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We perform a detailed study of the phase transitions and mechanisms of electron localization in the
extended Hubbard model using the dynamical cluster approximation on a 2× 2 cluster. We explore
the interplay of charge order and Mott physics. We find that a nearest-neighbor Coulomb interaction
V causes “screening” effects close to the Mott phase transition, pushing the phase boundary to larger
values of U . We also demonstrate the different effects of V on correlations in metallic and insulating
regimes, and document the different correlation aspects of charge order and Mott states.

I. INTRODUCTION

Understanding the effects of strong electron correla-
tion and the associated localization of charged particles
remains a challenge in condensed matter physics. As
various exotic quantum states including high tempera-
ture superconductivity emerge in the vicinity of localized
states, metal-insulator transitions [1–3] are the subject
of intense investigation. [4–7]

The Hubbard model, where Coulomb interactions be-
tween electrons are assumed to be local, has been com-
monly used to study Mott localization and the related
correlation-induced effects. [8–10] However, the approx-
imation of purely local interactions may be severe in
low-dimensional systems [11–22] where electron interac-
tions are not fully screened. In these systems, non-local
Coulomb interactions may lead to new physics that can-
not be described by the Hubbard model. In particular,
inter-site interactions are found to cause a strong modi-
fication of the effective onsite interactions resulting in a
reduced Mott gap or even metallic behavior of otherwise
insulating systems. [12, 23] Moreover, they may lead to
electron localization by charge ordering (CO).

The extended Hubbard model, where the nearest-
neighbor Coulomb repulsion V is included in addition to
the local Hubbard interaction U is a minimal model to
study such effects. In it, the inclusion of V energetically
favors the breaking of translational symmetry with (π, π)
checkerboard charge ordering on a square lattice. [24–26]

Computational tools have played a crucial role in de-
scribing strong correlation physics in lattice systems.
Various non-perturbative many-body methods have been
developed. [27] Several of these are based on embedding
schemes where the original lattice problem is mapped
onto an auxiliary quantum impurity problem embedded
in a self-consistently determined effective medium. The
dynamical mean field theory (DMFT), [28–30] which uti-
lizes such a mapping, has been successfully used to under-
stand electron localization in the Hubbard model. Sev-
eral extensions of DMFT have been developed to capture

non-local spatial correlations effects. [31–41]

Similarly, quantum embedding tools have been de-
veloped for the extended Hubbard model. This in-
cludes the extended DMFT (EDMFT), [42–46] and non-
local perturbative techniques such as EDMFT+GW [23,
43, 47, 48], the two-particle irreducible functional
renormalization-group method [49], and the dual boson
(DB) approach. [50–54] In addition, cluster DMFT meth-
ods have been applied to explore two-dimensional (2D)
extended Hubbard models on the square [55, 56] and hon-
eycomb lattices [57] in the context of CO as well as su-
perconductivity. [19, 58, 59]

In this paper, we extend our previous analyses for the
two-dimensional (2D) extended Hubbard model [56, 60,
61] to larger values of U , and explore the interplay of
CO and Mott physics. Due to the fermion sign problem,
which for finite V exists even at half-filling and becomes
especially pronounced for larger U and V , our DCA anal-
yses are currently limited to small Nc = 2 × 2 clusters.
While such clusters provide only an approximate solution
of the model, they allow us to treat local and non-local
correlations on equal and non-perturbative footing and
provide results in the interesting parameter regime near
the Mott transition.

We construct the V −U phase diagram with three dif-
ferent phases: the metal, the U -driven Mott insulator
and the V -induced CO phase, and perform a detailed
analysis of model properties upon change of U and V .
In the extended Hubbard model the electron localiza-
tion emerges either via Mott localization or CO. These
two ways of localization differ in behavior. For the Mott
metal-insulator transition, an increase of U leads to in-
creasing correlation effects accompanied by a decrease
in the double occupancy, an increase in the self-energy,
and a decrease in the quasi-particle peak. For the CO
phase transition, the double occupancy increases with
V . The V -induced decrease in correlations is seen in the
correlated metal and insulating regimes, where the self-
energy decreases with increasing V . Also, by exploring
the properties of the CO insulating phase, we show that,
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unlike the Mott insulator, the CO insulator is weakly-
correlated, with a band-like insulating gap opening in the
spectrum. [55] We also study the noticeable “screening”
effects where the local on-site interaction U is effectively
being reduced by non-local charge fluctuations, resulting
in a shift of the Mott transition to larger values of U . [12]

The paper is organized as follows: in Sec. II we in-
troduce our model and briefly describe the numerical
method we use in this work. In Sec. III, we present our
results. Sec. IV contains a summary and conclusions.

II. MODEL AND METHOD

We consider the half-filled extended Hubbard model
on a 2D square lattice defined by the Hamiltonian

H = −t
∑
〈ij〉,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓

+
V

2

∑
〈ij〉,σσ′

niσnjσ′ − µ
∑
iσ

niσ, (1)

where ciσ(c†iσ) denotes creation (annihilation) operators
of an electron with spin σ =↑, ↓ at the lattice site i, niσ =

c†iσciσ is the number operator at site i; t is the nearest-
neighbor hopping amplitude; U is the on-site interaction
between electrons with opposite spins; V is the inter-
site interaction between two electrons on the neighboring
sites, and µ denotes the chemical potential. The system is
half-filled at µ = U

2 +zV , (z is the coordination number).
Throughout the paper we set t = 1 as the energy unit.

