐|) 

for RSOC, DSOC, and WSOC (black line) and PSOC when 𝜑 = 0 

(red line), 𝜑 = 𝜋 8⁄  (orange line) and 𝜑 = 3𝜋 4⁄  (blue line). (b) CISP 

efficiency 𝛿𝑠 𝑗𝑒⁄  (color) as a function of 𝐸𝐹  and the direction of the 

electric field  𝜑 for PSOC. The SOC parameters are assumed to be  

𝛼 = 𝛽 = 𝛾 = 2𝜆 = 1.0  eV Å and electron effective mass is m = 0.5, 

under which the band minima 𝐸𝑐 are the same for the different types 

of SOC. The vertical dash lines indicate the topological transition point 

of the Fermi contour. 

Fig. 4(a) shows the 𝐸𝐹  dependence of the CISP efficiency 

𝛿𝑠 𝑗𝑒⁄ , which is defined as the ratio of the magnitudes of 𝛿𝐬 and 

𝐣𝑒. For PSOC and the energy range of 𝐸𝐹 > 0, 𝛿𝑠 𝑗𝑒⁄  is obtained 

using numerical calculations. As seen from Fig. 4 (a), in the 

case of RSOC, DSOC, and WSOC, when 𝐸𝑐 < 𝐸𝐹 ≤ 0, 𝛿𝑠 𝑗𝑒⁄  

is a constant. When 𝐸𝐹 > 0, 𝛿𝑠 𝑗𝑒⁄  decreases monotonically as 

𝐸𝐹  increases, consistent with Eqs. (17)-(22). The similar 

behavior was also observed in the graphene on a transition 

metal dichalcogenide monolayer with combination of RSOC 

and Zeeman SOC44. 

Such a dissimilar behavior of 𝛿𝑠 𝑗𝑒⁄  versus 𝐸𝐹  can be 

understood from the analysis the Fermi contour topology. 

Taking RSOC as an example, we see from Fig. 2(a) that for  

𝐸𝑐 < 𝐸𝐹 ≤ 0 , the Fermi surface represents two SOC-split 

concentric circles with the same spin configurations. As a result, 

both 𝛿𝑠  and 𝑗𝑒  are proportional to the sum of the their 

perimeters, which according to Eq. (12) is proportional to 

√𝐸𝐹 + 𝐸𝑅 . This yields the same 𝐸𝐹  dependence of 𝛿𝑠 and 𝑗𝑒 , 

i.e. 𝛿𝑠~𝑗𝑒~√𝐸𝐹 + 𝐸𝑅 , and hence the constant 𝛿𝑠 𝑗𝑒⁄ . On the 

contrary, when 𝐸𝐹 > 0, as seen from Fig. 2(b), the two SOC-

split concentric Fermi circles have opposite spin configurations. 

As a result, while 𝑗𝑒  is still proportional to the sum of the 

circumferences, 𝛿𝑠  is proportional to their difference. This 

leads to the different 𝐸𝐹  dependence of 𝛿𝑠  and 𝑗𝑒 , which 

according to Eq. (12) is given by 𝛿𝑠~√𝐸𝑅 and 𝑗𝑒~√𝐸𝐹 + 𝐸𝑅, 

resulting in  𝛿𝑠 𝑗𝑒⁄ ~ 1 √𝐸𝐹 + 𝐸𝑅⁄ . The same argument applies 

to DSOC and WSOC. 

In the case of PSOC, the two Fermi contours do not 

represent concentric circles (Figs. 2 (c-d)) and the behavior of 

𝛿𝑠 𝑗𝑒⁄  as a function of 𝐸𝐹  is more complicated. As seen from 

Fig. 4(a), when 𝜑 = 0  (red line), 𝛿𝑠 𝑗𝑒⁄  is a constant in the 

energy range 𝐸𝑐 < 𝐸𝐹 ≤ 0 and decreases monotonically when 

𝐸𝐹 > 0, consistent with Eqs. (24) and (25). When 𝜑 = 3 𝜋 4⁄  

(blue line), 𝛿𝑠 𝑗𝑒⁄  increases (decreases) monotonically in the 

range 𝐸𝑐 < 𝐸𝐹 ≤ 0  (𝐸𝐹 > 0) as 𝐸𝐹  increases, indicating that 

𝛿𝑠 𝑗𝑒⁄  reaches maximum at the transition point 𝐸𝐹 = 0. When 

𝜑 = 𝜋 8⁄  (orange line), 𝛿𝑠 𝑗𝑒⁄  decreases monotonically in the 

whole energy range. Fig. 4(b) shows the 𝛿𝑠 𝑗𝑒⁄  for PSOC as a 

function of 𝐸𝐹  and electrical field direction 𝜑 (with period π). 

