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Abstract

We present the results of an experiment on measuring the gradient of the Casimir force between

an Au-coated hollow glass microsphere and graphene-coated fused silica plate by means of a mod-

ified atomic force microscope cantilever based technique operated in the dynamic regime. These

measurements were performed in high vacuum at room temperature. The energy gap and the

concentration of impurities in the graphene sample used have been measured utilizing scanning

tunnelling spectroscopy and Raman spectroscopy, respectively. The measurement results for the

gradients of the Casimir force are found to be in a very good agreement with theory using the

polarization tensor of graphene at nonzero temperature depending on the energy gap and chem-

ical potential with no fitting parameters. The theoretical predictions of the same theory at zero

temperature are experimentally excluded over the measurement region from 250 to 517 nm. We

have also investigated a dependence of the thermal correction to the Casimir force gradient on the

values of the energy gap, chemical potential, and on the presence of a substrate supporting the

graphene sheet. It is shown that the observed thermal effect is consistent in size with that arising

for pristine graphene sheets if the impact of real conditions such as nonzero values of the energy

gap, chemical potential, and the presence of a substrate is included. Implications of the obtained

results to the resolution of the long-standing problems in Casimir physics are discussed. In addition

to the paper published previously [M. Liu et al., Phys. Rev. Lett. 126, 206802 (2021)], we present

measurement results for the energy gap of the graphene sample, double the experimental data for

the Casimir force, and perform a more complete theoretical analysis.
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I. INTRODUCTION

An investigation of different effects in graphene brought to light that this material pos-

sesses a variety of unusual properties which are of much interest to fundamental physics. It

is well known that graphene is characterized by a minimum electrical conductivity and low

absorbance expressed in terms of fundamental constants1–4 and provides new possibilities for

experimentally testing the Klein paradox5, the effect of Schwinger pair creation from vacuum

in external electric field6–9, and the relativistic quantum Hall effect10. This is a consequence

of graphene being a two-dimensional material which at low energies is well described not by

the Schrödinger equation but by the relativistic Dirac equation where the speed of light c is

replaced by the much lower Fermi velocity vF
11–13.

One of the challenging problems is the experimental and theoretical investigation of the

thermal Casimir interaction in graphene systems. The Casimir force14 is the relativistic gen-

eralization of a more familiar van der Waals force. This is an entirely quantum phenomenon

which originates from the zero-point and thermal fluctuations of the electromagnetic field

whose spectrum is altered by the presence of material boundaries, no matter be they three-

or two-dimensional. The fundamental unified theory of the van der Waals and Casimir

forces was created by Lifshitz15,16. In the framework of this theory, the Casimir free energy

and force are expressed via the reflection coefficients of electromagnetic fluctuations on the

boundary surfaces. In the original formulation, only the plane boundaries were considered

but currently the Lifshitz theory is generalized to the case of arbitrarily shaped bodies17–21.

Precise measurements of the thermal Casimir force between metallic test bodies using

the present-day laboratory techniques revealed a puzzling problem. In many experiments

performed by different experimental groups it was found that the predictions of the Lifshitz

theory come into conflict with the measurement data if the much-studied relaxation prop-

erties of conduction electrons at low frequencies are taken into account in computations22–34

(see also monograph35 and reviews36–38). Note that in Ref.39 an agreement was obtained by

subtracting a hypothetical electrostatic force between a centimeter-size spherical lens and a

plate which was 10 times larger than the Casimir force. This result, however, ignored imper-

fections of the lens surface which have an important effect on the measured force40. What is

even more surprising, an agreement between experiment and theory is restored if computa-

tions are performed with simply discarded relaxation properties of conduction electrons22–38.
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Specifically, experiments using magnetic metal surfaces27–29 and isoelectronic difference force

measurements30 have reconfirmed this conclusion with an extraordinary precision.

It should be emphasized that the reflection coefficients used in the standard Lifshitz the-

ory are expressed via the dielectric permittivities of boundary materials which in turn are

found from the available optical data for the complex index of refraction41 extrapolated down

to zero frequency. The best known method for extrapolation is by means of the Drude model.

Under certain assumptions, this model can be derived from Boltzmann transport theory or

the Kubo formula and finds full verification in the area of electromagnetic phenomena other

than the Casimir effect42. The Drude model takes proper account of the relaxation prop-

erties of conduction electrons in metals by means of the temperature-dependent relaxation

parameter. However, the Lifshitz theory using the Drude model predicts a relatively large

thermal effect in the Casimir force at short separation distances43 which was excluded by

the experiments mentioned above.

Graphene provides great advantages for the resolution of this problem. The point is that

at energies below a few electron volts characteristic for the Casimir force at separations

exceeding 100 nm graphene can be considered in the framework of the Dirac model as

a set of massless or very light electronic quasiparticles. The response function of such a

simple system to the electromagnetic field can be found on the basis of the first principles of

quantum electrodynamics at nonzero temperature without resort either to phenomenological

approaches or simplified models.

There is an extensive literature on the theory of the Casimir interaction in graphene

systems using the Kubo formalism, density-density correlation functions, two-dimensional

Drude and other models44–61. Specifically, using the formalism of correlation functions in the

random phase approximation, which is ultimately equivalent to the Lifshitz theory, Gómez-

Santos predicted a large thermal effect in the Casimir interaction between two parallel

graphene sheets even at separations of tens of nanometers at room temperature45. This

prediction relates to an order of magnitude shorter separations compared to the thermal

effect between metallic plates predicted using the Drude model which was already excluded

experimentally22–38.

The question arises on whether or not an unusually big thermal effect exists for graphene.

This question should be answered both theoretically and experimentally. Rigorous theoreti-

cal description of the Casimir interaction in graphene systems is based on the Lifshitz theory
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supplemented by the response function of graphene to quantum fluctuations. The latter is

given by the polarization tensor of graphene which can be found in the framework of the

Dirac model (see, e.g., Ref.62).

Real graphene sheets are characterized by some value of the chemical potential, which de-

pends on the concentration of impurities, and of the energy gap which is caused by structural

defects, impurities, interelectron interactions and the presence of a substrate12,13. The exact

polarization tensor of graphene at zero temperature was found in Ref.63 and at nonzero

temperature in Ref.64 (the latter results are valid only at the pure imaginary Matsubara

frequencies). The exact expressions for the polarization tensor of gapped graphene valid

over the entire plane of complex frequencies, including the real frequency axis, was found in

Ref.65 and generalized for the case of nonzero chemical potential in Ref.66.

The formalism of the polarization tensor was used to investigate the thermal Casimir and

Casimir-Polder forces in graphene systems67–80. Specifically, in Ref.69 it was shown that the

polarization tensor leads to more exact results than several phenomenological approaches

used in the literature. According to the results of Ref.76, the formalisms of the polarization

tensor and of the density-density correlation functions are eventually equivalent. In fact,

from the exact components of the polarization tensor it has been possible to find the re-

spective density-density correlation functions at nonzero temperature which were not known

until then. Most importantly, calculations using the polarization tensor confirmed69,77 the

prediction of an unusually big thermal effect in the Casimir force from graphene at short

separations45. Thus, an experimental discovery of this interesting effect has assumed great

importance for both fields of graphene and Casimir research.

The first experiment on measuring the Casimir force between an Au-coated sphere and a

graphene-coated SiO2 film deposited on a Si substrate was performed using an atomic force

microscope based technique operated in the dynamic regime81. The measurement results

were found in good agreement with theory using the polarization tensor of graphene82.

Because of the thin SiO2 film used, it was not possible, however, to separate the unusual

thermal effect from the total force gradient. According to Ref.74, observation of the thermal

effect from graphene would become possible by increasing the thickness of an underlying

SiO2 film.

Using this approach, the thermal Casimir interaction from graphene was recently mea-

sured in the configuration of an Au-coated sphere and a graphene sheet deposited on thick
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SiO2 substrate83. The measured gradients of the thermal Casimir force were found to be

in a very good agreement with theoretical predictions calculated using the polarization

tensor accounting for the chemical potential of graphene determined by means of Raman

spectroscopy. An estimated range of the energy gap values was included as a part of the

theoretical error. By comparing with respective theoretical results at zero temperature, an

unusual thermal effect from graphene was reliably demonstrated over the separation region

between a sphere and a graphene sheet from 250 to 590 nm at room temperature.

