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We generalize the formalism of the dynamical vertex approximation (DΓA) – a diagrammatic
extension of the dynamical mean-field theory (DMFT)– to treat magnetically ordered phases. To
this aim, we start by concisely illustrating the many-electron formalism for performing ladder resum-
mations of Feynman diagrams in systems with broken SU(2)-symmetry, associated to ferromagnetic
(FM) or antiferromagnetic (AF) order. We then analyze the algorithmic simplifications introduced by
taking the local approximation of the two-particle irreducible vertex functions in the Bethe-Salpeter
equations, which defines the ladder implementation of DΓA for magnetic systems. The relation of
this assumption with the DMFT limit of large coordination-number/ high-dimensions is explicitly
discussed. As a last step, we derive the expression for the ladder DΓA self-energy in the FM- and
AF-ordered phases of the Hubbard model. The physics emerging in the AF-ordered case is explicitly
illustrated by means of approximated calculations based on a static mean-field input for the DΓA
equations. The results obtained capture fundamental aspects of both metallic and insulating ground
states of two-dimensional antiferromagnets, providing a reliable compass for future, more extensive
applications of our approach. Possible routes to further develop diagrammatic-based treatments of
magnetic phases in correlated electron systems are briefly outlined in the conclusions.

I. INTRODUCTION

The algorithmic treatment of correlations effects in
many fermion systems still poses one of the hardest
challenges to condensed matter theory. This is es-
pecially true in the parameter regimes most interest-
ing from the physical point of view, where unconven-
tional magnetic or superconducting phenomena are often
observed1–6: Intermediate-to-strong coupling, proximity
to classical/quantum phase transitions7,8 and to Mott-
Hubbard insulating phases9–13, reduced dimensionality
(i.e., confinement of electrons in layers or of ultra-cold
atoms in optical lattices). In such cases, conventional
weak-coupling approaches, such as band-theory, DFT14,
GW15,16, and FLEX17,18 typically yield rather poor re-
sults, calling for a full quantum many-body approach to
the problem of interest.

Among the cutting-edge schemes capable to treat elec-
tronic correlations over different space- and time-scales,
we recall the determinant and the diagrammatic19 Monte
Carlo, and the extensions20,21 of the dynamical mean-field
theory (DMFT)22. Within the latter class of approaches,
the most recent ones are the diagrammatic extensions21 of
DMFT, which have shown a rapid development over the
last decade. Aside from specific details, all the diagram-
matic extensions of DMFT share the same philosophy
and the same goal: a systematic inclusion of non-local
correlations on top of the purely local ones captured non-
perturbatively by the DMFT. They are built as a two-step
procedure21: (i) calculation of a two-particle purely local,
but dynamical, vertex function23 from the auxiliary An-
derson impurity model (AIM) associated to the DMFT;
(ii) usage of this vertex as the effective dynamical interac-

tion of a new Feynman diagrammatic expansion around
the DMFT solution.

This way, all the non perturbative, but purely local,
information computed in DMFT, including the description
of Mott-Hubbard metal-insulator transitions, will be -per
construction- included from the very beginning in the
subsequent diagrammatic treatment. The latter, typically
consisting in ladder24–26 or parquet27–29 resummations
build upon the DMFT vertex, will introduce the missing
information about spatial correlations.

Due to their diagrammatic nature, these approaches do
not face intrinsic cluster size restrictions. They are, thus,
particularly suited to describe systems in the proximity of
(quantum) phase-transition and bosonic collective modes
in the non-perturbative regime. Recent applications and
results range from the treatment of criticality30–33 and
quantum criticality34,35, the description of the quasi long-
range antiferromagnetic order in 2D36,37 to the interplay
between AF-fluctuations and superconductivity38–40, see
also Ref. 21.

Almost all applications mentioned above were restricted
to single-orbital models with repulsive interaction in
their paramegnetic phase. While first generalizations of
these schemes have been presented to treat multi-orbital
physics (such as ab-initio DΓA41,42 or Dual Fermion for
graphene32) and attractive interactions33, to the best of
our knowledge, none of these approaches has been hitherto
extended to cases with spontaneous symmetry breaking.
In fact, focused studies43–45 of collective excitations in the
broken symmetry phases of strongly correlated systems
have been very few even at the “simpler” DMFT level,
including the recent, pioneering DMFT analyses of the
excitonic ordered phases43,44.
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In this paper, we start filling this gap by extending
the formalism of one of these approaches, the dynamical
vertex approximation (DΓA) in its widespread flavor (i.e.,
based on ladder diagram resummations in the dominant
channels) to treat some of the most important symmetry-
broken phases: ferromagnetic (FM) and antiferromagnetic
(AF) orders.

To this aim two main ingredients are necessary: (i)
the identification of the dynamical vertex to be extracted
from the DMFT calculations22,46–48 for the FM/AF or-
dered phases; (ii) the explicit expressions of the ladder
diagram equations for the broken SU(2)-symmetry cases
considered, namely the expressions for the physical sus-
ceptibilities and the self-energy.

To achieve the first goal, we will take the DMFT limit
of large coordination number/high dimensions22,49 for the
irreducible vertex functions of the symmetric as well as
of the SU(2)-symmetry broken phase(s). The second task
requires, instead, a generalization of the ladder expres-
sions hitherto adopted21,25,33,50,51 for the symmetric case
to the FM or the AF long-range order. Although this
strategy is conceptually straightforward, the increased
number of degrees of freedom to be considered –due to the
lack of SU(2)-symmetry– reflects in a relatively involved
structure of the terms to be considered, especially for the
AF case. In particular, since many related derivations in
the literature are restricted to specific aspects of the prob-
lems considered, we will provide in the first part of our
work a concise illustration of the Bethe-Salpeter equations
(BSE) in magnetically ordered phases, and then discuss
how the corresponding expressions and the underlying
symmetry relations get simplified by assuming locality of
the 2PI vertex function Γ - a common feature of random
phase approximation (RPA), DMFT and ladder DΓA for
models with on-site electronic interaction.

Eventually, after merging the ingredient (i) and (ii), we
derive the corresponding ladder DΓA expression for the
momentum-dependent self-energy in the broken symmetry
phase considered.

The behavior of the different collective modes, as well
as of their effect on the electronic scattering, will then
be analyzed in selected realizations of AF-ordered phases
exploiting a (static) mean-field-like simplification of the
input for the corresponding DΓA expressions. In this
context, we will illustrate the different mechanisms driving
the spectral properties of insulating and metallic ground
states of two-dimensional antiferromagnets in terms of the
interplay between the (RPA-like) Higgs and Goldostone
modes and the particle-hole continuum of the fermionic
excitations. While the obtained results (for which we
refer the interested reader to the corresponding Sec. V)
are of specific relevance on their own, they also outline
a robust framework for the interpretation of future DΓA
calculations, allowing to draw some general conclusions
about the physics potentially accessible by diagrammatic
extensions of DMFT for magnetically ordered systems.

Eventually, it should be emphasized that the deriva-
tions presented in our paper will be useful also beyond

the specific framework of the DΓA approach. In fact, a
similar formalism is directly applicable to the analysis of
the collective modes in the magnetic phases of DMFT.
Further, very similar ladder structures will be encoun-
tered by generalizing to the broken SU(2)-symmetry case
other diagrammatic extensions of DMFT based on ladder
approximations, such as Dual Fermion52, Dual Boson53,
1PI54, TRILEX55, TRILEX2 56, and FLEX+DMFT57,
and, to some extent, DMF2RG58,59, i.e. the merger of
functional renormalization group60 and DMFT, as well as
the recently introduced Single Boson Exchange (SBE)61.

The two main advances obtained in this work, i.e.,
the formal derivation of the ladder DΓA equations for
magnetically ordered phases, as well as the insight gained
on the physics of correlated antiferromagnets by hands of a
simplified application of the approach are clearly reflected
in the structure of our paper: The formal derivations are
presented in the following three sections (II-IV), while
the reader mainly interested to the physical discussion
can be directly referred to Sec. V.

Specifically, the paper is organized as follows: In Sec.II
we introduce the general formalism necessary for our
diagrammatic treatment of the FM and AF phases in
correlated systems. In Sec. III, we discuss the locality
properties of the irreducible vertex functions to be consid-
ered in DMFT and (ladder) DΓA, and their relation with
the high-dimensionality/connectivity limit. In Sec. IV, we
derive explicitly the BSE of DMFT for the broken SU(2)-
symmetry phases, as well as the corresponding self-energy
expression in ladder DΓA. Finally in Sec. V, by hand of
an approximated calculation, we illustrate the physical
content of our extended DΓA expressions, namely the
main physical mechanisms at work (Goldstone, Higgs and
density modes) as well as their expected effect on the
spectral properties in DΓA. Conclusions and outlook are
presented in Sec. VI.

II. FORMALISM

A. General definitions

Let us consider a fermionic system with N internal
degrees of freedom, as for example the spin and/or the
orbitals of electrons in solids or the hyperfine levels of
neutral atoms trapped in optical lattices etc. and let us as-
sociate the spin-orbital index α = 1, .., N to such degrees
of freedom. Observable operators can be constructed us-
ing the SU(N) representations plus the identity matrix

that we indicate as T
(a)
αβ , with a = 1, ..., N2. The operator

related to the a-th representation can be expressed in the

Heisenberg picture as Ô(a)(x) = T
(a)
αβ c

†
α(x)cβ(x), where

we adopted a four-vectorial notation with x ≡ (R, τ) and

cα(x) = eĤτ cRαe
−Ĥτ , and a summation over repeated

indices is intended.
The one-particle Green’s function is Gαβ(x1, x2) ≡
−Tτ

〈
cα(x1)c†β(x2)

〉
, defining the quantum statistical av-
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erage of Ô(a)(x) as
〈
Ô(a)(x)

〉
= T

(a)
αβ G

βα(x, x+).

Correlation functions, e.g. in the particle-hole sector,
can be formally derived introducing the bilinear action
Sext = −

∫ ∫
dxdy hαβ(x, y)cα(x)cβ(y) as an external

source added to the original action of the system (here
the integral symbol is a short-hand notation standing

for
∫
dx ≡

∑
R

∫ β
0

, with β = 1
kbT

being the inverse of

the temperature). The generalized susceptibility in the
particle-hole notation reads:

χαβγδ (x1, x2, x3, x4) ≡ δGβα(x2, x1)

δhγδ(x3, x4)

∣∣∣∣
h=0

, (1)

Carrying out the functional derivative (eventu-
ally evaluated at zero external field) yields the
expression for generalized susceptibility in terms
of the two-particle and one-particle Green’s func-

tions, i.e. χαβγδ (x1, x2, x3, x4) = Gαβγδ (x1, x2, x3, x4) −
Gβα(x2, x1)Gδγ(x4, x3), where Gαβγδ (x1, x2, x3, x4) ≡
Tτ

〈
c†α(x1)cβ(x2)c†γ(x3)cδ(x4)

〉
.

We recall that it is sometimes useful to change the
representation of the generalized susceptibilities. This
can be done by expressing the external source as

Sext = −
∫ ∫

dxdy
∑
a h

(a)(x, y)T
(a)
αβ cα(x)cβ(y). The cor-

responding expression for the generalized susceptibility
reads:

χab(x1, x2, x3, x4) ≡ δG(a)(x1, x2)

δhb(x3, x4)
(2)

where G(a)(x, y) ≡ T (a)
αβ G

βα(y, x). The susceptibilities in
the two different representations are related to each other
by the following relation:

χab(x1, x2, x3, x4) = T
(a)
αβ χ

αβ
γδ (x1, x2, x3, x4)T

(b)
γδ . (3)

As the generalized susceptibility as defined in Eq.(2) de-
pends on the representation indices rather than the spin-
orbital ones, this basis is often more suitable for the
physical interpretation, because the operators Ô(a) are
observables in quantum mechanics62. On the other hand,
the definition in Eq.(1) remains useful for practical pur-
poses, since most numerical calculations are performed
using this “computational” basis.

Working with the physical basis is particularly useful
when the system possesses some symmetries. In fact, let us
consider the case where the Hamiltonian commutes with
an operator Ô, i.e. [Ĥ, Ô] = 0, where Ô =

∑
R ψ
†
ROR ψR.