It is seen that the optimal condition, at which 𝛿𝑠 𝑗𝑒⁄  reaches 

maximum, appears at 𝐸𝐹 = 0 and 𝜑 = 3𝜋 4⁄ . 

 

Fig. 5. CISP efficiency 𝛿𝑠 𝑗𝑒⁄  as a function of SOC parameters α and 

𝜆 for (a) RSOC/DSOC/WSOC type and (b) PSOC type. The other 

parameters are assumed to be m = 0.5, |𝐸𝐹|=27.2 meV and 𝜑 = 3𝜋 4⁄  

in (b). The dashed lines denote the critical points, at which 𝛿𝑠 𝑗𝑒⁄  

reaches maximum when 𝐸𝐹 > 0. 

      Fig. 5 shows the CISP efficiency 𝛿𝑠 𝑗𝑒⁄  as a function of 

SOC parameters. In the case of RSOC, DSOC and WSOC 

shown in Fig. 5(a), when 𝐸𝑐 < 𝐸𝐹 ≤ 0 , 𝛿𝑠 𝑗𝑒⁄  decreases 

monotonically as 𝛼 increases due to 𝛿𝑠 𝑗𝑒⁄ ~ 1 𝛼⁄  as seen from 

Eq. (17). When 𝐸𝐹 > 0 , 𝛿𝑠 𝑗𝑒⁄  becomes maximum at the 

critical point 𝛼 = ℏ√2𝐸𝐹 𝑚⁄ , as obtained from Eq. (17). In the 

case of PSOC shown in Fig. 5(b), the 𝜆 dependency of 𝛿𝑠 𝑗𝑒⁄  

shows qualitatively similar behavior. 
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V. DISSUSSION AND CONCLUSIONS 

We would like to emphasize the different dependence of 

the CISP efficiency on the Fermi energy below and above the 

topological transition point. For RSOC, the CISP efficiency is 

higher below the transition point than that above the transition 

point. This follows from reversal of the spin texture at the inner 

Fermi contour which enhances the induced spin polarization 

below the transition point due to parallel spin directions on the 

two SOC-split Fermi contours.  

In this low carrier density regime, i.e. when 𝐸𝑐 < 𝐸𝐹 ≤ 0, 

the CISP is inversely proportional to 𝛼 (Eq. (17)), which seems 

to be counterintuitive. However, one should take into account 

the fact that reducing 𝛼 implies, for a given 𝐸𝐹  , reducing 𝑗𝑒 (Eq. 

(14)) due to the reduced carrier density. From Eq. (12), the 

electron density n can be calculated as  

  
 

 

0

0

2 , 0
,

2 , 0

R F R c F

F

F R F

N E E E E E
n E

N E E E

   
 

 

  (28) 

where 𝑁0 = 𝑚 (𝜋ℏ2)⁄  is the density of states for a free 2DEG. 

The critical density at the transition point 𝐸𝐹 = 0  is 𝑛0 =

𝑚2𝛼2 (𝜋ℏ4)⁄ , which depends quadratically on the RSOC 

parameter 𝛼.  

We estimate the critical carrier density 𝑛0  for realistic 

systems. For a LaAlO3/SrTiO3 2DEG, the Rashba parameter 𝛼 

ranges from 0.015 to 0.043 eV Å 45, m = 0.4 m0, and we obtain 

𝑛0 varying from 2.0×109 cm-2 to 1.6×1010 cm-2. These values of  

𝑛0  are much smaller than the typical carrier density of the 

2DEG varying from ~1×1013 to ~1×1014 cm-2.  Therefore, the 

high carry density regime is well justified for a LaAlO3/SrTiO3 

2DEG.  

The situation is however very different for a Bi/Ag 

system19, where 𝛼=3.05 eV Å, m = 0.35 m0, and therefore 𝑛0 ≈ 

6.2×1013 cm-2. The measured electron density is in the range 

from 0.5×1013 to 4.0×1013 cm-2, which is less than the critical 

carrier density. This corresponds to the low carrier density 

regime, where an “anomalous” behavior of the CISP is 

expected. It would be interesting to experimentally verify the 

validity of Eq. (17) by investigating the CISP efficiency for a 

Bi/Ag system with varying carrier concentration. 

In this work, we limit our investigation to SOC linear in k 

and the higher order contributions are neglected, which is 

appropriate for the description of systems with C2v and C4v point 

symmetries 46 . However, for the system with C3v point 

symmetry47, the cubic order correction to CISP is also important 

and needs to be taken into consideration48. Second, the electron 

effective mass in Eq. (1) is assumed to be isotropic in k space. 