In this paper, we present additional experimental information and a more complete the-

oretical analysis regarding the experiment on measuring the thermal Casimir interaction

from graphene. While the conclusions made in Ref.83 were based on one measurement set

consisting of 21 runs with a step in separation distances of 1 nm, we have now performed

the second measurement set and made an averaging procedure over a more representative

wealth of evidence which includes 42 runs. Another important innovation is that the value

of the energy gap for a graphene sample used in the experiment was measured by means of

scanning tunneling spectroscopy. As a result, it has been possible to compute the theoretical

force gradients using the polarization tensor with the definite values of both the chemical

potential and the energy gap of graphene rather than include an estimated range of the

energy gap values in the theoretical error as was done in Ref.83. Although the measured

value of the energy gap turned out to be somewhat outside the range estimated in Ref.83,

we have clearly confirmed the presence of an unusual thermal effect in the graphene sample

used within the separation region from 250 to 517 nm.

On the theoretical side, we have performed calculations elucidating the physical nature

of the unusually big thermal effect in the Casimir interaction from graphene at short sep-

arations and its dependence on the chemical potential, energy gap and the presence of a

substrate for real graphene samples. The case of a pristine graphene was also considered.

A comparison between experiment and theory was made on the basis of first principles of

quantum electrodynamics at nonzero temperature with no fitting parameters and a very

good agreement was demonstrated. Implications of the obtained results to a long-standing

problem of the thermal Casimir force between metallic test bodies are discussed.

The paper is organized as follows. In Sec. II, we consider the experimental procedures used

for measuring the gradient of the Casimir force between an Au-coated sphere and a graphene-

coated SiO2 substrate. Section III describes measurements of the impurity concentration
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and energy gap in the experimental graphene sample. In Sec. IV, theory of the Casimir

interaction using the polarization tensor of graphene is briefly considered in application to

the experimental configuration. In Sec. V, we calculate the magnitude of the unusually big

thermal effect in different graphene systems and elucidate its physical nature. Section VI

contains the comparison between experiment and theory. In Sec. VII, the reader will find

our conclusions and a discussion of the obtained results and their implications.

II. MEASURING THE CASIMIR FORCE GRADIENT FROM GRAPHENE

USING A CUSTOM ATOMIC FORCE MICROSCOPE CANTILEVER BASED

SETUP IN THE DYNAMIC REGIME

Measurements of the gradient of the Casimir force between an Au-coated hollow glass

microsphere and a graphene-coated fused silica glass (SiO2) plate have been performed

by means of a custom built atomic force microscope (AFM) cantilever based technique

operated in the dynamic regime at a temperature T = 294.0± 0.5 K in high vacuum below

9× 10−9 Torr. Similar setups have already been used in previous experiments on measuring

the gradient of the Casimir force between metallic surfaces26–29,31–33 (the schematic can be

found in Fig. 1 of Ref.33 but here the UV- and Ar-ion cleaning is not used to avoid damaging

the graphene sheet). Below we consider only the most important novel features connected

with the use of graphene sample.

The main test body in this experiment was made from a large-area graphene sheet which

was chemical vapor deposition grown on a Cu foil84. This sheet was transferred onto a pol-

ished JGS2 grade fused silica double side optically polished substrate of 10 cm diameter and

0.05 cm thickness85. This was made through an electrochemical delamination procedure84,86.

Then a 1×1 cm2 piece of the graphene-coated fused silica substrate was cut from the entire

sample and used as the test body in measuring the force gradient. After the force gradient

measurements have been performed, the rms roughness of the graphene sheet on a fused

silica substrate was measured to be δg = 1.5± 0.1 nm by means of an AFM. This is used in

Sec. VI for comparison between experiment and theory.

The second test body is an Au-coated hollow glass microsphere with the diameter 2R =

120.7 ± 0.1 µm measured by means of a scanning electron microscope. In doing so the

thickness of Au coating was measured to be 120 ± 3 nm using an AFM. After the experi-
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ment was completed, the rms roughness of the Au coating on the sphere δs = 0.9± 0.1 nm

was measured by means of an AFM.

A hollow glass microsphere is attached to the end of an Au-coated tipless AFM cantilever

using silver epoxy and then coated with Au87. Before attaching the sphere and Au coating,

the cantilever spring constant was reduced through chemical etching (see Ref.33 for details).

As a result, the corresponding resonant frequency of the cantilever was decreased from

5.7579× 104 to 3.5286× 104 rad/s by etching in 60% potassium hydroxide solution at 75◦C

with stirring for 100 s. Note also that prior to etching the cantilever was washed in a

buffered oxide etch solution and deionized water for 1 min each. After the Au coating, the

resonant frequency of the complete cantilever-sphere system in vacuum was measured to be

ω0 = 6.1581× 103 rad/s.

The vacuum chamber containing the cantilever-sphere system and graphene sample on

a fused silica substrate was pumped using an oil free scroll pump and then followed by

a turbo pump connected in series, and finally an ion pump for further pressure reduction.

During the force measurements, only the ion pump was used thereby reducing the mechanical

vibrations (see Refs.26,31–33 for details). In the dynamic measurement regime used, the

cantilever with the attached sphere was set to oscillate above the graphene plane. The

oscillation frequency of the cantilever and movement of the graphene sample were monitored

by two fiber interferometers with laser light sources of 1550 and 500.1 nm wavelength,

respectively. Small changes in the separation distance between sphere and graphene due

to mechanical drift during the measurement were monitored and corrected as described in

Refs.26,32,33. The frequency shifts of the cantilever oscillation induced by any external force

(electric or Casimir) were recorded using a phase lock loop (PLL)26. In order to stay in the

linear regime, the oscillation amplitude of the cantilever was maintained at 10 nm, and the

resolution of the PLL was measured to be 55.3 mrad/s.

The total force acting on the sphere is given by

Ftot(a, T ) = Fel(a) + F (a, T ). (1)

Here, Fel is the electric force caused by the constant voltages Vi applied to the graphene

sheet using ohmic contacts while the sphere remains grounded and by the residual potential

difference V0, F (a, T ) is the Casimir force, a is the separation distance between the sphere

and graphene sheet, and T is the temperature.
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Under the influence of an external force (1) the resonant frequency ω0 of the cantilever-

sphere system is modified to ωr(a, T ) and the frequency shift

∆ω(a, T ) = ωr(a, T )− ω0 (2)

was recorded by the PLL at every 0.14 nm while the graphene-coated fused silica plate was

moved by the piezo actuator toward the sphere starting at the maximum separation. Using

interpolation, the values of ∆ω can be recalculated with a step of 1 nm. We recall that all

measurements were performed at constant T = 294 K. The argument T in the Casimir force

is discussed during comparison with the theory in Secs. IV–VI.

In the linear regime the frequency shift (2) is given by26,88

∆ω(a, T ) = −CF ′

tot(a, T ) = −CF ′

el(a)− CF ′(a, T ). (3)

Here, the calibration constant C = ω0/(2k), k is the spring constant of the cantilever, and

the gradient of the electrostatic force in a sphere-plate geometry is given by26,35

F ′

el(a) = X ′(a, R)(Vi − V0)
2, (4)

X ′(a, R) =
2πǫ0

√

a(2R + a)

∞
∑

n=1

csch(nτ) {n coth(nτ)

×[n coth(nτ)− coth τ ]− csch2τ + n2csch2(nτ)
}

,

where cos τ ≡ 1 + a/R, ǫ0 is the permittivity of vacuum, and the absolute separations

between the zero levels of roughness on the sphere and graphene surfaces are determined

from

a = zpiezo + z0, (5)

where zpiezo is the distance moved by the graphene-coated plate and z0 is the closest sepa-

ration between this plate and the sphere.

As a result, the gradients of the Casimir force can be expressed using Eq. (3) via the

measured frequency shift

F ′(a, T ) = − 1

C
∆ω(a, T )− F ′

el(a), (6)

where all the necessary parameters, C, z0, and V0 are determined by means of electrostatic

calibration which is performed simultaneously with measurements of the frequency shifts

(see Refs.26,35 for details).
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For this purpose, in the first measurement set reported in Ref.83, ten different voltages

from 0.083 V to 0.183 V with a step 0.01 V but with exception of 0.133 V and 11 voltages

equal to 0.133 V were applied to the graphene sheet. At each separation a between the

graphene-coated plate and the sphere 21 values of the frequency shift ∆ω were measured

and the value of V giving the maximum in the parabolic dependence of ∆ω on Vi in Eqs. (3)

and (4), determining the value of V0, was found with the help of a χ2-fitting procedure.

Using the same fit, from the curvature of the parabola mentioned above we have determined

the values of z0 and C. In Fig. 1(a) taken from Ref.83 the obtained values of V0 are shown

as the function of separation between a sphere and a graphene-coated plate for the first

measurement set. To check that the obtained values of V0 do not depend on separation,

we have performed the best fit of V0 to the straight line V0 = d + θa, where a is measured

in nanometers, and found that d(1) = 0.1326 V and θ(1) = −2.73 × 10−7 V/nm83. This

demonstrates an independence of V0 on a in this set of measurements up to a high precision.