In this case, by performing a a change of basis in the spinor
representation defined by UR = exp [i OR λ] for some
real parameter λ, and recognizing that the hamiltonian
does not change in the new representation, we obtain the
following relation for the generalized susceptibility:

χab(x1, x2, x3, x4) = F a a
′

R1R2
χa

′b′(x1, x2, x3, x4)F b b
′

R3R4
,

(4)

where a summation over repeated indices is intended and:

F abRR′ = Tr
[
T (b) U†R T

(a) UR′

]
. (5)

Sometimes the hamiltonian possesses particle-hole symme-
try, i.e. Ĥ is left unchanged after the following canonical

transformation ψR → URψ
†
R, with UR being a unitary

matrix. In this case, the relation for the generalized
susceptibility is more complicated and reads:

χab(x1, x2, x3, x4) = F̃ a a
′

R1R2
χa

′b′(x2, x1, x4, x3)F̃ b b
′

R3R4
,

(6)

where:

F̃ abRR′ = Tr

[
T (b)

(
U†R T

(a) UR′

)T]
. (7)

In Appendix A, we present an explicit derivation of the
coefficients defined in Eqs.(5,7).

In this work, we will explicitly consider the single band
Hubbard model on a square (two-dimensional) lattice:

H =
∑
ij,σ

tij c
†
iσcjσ + U

∑
iσ

n̂i↑n̂i↓, (8)

where tij is the electronic hopping amplitude between
the sites i and j and U is the local Coulomb repulsion.
For the explicit calculations shown in Secs. IV and V,
we will consider the unfrustrated case (i.e., only with a
nearest-neighbour hopping t) as well as the inclusion of a
next-to-nearest hopping term t′.

When the system does not break translational symme-
try, as in the paramagnetic (PM) or ferromagnetic (FM)
cases, a complete set of representations is provided by the
SU(2) generators, i.e. T (a) = σa/

√
2, where σ0 = 12×2

is the identity, and σa={1,2,3} = {σ(x), σ(y), σ(z)} are the
Pauli matrices. Hence, one can identify 16 possible com-
ponents for the physical susceptibility χab. However, the
symmetry relations holding for the PM and FM lower
down such a number to 2 (that is more generically valid
for a system with SU(N ≥ 2) symmetry 63) and 4 + 2 = 6
respectively.

In the antiferromagnetic (AF) case, instead, the full
translational symmetry of the original lattice is broken,
and sub-lattice indices must be taken into account. As
we will see in the next sections, the number of possible
independent, non-vanishing components of χ increases
correspondingly to 32 + 16 = 48. However, in the DMFT
limit of infinite dimensions, as well as in the ladder DΓA,
such a number is reduced down to 8 + 4 = 12.

B. Bethe-Salpeter equations

In this section, we illustrate the general expressions of
the Bethe-Salpeter equations (BSE) for the generalized
susceptibilities of the FM- and AF-ordered systems and
briefly discuss the associated symmetry properties.



4

By carrying out the functional derivative in Eq.(1), the
following expression for the generalized susceptibility in
the “computational” basis is obtained:

χ1234 = −G(2, 3)G(4, 1) +∫ 4∏
i=1

di′G(2, 2′)G(1′, 1)Γ1′2′3′4′ χ3′4′3 4, (9)

where we adopt generalized indices i = (xi, αi), and the
irreducible vertex in the corresponding channel is Γ1234 =
δΣ(2,1)
δG(3,4) . By expanding all the space-time functions f

(with translational invariance properties) in terms of their
Fourier components, we get

f(x1, x2, x3, x4) = (10)

1
(βV )3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]fkk
′q,

where β = (kBT )−1 and V is the volume of the sys-
tem. The Fourier expansion of the Green’s function
reads: Gαβ(x1, x2) = 1

V β

∑
k e
−ik(x1−x2)Gαβ(k). Hence,

the Fourier transformed expression for the BSE of χ reads:

χ̃αβγ δ (q) = χ̃ αβ
0, γ δ (q)

− 1

(βV )2

∑
α′β′γ′δ′

χ̃ αβ
0, β′α′(q) · Γα

′β′

γ′δ′ (q) · χ̃ γ
′δ′

γδ (q),

(11)

where the tilde symbol represents matrix in the space
of the four-momenta k and k′, ”·” represents the matrix
product, and we defined the disconnected susceptibility
as:

χ̃ αβ
0, γ δ (q) ≡ −(V β) δkk′ G

βγ(k)Gδα(k + q) . (12)

The BSE in Eq. (11) can be formally rewritten18,21,23,64

in terms of the full vertex function F as:

χ1234 = χ0,1234 −∫ 4∏
i=1

di′G(1′, 1)G(2, 2′)F1′2′2′4′ G(3, 3′)G(4, 4′).

(13)

Hence, substituting the definition in Eq.(13) into Eq.(9),
the explicit expression of F in Fourier space reads:

F̃ αβ
γδ (q) = Γ̃αβ

γδ (q)−
1

(V β)2

∑
α′β′γ′δ′

Γ̃αβ
γ′δ′(q) · χ̃

δ′ γ′

0, β′ α′ (q) · F̃
α′β′

γδ (q).

(14)

In order to lighten the notation, in the subsequent sections
we shall drop the tilde symbol for indicating matrices
in the four-momenta space, also omitting the explicit

dependence on transferred four-momentum q: F̃αβγδ (q) ≡
F αβ
γδ .

1. Ferromagnetic order

In a ferromagnet, the SU(2) symmetry is spontaneously
broken into a reduced U(1) symmetry, where the angu-
lar momentum along the z-axis is conserved. Hence, in
this case, we have 6 independent components of gener-
alized susceptibility that can be expressed either in the
computational or physical basis defined in Eqs.(1,3), re-

spectively. The conservation of Ŝz implies that we can
group the representations into spin longitudinal (i.e., as-
sociated to the diagonal operators {1, σ(z)}) and spin
transverse (i.e., those corresponding to the remaining
operators {σ(x), σ(y)}). Any component χab mixing op-
erators belonging to the two different sectors vanishes,

e.g. χzx = 1
2σ

(z)
αβχ

αβ
γδ σ

(x)
γδ = 0, that can be seen by com-

puting the coefficients defined in Eq.(5). Indeed, if we set
UR = σz, F zbRR′ = 1

2Tr[σbσ
zσzσz] = δzb, while F xbRR′ =

1
2Tr[σbσ

zσxσz] = −δxb, that when substituted in Eq.(4)
yields the following relation χzx = −χzx. As another
consequence of the U(1) symmetry, not all the transverse
spin sector components are independent from each other.
In particular, we have that χxx = χyy and χxy = −χyx.
This can be seen by setting UR = exp[−iσz π4 ] and realiz-

ing that in this case we have F xb = −δyb and F yb = δxb.
These symmetry properties, which are evident in the
physical basis, reduce the number of possible spin indices
combinations in the computational basis. Hence, a more
compact notation can be introduced for the computa-

tional basis: χααββ ≡ χαβ , χαββα ≡ χαβ . In Tables I,II we
report the 6 independent susceptibility components of the
physical basis in terms of their explicit expressions in the
computational representation. Specifically, the symbols
±, ±i listed in the two tables yield the coefficients of the
corresponding expansion, after they are multiplied by an
overall 1

2 prefactor, e.g. χρz = 1
2 (χ↑↑ − χ↑↓ + χ↓↑ − χ↓↓)

.
As expected, the SU(2)/magnetic degeneracy between

two-particle correlation functions (i.e., between the
components of the physical susceptibilities) is broken
in the ferromagnet, i.e. χzz 6= χxx. Further, one must
also notice the emergence of mixed correlators, namely
χρz, χzρ and χxy, that were identically zero in the SU(2)-
symmetric (paramagnetic) case. The first two terms
describe a linear coupling of the density (magnetization
along the z-axis) to an external field along the z-axis
(chemical potential)65. Such a linear dependence obvi-
ously vanishes in the paramagnetic case, where, given the
isotropy of the system, the density can be expanded only
in even powers of the external field. It is worth to notice
the mixed physical correlator χzρ vanishes in the case of
particle-hole symmetry. For a ferromagnetic system that
conserves Ŝz the ph-symmetry transformation is given

by ψR → URψ
†
R, with UR = eiΠRσx. Therefore, in this

case we have F̃ zbRR′ = e−iΠ(R1−R2) 1
2Tr

[
σb(σ

xσzσx)T
]

=

−eiΠ(R−R′)δzb and analogously F̃ ρbRR′ = e−iΠ(R−R′)δρb.
Substituing the coefficients in Eq.(6) we ob-
tain the following relation χzρ(x1, x2, x3, x4) =
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χ↑↑ χ↑↓ χ↓↑ χ↓↓

χρρ + + + +

χzz + − − +

χρz + − + −

χzρ + + − −

TABLE I. Non-vanishing correlators of the FM phase in the
longitudinal channel. Their expression in the physical basis is
explicitly expanded in the computational one. For consistency
with the definitions of the main text, all symbols ± must be
multiplied by a factor 1/2.

χ↑↓ χ↓↑

χxx + +

χxy i −i

TABLE II. Non-vanishing correlators of the FM phase in the
transverse channel. Their expression in the physical basis is
explicitly expanded in the computational one. For consistency
with the definitions of the main text, all symbols ±, ±i must
be multiplied by a factor 1/2.

−e−iΠ(x1−x2+x3−x4)χzρ(x2, x1, x4, x3), that in four
momentum space reads:

χzρ(k, k′, q)
ph
= −χzρ(−Π− k − q,−Π− k′ − q, q). (15)

The last equation implies that the physical susceptibility
χzρ(q) = 1

(V β)2

∑
kk′ χ

zρ(k, k′, q) = 0 when the system is

particle-hole symmetric. We notice, that this does not ap-
ply to the mixed correlators in the transverse channel be-
cause, even if σy is odd under UR, it picks up an additional
minus sign after the transposition, i.e. (σxσyσx)T = σy.

The appearance of a non vanishing mixed-correlator
χxy in presence of a finite magnetization along z is in-
trinsically rooted into the quantum nature of the spin
operators. For instance, one can consider the physical

susceptibility χxy(q, τ) = 2Tτ

〈
Ŝxq(τ)Ŝy−q(0)

〉
for τ → 0,

where ŜaR = 1
2σ

(a)
αβ c
†
RαcRβ , Ŝaq = 1√

V

∑
R e

iq·R ŜaR is the

Fourier transform of the angular momentum component
along the a-axis. In a FM, this does no longer vanish and
displays a discontinuity in its imaginary part at τ = 066,
because of the commutation relations between the angular
momentum components, i.e.:

χxy(q, 0+)− χxy(q, 0−) = 2
〈[
Ŝxq, Ŝ

y
−q

]〉
= imz, (16)

with mz = 1
V

∑
R

〈
2 ŜzR

〉
. Such a discontinuity at τ = 0

is reflected into a power-law decay of the Fourier transform
of χxy(q, τ). Its specific expression can be directly derived

from the corresponding Lehemann representation:

χxy(q, ω) =
2

Z

∑
mn

ω bmn Im
[
〈m| Ŝxq |n〉 〈n| Ŝ

y
−q |m〉

]
ω2 + (Em − En)2

,

(17)

where bmn =
(
e−βEn − e−βEm

)
(see Appendix B for a

more generic discussion). From Eq.(17) one can identify66

the asymptotic behavior of χxy at large frequencies, that
is:

χxy(q, ω →∞) = −m
z

ω
. (18)

As we will show in Sec.V, this mixed correlator directly
appears in the definition of the asymptotics of the elec-
tronic self-energy of the (anti)ferromagnetically ordered
phase. Consistently with its high-frequency asymptotics,
the mixed susceptibility in Eq.(17) is an odd function of
ω67.

Finally, it is worth recalling that when the SU(2)-
symmetry gets restored (e.g.,for T > Tc or by driving
the system through a QCP), only two independent
susceptibility components survive, namely the magnetic
susceptibility χm = χzz = χxx = χyy and the charge
susceptibility χc = χρρ, with all other mixed correlators
vanishing.

We write the BSE for a FM in a compact way, exploiting
block-wise spinorial matrices. In particular, it can be seen
that the BSE for the ferromagnetic case are decoupled for
the longitudinal and transverse channels defined in the
previous section, and are given respectively by:

F‖ = Γ‖ −
1

(V β)2
Γ‖ · χ0 ‖ · F‖, (19)

F⊥ = Γ⊥ −
1

(V β)2
Γ⊥ · χ0⊥ · F⊥, (20)

where:

A‖ =

(
A↑↑ A↑↓
A↓↑ A↓↓

)
, χ‖ =

(
χ0↑↑ 0

0 χ0↓↓

)
, (21)

A⊥ =

(
A↑↓ 0

0 A↓↑

)
, χ0⊥ =

(
χ0↑↓ 0

0 χ0↓↑

)
, (22)

where A represents both vertices Γ and F , χ0σσ′ ≡
−(V β) δkk′ Gσ(k)Gσ′(k + q).