In the limiting case of V = 0, the Hamiltonian of Eq.1
describes the conventional Hubbard model with only lo-
cal on-site electron-electron interaction. [8] We limit our
analysis to the unfrustrated Hubbard model with only
nearest-neighbor hopping in the paramagnetic phase at
half-filling with repulsive interactions U > 0.

For non-zero V , Eq. 1 serves as the minimal model for
describing CO induced by short-range Coulomb interac-
tions. The emergence of CO in this model may be under-
stood in terms of a simple energy argument: for large lo-
cal interactions (U � zV ), it is energetically favorable for
the systems to have a uniform arrangement of electrons
with one electron per site so that the on-site Coulomb
repulsion is minimized; in the opposite limit (zV � U),
the system prefers to CO in a checkerboard arrangement
of doubly occupied and empty sites, such that the off-site
repulsion between electrons on nearest-neighbor sites is
minimized. In mean-field approximation, [62] a zero tem-
perature phase transition from a Mott insulator to a CO
insulator occurs at Vc = U/z. Several beyond mean-
field approaches have been applied to the extended Hub-
bard model, including the Monte Carlo on a finite size
cluster, [24] perturbation theory, [25] variational clus-
ter approximation, [63] the two-particle self-consistent
approach, [64], the two-particle irreducible functional

renormalization-group method [49], and, more recently,
effective medium quantum embedding methods. [23, 42–
48, 50–59, 65]

In our study, we solve the Hubbard (V = 0) and the
extended Hubbard (V 6= 0) model using the Dynami-
cal Cluster Approximation (DCA) method, which is a
momentum-space cluster extension of the DMFT. [31] In
the DCA, the lattice problem is mapped onto a periodic
cluster of size Nc embedded in a self-consistently deter-
mined dynamical effective medium.

In standard DCA for isotropic systems, [31] the first
Brillouin zone is divided into Nc patches, each of which
is denoted by a cluster momentum K. The lattice self-
energy Σσ(k, iωn) within a patch is assumed to be con-
stant and is approximated by the cluster self-energy
Σσ(K, iωn) with Σσ(k, iωn) ≈ Σσ(K, iωn). The DCA
self-consistency condition requires that at convergence,
the cluster Green’s function Gσ(K, iωn) and the coarse-
grained (averaged over Nc patches) lattice Green’s func-
tion Ḡσ(K, iωn) are equal. The lattice Green’s function
is constructed by using the cluster self-energy Σσ(K, iωn)
and is obtained by coarse-graining as Ḡσ(K, iωn) =
Nc
N

∑
k̃[iωn + µ − ε(k̃ + K) − Σσ(K, iωn)]−1. Here the

summation is done over the Nc/N momenta k̃ within the
patch about the cluster momentum K, with lattice mo-
mentum k = k̃ + K, and ε(k) = −2t(cos(kx) + cos(ky))
is the lattice dispersion of the model Eq. (1) on the 2D
square lattice.

The effective cluster problem is then set up us-
ing the cluster-excluded Green’s function obtained via
the Dyson’s equation G−1

σ (K, iωn) = Ḡ−1
σ (K, iωn) +

Σσ(K, iωn). Solving the cluster problem for a given U ,
one then gets the cluster Green’s function Gσ(K, iωn)
and cluster self-energy Σσ(K, iωn). The calculation is re-
peated iteratively until convergence is reached. For fur-
ther details on the DCA and the numerical procedure,
the reader is referred to Ref. 31.

The major numerical work in solving the DCA self-
consistency loop consists of solving the quantum clus-
ter problem. Here we used the continuous time aux-
iliary field (CT-AUX) [66] method generalized to the
systems with non-local density-density inter-site inter-
actions V .[56] As described in Refs. 57 and 59, in the
DCA, non-local interactions are periodized and treated
only within the cluster with the coarse-graining proce-
dure renormalizing the nearest neighbor interactions V
as V̄ = V sin(π/Nc)/(π/Nc) .

Our implementation of the DCA at finite V also al-
lows us to simulate the symmetry-broken CO phase, as
long as the symmetry breaking is commensurate with
the cluster. [31, 67] This enables an explicit study of not
just the onset of the CO transition but also allows us
to conduct simulations directly in the CO phase. For
this, we consider a bipartite lattice structure with sub-
lattices A and B. To enable the CO broken-symmetry
analysis, we break the translation symmetry by adding
a staggered chemical potential µi to our Hamiltonian of
Eq. 1, i.e., Hµ0

= H +
∑
iσ µiniσ, where µi = µ0e

iQri
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and Q = (π, π). In practice, we are interested in µo → 0
solution. We therefore start the simulations with a small
µ0 ≈ 0.1 on the first iteration of the DCA self-consistency
loop and then set µ0 to zero on subsequent iterations.
The system is then allowed to evolve freely, and will ei-
ther converge to a state with a uniform distribution of
electron density over lattice sites or fall into the CO state
with a non-uniform charge distribution. [56]