The mean value of V0 in the first measurement set was V
(1)
0 = 0.1324 V.

In a similar way, the values of z0 and C were determined from the fitting procedure

at each separation and found to be separation-independent leading to the mean values

z
(1)
0 = 236.9± 0.6 nm and C(1) = (4.599± 0.003)× 105 s/kg.

As mentioned above, at each separation the frequency shift ∆ω was measured for 21

times with different applied voltages. The respective experimental values of the gradient of

the Casimir force were calculated by Eq. (6) and their mean values F ′

(1)(a, T ) were found

with a step of 1 nm. The random errors of these mean values were determined at the 67%

confidence level. The systematic errors, which are mostly caused by the errors in measuring

the frequency shift indicated above, were combined in quadrature with the random errors

resulting in the total experimental errors of the first measurement set ∆
(1)
exptF

′(a, T ). The

error in measuring the absolute separations was found to be ∆a = 0.6 nm.

In addition to the first measurement set reported in Ref.83, second set of measurements

was performed with the same graphene sample, applied voltages and using the same ex-

perimental procedures. This resulted in values of the residual potential difference shown in

Fig. 1(b) as a function of separation. The best fit of these values to straight line results in

d(2) = 0.1322 V and θ(2) = −3.41 × 10−7 V/nm. The obtained parameters are only slightly

different from those in the first set of measurements and again demonstrate an independence

of the residual potential difference on separation. In the second measurement set the mean
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value of V0 was determined to be V
(2)
0 = 0.1320 V.

The values of the separation on contact and the calibration constant in the second mea-

surement set were also found to be independent of separation resulting in the following mean

values: z
(2)
0 = 238.8± 0.5 nm and C(2) = (4.712± 0.003)× 105 s/kg.

The independence of the residual potential difference on the sphere-graphene separation

in both measurement sets confirms that in this experiment performed in high vacuum the

role of patch potentials on an Au-coated sphere and of spurious electrostatic interactions

induced by charges on the SiO2 substrate supporting graphene is negligibly small for the

separations reported here. Similar situation holds for the experiments22–34 performed in high

vacuum with two Au or Ni-coated test bodies where a smallness of the electrostatic effects

was confirmed by independent measurements employing Kelvin-probe microscopy89. Note

that graphene sheet is connected to a power supply which is a reservoir for compensating

charges. As the graphene sheet is a two-dimensional conducting layer with high conductivity

determined by the very light Dirac quasiparticles, which is connected to a power supply, it

effectively screens out the role of possible charges on the SiO2 substrate. This is confirmed

by the measurements of mean impurity concentration in graphene presented in Sec. III. By

contrast, the cases, where the role of patch effects can be relatively large, are considered in

the experiments of Ref.90 performed in ambient air with 30% relative humidity.

These results were used to find the experimental values of the gradients of the Casimir

force at each separation and their mean F ′

(2)(a, T ) with a step of 1 nm. Following the same

procedure as described above, the total experimental errors in the second measurement set

∆
(2)
exptF

′(a, T ) were determined.

In each measurement set, the total experimental error is mostly determined by the sys-

tematic error which is almost the same for both sets. In doing so an advantage of using

the two sets of measurements is in the decreased impact of possible accidental systematic

deviations.

Finally, we have calculated the experimental gradients of the Casimir force, F ′

expt(a, T ),

by averaging the mean values obtained in two measurement sets. In a similar way, the total

experimental error of the measured gradients, ∆exptF
′(a, T ), was obtained by averaging the

total experimental errors found in the first and second measurement sets.

The measurement results for F ′

expt(a, T ) obtained from the two sets of measurement are

shown as crosses in Figs. 2(a)–2(d) over the separation range from 250 to 700 nm. The
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vertical and horizontal arms of the crosses have the lengths 2∆exptF
′(a, T ) and 2∆a, respec-

tively, determined by the total experimental errors. For visual clarity, we have indicated

all data points in Fig. 2(a), each second data point in Figs. 2(b) and 2(c), and each third

data point in Fig. 2(d). The top and bottom bands indicated in Fig. 2 refer to the compar-

ison between experiment and theory which is discussed in Sec. VI. Note that the minimum

separation distance of 250 nm chosen in the experimental data reported here is typical for

measurements of the Casimir force by means of an atomic force microscope in the dynamic

mode26–29,31–33. This is done in order do not enter a nonlinear regime of the oscillator system

used. On the theoretical side, the relative thermal effect in the Casimir interaction from

graphene becomes more sensible just at a > 250 nm (see below in Sec. V, Fig. 6).

III. MEASUREMENTS OF THE IMPURITY CONCENTRATION AND EN-

ERGY GAP OF GRAPHENE SHEET DEPOSITED ON A FUSED SILICA SUB-

STRATE

It is well known that real graphene sheets are characterized by some small but nonzero

mass of electronic quasiparticles which leads to the presence of an energy gap ∆ in their

spectrum12,13. In a similar manner, real graphene samples contain some fraction of impurities

and, as a result, are characterized by some nonzero chemical potential µ12,13. For a pristine

graphene sheets it holds ∆ = µ = 0. One should know the values of both the energy

gap and chemical potential in order to calculate the response of a graphene sample to

electromagnetic fluctuations. Because of this, it is desirable to determine both of them

before comparing measurement results of the Casimir interaction in graphene systems with

theoretical predictions.

We begin with determining the value of the chemical potential which is caused by the

concentration of impurities. The impurity concentration in the graphene sample was de-

termined using Raman spectroscopy after the measurement of the Casimir force gradient.

The Raman spectroscopy was carried out using a Horiba Labram HR 800 system with 532

nm laser excitation (Laser Quantum, 65 mW power). A 100x objective lens with NA =

0.9, which renders a laser spot size of 0.4 µm2 and corresponding spot diameter of 709 nm

was used. The measurements were done at a temperature of 294 ± 0.5 K. The spectrometer

used a grating with 600 lines/mm to ensure the spectral range from 1450 cm−1 to 2900 cm−1
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which includes both G and 2D peaks of graphene. The spectral resolution was maintained

at 2 cm−1 for the precise detection of the G peak blue shift. The spectra were collected

at 18 equidistant points on the sample in order to understand the spatial distribution of

the impurity concentration. Prior to acquiring the spectra, to ensure that the sample was

positioned at the focal plane the signal intensity was maximized by adjusting the focus of

the microscope. The spectra collected at each point are the accumulated results over 10

acquisitions with each acquisition spanning over 10 s.

The G-peak spectra were fitted to a Lorenzian to identify the precise location of the peak.

The values of the G-peak were compared to G-peak shifts modified by charge concentration

that are reported in Ref.91 and the corresponding impurity concentration was identified as

shown in Fig. 3. Here, the solid triangles are the data from Ref.91 and the gray solid line is

a fit to the data. The measured G peaks are shown by the horizontal lines. The mean value

of the impurity concentration from all the measured G peaks is n̄ = (4.2± 0.3)× 1012 cm−2,

where the random and systematic errors were summed to obtain the maximum possible

error. Na is expected to be the dominant impurity type based on the transfer process

used86. Figure 4 presents a spatial distribution of the impurity concentration from Fig. 3

measured over the area 0.6×0.8 cm2 of the sample. In accordance with Fig. 3, the light gray,

gray, and dark gray areas in the field of Fig. 4 correspond to the impurity concentrations

varying from 3 × 1012 to 4 × 1012 cm−2, 4 × 1012 to 5 × 1012 cm−2, and from 5 × 1012 to

6× 1012 cm−2, respectively.

The respective value of the chemical potential of our graphene sample at zero temperature

is given by92

µ = −~vF
√
πn̄ = 0.24± 0.01 eV, (7)

where the Fermi velocity vF ≈ c/300. According to Ref.93, due to the relatively large value

of the chemical potential, as in Eq. (7), it is almost independent on temperature. Because

of this, one can use the obtained value (7) both at zero and room temperatures.

We proceed now to measurements of the energy gap ∆. The energy gap of the

graphene mounted on the fused silica was determined using Scanning Tunneling Sprec-

troscopy (STS)94. The STS measurements were performed using a Nanosurf Nano STM.

The probe was fabricated by mechanically cutting a Pt-Ir wire, generating a sharp tip. The

graphene sample on the fused silica substrate was cut into 5 × 5 mm2 pieces and mounted

onto metal puck holders using a conductive adhesive. Conduction between graphene surfaces

13



and the metal puck was achieved by using the same conductive epoxy.