Evidently, the computational basis offers a convenient
representation for the transverse channel (which describes
the Goldstone modes), because the corresponding BSE
does not mix with other channels. Instead, in the longitu-
dinal channel, to which the (gapped) Higgs mode belongs,
it is not possible anymore to decouple the charge from the
spin degrees of freedom using spin diagonalization. This
is due to the emergence of the mixed correlators shown in
Table I that introduces an interaction between the charge
and the spin sectors.
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χAA↑↑ χAB↑↑ χAA↑↓ χAB↑↓ χAB↓↓ χAA↓↓ χAB↓↑ χAA↓↑

χρρ + + + + + + + +

χz̄z̄ + − − + − + + −

χρz̄ + − − + + − − +

χz̄ρ + + + + − − − −

χρ̄ρ̄ + − + − − + − +

χzz + + − − + + − −

χρ̄z + + − − − − + +

χzρ̄ + − + − + − + −

TABLE III. Non-vanishing correlators of the AF phase in
the limit of infinite dimensions in the longitudinal even/odd
channels. Their expression in the physical basis is explicitly
expanded in terms the computational one. For consistency
with the definitions of the main text, all symbols ± must be
multiplied by a factor 1/2.

χAA↑↓ χAB↑↓ χAA↓↑ χAB↓↑

χxx + + + +

χxȳ i −i −i i

χx̄x̄ + − + −

χx̄y i i −i −i

TABLE IV. Non-vanishing correlators of the AF phase in the
limit of infinite dimensions in the transverse even/odd channel.
Their expression in the physical basis is explicitly expanded
in the computational one. For consistency with the definitions
of the main text, all symbols ± and ±i must be multiplied by
a factor 1/2.

2. Antiferromagnetic order

In the case of antiferromagnetism, the system does
not posses anymore the full translational invariance of
the original lattice model. When the original lattice L
has a bipartite structure, we have that L = LA ∪ LB,
with LA ∩ LB = 0, and the Hamiltonian is invariant
under discrete translations belonging to the sub-lattice LA,
which contains the origin. A prototypical case, relevant
for our analysis, is a tight-binding model in a hypercubic
lattice in presence of a staggered magnetic field, that

reads:

H0 = −t
∑

<ij>,σ

c†iAσcjBσ + H.c.

+ hS
∑
a

(−1)a
∑
iσ

σc†iaσciaσ

=
∑

k∈MBZ

∑
σ

∑
ab

c†kaσH
σ
ab(k)ckbσ, (23)

where MBZ is the Brillouin zone of the sublattice A, whose
measure is half of the original lattice Brillouin zone, and

Hσ(k) =

(
σhS ε(k)
ε(k) −σhS

)
, with ε(k) being the lattice dis-

persion relations. The staggered magnetization of the
system is defined as mS = 1

V

∑
kσ

σ
2 〈nkAσ − nkBσ〉, and

the energy gap is given by 2∆, where ∆ = U
2 mS . The loss

of the full translational invariance is taken into account
by the sub-lattice indices {a} = {A,B}, which can be
regarded -to some extent- as orbital indices. Hence, one
finds more independent representations for the AF than
in FM case. Formally, the 4 spin-orbital internal degrees
of freedom α = (a, σ) correspond to 16 operator rep-
resentations: These are defined by the outer product
of 1√

2
{12×2, σ

(x), σ(y), σ(z)} ⊗ 1√
2
{12×2, τ

(x), τ (y), τ (z)},
where σ(i=x,y,z) and τ (i=x,y,z) are Pauli matrices acting
respectively on the spin and orbital Bloch spheres. Ex-
ploiting the conservation of the total spin operator along
the z-axis, whose representation is given by σ(z) ⊗ 1, we
can group the representations into two different chan-
nels that are the spin longitudinal channel, defined by
{12×2, σ

(z)} ⊗ {12×2, τ
(x), τ (y), τ (z)} and the spin trans-

verse one given by {σ(x), σ(y)}⊗{12×2, τ
(x), τ (y), τ (z)} as

in the ferromagnetic case. Furthermore, given that the
following operator σ(x)⊗ τ (x) is conserved, the number of
independent correlators are 32 and 16 in the longitudinal
and transverse channels respectively.

We will see in the next section, that in the DMFT limit
of infinite dimensions it is possible to neglect the correla-
tion function arising from the off-diagonal representations
acting on the orbital Bloch sphere τ (x) and τ (y). This
amounts in a considerable reduction of the non-trivial
correlators, that drop to 8 and 4 in the longitudinal and
transverse spin sectors respectively. In such case, the
representations we need to retain are: T ρ ≡ 1

2 1 ⊗ 1,

T ρ ≡ 1
2 1 ⊗ τ (z), T z ≡ 1

2 σ
(z) ⊗ 1, T z ≡ 1

2 σ
(z) ⊗ τ (z)

in the longitudinal spin channel and T x ≡ 1
2 σ

(x) ⊗ 1,

T x ≡ 1
2 σ

(x) ⊗ τ (z), T y ≡ 1
2 σ

(y) ⊗ 1, T y ≡ 1
2 σ

(y) ⊗ τ (z)

in the transverse spin channel. We can further classify
these representations according to their properties under
the unitary transformation U ≡ σ(x) ⊗ τ (x), whose as-
sociated operator commutes with the Hamiltonian. In
particular, the representations listed here are or even or
odd68 matrices under U . According to this definition, we
have that T ρ, T z, T x, T y are even representations under
U , while T ρ, T z, T x, T y are odd under U . As long as U
is related to a symmetry of the system, i.e. its associated
operator commutes with the Hamiltonian, all the corre-
lators involving an even operator and an odd operator
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vanish69. For example, let us consider the transformation
under such a transformation of χz̄ρ̄, that measures the
interaction between the staggered field and the charge
density wave fluctuations. Using the definition in Eq.(5)
we have that F z̄b = δz̄b, while F ρ̄b = −δρ̄b, that after
we substitute the coefficients in Eq.(4) leads to the iden-
tity χz̄ρ̄ = −χz̄ρ̄. Therefore, to identify the symmetry
properties of a representation in the AF case, one needs
to specify if it belongs to the longitudinal or transverse
spin sector and if it is even or odd under U . The list of
the independent susceptibility components in the DMFT
limit of infinite dimensions is given in Tables (III,IV) .

When the system has particle-hole symmetry, i.e. Ĥ
is left unchanged under the transformation ψ → σ(x) ⊗
τ (z)ψ†, we obtain a very similar relation for the mixed
susceptibilities in the longitudinal channel as the one in
Eq.(15) for the ferromagnetic case, e.g.

χz̄ρ(k, k′, q)
ph
= −χz̄ρ(−k − q,−k′ − q, q) . (24)

This implies that the physical mixed susceptibilities, that
are obtained after averaging the generalized ones over the
fermionic indices, vanish exactly in this case. We notice
that this does not apply to the transverse sector. In fact,
even if T ȳ is odd under the ph-transformation, it picks
up an additional minus sign after transposing it, because
it is an antisymmetric representation.

It is worth briefly mentioning how the paramagnetic
solution is recovered, when T > TN and both spin and

translational symmetries are fully restored. Here, one
must pay additional attention w.r.t. the FM case: Ex-
pressing the resulting susceptibilities in terms of the com-
ponents listed in Table III yields an apparent doubling
of the surviving correlators in the SU(2)-symmetric case:
χρρ, χρ̄ρ̄, χzz,χz̄z̄. This simply reflects the mismatch
between the MBZ adopted in the AF phase and the con-
ventional BZ exploited to express the susceptibilities in
the conventional charge/magnetic sectors. Specifically,
the magnetic/charge susceptibility of the paramagnetic
phase as function of the crystal momentum Q of the full
BZ are recovered as:

χm(Q) =

 χzz(Q), if Q ∈ MBZ

χz̄z̄(Q−Π), otherwise
,

(25)

χc(Q) =

 χρρ(Q), if Q ∈ MBZ

χρ̄ρ̄(Q−Π), otherwise
.

Turning to the explicit expression of the BSE, we note
that, as in the FM case, the spin component along the
z-axis remains conserved. Therefore, we can use the
same block-wise spinorial representation introduced in the
previous subsection. In addition, we have to consider the
sub-lattice indices of the AF. The BSE of the longitudinal
and transverse spin sectors read:

Fabcd |σσ′(kk′q) = Γabcd|σσ′(kk′q)− 1

(V β)2

∑
k1,k2

∑
σ1σ2

∑
a′b′c′d′

Γa bc′d′ |σσ1
(kk1 q)χ

d′ c′

0 b′ a′|σ1σ2
(k1k2 q)Fa

′b′

c d |σ2σ′(k2k
′q), (26)

Fabcd |σσ̄(kk′q) = Γabcd|σσ̄(kk′q)− 1

(V β)2

∑
k1k2

∑
a′b′c′d′

Γa bc′d′ |σσ̄(kk1 q)χ
d′ c′

0, b′ a′ |σσ̄(k1k2 q)Fa
′b′

c d |σσ̄(k2k
′q), (27)

where Latin letters refer to sub-lattice indices, the sum-
mations over momenta are restricted to the MBZ, and

χ ab
0,cd |σσ′(kk′q) ≡ −(βV )δkk′δσσ′ Gbcσ (k)Gdaσ (k + q),

χ ab
0,cd |σσ̄(kk′q) ≡ −(βV )δkk′ G

bc
σ (k)Gdaσ̄ (k + q) . (28)

Eventually, we note that Eqs.(26,27) correspond to two
independent systems of coupled linear equations with
16× 2×N2 and 16×N2 unknowns respectively, where
N is the size of the Matsubara frequency box.

III. VERTEX FUNCTIONS IN d =∞

The core idea of the DΓA21,25 is to generalize the DMFT
approximation at the two-particle level: DΓA, hence,
lifts the DMFT assumption of pure locality of all 1PI
irreducible (skeleton) diagrams, allowing for a non-local

self-energy, but it keeps the very same locality conditions
of DMFT for the two-particle vertex functions.

As stated in the literature22, by taking the d → ∞
(DMFT) limit49 all the fully 2PI vertex diagrams (Λ)
become completely local. The vertex irreducible in a
specific channel r (Γr) displays, instead, a residual mo-
mentum dependence, but only for special k-points [such
as (0, 0, 0, 0, . . .), (π, π, π, π, . . .), etc.] whose relative mea-
sure in the Brillouin zone scales to zero for d→∞. As a
result of this peculiar momentum-dependence, in DMFT
only the purely local part of Γ contributes to the physical
susceptibilities/collective modes, once these are computed
by performing the internal momentum integrals of the
corresponding BSE.

In this section, we will demonstrate how the DMFT
locality of the vertex functions Λ and Γ is generalized
to FM- and AF-ordered phases, taking explicitly into
account, for the latter, the corresponding doubling of the
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unit cell. The very same locality assumption for the two
vertex classes (Λ and Γ) will be made, then, for the DΓA
of the magnetic phases in its full parquet or in its ladder
version, respectively.

We exploit this occasion also to illustrate the d→∞
scaling of two-particle vertex diagrams. In particular, we
will show how the vertex Λ truly collapses to a purely
local quantity for d→∞ and discuss the specific residual
momentum dependence of the remnant classes of diagrams.
Such a detailed diagrammatic discussion, to best of our
knowledge, is not explicitly addressed in the literature22,70.
We recall, nonetheless, the complementary derivations
based on the local Baym-Kadanoff functional of Ref. [71]
and of Ref. [72].

A. Fully irreducible vertex

We start by considering the d→∞ limit of the most
fundamental diagrammatic building-block on the two-
particle level: the fully 2PI vertex Λ, defined by the subset
of all vertex diagrams which cannot be split by cutting
2 fermionic lines18,23. We briefly recall that to study
such limit one needs to: (i) properly rescale the hopping
t → t√

d
; (ii) consider the dimensional contributions of

all summations on the lattice site-indexes required by
the Fourier transform and/or internal index contractions
(of order d, if a summation is performed on the nearest-
neighboring sites); (iii) compare the contribution of purely
local diagrams (of O(1) in d→∞) w.r.t. their first non-
local corrections.