Adding a staggered chemical potential µ0 breaks the
translational symmetry of the lattice, leading to the dou-
bling of the unit cell in real space. This implies that the
size of the first Brillouin zone is halved, such that in the
symmetry-broken CO phase the momentum space points
k and k + Q become degenerate. Following Ref. 67, the
broken translation symmetry introduces off-diagonal ele-
ments in DCA Green’s functions Gσ(K,K ′; iωn) and self-
energies Σσ(K,K ′; iωn). Consequently, the scalar DCA
self-consistency equations become 2 × 2 matrices. For
example, the cluster Green’s function takes on the form

Gσ(K ′) =

(
Gσ(K ′,K ′) Gσ(K ′,K ′ +Q)

Gσ(K ′ +Q,K ′) Gσ(K ′ +Q,K ′ +Q)

)
,

(2)
where K ′ is the momentum in the reduced Brillouin zone,
and we omitted iωn indices. The symmetry relations for
the diagonal and the off-diagonal elements of the Green’s
function are given as Gσ(K ′,K ′; iωn) = −(Gσ(K ′ =
Q;K ′+Q; iωn)) and Gσ(K ′,K ′+Q) = Gσ(K ′+Q,K) =
G−σ(K ′,K ′+Q) = G−σ(K +Q,K ′), respectively. They
hold for both the Green’s functions and for the self-
energy. In the absence of CO, the off-diagonal elements
vanish Gσ(K ′,K ′ + Q) = Gσ(K ′ + Q,K ′) = 0 [60, 67],
and the Green’s function matrix becomes diagonal in mo-
mentum space.

The linear transformation [67]

GA/Bσ (K ′) =
Gσ(K ′,K ′) +Gσ(K ′ +Q,K ′ +Q)

2
(3)

±Gσ(K,K +Q)

allows to study the Green’s function or self-energy on
each sublattice. Here ± is used for A and B sub-lattices,
respectively.

III. RESULTS

A. V = 0 phase diagram: Nc = 4 DCA Hubbard
model results

The purpose of this section is to set the stage for the
discussion of the finite V extended Hubbard model in
Sec.III B. For this, we first consider the V = 0 paramag-
netic half-filled Hubbard model on a square lattice. We
focus on the temperature T versus interaction strength
U phase diagram.

Fig. 1 shows the T − U phase diagram for the half-
filled 2D square lattice Hubbard model in the absence
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Figure 1. T −U phase diagram of the paramagnetic 2D Hub-
bard model at half-filling. Single site DMFT (diamonds); 2×2
DCA (circles), 2 × 2 CDMFT (triangles). CDMFT data are
taken from Ref. 68. Closed symbols below Tc mark the metal-
lic spinodal Uc2 , and open symbols mark the insulating spin-
odal Uc1 . Above Tc the crossover between the bad metal and
the bad insulator is marked by open squares.

of the long-range order. At low temperatures, as the
interaction strength U increases, the system undergoes
the first-order Mott-Hubbard transition between a metal
and Mott insulator. [29] The first-order coexistence re-
gion is delineated by two spinodal lines, Uc1 and Uc2 .
The metallic solution exists for U < Uc2 , and the insu-
lating solution is stable for U > Uc1 . As temperature in-
creases, the coexistence region narrows, the metallic and
insulating spinodals cross at a critical point (Uc, Tc) and
the transition becomes continuous. The region above Tc
displays a crossover between metal and insulator. Above
Tc, various types of crossover lines have been identified
depending on the criteria used. [29, 69–74]

For comparison purposes and to demonstrate the effect
of non-local correlations beyond the DMFT, we present
the results obtained by DMFT (Nc = 1) in addition to
our Nc = 4 DCA data. We also show the results of
Ref. 68 obtained by the real space CDMFT approach for
a 2× 2 cluster. [68, 74] The Nc = 4 DCA data show that
when the non-local correlations are taken into account
the Mott transition remains first order, but with sig-
nificantly modified phase transition boundaries as com-
pared to the DMFT results. These findings are in agree-
ment with other beyond-DMFT methods, including the
CDMFT of Refs. 68 and 74 and second order dual fermion
results. [75] This indicates that the non-local short-range
anti-ferromagnetic fluctuations that are captured in the
DCA significantly reduce the critical value of Uc and Tc
at which a transition occurs. [76] In addition, all beyond-
DMFT methods show a positive slope of the coexistence
region in the phase diagram of Fig. 1, which is different
from the DMFT results. This change of slope has been
explained by an entropy argument, with the low temper-
ature insulating solution having a smaller entropy than
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Figure 2. (a) Filled symbols: evolution of the imaginary part
of the DCA self-energy ImΣ(π,0)(iωn) for several interaction
strengths U obtained starting from the metallic solution at
T = 0.025. Open symbols: data for U = 4 obtained starting
from the insulating solution. (b) ∆ImΣ(π,0) as a function of
U for indicated T . Hysteresis loops are obtained by sweeping
the interaction strength U from low to high (closed symbols)
and from high to low (open symbols). Jumps in ∆ImΣ(π,0)

at T < Tc define the spinodal points.

the metal. [74]

We find that the critical value of Uc ≈ 4.15 in Nc =
4 DCA [77]is substantially reduced compared to the
DMFT value of Uc ≈ 9.35 [33, 74, 75] and agrees with the
trend seen in the CDMFT results, [68, 74] as well as with
other non-local methods [76], such as the VCA [78, 79]
and dual fermions. [75] We also find that the critical end
point temperature Tc ≈ 0.05 in Nc = 4 DCA is substan-
tially reduced when the non-local correlations are taken
into account. Our results for Tc are similar to the recent
CDMFT results [68] where Tc ≈ 0.06 ± 0.005 was re-
ported. While DCA and CDMFT agree at large Nc, [31]
for smaller cluster sizes the results are expected to be
different due to different embedding schemes.