All experiments were performed in air at 22 ± 1◦C. The STM was kept in an enclosed

environment on a floating optical table to minimize thermal and vibrational fluctuations. To

select an appropriate region free from surface wrinkles and corrugations, rough microscopic

scans (50 × 50 nm2 to 10 × 10 nm2) of the surface topography were performed prior to

spectroscopic measurements. The microscopic scans were performed with a bias voltage of

50 mV and a tunneling current of 1 nA.

The spectroscopic scans were performed in “current-voltage mode” where the measure-

ment position and tip-sample separation distance were checked to be constant by monitoring

the initial tunneling current prior to the spectroscopic scans. For the spectroscopic scans

the bias voltage was linearly ramped from –1.2 V to 1.2 V over a 100 ms period. As the

experiments were carried out at room temperature, experiments at different periods of 10 ms

and 50 ms were also tried and verified to lead to similar results. The final spectroscopic

scans were all carried out with 100 ms period and the tunneling currents were recorded at

256 equal time intervals during each ramp from –1.2 V to +1.2 V. The experiment was

repeated 3–4 times till a reproducible spectrogram was obtained. The entire experiment

was repeated at 50 different positions on 3 different samples.

From the tunneling current I as a function of the bias voltage Vbias, the differential conduc-

tance, dI/dVbias as a function of the bias voltage was determined. An averaged differential

conductance as a function of Vbias from the 50 different measured spectra obtained from the

three different samples is shown in Fig. 5. The average minimum value of the differential con-

ductance measured is shown as a horizontal dashed line. A U shaped parabolic dependence

of the differential conductance with bias voltage was observed. The V shape differential

conductance with bias voltage reported for a pristine graphene at low temperature was not

observed due to room temperature measurement as well as the presence of an energy gap

from the presence of impurities95,96 and the mechanical strain from the substrate97,98, both

of which modify the local density of states.

Previous Raman spectroscopy mapping of charge impurities on the sample (see Fig. 4)

shows that the impurity density varies with position leading to variations in the differential

conductance at different positions. The substrate induced roughness also leads to similar

variations with position97–99. To determine the band edge at negative voltage bias, the

differential conductance curve in that region was extrapolated to intersect with the line of
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minimum dI/dVbias
100. The extrapolation was done using a semilog plot of the differential

conductance. Uncertainties in the extrapolation are recorded as uncertainties in the deter-

mination of the band edge. This was repeated for the differential conductance curve at the

positive bias to identify the band edge in that region. The width of the energy gap was thus

determined to be ∆ = 0.29± 0.05 eV using this procedure.

The obtained values of the energy gap and chemical potentials are used in Secs. V and VI

where the gradients of the Casimir force are computed using the formalism of the polarization

tensor.

IV. THEORY OF THERMAL CASIMIR INTERACTION FROM GRAPHENE

USING THE POLARIZATION TENSOR IN THE EXPERIMENTAL CONFIGU-

RATION

As mentioned in Sec. I, there are many theoretical approaches used in the literature for a

description of the Casimir interaction in graphene systems. Here, we describe the gradient

of the Casimir force in the experimental configuration by means of the Lifshitz theory which

is valid for any planar layered structures with appropriately found reflection coefficients. In

doing so the response of Au and fused silica to the electromagnetic field is described by

their frequency-dependent dielectric permittivities, whereas the response of graphene can

be found precisely in the framework of the Dirac model using the polarization tensor in

(2+1)-dimensional space-time. An employment of the Dirac model is fully justified because

even at the shortest separation considered in our experiment (a = 250 nm) the characteristic

energy of the Casimir force ~ωc = ~c/(2a) = 0.4 eV is well within the application region

of the Dirac model of graphene (according to recent results it is applicable up to 3 eV101).

Because of this, one need not take into consideration the absorption peak of graphene at

λ = 270 nm which corresponds to much higher energy ~ω = 2π~c/λ ≈ 4.59 eV.

Using the proximity force approximation (PFA)35 (corresponding error in this experiment

is very small and is taken into account below), the gradient of the Casimir force between an

Au-coated sphere and a graphene-coated SiO2 plate calculated at the laboratory temperature
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T takes the form74,77,82

F ′(a, T ) = 2kBTR

∞
∑

l=0

′
∫

∞

0

qlk⊥dk⊥

×
∑

σ

[

r−1
σ (iξl, k⊥)R

−1
σ (iξl, k⊥, T )e

2aql − 1
]−1

. (8)

In this equation, kB is the Boltzmann constant, the prime on the first summation sign

divides the term with l = 0 by 2, k⊥ is the magnitude of the wave vector projection on

a graphene plane, the Matsubara frequencies are ξl = 2πkBT l/~, ql =
√

k2
⊥
+ ξ2l /c

2, and

the summation in σ is over the two polarizations of the electromagnetic field, transverse

magnetic (σ = TM) and transverse electric (σ = TE).

Now it is necessary to define the reflection coefficients rσ and Rσ entering Eq. (8). In

doing so, taking into account the sufficiently thick Au-coating on the sphere and large

thickness of the SiO2 plate, the sphere can be considered as all-gold and the plate — as a

semispace35. Then, the coefficients rσ on the boundary between Au and vacuum take the

standard form35–37

rTM(iξl, k⊥) =
ε
(1)
l ql − k

(1)
l

ε
(1)
l ql + k

(1)
l

,

rTE(iξl, k⊥) =
ql − k

(1)
l

ql + k
(1)
l

, (9)

where

k
(n)
l = k

(n)
l (k⊥) =

√

k2
⊥
+ ε

(n)
l

ξ2l
c2

(10)

and ε
(n)
l = ε(n)(iξl) are the dielectric permittivities of Au (n = 1) and SiO2 (n = 2) calculated

at the pure imaginary Matsubara frequencies.

The reflection coefficients Rσ on the boundary between vacuum and graphene-coated

plate are more involved because the plate material is described by the dielectric permittivity

ε
(2)
l whereas graphene — by the polarization tensor in (2+1)-dimensional space-time

Πβγ,l ≡ Πβγ(iξl, k⊥, T,∆, µ), (11)

where β, γ = 0, 1, 2. This tensor depends on temperature T and on the energy gap

∆ and chemical potential µ of a graphene sheet. In fact it has only two independent

components64–66. It is most convenient to express the reflection coefficients via Π00,l and

the following combination of the components Πl defined as

Πl = k2
⊥
Π β

β, l − q2l Π00,l, (12)
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where Π β
β, l (the summation in β is implied) is the trace of the polarization tensor.

Using the above notations, the reflection coefficients Rσ are given by77,79,82

RTM(iξl, k⊥, T ) =
~k2

⊥
[ε

(2)
l ql − k

(2)
l ] + qlk

(2)
l Π00,l

~k2
⊥
[ε

(2)
l ql + k

(2)
l ] + qlk

(2)
l Π00,l

,

RTE(iξl, k⊥, T ) =
~k2

⊥
[ql − k

(2)
l ]−Πl

~k2
⊥
[ql + k

(2)
l ] + Πl

. (13)

To calculate the gradient of the Casimir force using Eqs. (8)–(13) one needs to have

the values of the dielectric permittivities ε
(n)
l and of the quantities Π00,l and Πl as input

information. As mentioned in Sec. I, the quantities ε
(n)
l are obtained from the measured

optical data for the complex index of refraction41. In the case of one test body coated

with a graphene sheet the reflection coefficient RTE(0, k⊥, T ) turns out to be very small.

Because of this, the gradients of the Casimir force calculated by Eqs. (8)–(13) are almost

independent of the type of extrapolation of the optical data to zero frequency discussed in

Sec. I. Therefore, one can safely employ the values of ε
(n)
l available in the literature35–37

obtained using any extrapolation (i.e., taking into account or disregarding the relaxation

properties of conduction electrons) leading to coinciding results. This gives the possibility

to consider the reflection coefficients rσ as independent of T .

The quantities Π00,l and Πl are conveniently presented as the sums of two contributions

Π00,l = Π
(0)
00,l +Π

(1)
00,l, Πl = Π

(0)
l +Π

(1)
l . (14)

The first terms on the right-hand sides of these equations are related to the polarization

tensor of an undoped graphene with µ = 0, arbitrary value of the energy gap ∆, at zero

temperature T = 0, but calculated at the pure imaginary Matsubara frequencies ω = iξl.

This means that the quantities Π
(0)
00,l and Π

(0)
l take into account only an implicit dependence

of the polarization tensor on temperature through the Matsubara frequencies. The second

terms on the right-hand sides of Eq. (14) result from an explicit dependence of the polariza-

tion tensor on temperature T and on the chemical potential µ. In so doing they also depend

on ∆.