The high-dimensional scaling of Λ is controlled by the
(compact) topology of its diagrams: One easily observes
that each of the (four) incoming/outgoing external lines of
the fully 2PI diagrams are connected to three internal lines
(otherwise the diagram would be two-particle reducible).
Hence, any insertion of a neighboring site (e.g., j 6= i) in
a purely local vertex diagrams for Λ will scale -at least- as

1√
d

w.r.t. its purely local counterpart: Due to the diagram

topology, the leading order corrections for d → ∞ will
originate from a triple nearest-neighboring propagation
(of O( 1

d3/2
)) and one single sum of the next-neighboring

sites (O(d)).
We illustrate the above-mentioned scaling properties

by hands of a couple of representative diagrams for Λ,
taken from the lowest orders of its perturbative expansion:
the envelope diagram (O(U4)) and the envelope diagram
with a “seal” (O(U5)), depicted in Fig. 1.

In the first case (first diagram on the left), we immedi-
ately recognize how the leading-order correction O( 1√

d
)

arises from the insertion of a single nearest-neighboring
site (j 6= i). We note here that no other corrections to
the corresponding local diagram can scale more slowly
for d→∞: (i) neither those arising by the Fourier sum-
mation over sites at larger distances (e.g., considering a
next-to-nearest neighboring site for j would ”cost” an
additional 1√

d
scaling factor overall), (ii) nor those includ-

FIG. 1. Dimensional scaling properties of representative dia-
grams for the 2PI vertex Λ (see text). The font of the different
lines indicates the scaling of the corresponding propagation:
blue solid lines mark a local propagation [O(1)], red dashed a
propagation between nearest neighboring sites [O( 1

d1/2
)], and

orange dotted a propagation between (at least) next-to-nearest
neighboring sites [at most of O( 1

d
)].

ing more neighboring sites (k 6= j) in the diagram. As
for the latter case (shown in Fig. 1 right), one exploits
the property that if j and k are both nearest-neighbor
of i, they cannot be also nearest-neighbors to each other,
resulting in a doubled Manhattan distance and, thus, in
a faster d→∞-scaling of the propagation j ↔ k.

As for the second example (bottom panels of Fig. 1),
it is clear that if a neighboring site is inserted in one
of the external vertices of the diagram, the very same
considerations as above apply. Instead, if a nearest neigh-
boring vertex j is inserted in the center of the diagram,
the corresponding contribution displays an even faster
scaling for d→∞, because one has four non-local prop-
agators O( 1

d2 ) and only one internal summation (O(d)).
The same scaling consideration evidently applies to all
higher-order contributions to Λ, where neighboring sites
are added in the internal part of the diagrams.

Hence, all non-local corrections to any purely local 2PI
vertex diagram becomes negligible in d→∞: The fully
2PI vertex Λ is thus purely local in DMFT, in perfect
analogy with the 1PI self-energy. As this result origi-
nates from the basic “topological” properties of the 2PI
diagram only, it is immediately applicable also to the
SU(2)-symmetry-broken cases (FM or AF in bipartite
lattices) relevant for our work. We note, in passing, that
the topologically “compact” structure of the 2PI diagrams
also ensures that Λ↑↓ decays to the bare interaction U at
high-frequencies in the whole (ν, ν′, ω)-space23,73.
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B. The full scattering amplitude

The analysis of the high-dimensional scaling of the
full scattering amplitude F requires a more detailed in-
spection. In fact, F , which is defined by the sum of all
connected diagrams, contains also all possible two-particle
reducible contributions in the different ph, ph and pp chan-
nels. The “topology” of these terms is opposite to that of
the 2PI vertex described above, as all elements of the sub-
classes of reducible diagrams (Φph, Φph and Φpp) entail
diagrammatic structures, where pairs of external incom-
ing/outgoing lines are coupled to a pair of internal lines.
For this reason, the leading order of non-local reducible
diagrams with i 6= j does not decay faster than its local
counterpart, surviving in d→∞ limit. A clear example
is provided by the second-order polarization diagrams,
whose leading non-local contribution (e.g., with its second
site j taken as a nearest neighbor of the first one (i)),
is of the same order as its purely local counterpart, not
vanishing in d→∞.

These polarization diagrams are responsible for the
residual momentum-dependence of the full scattering am-
plitude (F ) in DMFT. In fact, all momentum-dependent
contributions of the two-particle vertices in DMFT origi-
nate from the internal bubbles present as building blocks
of reducible diagrams, i.e. the frequency/momentum
convolution of two Green’s functions (e.g. B(q) ∝∑
k1
G(k1)G(k1 + q)) . Therefore, differently from above

discussion on Λ, specific information on the properties
of the lattice, for which the limit of d → ∞ is taken, is
necessary to derive an explicit expression of F .

C. Hypercubic lattice - PM case

For an hypercubic lattice, in Ref. 22, it has been shown
that Φph only deviates from its local counterpart, if the
transfer momentum q equals one of the special vectors
mentioned before. Formally one has: Φνν′ω

ph (q,k,k′) →
Φνν

′ω
ph (X(q)) where, following the notation of Ref. 22, we

introduce the variable X(q) = 1
d

∑d
α=1 cos(qα) assuming

non zero values only for special values of the momen-
tum, such as X = 1 for q= (0, 0, 0, 0, . . .), X = −1 for
(π, π, π, π, . . .), etc. Hence, for a generic values of the mo-
mentum, X ≡ 0, and Φph reduces to its purely local part,
computable directly from the auxiliary AIM of DMFT
[Φph(ν, ν′ω;X = 0) = ΦAIMph (ν, ν′ω)].

By generalizing their argument to other channels (in
fact: to their corresponding “bubble terms”) and exploit-
ing the results of Sec. IIIA, one can write the explicit
parquet decomposition of the full scattering amplitude in
DMFT as follows:

FDMFT(k, k′, q) = ΛAIM(ν, ν′, ω)+Φph(ν, ν′, ω;X(q)) +

+Φph(ν, ν′, ω;X(k′−k)) + Φpp(ν, ν′, ω;X(k+k′+q)),

(29)
where the fully local 2PI vertex Λ can be extracted directly
from the inverse parquet equation of the auxiliary AIM of
DMFT, and all reducible components Φ depends only on
the transfer momentum in the corresponding channel22,71,
through the function X. Due to Eq. 29, whose validity
is discussed in the appendix by hands of representative
diagrams, the calculations of the BSE in DMFT gets
considerably simplified. In particular, any irreducible
vertex in a specific channel only depends on the transfer
momenta of the other channels. As an example, for the
(longitudinal) ph channel, one has:

ΓDMFT
ph (k, k′, q) = ΛAIM(ν, ν′, ω) + Φph(ν, ν′, ω;X(k′ − k)) + Φpp(ν, ν′, ω;X(k + k′ + q))

= Γph(ν, ν′, ω;X(k′ − k), X(k + k′ + q)) (30)

Analogous expressions hold for Γph,Γpp.

When inserting any of these DMFT irreducible vertex
functions Γ in a lattice BSE, all terms corresponding to
special momentum realizations will not contribute to the
internal momentum summations (e.g., for the ph channel:
over k and k’), because they are defined over a zero-
measure subset of the d =∞ Brillouin zone. Hence, when
computing any physical susceptibility/collective modes
in d → ∞, the assumption of a full locality of Γ yields
the exact result. Hence, in ladder DΓA, where one keeps
the same locality assumption of the DMFT at the level
of the BSE, one can compute the irreducible vertices in
the channel of interest directly inverting the BSE of the
auxiliary AIM: ΓDΓA

ph ≡ ΓAIM
ph (ν, ν′, ω) = [χph]

−1
νν′ (ω) −

[χ0
ph]−1

νν′(ω), where [χ0
ph]νν′(ω) = −βGAIM(ν)GAIM(ν +

ω)δνν′ . The same arguments also apply to the irreducible
vertex functions and the BSE of the FM case, since the
FM-ordering is not associated to any change of the PM-
BZ.

D. Hypercubic lattice - AF case

In the AF case, where the unit cell doubles, every
Green’s and vertex function acquire an explicit depen-
dence on the two inequivalent sub-lattice A, B. This
modification does not affect, in any respect, the general
arguments given for the fully 2PI vertex Λ in Sec. III A,
as those do not rely on specific details of their underlying
lattices. Hence, also in the AF, the 2PI vertex of DMFT
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remains fully local in spatial coordinates, which means:

Λabcd(k, k
′, q) = Λa(ν, ν′, ω) δab δbc δcd , (31)

where we have used the compact notation Λa ≡ Λaaaa.
The generalization to the AF case is less obvious for the

corresponding reducible contribution (Φ’s). In fact, the

structure of the two particle diagrams is more complex
than in the PM case, since a further dependence on sub-
lattice indices arises. However, the inspection of the
relevant diagrams presented in App. C allows to generalize
the Eqs. (29)-(30) to the AF case:

Fabcd (k, k′, q) = Λa(ν, ν′, ω) δabδbcδcd + Φph ac(ν, ν
′, ω;X(q)) δabδcd

+ Φ
ph ab

(ν, ν′, ω;X(k′ − k)) δadδbc + Φpp ab(ν, ν
′, ω;X(k + k′ + q)) δacδbd, (32)

where we used the following compact notation for the sub-
lattice indices: Φph ab ≡ Φ aa

ph bb , Φph ab ≡ Φ ab
ph ba

, Φpp ab ≡
Φ ab
pp ab . From Eq. (32), which is the generalization of

the parquet equation to the AF case, the corresponding
irreducible vertex in the different channels is derived:

Γ cd
ph ab(k, k

′, q) = Λa(ν, ν′, ω) δabδbcδcd + Φ
ph ab

(ν, ν′, ω;X(k′ − k)) δadδbc + Φpp ab(ν, ν
′, ω;X(k + k′ + q)) δacδbd (33)

Similarly as in the PM case, the residual non-local
structure of the Φ’s survives only along the special
lines. For instance, one finds Φph ab(ν, ν

′, ω,X) =

φ
(1)
a (ν, ν′, ω,X) δab + φ(2)(ν, ν′, ω,X) δaā, and when q is

a generic point, φ
(1)
a (ν, ν′, ω, 0) = ΦAIM

pha (ν, ν′, ω) while

φ(2)(ν, ν′, ω, 0) = 0. Eventually, by inserting these ex-
pressions in the BSE for the physical response func-
tions/collective modes, one gets that, also in the presence
of an AF magnetic order, the only not-vanishing contribu-
tion of Γabcd(k, k′, q) for d→∞ is originated by its purely
local part:

Γ cd
ph ab(k, k

′, q) = ΓAIM
ph a (ν, ν′, ω) δabδbcδcd (34)

Such a locality condition will be, eventually, exploited
for defining the ladder DΓA equations for the AF ordered
phase. As we will see in the following, this allows for con-
siderable simplifications in treating the ladder equations
in the broken-symmetry cases.

IV. THE DΓA EXPRESSIONS

We will now explicitly derive the equations for the
ladder DΓA in the broken symmetry (FM and AF) phases,
exploiting the properties of the DMFT vertex functions
illustrated in the previous section. We stress that all
analytical expressions reported below are valid for any
ladder approximation based on the locality of the 2PI
vertex Γ in a given channel including, among others, also
the basic case of the RPA.

Specifically, we will discuss: (i) how to extract the input
of the ladder DΓA equations from a DMFT solution

in a broken symmetry (FM or AF) phase; (ii) which
expressions must be used to compute the corresponding
momentum dependent-response functions, through the
lattice BSE of DMFT22,66,74, and, eventually; (iii) how
the DΓA, momentum dependent self-energy is obtained
through the corresponding Schwinger-Dyson equation.

A. Irreducible vertex functions

In ladder DΓA, all 2PI vertex functions entering in the
BSE coincide to those of DMFT and, hence, according
to the results of Sec.III , can be approximated to their
purely local counterpart

This allow for several algorithmic simplifications, the
first of which is, evidently, the possibility to extract the
input75 for computing the DΓA ladder directly from the
auxiliary AIM associated to the DMFT solution in the
broken-symmetry phase. In practice, both for the FM
and the AF case, the 2PI vertex in the ph sector can be
extracted by inverting the BSE for the impurity site (“A”)
of the auxiliary AIM in the longitudinal channel: ΓA↑↑ ΓA↑↓

ΓA↓↑ ΓA↓↓

 =

 χA↑↑ χA↑↓

χA↓↑ χA↓↓

−1

AIM

−

 χA,0↑↑ 0

0 χA,0↓↓

−1

AIM
(35)

and in the transverse channel: ΓA↑↓ 0

0 ΓA↓↑

 =

 χA↑↓ 0

0 χA↓↑


−1

AIM

−

 χA,0↑↓ 0

0 χA,0↓↑

−1

AIM

(36)
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where χA,0σσ′ = −βGAA,AIMσ GAA,AIMσ′ defines the corre-
sponding bubble term. The analogous expression for the
B site does not require further calculations, as it can
be directly obtained by flipping the corresponding spin
directions ΓBσ,σ′ = ΓAσ̄,σ̄′ , ΓB

σ,σ̄
= ΓA

σ̄,σ
.