In realistic materials, the effective mass is expected to be k-

direction dependent. It would be thus interesting to explore the 

effect of mass anisotropy on CISP in the future study. Third, we 

calculate the CISP based on the constant relaxation time 

approximation. In general, the scattering probability is spin and 

wavevector dependent. It would be therefore desirable to 

investigate the CISP beyond the constant relaxation time 

approximation. It is also to be noted that the vertex corrections 

are neglected in the relaxation time approximation49 and the 

vertex corrections could lead to quantitative changes of CISP, 

but it will not alter our main results qualitatively. Furthermore, 

the SOC effect due to the electron scattering with random 

potential is ignored in this work. The effect of spin-orbit 

scattering has been theoretically investigated by previous 

work34. Fourth, we limit our study to the non-magnetic systems, 

where the exchange coupling between conduction electron spin 

and local magnetization is absent. However, CISP can also be 

induced in magnetic systems with SOC 50 . The interaction 

between CISP and local magnetization results in a spin torque 

on the local magnetization36, 51 , 52 . In addition, the CISP is 

expected to be dependent on the magnetization orientation due 

to the magnetically controlled Fermi contours53,54,55. Lastly, a 

giant SOC has been demonstrated in certain three-dimensional 

(3D) bulk systems, such as polar semiconductor BiTeI56 and 

ferroelectric crystals57,58,59. Some of these 3D systems exhibit 

giant SOC, orders of magnitude larger than that in conventional 

semiconductors, which favors the enhancement of CISP31. 

Besides the SOC magnitude, the spin-torque efficiency, which 

is defined as the spin torque divided by the current density, is 

enhanced in 3D systems with RSOC and exchange interaction 

as compared to 2D systems60. It is thus interesting to explore 

the effect of dimensionality on the CISP efficiency. Finally, the 

switchable SOC parameters in ferroelectrics by electrically 

controlled polarization40,57,58,59 enables the non-volatile electric 

control of CISP. 

 

FIG. 6. Schematic illustration of magnetoresistance device due to the 

interplay of current-direction (𝐣𝑒 , white arrow) dependent CISP 𝛿𝒔 

(red arrow) in SOC conductor layer and local magnetization M (yellow 

arrow) in ferromagnetic (FM) layer. 

      In summary, we have investigated the anisotropic CISP in 

two dimensions with different types of SOC using the 

Boltzmann transport theory. We demonstrated the strong spatial 

javascript:void(0)
javascript:void(0)
https://www.nature.com/articles/nphys3356
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anisotropy of CISP in terms of direction as well as magnitude. 

Additionally, we showe the CISP efficiency behaves differently 

as a function of the Fermi energy below and above the 

topological transition point of the Fermi contour. The 

anisotropy of CISP can be further used to explore the spin-

dependent transport properties. For example, the electrical 

conductivity of a bilayer system, which consists of a conducting 

layer with SOC and ferromagnetic metal layer, is expected to 

depend on the current direction, as schematically shown in Fig. 

6. Such a magnetoresistance effect arises from the interplay 

between current-direction dependent CISP and local 

magnetization, as has been recently reported in 

ferromagnet/heavy metal bilayers61 and magnetic topological 

insulator based heterostructures62,63. Conversely, measuring the 

current direction dependent magnetoresistance offers an 

efficient way to quantify the type of SOC. 
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APPENDIX A: DERIVATION OF EQS. (24)-(27) 

From Eq. (10), when 𝐸𝑐 < 𝐸𝐹 ≤ 0, 𝛿𝐬 can be calculated as 

  

       

   

2

2 0

22 2
2

0

3 32 0

22 2

0

3 32

1
ˆˆsgn cos sin

18 2

1 2 2
sgn cos sin 1 2sin 2 cos sin

18

1 2 2
1 2sin 2 cos

14

k F

F P

F P

e
v k d

kme m m
d

mE E

kme m m

mE E









    



  
       



  
  



 
   

 

   
         

      

  
       

    

 



s

 

     

 
 

2

1

2 2
3 30

1 2 1 232

2

sin

1 8
cos cos cos cos cos sin

1 34

1
cos sin ,

13 2

F P

F P

P

d

kme m

mE E

me E E

E




  

 
     




 



 
 

  

  
       

    

  
   

 

   (A1) 

where the critical angles 𝜙1,2 (see Fig. 2(c)) are given by 
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, as obtained from |𝑘𝜙| = |𝑘0|. From 

Eq. (11), the current density 𝐣𝑒 is calculated as 
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When 𝐸𝐹 > 0, 𝛿𝐬 can be calculated as 
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and 𝐣𝒆 is calculated as 
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