The explicit expressions for Π
(0)
00,l and Π

(0)
l are given by63,64

Π
(0)
00,l =

α~k2
⊥

q̃l
Ψ(Dl), Π

(0)
l = α~q̃lΨ(Dl), (15)
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where α = e2/(~c) is the fine structure constant and

q̃l =

(

v2F
c2

k2
⊥
+

ξ2l
c2

)1/2

, Dl =
∆

~cq̃l
,

Ψ(x) = 2

[

x+ (1− x2) arctan
1

x

]

. (16)

The exact expressions for Π
(1)
00,l and Π

(1)
l are more involved. They can be conveniently

presented in the form66,79

Π
(1)
00,l =

4α~c2q̃l
v2F

∫

∞

Dl

du

(

∑

κ=±1

1

e
Blu+κ µ

kBT + 1

)

×
[

1− Re
1− u2 + 2iγlu

(1− u2 + 2iγlu+D2
l − γ2

l D
2
l )

1/2

]

,

(17)

Π
(1)
l = −4α~q̃lξ

2
l

v2F

∫

∞

Dl

du

(

∑

κ=±1

1

e
Blu+κ µ

kBT + 1

)

×
[

1− Re
(1 + iγ−1

l u)2 + (γ−2
l − 1)D2

l

(1− u2 + 2iγlu+D2
l − γ2

l D
2
l )

1/2

]

,

where γl ≡ ξl/(cq̃l) and Bl ≡ ~cq̃l/(2kBT ).

To gain better insight into the meaning of two contributions in Eq. (14), we note that

the quantity (17) can be also presented as

Π
(1)
00,l = A00,l(∆, µ) +B00,l(T,∆, µ),

Π
(1)
l = Al(∆, µ) +Bl(T,∆, µ), (18)

where A00,l and Al do not depend on T and go to zero with vanishing µ whereas B00,l and

Bl go to zero with vanishing T .

In practical computations, it is convenient to consider separately the contributions to

Eq. (8) with l = 0 and with all l > 1. Thus, from Eqs. (14), (15), and (17) for l = 0 one

obtains
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Π00,0 = α~c
k⊥
vF

Ψ(D0) +
8αkBTc

v2F

∑

κ=±1

ln
(

e
κ µ

kBT + e
−

∆

2kBT

)

− 4α~ck⊥
vF

∫

√
1+D2

0

D0

du

(

∑

κ=±1

1

e
B0u+κ µ

kBT + 1

)

1− u2

√

1− u2 +D2
0

,

Π0 = α~
vFk

3
⊥

c
Ψ(D0) (19)

+ 4α~
vFk

3
⊥

c

∫

√
1+D2

0

D0

du

(

∑

κ=±1

1

e
B0u+κ µ

kBT + 1

)

−u2 +D2
0

√

1− u2 +D2
0

,

where, according to the above notations, D0 = ∆/(~vFk⊥) and B0 = ~vFk⊥/(2kBT ).

At room temperature and a > 100 nm one can obtain also much simpler approximate

expressions for Π00,l and Πl with l > 1 than the exact ones given by Eqs. (14), (15), and

(17). For this purpose the condition ξ1 ≫ vF/(2a) should be used leading to77,79

Π00,l ≈ α~c
k2
⊥

ξl

[

Ψ

(

∆

~ξl

)

+ Yl(T,∆, µ)

]

,

Πl ≈ α~ξl
k2
⊥

c

[

Ψ

(

∆

~ξl

)

+ Yl(T,∆, µ)

]

, (20)

where

Yl(T,∆, µ) = 2

∫

∞

∆/(~ξl)

du

(

∑

κ=±1

1

e
Blu+κ µ

kBT + 1

)

×
u2 +

(

∆
~ξl

)2

u2 + 1
. (21)

It was shown77,79 that numerical computations of the Casimir force using the exact ex-

pressions (14), (15), and (17) for the polarization tensor and, alternatively, the exact ex-

pressions (19) for l = 0 but the approximate expressions (20) for l ≥ 1 at room temperature

and a ≥ 100 nm lead to computational results differing by less than 0.01%.

Below we consider not only the gradient of the Casimir force between an Au-coated sphere

and graphene-coated substrate but also the thermal correction to it defined as

∆TF
′(a, T ) = F ′(a, T )− F ′(a, 0). (22)

The gradient of the Casimir force at zero temperature, F ′(a, 0), can be calculated by the

Lifshitz formula (8) where a summation over the discrete Matsubara frequencies should be
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replaced with an integration over the axis of pure imaginary frequency according to

kBT

∞
∑

l=0

′

→ ~

2π

∫

∞

0

dξ. (23)

This means that in Eq. (8) one should replace ξl and ql with ξ and q. The respective

replacements, which also include the changes of k
(n)
l for k(n), q̃l for q̃, Π00,l for Π00, and Πl

for Π, should be made in Eqs. (9)–(17).

To calculate the gradients of the Casimir force at zero temperature, one also needs explicit

expressions for the quantities

Π00 ≡ Π00(iξ, k⊥, 0,∆, µ),

Π ≡ Π(iξ, k⊥, 0,∆, µ). (24)

They can be obtained using Eqs. (14), (15), and (17) by performing integration with respect

to u. The obtained results in the cases 2µ > ∆ and 2µ 6 ∆ are different. For the graphene

sample used in our experiment the condition 2µ > ∆ is satisfied (see Sec. III) and after

calculation one arrives at79

Π00 =
8αcµ

v2F
− α~k2

⊥

q̃

{

2MIm(y∆,µ

√

1 + y2∆,µ)

+(2−M)
[

2Im ln(y∆,µ +
√

1 + y2∆,µ)− π
]}

,

(25)

Π = −8αξ2µ

cv2F
+ 2α~q̃k2

⊥

[

MIm(y∆,µ

√

1 + y2∆,µ)

−(2 −M)Im ln(y∆,µ +
√

1 + y2∆,µ) +
π

2
(2−M)

]

.

Here, the following notations are introduced

M = 1 +D2, y∆,µ =
~ξ + 2iµ

~vFk⊥
√
M

. (26)

In the opposite case 2µ 6 ∆ one has79

Π00 = Π
(0)
00 , Π = Π(0), (27)

where Π
(0)
00 and Π(0) are defined in Eq. (15) with a replacement of ξl for ξ.

We postpone a comparison between theoretical predictions of the above theory and the

measurement data to Sec. VI. In the next section we consider the relative magnitudes of the

thermal correction and its constituents in the total Casimir interaction for both real and

pristine graphene samples and provide a qualitative discussion of the origin and physical

nature of the unusually big thermal effect arising in graphene systems at short separations.
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V. PHYSICAL NATURE AND MAGNITUDE OF THE THERMAL EFFECT IN

REAL AND PRISTINE GRAPHENE SAMPLES

Let us calculate the relative thermal correction to the gradient of the Casimir force acting

between an Au-coated sphere of radius R = 60.35 µm and a graphene-coated SiO2 plate

which is given by

δTF
′(a, T ) =

∆TF
′(a, T )

F ′(a, 0)
, (28)

where the absolute thermal correction ∆TF
′ is defined in Eq. (22). We consider the graphene

sheet with the experimental parameters µ = 0.24 eV and ∆ = 0.29 eV. Computations of the

quantity F ′(a, T ) are performed by Eqs. (8), (9), (13), (19), and (20) and of the quantity

F ′(a, 0) — by Eqs. (8), (9), (13), (23), and (25).

The computational results for δTF
′ at T = 294 K as a function of separation are pre-

sented by the bottom solid line in Fig. 6. As is seen in Fig. 6, at separations of a = 100, 200,

300, and 400 nm the relative thermal correction in the experimental configuration reaches

2.79%, 4.29%, 5.19%, and 5.73% of the force gradient at T = 0, respectively. This effect is

similar in magnitude to that one predicted by the Lifshitz theory for the Casimir interac-

tion between metallic test bodies described with inclusion of the dissipation of conduction

electrons. As discussed in Sec. I, for metals this prediction was excluded by the results of

many experiments.

The bottom dashed line in Fig. 6 shows the computational results for δTF
′ under a

condition that the quantity F ′(a, T ) is computed using the polarization tensor taken at

T = 0. This means that the thermal correction in this case is implicit, i.e., fully determined

by a summation over the Matsubara frequencies, whereas an explicit dependence of the

polarization tensor on temperature as a parameter is disregarded. As is seen from the bottom

dashed line in Fig. 6, at separations of a = 100, 200, 300, and 400 nm the implicit thermal

correction is equal to 1.53%, 3.10%, 4.24%, and 5.06%, respectively. Thus, with increasing

separation the role of explicit dependence of the polarization tensor on temperature gradually

decreases and becomes negligibly small at a > 700 nm.