The same applies to the FM case, where one has just
to drop the extra sub-lattice indices.

While hitherto almost all vertex calculations within
DMFT have been performed for SU(2)-symmetric situa-
tions, extending them to magnetically ordered phases, in
order to extract the vertex input for the DΓA will be cer-
tainly possible: First Extended-DMFT76,77 calculations
of the full local vertex F in the AF-ordered phase of the
extended Hubbard model have been presented in Ref. 74.

B. BSE equations

As already disclosed in Eq. (35), the BSE within the
ladder DΓA get simplified in several ways.

Ferromagnet - The DΓA BSE of a FM look formally
similar to the exact ones except for the prescription of
considering Eq. (19,20) as a spinorial block-wise equation
in the space of the Matsubara frequencies rather than
in the four-momentum space, to substitute the factor
1/(V β) → 1/β and χ0σσ′ → −δνν′

β
V

∑
kGσ(k)Gσ′(k +

q).
Differently from the PM case, it is no longer possible to

perform the spin diagonalization18 of the BSE, due to the
intrinsic interdependence of spin and the charge degrees
of freedom in the magnetic phase (cf. Table ??).
Antiferromagnet - The local assumption made at the

level of 2PI vertex (Γabcd = δabδcdδacΓa) implies for a
ladder approximation that Fabcd = δabδcdF

ab, as it can
be seen from Eq. (32). This approximation, translated
in the physical basis, corresponds to neglect a specific
class of correlators, namely those involving τx and τy

acting in the sub-lattice space. The list of the non-trivial
correlators surviving in such a ladder approximation is
given in Tables III,IV.

Within this approximation the BSEs take the following
form:

F abσσ′(kk′q) = Γaσσ′(kk′q)δab −
1

(V β)2

∑
k1,k2

∑
σ1σ2

∑
cd

Γaσσ1
(kk1 q)δac χ

c d
0,σ1σ2

(k1k2 q)F
d b
σ2σ′(k2k

′q), (37)

F abσσ̄(kk′q) = Γaσσ̄(kk′q)δab −
1

(V β)2

∑
k1,k2

∑
cd

Γaσσ̄(kk1 q)δac χ
c d

0,σσ̄(k1k2 q)F
d b
σσ̄ (k2k

′q), (38)

where χ a b
0,σσ′(kk′ q) ≡ χ aa

0, bb |σσ′(kk′q) and χ a b
0,σσ̄

(kk′ q) ≡
χ aa

0, bb |σσ̄(kk′q). We note that the BSE in Eq.(37) can
be now expressed using 4×4 matrices in the spin-orbital
indices α = (a, σ), and Eq.(38) using 2×2 matrices in the
sub-lattice index:

¯̄F kk′q
‖ = ¯̄Γ kk′q

‖ − 1

(V β)2

∑
k1k2

¯̄Γ kk1q
‖ · ¯̄χ k1k2 q0,‖ · ¯̄F k2k

′q
‖ ,

(39)

¯̄F kk′q
σσ̄

= ¯̄Γ kk′q
σσ̄
− 1

(V β)2

∑
k1k2

¯̄Γ kk1q
σσ̄

· ¯̄χ k1k2 q
0,σσ̄

· ¯̄F k2k
′q

σσ̄
,

(40)

where ¯̄F‖,
¯̄Γ‖ and ¯̄χ0,‖ are 4×4 matrices whose explicit

expression is given in Appendix D, and:

¯̄F kk
′q

σσ̄
=

 FAA
σσ̄

FAB
σσ̄

FBA
σσ̄

FBB
σσ̄

 , (41)

¯̄Γkk
′q

σσ̄
=

 ΓAA
σσ̄

0

0 ΓAA
σ̄σ

 , (42)

¯̄χkk
′q

0,σσ̄
=

 χAA
0,σσ̄

χAB
0,σσ̄

χBA
0,σσ̄

χBB
0,σσ̄

 . (43)

While Eq. (40) is already expressed in a convenient basis,
we can simplify the BSE in the longitudinal channel in
Eq. (39) by exploiting the symmetry of the problem. In
particular, we observe that all matrices in Eqs. (D1,D2,D3)
commute with the matrix σx⊗τx and that once we rotate
them using the unitary transformation constructed with
the eigenvectors of σx ⊗ τx, we obtain a block-diagonal
representation of all the three matrices that are split
into six 2×2 matrices. Hence, this rotation represents a
suitable basis to reduce the complexity of the BSEs in
the spin-longitudinal channel. They get split into two
independent channels that we call longitudinal-even and
longitudinal-odd:

¯̄F kk′q
‖,± = ¯̄Γ kk′q

‖,± −
1

(V β)2

∑
k1k2

¯̄Γ kk1q
‖± · ¯̄χ k1k2 q0,‖,± ·

¯̄F k2k
′q

‖,± ,

(44)

where we indicate with ”+” the even sector, while with
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”-” the odd one and:

¯̄F kk
′q

‖,± =

 FAA↑↑ ± FAB↑↓ FAA↑↓ ± FAB↑↑

FAA↓↑ ± FAB↓↓ FAA↓↓ ± FAB↓↑

 , (45)

¯̄χkk
′q

0,‖,± =

 χAA0,↑↑ ±χAB0,↑↑

±χAB0,↓↓ χAA0,↓↓

 , (46)

¯̄Γkk
′q

‖,± =

 ΓA↑↑ ΓA↑↓

ΓA↓↑ ΓA↓↓

 . (47)

By inspection of Table III, we can see that the elements
of the matrix in Eq.(45) are actually given by linear
combinations of terms respectively in the even and odd
longitudinal sectors.

We refer to this procedure to simplify the BSE of the
AF-phase into a block-diagonal representation as “spin-
orbital diagonalization”, in analogy with the spin diag-
onalization of the paramagnetic case18, where the two
independent channels are the charge and the spin one.

C. Equation of motion

The final step for completing the ladder DΓA formal-
ism for the magnetically ordered phases is to derive the
expression of the corresponding self-energy. This is done
in DΓA exploiting the Schwinger-Dyson (SD) equation,
which relates the self-energy with the full scattering am-
plitude.

We report here the SD equation for a generic
model with on-site density-density interactions Ĥint =
1
2

∑
i Uαβ n̂iαn̂iβ , where Greek letters represent generic

spin-orbital indices:

Σαβk ≡ −ραβUαβ + δαβ
∑
γ

Uαγ ργγ +

− 1

(V β)2

∑
k′ q

∑
γβ′γ′δ′

Uαγ G
αβ′

k+q F
β β′

γ′δ′ (kk′q)Gγ
′γ
k′+qG

γδ′

k′ ,

(48)

with ραβ ≡ 1
V

∑
i

〈
c†iβciα

〉
in the first (Hartree) term on

r.h.s. of the expression. For the specific single orbital
Hubbard cases, which we are going to consider explicitly,
the expression gets further simplified, since Uαβ = Uδαβ̄ .

Ferromagnet - In the case of a FM order

Gαβk = δαβG
α
k , therefore the Hartree terms reads

Uρᾱᾱδαβ ≡ Unᾱδαβ and the higher-order term:

δαβ
U

(βV )2

∑
k′q G

α
k+q Fααᾱᾱ (kk′q)Gᾱk′+qG

ᾱ
k′ . The cor-

responding equation of motion for the self energy
reads:

Σσ(k) = Unσ̄ −
U

(βV )2

∑
k′q

Gσk+q Fσσ̄(kk′q)Gσ̄k′+qG
σ̄
k′ .

(49)
In order to obtain a transparent expression for the scatter-
ing amplitude F for the ladder DΓA, we start33,51 from
its parquet decomposition18,78, i.e.:

F = Λ + Φph + Φph + Φpp, (50)

where Λ is the 2PI vertex function and Φch, with ch =
{ph, ph, pp}, represent scattering processes that are two
particle reducible in the ph, ph, pp channels respectively,
defined through the relation

F = Φr + Γr, (51)

where Γr is the 2PI vertex function in the given channel r.
Within DΓA all 2PI-vertices are fully local, therefore Λ ∼
Λloc(ν, ν′, ω) is a function of the Matsubara frequencies
only21,25,27,79. Within ladder-DΓA21,25,50,51, the same
assumption applies also to the 2PI vertices in all channels
Γr ∼ Γlocr (νν′ω). It is useful, thus, to introduce the
auxiliary quantities Fr = Φr + Γlocr which we will refer to,
generically, as “ladders”, in the corresponding channel.
Further, for models with an on-site repulsion, we can
also decide to neglect21,25,50,51 -as a further simplification-
the non-local contributions in the particle-particle sector
Φpp ∼ Φlocpp (νν′ω).

Finally, exploiting the following crossing relation:

Φph, σσ̄(kk′q) = −Φph, σσ̄(k, k + q, k′ − k),

we can explicitly write the ladder DΓA formula for the
1PI vertex function as defined in Eq. (50),

Fσσ̄(kk′q) ∼ −F locσσ̄ (νν′ω) + Fσσ̄(kk′q)− Fσσ̄(k, k + q, k′ − k)

= −F locσσ̄ (νν′ω) +
1

2
[F ρρ − F zz + σ (F zρ − F ρz)] (kk′q) +

1

2
[−2F xx + 2iσF xy] (k, k + q, k′ − k), (52)

where we have expressed the ladders in the physical basis,
by inverting the relations in Tables I,II i.e. Fσσ̄ = 1

2 (F ρρ−
F zz + σF zρ − σF ρz) and Fσσ̄ = F xx − iσF xy. We can

now substitute the approximated 1PI vertex function in
Eq. (52) into Eq. (49) and we obtain the following SD
explicit expression for the self-energy:
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Σσ(k)− Unσ̄ ∼
U

2V β2

∑
qν′

Gσk+q χ
0
σ̄σ̄(qν′) [F ρρ − F zz + σ(F zρ − F ρz)] (νν′q) +

+
U

2V β2

∑
qν′

Gσ̄k+q χ
0
σσ̄(qν′) [−2F xx + 2iσF xy] (νν′q) +

− U

V β2

∑
qν′

Gσk+q χ
0
σ̄σ̄ F locσσ̄ (νν′q), (53)

α (a, σ)
β (b, σ′)
γ (c, σ1)
β′ (b′, σ2)
γ′ (c′, σ3)
δ′ (d′, σ4)

TABLE V. Relation between indices expressed in the compact
and extended notations.

where we defined χ0
σσ′(qν′) ≡ − 1

V

∑
k′ Gσk′G

σ′

k′+q.

Antiferromagnet - In the case of an antiferromagnet
(AF) in a bipartite lattice, the composite spin-orbital
index is given by α = (a, σ), where a and σ represent the
sub-lattice and spin indices respectively:

Following the “dictionary” between the compact spin-
orbital and the expanded notations we reported in Ta-
ble V, we can write the self-energy in the AF case as:

Σabσ (k)− U δab na,σ̄ = − U

(V β)2

∑
k′q

∑
b′c′d′

Gab
′

σ (k + q)Fbb
′

c′d′ |σσ̄(kk′q)Gc
′a
σ̄ (k′ + q)Gad

′

σ̄ (k′).

(54)

Similarly as in the FM case, we can express F us-
ing its corresponding parquet decomposition, i.e. F =
Λ+Φph+Φph+Φpp. We note that for a generic set of gen-

eralized space-time/spin-orbital indices, the crossing rela-
tion Φph(1234) = −Φph(1432) holds, where i = (xi, αi),
that in the case of the AF in Fourier space, reads:

Φ ab
ph,cd
|σσ′(kk′q) = −Φ ad

ph,cb |σσ′(k, k + q, k′ − k). (55)

We can now perform a ladder approximation as done
for the FM case. We recall, that in the AF case the
sub-lattice index dependence of ladders is simplified with
respect to the exact solution. In particular, the locality

of Γ in DMFT and ladder DΓA implies that F abcd |σσ′ =
δabδcdF

aa
cc |σσ′ ≡ F acσσ′δabδcd. Under these assumptions,

the 1PI vertex function F assumes the following form:

Fabcd |σσ′(kk′q) ∼ −δabδbcδcd F loca,σσ′(νν′ω) + δabδcd F
ab
σσ′(kk′q) +

− δadδcbF acσσ′(k, k + q, k′ − k), (56)

where we used the following exact local relation Λaσσ′ +
Φapp,σσ′ − Γaph,σσ′ − Γa

ph,σσ′ = F loca,σσ′

Using the expression of the 1PI vertex function evalu-
ated in the ladder approximation in Eq. (56) and substi-
tuting it into Eq. (54), we obtain the following expression
for the self-energy:

Σabσ (k)− δabUna,σ̄ ∼ −
U

(V β)2

∑
k′q

∑
c

Gabσ (k + q)F bcσσ̄(kk′q)Gacσ̄ (k′)Gcaσ̄ (k′ + q)

+
U

(V β)2

∑
k′q

∑
c

Gabσ̄ (k + q)F bcσσ̄(kk′q)Gacσ (k′)Gcaσ̄ (k′ + q)

+
U

(V β)2

∑
k′q

Gabσ (k + q)F locb,σσ̄(νν′ω)Gabσ̄ (k′)Gbaσ̄ (k′ + q) .