All beyond DMFT methods [76] show that non-local
correlations modify the shape of the transition lines, re-
duce substantially the critical values of Uc for the MIT,
and shrink the size of the coexistence region. While there
is some difference in the values of (Uc, Tc) for various clus-
ter extensions of DMFT, all of the non-local methods are
consistent that non-local anti-ferromagnetic correlations
are strong in 2D Hubbard models and can have a dra-
matic effect on the Mott transition. [76]

We now discuss the details of the construction of Fig. 1.
The phase transition boundaries of Fig. 1 are constructed
from the analysis of the self-energy behavior presented in
Fig. 2. To distinguish between metal and insulator, we
consider the self-energy Σ(K, iω) at K = (π, 0) as in
Ref. 74. We confirm that for Nc = 4 this procedure gives
the same results as using the local self-energy. The Mott
insulating state is identified by a divergence of the imag-
inary part of the self-energy ImΣ(π,0)(iωn) at the lowest
Matsubara frequency. This indicates that a pole is de-

veloped at zero frequency and the gap opens in the spec-
trum. We use the following metric to distinguish between
metal and insulator: if ImΣ(π,0)(iw0) > ImΣ(π,0)(iw1)
the state is metallic, and insulating otherwise. Fig. 2
demonstrates such changes in the behavior from metal
(e.g., at U = 3.75) to insulator (e.g., at U = 4.06) at
T = 0.025 as U increases. The self-energy here is ob-
tained starting from the metallic solution, and as U in-
creases, the self-energy gets larger indicating increase of
the correlations in the system, and diverges at larger U
values. Since T = 0.025 is below the critical temperature
Tc, a coexistence region exists between the metallic and
insulating spinodals. To demonstrate the coexistence of
metallic and insulating solutions, we show the results for
U = 4.0 obtained starting from the metallic (solid lines)
and insulating solutions (dashed lines), respectively.

To identify the spinodal Uc1 and Uc2 phase boundaries,
based on definitions of metal and insulator, we intro-
duce a shorthand notation ∆ImΣ(π,0) = ImΣ(π,0)(iω1)−
ImΣ(π,0)(iω0), which is negative for a metal and positive
for an insulator. Fig. 2-b) shows ∆ImΣ(π,0) as func-
tion of interactions’ strength U at several temperatures
T = 0.01, 0.025, 0.035, 0.05, 0.06 obtained for the increas-
ing (closed symbols) and decreasing (open symbols) val-
ues of U . For T < Tc, ∆ImΣ(π,0) shows hysteresis loops,
which are indications of a first-order transition. The dis-
continuous jumps signal the disappearance of the metallic
state at Uc2 and insulating state at Uc1 , respectively. The
locations of the spinodal lines Uc1(T ) and Uc2(T ) are then
determined by performing sweeps of U at different tem-
peratures. The hysteresis loops are widest at the lowest
temperatures (e.g., T = 0.01), decrease in size as temper-
ature is increased (T = 0.035), and vanish at and above
the second order critical end point Tc (as seen from the
data for T = 0.05, 0.06). Above the second order critical
point Tc, the U−dependence of the one-particle quanti-
ties becomes smooth. This region defines the crossover
region. [29, 69–73]
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Figure 3. (a) The quasi-particle weight Z(π,0) and (b) the dou-
ble occupancy 〈n↑n↓〉 as a function of interaction strength U
at temperatures indicated. Closed symbols mark the results
obtained by starting from a metallic solution, while open sym-
bols mark the results started from an insulating solution.
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We show in Fig. 3 the results for the quasi-particle

weight Z(π,0) = limiωn→0

(
1− ∂ImΣK=(π,0)(iωn)

∂ωn

)−1

and

the double occupancy 〈n↑n↓〉 at several temperatures T
versus the interaction strength U . The U -dependent
behavior of these quantities also serves as an indica-
tor of the correlation-induced nature of the Mott tran-
sition. We observe that the quasi-particle weight Z(π,0)

gets suppressed as U increases, indicating that the quasi-
particles acquire a large renormalized mass as the in-
teraction strength U increases. The double-occupancy
〈n↑n↓〉 also decreases with U as the Mott insulator ener-
getically favors singly occupied over the double-occupied
states. As the temperature increases, the double occu-
pancy increases, and it takes larger values of U for the
Mott transition to occur. Both Z(π,0) and 〈n↑n↓〉 demon-
strate hysteresis behavior at T < Tc, and can also be used
to extract the phase boundary of the phase diagram from
Fig. 1. [68]