To determine the role of a SiO2 substrate in the above results, we repeat computations of

the relative thermal correction δTF
′ for the configuration of an Au sphere and a freestanding

graphene sheet preserving unchanged all other parameters of the experimental configuration.

The computational results are shown by the top pair of solid and dashed lines having the
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same meaning as the respective lines of the bottom pair. As is seen from the top solid line in

Fig. 6, at separations of a = 100, 200, 300, and 400 nm the thermal correction (28) reaches

much larger values of 21.5%, 34.4%, 42.4%, and 47.5%, respectively. This means that in

the absence of a substrate the thermal effect inherent to the graphene sheet manifests itself

more vividly. The top dashed line in Fig. 6 illustrates the contribution of an implicit thermal

effect due to a summation over the Matsubara frequencies to the total thermal correction

in the case of a freestanding graphene sheet interacting with an Au-coated sphere. As is

seen in Fig. 6, at separations of a = 100, 200, 300, and 400 nm the implicit thermal effect

contributes 15.9%, 29.6%, 39.4%, and 46.1% of the force gradient at T = 0. At separations

exceeding 500 nm an explicit dependence of the polarization tensor on T does not lead to a

noticeable contribution to the thermal correction (28).

Up to this point we have considered the graphene sample with nonzero ∆ and µ used in

our experiment. It should be noted that for a pristine graphene possessing ∆ = µ = 0 the

thermal effect in the Casimir interaction at short separation distances would be even much

larger. To illustrate this, in Fig. 7 the computational results for δTF
′ in the configuration

of an Au-coated sphere interacting with a freestanding pristine graphene sheet are shown

by the top pair of solid and dashed lines as functions of separation (the total and implicit

thermal corrections, respectively). As is seen in Fig. 7, at separations of a = 100, 200, 300,

400, 700, and 1000 nm the thermal correction δTF
′ defined in Eq. (28) is equal to 53.7%,

115.5%, 179.8%, 245.6%, 447.1%, and 659.9%, respectively. According to Fig. 7, for pristine

graphene the implicit thermal correction plays a smaller role than for the experimental

graphene sample. Thus, at a = 100, 200, 300, 400, 700, and 1000 nm it is equal to 22.5%,

61.1%, 104.3%, 149.8%, 292.5%, and 439.9%, respectively. As a result, the explicit thermal

dependence of the polarization tensor contributes 31.2%, 54.4%, 75.5%, 95.8%, 154.6%, and

212.0% of F ′(a, 0) at the same respective separations and does not disappear when the

separation increases.

For comparison purposes, the bottom pair of solid and dashed lines in Fig. 7 reproduces

the top pair of lines in Fig. 6 related to the case of an Au-coated sphere interacting with a

freestanding real graphene sheet used in our experiment (with ∆ = 0.29 eV and µ = 0.24 eV).

From Fig. 7 it is seen that the replacement of a real with a pristine graphene sheet leads to

a qualitatively large increase of the thermal correction to the gradient of the Casimir force

at short separations.
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From the above results it is seen that even the presence of a graphene sheet deposited

on a substrate significantly increases the thermal effect in the Casimir interaction at short

separations which constitutes only a small fraction of percent for both metallic and dielectric

materials. Because of this, it is interesting to consider the so-called thermal regime of the

Casimir interaction in the presence of graphene which takes place under the condition

F ′(a, 0) ≪ ∆TF
′(a, T ), (29)

i.e., when the thermal correction (22) determines the major part of the force gradient at

temperature T . This is the case when the term of the Lifshitz formula (8) with l = 0 becomes

much larger than the sum of all remaining terms with l > 1.

In order to determine the role of graphene in reaching the thermal regime of the Casimir

interaction, we have computed separation distances between the parallel plates made of

different materials such that at larger separations the Casimir pressure given by the zero-

frequency term of the Lifshitz formula contributes more than 90%, 95%, and 99% of the

total Casimir pressure. The following cases were considered: an Au plate and a SiO2 plate;

an Au plate and a SiO2 plate coated with real graphene sheet used in our experiment; an

Au plate and a real graphene sheet; an Au plate and a pristine graphene sheet; two pristine

graphene sheets. The obtained computational results are presented in Table I [we recall that

according to PFA the Casimir pressure between two parallel plates P = −F ′/(2πR), i.e.,

is proportional to the gradient of the Casimir force in sphere-plate geometry used in our

experiment].

As is seen in Table I, the presence of a graphene sheet significantly decreases the minimum

separation distance from which the Casimir interaction is going into the thermal regime. The

thermal regime starts at especially short separations in the absence of a material substrate

and for the pristine graphene sheets. Thus, for SiO2–Au plates the full thermal regime (99%

of the Casimir pressure) is reached only at a > 5.5 µm, whereas for two pristine graphene

sheets it is achieved at a > 0.38 µm.

In the end of this section we present a qualitative discussion of the physical reasons why

for two pristine graphene sheets the thermal regime starts at so short separations. It is

common knowledge that for ordinary materials the thermal regime starts at separations a

satisfying the condition35

1

2a
≪ ξ1

c
= 2π

kBT

~c
. (30)
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This condition can be rewritten as

kBT ≫ 1

2π
kBTeff , kBTeff ≡ ~c

2a
, (31)

where Teff is the so-called effective temperature. Thus, according to numerical computations

in Table I, for two plates made of Au and SiO2 the full thermal regime is reached at a =

5.5 µm which corresponds to the effective temperature Teff ≈ 208.3 K. In doing so Teff/(2π) ≈
33.2 K so that at room temperature the inequality (31) is well satisfied. Because of this, the

thermal regime is also called the high-temperature limit. In the high-temperature limit, the

Casimir pressure determined by all Matsubara frequencies with l > 1 is of the order of35

Pl>1(a, T ) ∼ exp

(

−2π
T

Teff

)

, (32)

i.e., is exponentially small.

For graphene, however, the situation is more complicated because the reflection coeffi-

cients do not have the standard Fresnel form (9) but depend on the polarization tensor. The

major contribution to the Casimir pressure between two graphene sheets is given by the TM

polarization. From Eq. (8) we have

Pgr(a, T ) ≈ −kBT

π

∞
∑

l=0

′
∫

∞

0

qlk⊥dk⊥
r2TM,gr(iξl, k⊥)e

−2aql

1− r2TM,gr(iξl, k⊥)e
−2aql

, (33)

where the reflection coefficient on a freestanding graphene sheet rTM,gr is obtained from RTM

defined in Eq. (13) by putting the dielectric permittivity of a substrate ε
(2)
l equal to unity

rTM,gr(iξl, k⊥) =
qlΠ00,l

2~k2
⊥
+ qlΠ00,l

. (34)

To understand the qualitative physical reasons why graphene has a large thermal effect

already at relatively short separations, we restrict ourselves to the polarization tensor taken

at T = 0 but calculated at the imaginary Matsubara frequencies (an account of the explicit

temperature dependence may only increase the thermal effect). Then, from Eqs. (15) and

(27) one finds

Π00,l =
πα~k2

⊥

q̃l
, (35)

where we have taken into account that for a pristine graphene in accordance with Eq. (16)

it holds Ψ(0) = π.

Substituting Eq. (35) in Eq. (34), we obtain

rTM,gr(iξl, k⊥) =
παql

παql + 2q̃l
, (36)
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where ql is defined below Eq. (8) and q̃l in Eq. (16).

In the term of the Lifshitz formula (33) with l = 0, the reflection coefficient (36) takes

the value

rTM,gr(0, k⊥) =
πα

πα+ 2vF
c

≈ 0.775. (37)

The distinctive feature of graphene is that the reflection coefficient (36) depends on both

c and vF . Because of this one can consider the region of separations where

vF
2a

≪ ξ1 ≪
c

2a
. (38)

The latter of these two inequalities is just the opposite to the condition (30) required for

reaching the thermal regime between ordinary materials. However, under the inequalities

(38) the reflection coefficient (36) with l = 1 can be approximately presented in the form

rTM,gr(iξ1, k⊥) =
πα

2a(πα
2a

+ 2 ξ1
c
)
=

πα

πα + 4aξ1
c

. (39)

Here, we used that the major contribution to Eq. (33) is given by k⊥ ≈ 1/(2a) and that

Eq. (38) results in q1 ≈ 1/(2a) and q̃1 ≈ ξ1/c. Taking into account that according to Eq. (38)

vF ≪ 2aξ1, one concludes from Eqs. (37) and (39) that

rTM,gr(iξ1, k⊥) < rTM,gr(0, k⊥). (40)

The left-hand side of this inequality further decreases if ξ1 is replaced for ξl with l > 1.