(57)

We note that in the expression of the self-energy calculated within the ladder approximation in Eq. (57), three main
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FIG. 2. Diagrammatic representation of the non-local correc-
tions to Σ stemming from the fluctuations in longitudinal (i)
and in the transverse (ii) channel within the ladder DΓA for
the AF phase.

contributions arise. In the first two, non-local terms
belonging to the spin longitudinal channel (F bcσσ̄) and to
the spin transverse channel (F bc

σσ̄
) appear and there is a

in internal summation over the sub-lattice index.
Conversely, in the third one, only local terms (F locb,σσ̄)

are present and there is no internal summation over the
sub-lattice index. We show the diagrams corresponding
to the longitudinal and transverse contributions in Fig. 2.
Finally, it is worth noting, that it is possible to express
the self-energy using the physical basis representation for
ladders by simply inverting the relations in Tables III,IV.

V. AF-DΓA RESULTS WITH A MEAN-FIELD
INPUT

To illustrate how the ladder-DΓA equations derived in
the previous sections work in practice, we present below a
simplified, albeit fundamental application of our scheme
to AF-ordered phase of the 2D-Hubbard model at T = 0.

Specifically, the approximated calculations of collec-
tive modes and the spectral properties presented in this
section have been performed by evaluating all the DΓA
expressions for the AF phase (AF-DΓA) starting from a
static mean-field input (instead of the DMFT one). Dia-
grammatically, this corresponds to retain the lowest order
contributions in U for both the 1PI local self-energy and
the 2PI local vertex appearing in the BSE and Schwinger-
Dyson equations of the DΓA for the AF-ordered system.

Within this framework, the irreducible vertex function
reduces to the bare interaction, as in RPA. Hence, under
this assumption and using Eqs. (13,40,44) the physical
susceptibilities read:

¯̄χσσ̄(q) = ¯̄χ0σσ̄(q)− ¯̄χ0σσ̄(q) · ¯̄Γσσ̄ · ¯̄χσσ̄(q), (58)

¯̄χ‖,±(q) = ¯̄χ0‖,±(q)− ¯̄χ0‖,±(q) · ¯̄Γ‖ · ¯̄χ‖,±(q), (59)

with ¯̄χ0(q) ≡ 1
(V β)2

∑
k1k2

¯̄χk1k2q0 , ¯̄Γσσ̄ = −U1 and
¯̄Γ‖ = Uτ (x). Within this scheme, we now proceed to
explicitly calculate the DΓA self-energy of the broken-
symmetry phase. Because of the chosen mean-field input
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FIG. 3. Lower panel: Fermi surface of the mean-field solution
of the AF-ordered phase for the electron doped case (ii), with
n = 1.2 and t′/t = 0.45; the path indicated by the gray
arrows is the specific one exploited in the following Figures;
the red dashed lines mark particle-hole excitations connecting
the same/different pockets on the FS (s. text). Upper panel:
Corresponding density of states (DOS).

for the irreducible vertex of the BSEs, the full vertex of
the SDE will depend on the exchanged four momentum
only, i.e. F (k, k′, q) ∼ F (q). Moreover, if we are away
from (quantum) critical points, one could argue that the
most important contributions to the DΓA self-energy
originates from the transverse spin sector, in which the
gapless Goldstone modes arise. Therefore, Eq. (57) can
be simplified into:

Σabσ (k)− δabUna,σ̄ ∼
U2

V β

∑
q

Gabσ̄ (k + q)χabσσ̄(q),

(60)

where χab
σσ

(q) is defined in Eq. (58).
The aim of the calculations presented below is -anyway-

more ambitious than presenting a mere proof-of-principle
of our scheme. On the contrary, our results, obtained
in a precisely controlled framework, will provide a reli-
able “compass” for future computational benchmarks and,
above all, for the physical interpretation of more complex
developments and applications.

In the following, we examine two specific realizations
of the AF order in a two-dimensional Hubbard model
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FIG. 4. Intensity plot of the imaginary/real (absorption) part of the transverse susceptibilities χx̄x̄, χx̄,y,χxx (in arbitrary units)
of the AF phase as a function of momentum (along the path shown in Fig. 3) and frequency computed at T = 0 through the
RPA-expression Eq. (58) for the particle-hole symmetric case (upper panels) and for the electron-doped case (lower panels).
All expressions have been evaluated for a (retarded) frequency z = ω + iδ, with δ = 0.01. The brightest colors refers to the
highest intensity values, while the black colors indicates a vanishing intensity. In the insets we show, as a guide to the eye, the
dispersion relations of the corresponding magnons.

at T = 0, corresponding to rather distinct physical sit-
uations: (i) a half-filling (particle-hole) symmetric case
(with U/t = 12, µ = U

2 , ∆/t = 5.69) and (ii) a electron-
doped case (with U/t = 12, α = t′/t = 0.45, n = 1.2, that
corresponds to µ/t = 3.55 and , ∆/t = 4.32). Consis-
tent with the results by Igoshev et al.80, static mean-field
(Hartree-Fock) calculations yield stable AF-order ground
states for both parameter sets. The mean-field solutions
of the two cases differ qualitatively: The former is insu-
lating, while the latter is metallic, with the Fermi surface
shown in Fig. 3.

Consistent with the derivations of Sec. IV, we will
first analyze the numerical results for the main physical
ingredient of the ladder DΓA, namely the collective modes
in the magnetic sector, and, thereafter, we will discuss
the corresponding effects on the electronic self-energy.

A. Collective modes

Within our simplified DΓA framework, the expression of
the collective modes (and of the associated BSEs) coincide
to the RPA ones in the AF long-range ordered phase81,82.

We start by considering the half-filling case (i). We
show in Fig. 4 (upper panels for (i)) the results for absorp-
tion intensity of three independent transverse (Goldstone)
modes: the odd χx̄x̄, χx̄y and the even χxx, defined in
Tab. IV (see the Appendix for more details). The results
can be easily interpreted by recalling that, while all Gold-
stone modes share the same denominator (and, hence,
the same dispersion), they differ in the numerators. In
particular, by performing a hydrodynamic expansion of
the latter, one gets numerators which scale in frequency
with different behaviors (ω0, ω and ω2 for x̄x̄, x̄y and xx,
respectively). This makes, as one expects, the staggered
x̄x̄ (non-staggered xx) Goldstone mode the most (least)
dominant one at low-energies, with the x̄y displaying an
intermediate behavior, as it can be readily seen in the
intensity plots of Fig. 4.
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FIG. 5. Same as in Fig. 4 but for the spin longitudinal chan-
nel. (Upper panels) χz̄z̄, χρρ are shown for the particle-hole
symmetric case for the particle hole case. (Lower panels) The
susceptibilities χz̄z̄, χz̄ρ are displayed for the electron-doped
case. The corresponding expressions have been evaluated for
a (retarded) frequency z = ω + iδ, with δ = 0.01.

Not surprisingly for the particle-hole symmetric case
under consideration, the intensity plots of the correspond-
ing longitudinal modes (χz̄z̄ and χρρ, in the upper panels
of Fig. 5) are rather featureless, due to a significant en-
ergy gap of 2∆ controlled by the large value of the order
parameter mS .

We turn now to analyze the results obtained for the
electron-doped case (ii).

By comparing the intensity plots of transverse (lower
panels in Fig. 4) and longitudinal modes (lower panels
in Fig. 5) to the corresponding half-filling results (upper
panels), it is easy to visualize how the collective modes
are affected by the low-energy fermionic quasi-particle
excitations emerging in the doped case.

In particular, we note the appearance of a significant
absorption in the low-energy regime for all longitudinal
susceptibilities, readily interpreted in terms of the contin-
uum of particle-hole excitations (lower panels in Fig. 5).
With respect to this low-energy feature, the previously
dominating high-energy branches appear now significantly
damped. The interplay with these particle-hole excita-
tions is also responsible for a visible smearing out of all
Goldstone modes over broad regions of the BZ (s. lower
panels of Fig. 4).

In the lower panels of Fig. 5, we observe that the
absorption intensity increases in the vicinity of the Γ
point: This is due to particle-hole excitations that connect
two points of the same Fermi pocket (e.g., horizontal red
dashed line in Fig. 3). The intensity also increases close

to X1: This is due, instead, to particle-hole excitations
connecting two points lying on different Fermi pockets
(e.g., oblique red dashed line in Fig. 3).

A noticeable exception is represented by the large-
momenta interval around X: Given the geometry of the
underlying FS, for these values of q and ω, it is not pos-
sible to generate particle-hole excitations. Furthermore,
sizable change of slope of the Goldstone mode along the
path X → Γ can be observed by comparing the results of
the insulating (upper panels in Fig. 4) and the metallic
AF (lower panels in Fig. 4) .

The numerical results shown in the lower panels of
Fig. 4 can be rationalized by performing a hydrodynamic
expansion of the susceptibility expressions. Precisely, we
analyze their bubble-terms contributions which, within
this simplified DΓA context, completely control the mo-
mentum/frequency dependence of the corresponding sus-
ceptibilities. While referring to the Appendix for details,
we briefly discuss here the main outcome. The bubble-
terms in the AF phase consist of two contributions:

χ0(q, ω) = χ0,inter(q, ω) + χ0,intra(q, ω)

i.e., the interband and the intraband terms. The former
is always present for an AF-ordered system, while the
latter becomes relevant for metallic solutions, e.g., in case
(ii). In fact, while χ0,inter(q, ω) is responsible for the
main structures of the Goldstone and the Higgs modes,
shown in Figs. 4 and 5, χ0,intra(q, ω) acquires a singular
part in the presence of a FS. Specifically, this happens
when the hydrodynamic expansion of the quasi-particle
dispersion along the Goldstone mode (ω = c|q|) intersects
the FS. Quantitatively, this corresponds to the condition
c < 4αt qF , where qF =

√
(µ+ 4αt−∆)/2αt is the ab-

solute value of the Fermi momentum. The leading order
contributions at low-energy is given by:

χxx0,intra = Aq4
F I

xx

(
ω

4αt qF |q|
, cos 4θ

)
(61)

where A = 1
[4π (∆/t)]2 αt , ∆ = mSU/2, mS being the

staggered magnetization. Iα,β(x1, x2) (see Appendix E)
are complex functions of their arguments (whereas θ is
the angle defining a direction in the BZ).

The non-vanishing imaginary part of these functions is
responsible for the broadening of the Goldstone modes
discussed above, while their explicit dependence on θ re-
flects in a corresponding angular modulation of the modes.
In the AF metallic case, thus, the angular modulation
appears already at the leading order in the hydrodynamic
expansion, consistent with the numerical results shown
in the lower panels of Fig. 4.

Finally, the continuum of particle-hole excitation is also
responsible for a sizable coupling between the modes in
the longitudinal section, as evidenced by the intensity-plot
in the second of the lower panels of Fig. 5, referring to
χz̄ρ. The intensity of such coupling, vanishing exactly for
the particle-hole symmetric case [see Eq.(24)], tends to
increase by increasing interaction. Hence, if not properly
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included in RPA calculations, it might yield significant
corrections in the intermediate-to-strong coupling regime.

B. The self-energy in the AF-phase

The expression of the self-energy in Eq. (60) has been
exploited for the two selected cases considered above.
In the particle-hole/half-filled situation, the mean-field
solution is fully gapped and this considerably quenches
the DΓA self-energy, because no fermionic/quasiparticle
singularity is coupled to the massless Goldstone modes.
Hence, in this case, the DΓA corrections to the mean-field
expressions reduce essentially to a quantitative renormal-
ization of the staggered magnetization, as discussed in
Refs. [81 and 83]. In particular, we found that, in the
limit of a strong Coulomb interaction U � t, the quasi-

particle residue is given by Zqp = 1
2

(
1 + 1√

1+2κ

)
, with

κ = 1
V

∑
q

1−
√

1−γ2
q√

1−γ2
q

∼ 0.39, where γq = 1
2 [cos qx+cos qy]

and the staggered magnetisation is renormalized by a
factor 2Zqp−1. If we expand Zqp linearly in κ, the renor-
malization factor becomes 1− κ ∼ 0.61, consistent with
Ref. [81] as well as the result obtained in spin-wave theory
for the Heisenberg model.