B. V 6= 0 phase diagram: Nc = 4 DCA extended
Hubbard model results

To understand the effects brought about by inter-site
nearest-neighbor interactions V , we now present results
for the extended Hubbard model. First, we show in
Fig. 4 the phase diagram in the presence of both local
on-site interaction U and nearest-neighbor interactions
V obtained by Nc = 4 DCA. Due to the sign problem,
especially pronounced at larger U and V , we limit our
analysis to a temperature T = 0.1 and Nc = 4, and
U values below and not far from the Mott transition.
Fig. 4 shows that the phase diagram of the 2D extended
Hubbard model at half-filling features three phases: the
isotropic metal, the Mott insulator, and a charge ordered
state. Similarly to the case of V = 0, as the strength U
increases, the crossover from metal to Mott insulator oc-
curs. However, with increasing V , the metal-insulator
crossover boundary (shown by red open symbols, dashed
line) occurs at larger values of U due to the “screen-
ing” effects induced by a competition between U and
V . [11, 12, 51] In addition to the isotropic metallic and
Mott insulating phases, the extended Hubbard model
exhibits a new V -induced CO phase. The correspond-
ing phase boundary (shown by filled circles) separates
the parameter space where symmetry is broken and the
checkerboard arrangement of electrons with nonequiva-
lent electron density on two sub-lattices A and B is ener-
getically favorable. The values of V at which the system
favors charge ordering increases with increasing local in-
teractions U . The DCA-determined phase boundary for
the CO phase transition (obtained from the staggered
density δn = |nA − nB |) is found to be higher than the
mean-field prediction V = U/z [62](shown by the dashed
line).

Our results for the V −U phase diagram and the trends
in behavior of the phase boundaries are in agreement

with the results obtained by other methods for the 2D
extended Hubbard model, including ED, [80] EDMFT-
based, [23, 43, 48] and DB [51] methods. In particu-
lar, the previous studies also find that the Mott metal-
insulator crossover line at finite V has a positive slope,
indicating that the crossover occurs at larger values of
U . [12] In addition, Refs. 23, 43, 48, 51, and 80 also
find that the CO boundary is above the mean field so-
lution. The major difference with our findings is V = 0
metal-insulator Mott crossover boundary position. We
find smaller values of U compared to the methods where
EDMFT is a starting point. This discrepancy is due
to the DMFT starting point that substantially overes-
timates the critical value of U for the Mott transition.
The inset of Fig. 4 shows a comparison between 2 × 2
DCA and EDMFT [80]. We note that the 2 × 2 DCA
cluster has only two distinct nearest neighbors (the one
to the left is identical to the one to the right), and we
therefore plot data for zV with z = 2 for 2 × 2 DCA
and z = 4 for EDMFT. Finite size effects of this system
are analyzed in. [56] In addition to the agreement with
EDMFT (after rescaling of V ), we find that the DCA
Mott transition line remains substantially below the one
from EDMFT, and that the slope of the Mott line be-
comes much less steep, indicating a much larger regime
where V suppresses the Mott transition.
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Figure 4. The V − U phase diagram of the 2D extended
Hubbard model on a square lattice obtained with Nc = 4
DCA at T = 0.1. Three different phases are found under
the changes of electron-electron interactions: the isotropic
metal, the Mott insulator, and charge order. The metal to
Mott insulator crossover line is shown by red open symbols,
and the V−induced charge order phase transition boundary
is denoted by filled (red) circles. The mean-field charge order
phase boundary with V = U/z is shown by black dashed line.
Inset: circles show zV rescaled 2 × 2 DCA data at T = 0.1;
triangles show zV rescaled EDMFT data of Ref. 80. Filled
triangles are the data obtained starting from the metallic so-
lution, and open symbols are obtained starting from the in-
sulating solution. [80] Blue dash line is a fit to the crossover
boundary (see Sec. III B)
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a) Metal to Mott insulator crossover boundary: V -induced
effects

In this subsection, we examine more closely the effect
of V on the U−driven metal to Mott insulator crossover
boundary (shown by red open symbols in Fig. 4). In low-
dimensional systems, large screening contributions from
non-local interactions have been postulated. [12, 23, 48]
In fact, non-local Coulomb interactions can dramatically
reduce the effective on-site interactions, [11] and there-
fore stabilize the metallic behavior against the transition
to a Mott insulator. To demonstrate this, we now exam-
ine in detail how the finite non-local interactions V af-
fect the position of the metal to Mott insulator crossover
boundary of Fig. 4. The position of this crossover line
is determined by the same procedure we used for V = 0
Hubbard model. The crossover points Uc are determined
from the change in sign of ∆ImΣ(π,0) as U increases,
with ∆ImΣ(π,0) < 0 for a metal, and ∆ImΣ(π,0) > 0
for an insulator. First, to demonstrate the effect of V
on the self-energy, we plot in Fig. 5-a) ImΣ(π,0)(iωn) as
a function of Matsubara frequency for several values of
U = 3.5, 4.25, 4.5, 4.85 at V = 0 (filled symbols) and
V = 1.5 (open symbols). As seen from Fig. 5-a), as U
increases, the self-energy increases and changes behav-
ior from metal-like (U = 3.5) to insulator-like (U=4.5,
4.85). The metal to Mott insulator crossover occurs at
U ≈ 4.25. However, the corresponding self-energy at fi-
nite V = 1.5 (shown by open symbols, dashed lines) is
smaller compared to V = 0. Consequently, at finite V
the crossover from the metal to insulator boundary of
the 2D extended Hubbard model is pushed to larger U .
This is also seen in Fig. 5-b), where we plot ∆ImΣ(π,0)

as function of U for several values of V . We see that
the critical value of Uc for which the crossover occurs
(∆ImΣ(π,0) = 0) increases with increasing values of the
non-local interaction V .