Thus, under the condition (38) a contribution of the zero-frequency term to Eq. (33) may

become dominant in accordance to the results of numerical computations.

The first inequality in Eq. (38) can be identically rewritten in the form

kBT ≫ 1

2π
kBT

gr
eff , kBT

gr
eff ≡ ~vF

2a
, (41)

which is similar to Eq. (31). Thus, for graphene, in addition to the standard effective tem-

perature Teff defined in Eq. (31), there exists one more effective temperature T gr
eff defined in

Eq. (41) which is lower than Teff by a factor of 300. According to Ref.45, the big thermal

effect in the Casimir interaction between two graphene sheets at short separations is con-

trolled by the effective temperature T gr
eff . Our computational results and above qualitative

estimations show that the thermal regime of the Casimir interaction in graphene systems is

governed by two effective temperatures T gr
eff and Teff . In doing so at short separations the

thermal regime is determined by the much lower temperature T gr
eff .
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VI. COMPARISON BETWEEN EXPERIMENT AND THEORY

The gradients of the Casimir force F ′(a, T ) between an Au-coated sphere of R = 60.35±
0.05 µm radius and a graphene-coated SiO2 substrate at T = 294.0 ± 0.5 K temperature

were computed by Eqs. (8), (9), (13), (19), and (20) using the experimental values of the

energy gap ∆ = 2.9± 0.05 eV and chemical potential µ = 0.24± 0.01 eV (see Sec. III).

It is well known that the Casimir interaction is influenced by roughness on the interacting

surfaces35,36,102–104. In the case of small stochastic roughness with the rms amplitudes δs =

0.9 ± 0.1 nm and δg = 1.5 ± 0.1 nm on the sphere and graphene surfaces, respectively (see

Sec. II), it can be taken into account multiplicatively35,36 resulting in the final expression

for the gradient of theoretical Casimir force

F ′

theor(a, T ) =

(

1 + 10
δ2s + δ2g

a2

)

F ′(a, T ). (42)

This expression was used to compute the upper and lower boundaries of the top theoretical

bands in Fig. 2 presenting allowed values of the Casimir force gradient at T = 294 K. These

boundaries were computed in the following most conservative way taking a proper account

of all errors which are present in the parameters used.

Thus, the upper boundary lines of the theoretical bands were calculated with the largest

allowed value of the chemical potential µ = 0.25 eV and the smallest allowed value of the

energy gap ∆ = 0.24 eV. This is explained by the fact that an increase of µ with fixed

∆ leads to a larger F ′ whereas an increase of ∆ at a constant µ results in a smaller F ′79.

The obtained theoretical bands for F ′

theor were widened to take into account the errors in

the sphere radius and the 0.5% error in the force gradients arising from uncertainties in the

optical data of Au and SiO2 (an error in the laboratory temperature indicated above does

not influence on the obtained results).

The theoretical bands for F ′

theor were also widened to take into account small errors of

PFA used in Eq. (8). As it was shown in the literature105–109, when using the PFA one

obtains slightly increased force gradients as compared to the exact computational results

in the sphere-plate geometry. Because of this, we did not correct the upper lines of the

theoretical bands for the PFA error but introduced the maximum possible correction factor

of (1− a/R) to the lower boundary lines.

As is seen in Fig. 2, the upper theoretical bands computed at T = 294 K are in a very

good agreement with the measured gradients of the Casimir force indicated as crosses over
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the entire measurements range from 250 to 700 nm. The question arises as to whether

the measurement data demonstrate the presence of an unusually big thermal effect in the

Casimir force from graphene at short separations which is considered in Sec. V.

To answer this question, we have computed the gradients of the Casimir force, F ′(a, 0), at

zero temperature by using Eqs. (8), (9), (13), (23), and (25) for the same parameters of the

experimental configuration indicated above. The obtained values of F ′(a, 0) were substituted

to Eq. (42) and the values of F ′

theor(a, 0) were calculated. The latter were used to find the

upper and lower boundaries of the theoretical bands for the Casimir force gradient at T = 0

in the same conservative way as described above in the case of T = 294 K. The results

of this calculation are presented by the bottom bands in Fig. 2. As is seen in Fig. 2, the

bottom theoretical bands computed at T = 0 are more narrow than the top ones computed

at T = 294 K. This is because our graphene sample possesses a relatively large value of

µ = 0.24 eV. Calculations show that for such large values of the chemical potential an

impact of the energy gap on the polarization tensor (and, as a consequence, on the reflection

coefficients and force gradients) at T = 0 is considerably suppressed, as compared to the

case of T = 294 K.

From Fig. 2 it is seen that the measurement data exclude the theoretical predictions at

T = 0 shown by the bottom bands over the wide separation region from 250 to 517 nm and,

thus, demonstrate the thermal effect in the Casimir interaction arising from our graphene

sample.

For a more illustrative demonstration of the observed thermal effect, we also employ

another way of comparison between experiment and theory based on a consideration of

differences between the theoretical and mean experimental force gradients23,25,33,35,36

F ′

theor(ai, T̃ )− F ′

expt(ai, T ), (43)

where the experimental force gradients are given by the centers of the crosses in Fig. 2 and

the theoretical ones are computed with a step of 1 nm as described above.

In Fig. 8, we plot the quantity (43) as a function of separation by the top and bottom sets

of dots obtained at T̃ = T = 294 K and T̃ = 0 K, T = 294 K, respectively. The confidence

bands for the quantities (43) found at T̃ = T = 294 K (solid lines) and T̃ = 0 K, T = 294 K

(dashed lines), respectively, take into account both the theoretical and experimental errors

determined at the 67% confidence level. Note that in addition to the theoretical errors
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considered previously, now we also take into account an error arising from the fact that

the quantities F ′

theor(ai, T̃ ) in (43) are computed not over some separation region but at the

experimental separations ai determined with an error ∆ai. The bands shown by the solid

and dashed lines are slightly different because, as discussed above, for our graphene sample

an error in the energy gap leads to different errors in the force gradients at T = 0 and at

T = 294 K.

As is seen in Fig. 8, within the entire range of separations from 250 to 700 nm the top

set of dots found at T = 294 K is inside the confidence band shown by the solid lines.

This means that the theoretical gradients of the Casimir force computed at T = 294 K are

consistent with the measurement data. At the same time, the bottom set of dots found

at T = 0 K is outside the confidence band shown by the dashed lines over the wide range

of separations from 250 to 517 nm, i.e., the theoretical results computed at T = 0 are

experimentally excluded. These conclusions are in agreement with those obtained above

based on Fig. 2.

The differences between the measurement data at T = 294 K and computed at T = 0

force gradients can be used to plot the thermal correction ∆TF
′ defined in Eq. (22). In

Fig. 9 it is shown by dots as a function of separation in the region where the theory at T = 0

is experimentally excluded and cannot be used for interpretation of the measurement data.

The values of ∆TF
′ at different separations shown in Fig. 9 are consistent with the theoretical

values of δTF
′ computed in Sec. V for our graphene sample. This can be easily verified by

using the computational results for the gradients of the Casimir force presented in Fig. 2.

Thus, the performed experiment demonstrates an unusual thermal effect in graphene systems

which becomes noticeable even at relatively short separations of a few hundred nanometers.

VII. CONCLUSIONS AND DISCUSSION

In the foregoing, we have described measurements of the thermal Casimir interaction be-

tween an Au-coated sphere and a graphene-coated substrate performed at T=294K in high

vacuum by means of a custom built AFM cantilever based setup operated in the dynamic

regime. Using the two sets of measurements each of which contains 21 experimental runs,

we have obtained the mean gradients of the Casimir force and determined their random,

systematic, and total experimental errors over the separation region between a sphere and a
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graphene sheet from 250 to 700 nm. In doing so all the experimental parameters, including

the absolute separations, and their errors were determined by means of electrostatic cali-

bration. For the substrate supporting the graphene sheet, a sufficiently thick fused silica

plate has been used which, as was proposed in Ref.74, should make it possible to observe the

unusual thermal effect in graphene systems at short separations predicted in Ref.45.

According to the literature provided in Sec. I, an experimental discovery of this effect for

graphene would be of great fundamental importance because a similar effect had long been

predicted by the Lifshitz theory for metals described by the conventional Drude response

function43, but was experimentally excluded by numerous precision experiments22–34.