Much more interesting are the DΓA results out-of-half

filling. Here, the presence of an underlying Fermi-surface
in the mean-field solution allows for important DΓA self-
energy corrections, originated by the combined effect of
bosonic (Goldstone) and fermionic (quasiparticles) exci-
tations. Our numerical results are shown in Fig. 6, where
we report explicitly the momentum dependence of the
real and the imaginary part of the self-energy for the sub-
lattice A in the whole BZ (upper panels), and at the same
time, its frequency dependence at four selected k-points
(lower panels).

In order to clarify the overall behavior of the self-energy
in the AF phase, it is convenient to consider separately
the high-frequency and the low-frequency regime.

As we discuss below, the former is controlled by precise
analytical relations, which extends the well known ones for
the SU(2)-symmetric case. By inverting the relations in
Table IV, we can express the equation of motion in terms
of the susceptibilities in the physical basis as following:

χab
σσ

(q) =
1

2

[
χxx(q) + (−1)a+bχx̄x̄(q)

]
− δab(−1)a iσ χxȳ(q). (62)

Then, from Eqs.(60,62), we can extrapolate the asymp-
totic behavior of Σ in the limit of large frequencies. Specif-
ically, for ν →∞, we have:

ν ImΣabσ (k) = const. = −U2δab
1

V β

∑
ω

∑
q∈BZ

[χxx(q) + (−1)a σmS ReGaaσ̄ (q + k0)] , (63)

where we defined k0 = (0, ν0) for compactness of notation.
We observe that, since the integrand function in Eq. (60)
is even under a shift of Π = (π, π) of the exchanged
momentum, the summation in Eq. (63) can be extended
to the entire BZ.

It is interesting to notice that, in the broken-symmetry
phase, the high-frequency asymptotic behavior of Σ de-
pends both on the electronic density and on the order
parameter. This marks a qualitative difference from the
normal phase, where the high-frequency asymptotics of Σ
is controlled by electronic density only. Specifically, the
constant prefactor mS originates from the mixed correla-
tor χxȳ, which, as pointed out in Sec.II B, is related to the
order parameter through the commutation relation be-
tween the spin operators. The non-trivial match between
the analytic/expected expressions for the high-frequency
behavior of the self-energy and our numerical calculations
is explicitly shown for the case of the four selected k-point
in the leftmost bottom panel of Fig. 6. Such numerical
agreement has been verified for all momenta, providing an
useful double-check for the algorithmic implementation
of the AF-DΓA expression.

Let us now focus on the low-energy properties of Σ. In
the presence of an underlying Fermi surface, one expects

that the most important information will be encoded
in the corresponding Fermi energy and momenta. The
data shown in Fig. 6 appear consistent with such ex-
pectation: One can readily identify the region of the
Brillouin-zone, where the DΓA corrections induce the
strongest momentum dependence in the low-frequency
self-energy. In particular, the data reported in the upper
panels of Fig. 6 clearly show how the largest variation
of both real and imaginary parts of ΣAA over the whole
Brillouin zone occurs in the proximity of the underly-
ing Fermi-surface of the mean-field solution (cf. Fig. 3).
Specifically, by crossing the FS, both ImΣAA (left upper
panel of Fig. 6) and ReΣAA (right upper panel of Fig. 6)
get strongly enhanced in absolute value, whereas ReΣAA
also displays an evident change-of-sign. More quanti-
tatively, we observe over the whole FS a simultaneous
divergence of both imaginary and real part of ΣAA in the
zero-frequency limit, though with a different degree of
severity. It should be also noted that the additional, and
rather weak, sign-structures (oblique blue linear-shaped
regions in the intensity plot of ReΣAA) essentially reflect
the halving of the BZ due to the AF-order.

As we detail in the following, the self-energy behavior
shown in Fig. 6 is the direct consequence of the combined
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FIG. 6. (Upper Panels) Color intensity plots of the imaginary part (on the left) and real part (on the right) of the majority spin
self-energy of the sublattice A in the AF-phase as a function of the momenta calculated at the imaginary frequency ν/t = 0.025,
for U/t = 12, n = 1.2 and α = 0.45. (Lower Panels) The the high frequency behavior of the self energy is reported in the
leftmost panel, the thin line marking the asymptotic value defined in Eq. (63). The imaginary part (center) and real part (right)
of the self-energy are shown as a function of the imaginary frequency ν for four k-points lying on the Γ-X direction in the BZ
and marked by different colors/symbols in the upper panels.

action of the massless Goldstone modes and quasiparti-
cle excitations at the Fermi level, which we mentioned
before. The physical mechanism is indeed similar to the
one triggering the enhanced scattering rate observed in
several DΓA studies of the SU(2)-symmetric phases in the
proximity of phase-transitions (in d = 3)21,30,33,51 and/or
for very large value of the magnetic correlation length (in
d = 2)36,84. In the broken-symmetry phase, however, the
analogy is not complete. In fact, due to the finite value of
the order parameter and of the corresponding doubling of
the unit cell, the large self-energy corrections, evidenced
by the color changes in Fig. 6 do not correspond to a
significant loss of coherence in the low-energy fermionic
excitations.

In order to elucidate the physics encoded in the DΓA

self-energy of the AF-phase, we explicitly analyze the zero-
energy poles of the corresponding Green’s function as well
as the the associated quasi-particle renormalization. For
capturing the low-frequency behavior of the self-energy
we can keep just χx̄x̄ in Eq. (62), that accounts for the
leading divergent orders when ω ∼ 0. Furthermore, we
can approximate Gabσ̄ (k + q) ∼ Gabσ̄ (k, ω + ν), as we want
to keep only the q ∼ 0 contributions in the integral in
Eq.(60). Under these assumptions the equation of motion

for ¯̄Σσ(k)− δabUna,σ̄ reads:

∼ U2

(2π)d+1

∫ +∞

−∞
dω

∫
BZ

dqχx̄x̄(q) τ (y) · ¯̄Gσ(k, ω + ν) · τ (y).

We can now express the self-energy in the basis of the
quasi-particles, i.e.
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¯̄Σσ(k)− δabUna,σ̄ = e−iτ
(y)θkστ (y)

(
σ+
k (ν) 0
0 σ−k (ν)

)
τ (y) eiτ

(y)θkσ = e−iτ
(y)θkσ

(
σ−k (ν) 0

0 σ+
k (ν)

)
eiτ

(y)θkσ , (64)

where:

σ±k (ν) =
U2

(2π)d+1

∫ +∞

−∞
dω

∫
BZ

dq
χx̄x̄(q)

iν + iω − ω±k
,

(65)

and after carrying out the integrals we have:

σ±k (ν → 0) ∝ −sign
(
ω±k
)

ln

(
1∣∣ω±k ∣∣
)
− i ν∣∣ω±k ∣∣ . (66)

Hence, for d = 2, logarithmic and power-low diver-
gences appear in the real and imaginary part and the
self-energy, respectively, when k ∈ FS. It is important
to note, however, that the doubling of the unit cell asso-
ciated to the AF phase does prevent the quasi-particle
excitations to be washed out by such divergences.

To explain this, let us first notice that the self-energy
in Eq. (64) is diagonal in the HF quasi-particles basis.
Therefore, in this reference frame, the Dyson equation
reads:

¯̄G−1
k (ν) ∼

(
iν − ω+

k − σ
−
k (ν) 0

0 iν − ω−k − σ
+
k (ν)

)
.

(67)
The conduction band is dressed with the self-energy σ−k (ν)

that depends on the valence electrons energy ω−k . The

presence of a gap prevents σ−k (ν) to diverge and the FL
excitations are stable.

Conversely, the valence electrons are dressed with the
self-energy σ+

k (ν), which diverges when ν → 0 at the FS.
We support our analytical findings by showing in Fig. 7

the numerical values of the Green’s function zero-energy
poles Λ±k , which defines two bands. The first one, Λ+

k is
a smooth function of the crystal momentum and repre-
sents a conduction band, which emerges from a sizable
reshaping of the corresponding one in the HF solution.
In fact, it is only the second (valence) band (Λ−k ) to be
affected by logarithmic singularities, which precisely ap-
pear when HF-conduction band crosses the Fermi level,
as it is clearly shown in Fig. 7.

On the basis of these considerations and of our numeri-
cal results, we can conclude that the conduction band is
stable under non-local quantum fluctuations: In spite of
the large (or even diverging) values of Im Σ, the metallic
coherence of the corresponding low-energy quasi-particle
excitations is preserved.

At the same time, this analysis does not provide specific
information about what happens at higher energy. In fact,
to understand properly how the valence band is dressed by
the conduction electrons we should numerically evaluate
the Green’s function on the real frequency axis. While
this is beyond the aim of the present work, we expect
-in general- that such corrections will affect the way how

the high-energy spin excitations, such as the sharp spin-
polarons46,85 clearly visible at DMFT level46,47,85, reshape
the spectral functions and the charge/optical response of
the system.

In this perspective, future applications of our ladder
DΓA approach exploiting a full DMFT input (possibly
directly computed on the real frequency axis86,87) could
provide a very powerful set-up to investigate the spin-
polaron physics in realistic three- or two-dimensional cases.
In particular, one would aim at estimating the broadening
of the spin-polaron peaks induced by non-local correla-
tions beyond DMFT and at identifying fingerprints of
these excitations in the physics of bulk and layered anti-
ferromagnets.

On a broader perspective, the results of this section
shed light on the general physical behavior to be expected
in metallic systems in the presence of magnetic order
and/or strong magnetic fluctuations. The onset of a long-
range AF order shifts the major effects of the magnetic
correlations on the electronic spectra from low- to higher
frequencies. Even when such effects are -per se- strong, as
it happens in correlated metals due to the cooperative ac-
tion of Goldstone modes and quasi-particles, the coherent
nature of the underlying Fermi-liquid excitations remains
preserved, if the order parameter is large enough. Hence,
the largest quasi-particle scattering rates is expected to
occur in critical or quantum critical regimes of (here:
magnetic) phase-transitions. The possible occurrence of a
minimal metallic coherence at the phase-transition is com-
patible with the results of previous numerical studies51

performed in the proximity of a AF-transition of the Hub-
bard model in d= 3. It is also consistent with several
spectroscopic/transport observations made in the (almost
bidimensional) cuprates when cooling the compounds be-
low their superconducting transition temperature in the
underdoped/optimally doped regime.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have illustrated how to extend the
ladder DΓA approach, hitherto restricted to the SU(2)
symmetric case, to the treatment of electronic correlations
in magnetic systems, with ferromagnetic or antiferromag-
netic long-range order.

In particular, starting by general considerations on the
two-particle vertex functions in the limit of infinite dimen-
sions/coordination of the lattice, we have first generalized
the condition of pure locality for the irreducible vertices
of DMFT to solutions with magnetic order. Secondly, we
have exploited the corresponding Bethe-Salpeter/ladder
equations, which describe the longitudinal/transverse col-
lective modes at the level of DMFT, to derive, through the
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Schwinger-Dyson relations, the ladder DΓA expression
for the electronic self-energy of the magnetically ordered
phases.

To demonstrate the applicability of our extended DΓA
approach, we have exploited it to study a couple of sim-
plified, but representative model cases with AF-order,
where we approximated the DMFT input of the DΓA
equations to its static mean-field counterpart. In this
framework, the collective modes inducing the non-local
DΓA correlation reduces to the corresponding RPA ones.
The reported results represents a solid benchmark for
future, more demanding calculations. At the same time,
the thorough analysis of the self-energy results in the
non-particle hole symmetric-case allows us to outline im-
portant physical effects to be expected in the correlated
magnetic systems, in particular concerning the coherence
of the underlying electronic excitations.