The V−induced screening effects can also be detected
in other quantities. In Fig. 5-c) we plot the U -evolution
of the double occupancy 〈n↑n↓〉 for increasing values of
V . The inter-site interactions V favor the increase of the
double occupancy at a given site. As a result, it then
requires larger values of U to suppress the double occu-
pancy to localize electrons in the Mott insulating phase.
Finally, the non-local interaction driven metallicity near
the Mott transition is also observed in Fig. 5-d). Here,
for comparison we plot the density of state (DOS) versus
frequency ω for V = 0 and V = 2.0 at U = 5.0. We
used the Pade approximation to perform the analytical
continuation. Fig. 5-d) shows that the V = 0 insulating
gap at the Fermi energy gets filled up at finite V , and
the system becomes more metallic.

In the following, we demonstrate how non-local
Coulomb interactions V affect the correlations and
screening in the extended Hubbard model. Ref. 11, us-
ing a variational principle, mapped the generalized ex-
tended Hubbard model with non-local Coulomb inter-
actions onto an effective Hubbard model with on-site
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Figure 5. a) The U = 3.5, 4.25, 4.5, 4.85 and V = 0.0, 1.5
dependencies of ImΣ(π,0)(ωn) as a function of Matsubara fre-
quency. V = 0: filled symbols and solid lines. V = 1.5: open
symbols and dashed lines. b) The finite V metal to Mott in-
sulator crossover boundary of Fig. 4 is determined from the
change in sign of ∆ImΣK=(π,0) as function of local interac-
tions U at different values of V . c) The double occupancy
〈n↑n↓〉 as a function of U at increasing values of V . d) The
DOS(ω) for V = 0 (solid line) and V = 2.0 (dashed line) at
U = 5.0. Other parameters: T = 0.1, Nc = 4.

interactions being reduced according to U? = U − V̄ ,
where V̄ is a weighted average of non-local interac-
tions. [11, 81] Using this approximation, this work found
that non-local Coulomb interactions, in general, can sig-
nificantly weaken the local interaction effects in various
low-dimensional sp-electron materials in a wide range
of doping. [11] In particular, it has been shown that in
graphene, benzene and silicene, the non-local interactions
V -induced screening effects decrease the effective local
interactions by more than factor of two, which in turn
leads to stabilization of the metallic-like phase against
the gapped (spin-liquid or anti-ferromagnetic Mott) in-
sulating phases in these materials.

In Fig. 6, we explore this U? behavior and demon-
strate the V -induced screening in the 2D half-filled ex-
tended Hubbard model. For this we focus on the non-
local interaction V effects on the Mott insulating phase
at U = 4.5. First, we plot the imaginary part of the
self-energy ImΣ(iωn)(π,0) as a function of Matsubara fre-
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quency for different values of the non-local interaction V
(open symbols). We find that V gradually reduces the
self-energy, corresponding to a decrease in correlation ef-
fects. As V increases, the system gradually becomes less
insulating due to V -induced screening effects. To demon-
strate further that the non-local interaction effectively re-
duces the local interaction U , we plot in Fig. 6 the corre-
sponding Nc = 4 DCA data for U?. Here U? is estimated
by fitting the finite V results for the self-energy with cor-
responding self-energy data obtained from U? Hubbard
model with V = 0. Comparing the finite V data with
the U? data for the self-energy in Fig. 6, we see that the
self-energy of the extended Hubbard model with finite V
(we limit our analysis to V below the CO phase) is well-
described by the results of a Hubbard model with only lo-
cal interaction U? < U . We find that the effective U? de-
creases with increasing V . In particular, the data shows
that the non-local interaction V significantly weakens the
effective local interaction, according to U? = U − αV ,
where α is a renormalized pre-factor for V . It was shown
in Ref. [11] that the renormalization of the inter-site in-
teractions V can be modeled by the pre-factor related to
the density-density correlation function. We analyze the
V−dependence of the renormalized pre-factor α, extract-
ing it directly from our U? estimates as α = (U−U?)/V .
As shown in the inset of Fig. 6, we find that α and the
double occupancy 〈n↑n↓〉 at a given site both increase
with V in a similar way (our best-fits indicate quadratic
behavior with V , with 〈n↑n↓〉 = 0.11+0.0111V 2, and α =
0.06445V 2, respectively). [82] To highlight a similar V−
dependence of these quantities, we also show the rescaled
double occupancy data (red dashed line) obtained as
(〈n↑n↓〉U,V − 〈n↑n↓〉V,U=0) × A/B, with the parameters
A,B being determined from the above quadratic-fits of
the original data. To test these ideas further, we also
look at renormalization of Ucrossover for the Mott metal-
insulator crossover boundary as function of V . In Fig. 4,
we plot Ucrossover(V ) = Ucrossover(V = 0) + αV (see
Fig. 4 blue dash line), where we use the above fit for α,
and Ucrossover(V = 0) = 4.25. We find excellent agree-
ment between the fit and the crossover line obtained from
the direct DCA analysis using the self-energy behavior.