We have performed measurements of the energy gap and impurity concentration in the

graphene sample used and compared the experimental mean gradients of the Casimir force

with theory based on the first principles of quantum electrodynamics at nonzero temperature

with no fitting parameters. For this purpose, the response function of graphene was described

by the polarization tensor at nonzero temperature depending on the energy gap and chemical

potential which is found in the framework of the Dirac model. The experimental results are

in a very good agreement with the theoretical ones computed at T = 294 K over the

entire measurement range within the limits of experimental and theoretical errors. The

theoretical gradients of the Casimir force computed using the same theory with the same

experimental parameters at T = 0 K are conclusively excluded by the measurement data

over the separation region from 250 to 517 nm. Thus, the presence of an unusual thermal

effect in graphene systems at short separations is confirmed experimentally.

We have investigated the dependence of the thermal correction to the gradient of the

Casimir force between a sphere and a graphene sample taking into account the values of the

energy gap and chemical potential of graphene and also the presence of a substrate. The case

of two parallel freestanding sheets of a pristine graphene, originally studied in Ref.45, was

also considered. It was confirmed that an observed size of the thermal effect is in agreement

with that for a pristine graphene taking into account respective decrease due to the presence

of a substrate and nonzero values of the energy gap and chemical potential of the graphene

sheet used.

An experimental verification of the thermal effect, which is observed in the Casimir in-

teraction with graphene at short separations, offers a clearer view on why a similar effect

is experimentally excluded for metallic test bodies. The key point is that for graphene the
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response function to quantum fluctuations is determined theoretically on the basis of first

physical principles. It is nonlocal (i.e., depends both on the frequency and on the wave vec-

tor) and pertains equally to quantum fluctuations on the mass shell (the propagating waves)

and off the mass shell (the evanescent waves). Then, it is reasonable that the theoretical pre-

dictions for the Casimir interaction, which has contributions from both the propagating and

evanescent waves, obtained using this formalism are confirmed experimentally. In compar-

ison for metals, their response functions are found partially experimentally from tabulated

values41 and partially using the theoretical extrapolation both given by the effect of only

propagating waves. These response functions are reliably tested only in the area of quan-

tum fluctuations on the mass shell. Note that it is even impossible to experimentally test

the transverse components of their spatially nonlocal generalizations in the off-mass-shell

area42. This may be the reason why the Lifshitz theory using the standard Drude model

or its generalization for the case of frequency-dependent relaxation parameter (the so-called

Gurzhi model) fails to predict the correct values of the Casimir force between metallic test

bodies110.

Thus, information obtained from using graphene leads us to conclude that the Casimir

puzzle for metals could be resolved by making the spatially nonlocal modification of the

Drude model in the area of evanescent waves which leaves the response to the propagating

waves almost unchanged. Such an attempt was already undertaken in Ref.111. The suggested

spatially nonlocal Drude-like response functions take into account the dissipation properties

of conduction electrons, as does the standard Drude model, and simultaneously bring the

Lifshitz theory in agreement with measurements of the Casimir force between metallic sur-

faces. It is pertinent to note that the Lifshitz theory using the nonlocal Drude-like response

functions introduced in Ref.111 satisfies the Nernst heat theorem both for metals with per-

fect crystal lattices and for lattices with the structural defects112 (we recall that the Casimir

entropy calculated using the standard Drude model violates this fundamental theorem for

metals with perfect crystal lattices35,36,38).

To conclude, the observation of an unusual thermal effect in graphene systems at short

separations, reported in this paper, may stimulate resolution of several other fundamental

problems and also be useful for numerous applications of graphene in physics and nanotech-

nology.
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31



duction in an oscillating electric field: Application to bandgap graphene layers, Phys. Rev. D

93, 116006 (2016).

10 M. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys.

83, 1193 (2011).

11 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic

properties of graphene, Rev. Mod. Phys. 81, 109 (2009).

12 Physics of Graphene, ed. H. Aoki and M. S. Dresselhaus (Springer, Cham, 2014).

13 M. I. Katsnelson, The Physics of Graphene (Cambridge University Press, Cambridge, 2020).

14 H. B. G. Casimir, On the attraction between two perfectly conducting bodies, Proc. Kon. Ned.

Akad. Wet. B 51, 793 (1948).

15 E. M. Lifshitz, The theory of molecular attractive forces between solids, Zh. Eksp. Teor. Fiz.

29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)].

16 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part II (Pergamon, Oxford, 1980).

17 T. Emig, R. L. Jaffe, M. Kardar, and A. Scardicchio, Casimir Interaction between a Plate and

a Cylinder, Phys. Rev. Lett. 96, 080403 (2006).

18 M. Bordag, Casimir effect for a sphere and a cylinder in front of a plane and corrections to the

proximity force theorem, Phys. Rev. D 73, 125018 (2006).

19 O. Kenneth and I. Klich, Casimir forces in a T-operator approach, Phys. Rev. B 78, 014103

(2008).

20 T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Casimir forces between compact objects:

The scalar case, Phys. Rev. D 77, 025005 (2008).

21 S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Scattering theory approach to

electrodynamic Casimir forces, Phys. Rev. D 80, 085021 (2009).

22 R. S. Decca, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, D. López, and V. M. Mostepa-
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23 R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and V. M. Mostepa-

nenko, Precise comparison of theory and new experiment for the Casimir force leads to stronger

constraints on thermal quantum effects and long-range interactions, Ann. Phys. (NY) 318, 37

(2005).
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TABLE I: Separation distances in µm where the zero-frequency term of the Lifshitz formula for

the case of two parallel plates made of materials indicated in column 1 contributes more than

90% (column 2), 95% (column 3), and 99% (column 4) of the total Casimir pressure at larger

separations.

Plate a (µm)

materials 90% of P 95% of P 99% of P

SiO2—Au 3.6 4.2 5.5

(SiO2+real graphene)—Au 3.1 3.7 5.0

(real graphene)—Au 0.8 1.3 2.7

(pristine graphene)—Au 0.7 1.15 2.5

(pristine graphene)—(pristine graphene) 0.11 0.17 0.38
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FIG. 1: The residual potential difference between an Au-coated sphere and a graphene-coated

fused silica plate is shown by the dots as a function of separation (a) for the first and (b) for the

second measurement sets.
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FIG. 2: The mean gradient of the Casimir force obtained from the two measurement sets is shown

by the crosses as a function of separation within four separation intervals. The upper and lower

theoretical bands are computed at the laboratory temperature T = 294 K and at T = 0 K,

respectively (see the text for further discussion).
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FIG. 3: The measured G-peak values from Raman spectroscopy compared to the charge concen-

tration in graphene from Ref.91. The solid triangles are the values from Ref.91 and the solid gray

line is a best fit to the data. The G-peak values measured at equidistant points on the sample

are shown by horizontal lines. The intersection identifies the impurity concentration. The average

impurity concentration is shown by the arrow.

42



le
n
gt
h
(c
m
)

width (cm)

FIG. 4: The impurity concentration measured at different points over the 0.6 × 0.8 cm2 area of

the sample from Fig. 3 is shown by the light gray, gray, and dark gray regions where it varies from

3×1012 to 4×1012 cm−2, 4×1012 to 5×1012 cm−2, and from 5×1012 to 6×1012 cm−2, respectively.
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FIG. 5: The average measured differential conductance dI/dVbias, measured from the scanning

tunneling spectroscopy of the graphene sample as a function of the bias voltage. For clarity the

error bars are shown only at every fifth data point. The horizontal dashed line is the minimum

average differential conductance measured.
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FIG. 6: The computational results for the relative thermal correction to the gradient of the Casimir

force are shown as functions of separation by the bottom and top pairs of lines for an Au-coated

sphere interacting either with real graphene sheet deposited on a SiO2 plate or with freestanding

real graphene sheet in vacuum, respectively. The solid and dashed lines in each pair are computed

including and neglecting the explicit dependence of the polarization tensor on temperature as a

parameter, respectively.
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FIG. 7: The computational results for the relative thermal correction to the gradient of the Casimir

force are shown as functions of separation by the bottom and top pairs of lines for an Au-coated

sphere interacting with the freestanding either real or pristine graphene sheet in vacuum, respec-

tively. The solid and dashed lines in each pair are computed including and neglecting the explicit

dependence of the polarization tensor on temperature as a parameter, respectively.
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FIG. 8: The differences between theoretical gradients of the Casimir force computed either at

T = 294 K (top set of dots) or at T = 0 K (bottom set of dots) and mean experimental gradients

are shown as functions of separation. The solid and dashed lines indicate the borders of the

confidence intervals for the top and bottom sets of dots, respectively, found at the 67% confidence

level.
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FIG. 9: The thermal correction to the gradient of the Casimir force found as a difference between

the mean experimental gradients measured at T = 294 K and the theoretical ones computed at

T = 0 K is shown by dots as a function of separation.
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