b) Charge order phase boundary and effect of V on
self-energy

Now we focus on the CO phase boundary (Fig. 4) as
a function of V at fixed values of U and T = 0.1. The
V−induced CO transition is characterized by a checker-
board arrangement of electrons on the cluster sites and,
hence, can be detected by a staggered density, δn =
nA − nB , calculated in the DCA as follows:

δn =
2

Nc

∣∣∣∣∣∣
∑
i∈A,σ

niσ −
∑
i∈B,σ

niσ

∣∣∣∣∣∣ (4)
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Figure 6. Imaginary part of the self-energy ImΣ(π,0) as func-
tion of Matsubara frequency ωn at K = (π, 0) for different
values of V (open symbols) for U = 4.5 and T = 0.1. The
data for a model with only a local screened interaction U? and
V = 0 are shown by dashed lines. The inset shows the V de-
pendence of the double occupancy 〈n↑n↓〉 (blue triangles) and
the pre-factor α (black circles) extracted from the correspond-
ing U? = U−αV values. We also show the rescaled data (red
dashed line) obtained as (〈n↑n↓〉U,V − 〈n↑n↓〉V,U=0) × A/B,
with the parameters A,B being determined from fits of the
original data. 〈n↑n↓〉 = 0.11 + 0.0111V 2 and α = 0.06445V 2

The staggered electron density δn describes the difference
between the occupancies on the two sub-lattices A and
B and serves as a natural order parameter for the CO
phase transition, i.e., δn = 0 in the uniform phase, and
δn 6= 0 for the charge ordered phase.

In Fig. 7 a), we show the order parameter δn as a
function of V at fixed values of U = 0.0, 1.0, 2.0, 3.0, 4.0
at fixed temperature T = 0.1 obtained with Nc = 4 site
cluster DCA. At fixed U , increasing the non-local interac-
tion V eventually results in CO as signalled by a non-zero
staggered density δn 6= 0. For larger values of U , the crit-
ical values of V at which the transition to the CO phase
occurs, increase as well. This results in the positive slope
of the CO boundaries of Fig. 4.

Similarly, the CO can be detected from the double oc-
cupancy shown in Fig. 7 b). Notice, that in contrast to
the U−driven Mott transition (see Fig. 3-b), where the
double occupancy is suppressed with U), the CO transi-
tion is characterized by an overall increase of the double
occupancy as V increases at fixed U . In the inset of
Fig. 7 b), we also show the V− dependence of 〈n↑n↓〉 for
sub-lattices A and B. At fixed U for V below the CO
transition, the double occupancies 〈n↑n↓〉 on sub-lattices
A and B are identical. Once the CO is established, the
double occupancy on the two sub-lattices become differ-
ent.

In order to further study the effects of the charge fluc-
tuations on the single-particle dynamics, in Fig. 8 we con-
sider the effect of the inter-site interaction V on the self-
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Figure 7. a) The order parameter of the CO phase δn =
|nA − nB | as a function of V at several values of U . b) The
double occupancy 〈n↑n↓〉 as function of V for increasing val-
ues of U (the same as on a) panel). The insets show the
corresponding V -dependence of the double occupancy on the
A (filled symbols) and B sub-lattices (open symbols). Other
parameters: T = 0.1, Nc = 4.

energy for different values of U corresponding to a good
metal, correlated metal, and the Mott insulator regimes.
Here we plot the V evolution of the imaginary part of the
self-energy Σ(π,0) as a function of Matsubara frequency
for U = 0.0, 1.0, 2.0, 3.0, 4.0. The values of V are chosen
below the CO transition boundary. We begin with Fig. 8
a) and b) for U = 0.0 and 2.0, respectively. In this case
we find that as V grows, |ImΣ(iwn)(π,0)| increases and
remains metallic. For this parameter regime, the effect
of V becomes very similar to the increase of the effective
local interactions by V . A similar increase in the self-
energy with V for small values of U has been observed in
Ref. 57, where for small values of U the Fermi liquid be-
havior persisted with increasing values of V . In Fig. 8c)
and d), we show the results for larger values of U = 4.0
and 5.0, corresponding to the correlated metal and the
Mott insulator, respectively. As V increases, the mag-
nitude of the self-energy decreases, indicating that the
system becomes less insulating as a result of the screen-
ing effect of V . A similar screening effect and decrease in
correlations in the presence of V has been also observed
in other studies of extended Hubbard models. [23, 42, 57]

c) U-induced CO insulator to Metal to Mott-insulator
transitions

So far we have mainly focused on the correlation in-
duced electron localization driven either by the non-local
interaction V in the CO phase, or by the local interaction
U in the Mott insulating case. In this subsection, we will
compare these two insulating phases, and we will show
that correlations can also act to induce metallic behavior.

In Fig. 9 we illustrate the correlation induced metal-
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lic behavior for the U -driven CO to metal, and metal to
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Mott insulator transitions at fixed V = 1.5. In the left
panel of Fig. 9 we show the evolution of the DOS as the
strength of U changes at fixed V = 1.5. The DOS is
obtained via analytical continuation of ImGloc(wn) us-
ing the Pade approximation. The data demonstrates
how DOS(ω) evolves from the CO insulator to metal and
the Mott insulator behavior with increasing values of U .
At U = 1.0, 2.0 the system is in a CO insulator state
with a gap in the DOS (top panel, left column), with the
DOSA(ω) = DOSB(−ω). As U increases, the CO gap
in the DOS gets narrower, and it closes in the metallic
phase (middle panel of the left column) for U = 3.0 and
U = 4.0. Further increasing U to 5.0 and 6.0 eventually
leads to the Mott insulating behavior with an interaction-
driven gap opening in the DOS. Such correlation-driven
metallic behavior has been reported to appear in other
systems featuring an electron localized insulating phase
to start with. This includes systems on bipartite lattices
with a staggered potential leading to a band-insulator
[83–85] and systems with disorder [86, 87].

The corresponding Pade input data on the Matsubara
axis for the imaginary part of the local Green’s function
ImGloc(wn) = 1

Nc
ΣKImG(K,wn) are shown in the right

column of Fig. 9 (b-panel). For both the CO and Mott
insulators, ImGloc(wn) is small and turns towards zero
for ωn → 0 consistent with the gap opening in the DOS.
For the metallic case, ImGloc(wn) remains finite for ωn →
0, indicating a finite quasiparticle weight at the Fermi
energy.

To further compare the CO insulator and the Mott in-
sulator, in Fig. 10 we show the Matsubara axis data for
the imaginary part of the local self-energy ImΣloc(wn),
which is a measure of the strength of correlations. The
corresponding data for the local Green’s function are
shown in Fig. 9-b). For the CO phase (Fig. 10-a),
ImΣloc(wn → 0) → 0 indicates that the band gap open-
ing is due to the large ReΣloc (shown in inset of Fig. 10-
a), and the CO behaves as a weakly correlated band-
insulator. In contrast, for the Mott insulator at large

U = 5.0, 6.0 (Fig. 10-b) panel), while ReΣloc(wn) = 0
(not shown), the imaginary part, ImΣloc(wn), is large
(indicating an increased scattering rate and stronger cor-
relations) and turns towards −∞. These results clearly
show the difference in the nature of the insulating CO and
Mott states, characterizing the former as a band insula-
tor and the latter as a correlation-driven Mott insulator.

IV. CONCLUSIONS

In conclusion, using DCA on a 2 × 2 cluster, we have
performed a comprehensive study of the effects of non-
local correlations and interactions on the metal-insulator
transitions in a 2D half-filled extended Hubbard model.
We emphasize that while 2 × 2 clusters provides only
an approximate solution of the model, they allow us to
treat the local and non-local correlations on equal foot-
ing in the interesting large interaction parameter regime
near the Mott transition. We have done an analysis of
the phase diagrams and the related properties for both
the V = 0 paramagnetic Hubbard model and the finite
V extended Hubbard model. At V = 0, we have con-
structed the T − U phase diagram, where we compare
the DMFT, 2 × 2 DCA, and 2 × 2 CDMFT results. We
have demonstrated that in the 2D Hubbard model, the
non-local correlations beyond DMFT are important; they
suppress the coexistence region and significantly reduce
the critical U at which the transition happens, and the
critical temperature Tc below which the first-order tran-
sition occurs.

For the finite V case, we used the DCA formalism
for an extended unit cell, and constructed the V − U
phase diagram for a 2D extended Hubbard model at
T = 0.1. Exploring the V effects on the Mott metal-
insulator crossover, we have shown that a finite nearest-
neighbor interaction V pushes the Mott metal-insulator
crossover boundary to larger U values. We have also
demonstrated that in addition to the U -driven Mott lo-
calization of electrons, non-local interactions V can also
localize electrons via CO. We have presented a careful
study of the U and V dependence of the order param-
eter, the double occupancy, self-energy and density of
states. We have also shown that non-local interactions
V can have different effects on the self-energy behavior,
depending on the values of the local interaction U . At
larger values of U , the non-local interaction V introduces
strong screening effects with the system becoming more
metallic and the self-energy mimicking the behavior of
the standard U -only Hubbard model with a reduced ef-
fective local on-site interaction.

To further highlight the emergence of competing states
as a function of correlations U and V in the extended
Hubbard model, we have demonstrated that in addition
to localization, the electron interaction U can lead to
a metallic phase between the Mott and CO insulating
states. Such a behavior has been argued to appear in
other bipartite lattices with band-insulating phases as
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well as in systems with disorder. [83–87]

Finally, comparing the U and V -induced localization
of electrons, we have shown that unlike the Mott tran-
sition, the CO transition is associated with an increase
of the double occupancy and a suppression of the self-
energy. The gap in the charge ordered phase is not asso-
ciated with strong correlation effects, but rather with a
large real part of the self-energy consistent with a band-
insulator.
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