Analogously as in the first ladder DΓA derivation for
the SU(2)-symmetric case25, we have considered here
the most fundamental implementation of the approach.
This consists in a single-shot correction of the DMFT
results originated by the scattering with the correspond-
ing magnetic modes. The question arises whether it is
possible and/or convenient to implement a self-consistent
version of the ladder DΓA equations in the broken SU(2)-
symmetric case. While this issue certainly calls for a
dedicated study, analogous to Refs. [21, 50, 51, and 88],
we observe here that additional constraints must be taken
into account in the magnetically ordered phase. For ex-
ample, one could try extend the so-called λ-correction, in-
troduced within a’ la Moriya schemes50,51, to the FM/AF
case. The underlying idea, which can be regarded33 -to
some extent- as a dynamical version of the Two Particle
Self-Consistent (TPSC) approach89, consists in constrain-
ing some important parameter of the theory (e.g., the

mass of the spin propagator) to fulfill physically relevant
relations, such, e.g., the asymptotic high-frequency be-
havior of the DΓA self-energy. Evidently, this task gets
significantly harder in the broken SU(2)-symmetry phase,
because of the increased number of independent degrees
of freedom (see Tabs. ??- III-IV), and the precise interre-
lations between them which need to be preserved90. At
the same time, the identification of the physical relations
to be enforced is less obvious than in the symmetric case,
as well exemplified by the expression for high-frequency
asymptotics of the self-energy in the AF-phase given in
Eq. (63).

Another possibility would be to implement a true self-
consistent loop, by inserting the momentum-dependent ex-
pression of the DΓA self-energy back in the Bethe-Salpeter
equations, while keeping fixed91 the (local) irreducible
vertices, in a similar spirit of the so-called “internal” self-
consistency of the DF approach21,52 and of the most
recent algorithmic development88 of the ladder DΓA in
the SU(2)-symmetric case. This route would avoid all the
preliminary, physically-motivated ad hoc implementations
of a la Moriya correction schemes, requiring, however, a
higher numerical effort. In any case, it needs to be veri-
fied, whether such self-consistent ladder implementation
can guarantee a coherent description of the instability
driven by an external parameter (T , n, h, ...) from both
sides (ordered and disordered) of the magnetic transition.
From the technical point of view, one should also ensure
that the massless nature of the Goldstone modes remains
preserved at every iteration.

While these considerations might serve as guidance for
future methodological advancements in the description of
correlated magnetic systems, our preliminary study sug-
gests that interesting results can be obtained by means
of the one-shot ladder DΓA scheme presented here, es-
pecially for investigating the non trivial behavior of the
spectral properties of correlated magnets in the proximity
of their classical or quantum phase-transitions.

Finally, the explicit analytical expressions for the
collective modes given in Tabs. ??-III-IV and the self-
energy of the magnetically ordered phases could be quite
inspiring for future extensions of the recently introduced
fluctuation diagnostics post-processing methods92–94 and
fluctuation analysis of the two-particle irreducible vertex
function95 to the broken SU(2)-symmetry phases.
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Appendix A: Change of coordinates for four-point
correlation functions

In this section we formally derive Eqs.(4,5,6,7). Let

us first consider the case where Ĥ is left invariant under
the unitary transformation ψR → UR ψR. Therefore, by
expressing the Fermi fields in the new basis we can rewrite
Eq.(1) as following:

[U†R1
]α′α[UR2

]ββ′ [U†R3
]γ′γ [UR4

]δδ′χ
α′β′

γ′δ′ (x1, x2, x3, x4),

(A1)

where a summation over repeated indices is intended.
Substituing Eq.(A1) into Eq.(2) we obtain:

V aαβ(R1,R2)V bγδ(R3,R4)χαβγδ (x1, x2, x3, x4), (A2)

where V a(R,R′) = U†R T
(a) UR′ . Choosing T (a) as a com-

plete set of hermitian generators satisfying the orthonor-
mality condition Tr

[
T (a)T (b)

]
= δab, we can express the

V a matrix as a linear combination of the generators in
the following way

V a(R,R′) =
∑
b

Fab
RR′︷ ︸︸ ︷

Tr
[
T (b)V a(R,R′)

]
T (b), (A3)

where the coefficents of the expansions are the same as
those defined in Eq.(5). Substituting the last equation
into Eq.A2 we finally obtain Eq.(4).

Let us now consider a particle-hole transformation, i.e.

ψR → URψ
†
R. Expressing the fermi operators in the new

basis, we can rewrite Eq.(1) in the following way:

[U†R1
]α′α[UR2

]ββ′ [U†R3
]γ′γ [UR4

]δδ′χ
β′α′

δ′γ′ (x2, x1, x4, x3) =

[U†R1
]β′α[UR2

]βα′ [U†R3
]δ′γ [UR4

]δγ′χα
′β′

γ′δ′ (x2, x1, x4, x3).

(A4)

Substituting Eq.(A4) in Eq.(2) yields:

Ṽ aαβ(R1,R2)Ṽ bαβ(R3,R4)χαβγδ (x2, x1, x4, x3), (A5)

where

Ṽ aαβ =
∑
α′β′

[U†R]βα′T
(a)
α′β′ [UR′ ]β′α =

[
U†R T

(a) UR′

]T
αβ
.

We can express this matrix using the same expansion as
in Eq.(A3), i.e.

Ṽ a(R,R′) =
∑
b

Tr

F̃ab
RR′︷ ︸︸ ︷[

T (b)Ṽ a(R,R′)
]
T (b), (A6)

whose coefficents are the same as those appearing in
Eq.(7). After we substitute the last equation in Eq.(A4),
we obtain Eq.(6).

Appendix B: Generic properties of mixed and
non-mixed correlators

For completeness, here we show some generic properties
of correlation functions evaluated along the imaginary axis.
Let Â and B̂ be generic two-particle operators, whose
time-evolution in the Heisenberg representation is driven
by a time-independent Hamiltonian, and let us define the
correlation function between them:

CAB(τ) = Tτ

〈
Â(τ)B̂(0)

〉
, (B1)

and its Fourier transform as: CAB(ω) =∫ β
0
dτ CAB(τ) eiωτ , with ω = 2nπ T being a bosonic

Matsubara frequency.

Â B̂

(i) Â† B̂†
C∗AB(τ) = CAB(−τ)

C∗AB(ω) = CAB(ω)

(ii) B̂† Â†
C∗AB(τ) = CAB(τ)

C∗AB(ω) = CAB(−ω)

(iii) Â† Â
CAB(τ) = CAB(−τ) ∈ R

CAB(ω) = CAB(−ω) ∈ R

TABLE VI. Symmetry properties of correlation functions in
imaginary time/frequency domain for the three different cases
discussed in the main text. These relations can be derived
starting from the definition in Eq. (B1) and using the cyclic
property of the trace and the fact that CAB(τ) is a periodic
function of period β.

In Table VI, we list the properties of the correlation
function in three different cases:

(i) Â and B̂ are two different Hermitian operators
(mixed-correlator),

(ii) Â and B̂ are one the hermitian conjugate of the
other (pair-like correlator),

(iii) Â and B̂ are identical and hermitian (auto-
correlator).

In the paramagnetic case, mixed-correlators of different
observables vanish and auto-correlators are bounded to be
even functions of the Matsubara frequency. This implies
that in the limit of ω →∞ they must decay at least as
1/ω2. In the broken symmetry phase, instead, nonzero
mixed correlators, which are not bound any longer to
be even functions of the frequency, might appear. In
that case, they may decay as 1/ω in the limit of large
frequencies. Indeed, this is the case of the mixed correlator
χxy in the FM or χxȳ in AF as discussed in the main text,
which has important consequences on the high frequency
behavior (asymptotics) of the self-energy as we show in
Sec. V B.
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Appendix C: Analysis of the two-particle reducible
diagrams

In this appendix, we illustrate through an inspection of
the relevant diagrammatics, how the simplified structure
of the two-particle reducible contributions in Eqs. (29,32)
of the main text arises.

We consider explicitly the case of the ph channel in the
AF phase, starting from the diagrams for Φph, but the
derivation can be repeated straightforwardly for the other
channels (as well as for the PM/FM cases).

Once again, we follow the strategy of focusing on the
first corrections to purely local diagrams. Since non-
locality is introduced by the reducible bubble terms,
the representative three diagrams to be considered are
those depicted in Fig. 8. Here all squared boxes
correspond to purely local vertex contributions [e.g.,
Va(ν, ν′, ω)δabδbcδcd]. These three examples (P1, P2, P3)
also correspond to the three classes in which reducible dia-
grams can be subdivided, in terms of their dependence of
the basis-lattice index (2,3,4) as well as of high-frequency
asymptotic properties23,73,96.

As for Pab1 (k, k′, q), one finds:

Pab1 =
1

βV

∑
k1

Va(ν, ν1, ω)Vb(ν1, ν
′, ω)Gab(k1)Gba(k1 + q)

=
1

β

∑
ν1

Va(ν, ν1, ω)Vb(ν1, ν
′, ω)Bab (ν1, ω,X(q))

(C1)

where Bab(ν1, ω,X(q)) = 1
V

∑
k1
Gab(k1)Gba(k1 + q),

where Gab is the Green’s funcion calculated in DMFT,
that reads:

¯̄Gσ(k) =
1

ζAσ(ν)ζBσ(ν)− ε2k

(
ζBσ(ν) εk
εk ζAσ(ν)

)
, (C2)

with ζaσ(ν) = iν + µ− Σσa(ν).
For the calculation of Bab we could extend the summa-

tion over the whole BZ because the integrand function is
symmetric under translation of Π97.

Now we can express the bubble as a double integral
with the integrand weighted by the two-particle density
of states of the hyper-cubic lattice, i.e.

Bab(ν, ω,X) =

∫∫
dε1dε2D

X
ε1,ε2Gab(ν, ε1)Gba(ν + ω, ε2),

(C3)
where the explicit expression of DX

ε1,ε2 , which can be found

in Ref. [22], has the following propertyDX=0
ε1,ε2 = g(ε1)g(ε2),

with g(ε) being the DOS. The latter property implies that
Bab(ν, ω, 0) = 0 when a 6= b , because the off-diagonal
terms of the Green’s function are odd in ε as opposed to
the DOS that it is an even function. Instead, when a = b,
Bab(ν, ω, 0) = Baloc(ν, ω) = GAIMa (ν)GAIMa (ν + ω). We
can summarize these properties more concisely as follows:

Bab(ν, ω,X) = δab B1(ν, ω,X) + δab̄ B2(ν, ω,X), (C4)

where B1(ν, ω, 0) = GAIMa (ν)GAIMa (ν + ω) and
B2(ν, ω, 0) = 0.

Similarly, for P ab
2 c (k, k′, q), we must perform the inter-

nal momentum summation over k1 and k2 in the corre-
sponding bubble terms:

1

V 2

∑
k1,k2

Gab(k2 − k1 + k)Gba(k2)Gac(k1 + q)Gcb(k1)

=
1

V

∑
k1

Bab(ν2, ν − ν1, X(k− k1)) Gac(k1 + q)Gcb(k1)

= Ba1(ν2, ν − ν1, X = 0) δab
1

V

∑
k1

Gac(k1 + q)Gca(k1)

= Ba1(ν2, ν − ν1, X = 0) δab Bac(ν1, ω,X(q)) ,

(C5)

where we used the fact that k− k1 is a generic point in
the BZ and that the special lines defined by k− k1 have
zero measure in the internal momentum summation.

Finally, by exploiting the relations obtained in Eqs.(C1)-
(C5), one can apply the same procedure to the three inter-
nal momentum summations of P ab

3 cd (k, k′, q), obtaining

Ba1(ν2, ν − ν1, 0)Bc1(ν3, ν1 − ν′, 0)Bac(ν1, ω,X(q))δabδcd

(C6)

obtaining an analogous simplification of the non-local
dependence, and thus, eventually, of the final expression
of the Φph term anticipated in Eq. (32). Evidently, since
these results only depend on the non-local structure of the
bubble terms after performing the corresponding internal
summations, the very same procedure can be applied
to the other subsets of reducible diagrams Φph and Φpp

appearing in Eq. (32).

Finally, we note that analogous simplifications to that
obtained by performing the internal summations over k1

in Eq. (C5) are also responsible, in d→∞, for the disap-
pearance of the momentum-dependence of any irreducible
vertex in a given channel, once these vertices are inserted
in the corresponding BSEs, consistent to Eq. (34) in the
main text.

Appendix D: Vertices in the AF case

In this section we report explicitly the matrices appear-
ing in Eq.(39), that read:

¯̄F kk
′q

‖ =



FAA↑↑ FAA↑↓ FAB↑↑ FAB↑↓

FAA↓↑ FAA↓↓ FAB↓↑ FAB↓↓

FAB↓↓ FAB↓↑ FAA↓↓ FAA↓↑

FAB↑↓ FAB↑↑ FAA↑↓ FAA↑↑


, (D1)
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FIG. 8. Representative contributions to Φph, the two-particle reducible vertex in the particle-hole channel in momentum space,
see text. The labels a, b, c, d run over the the lattice sites A,B.

¯̄Γkk
′q

‖ =



ΓA↑↑ ΓA↑↓ 0 0

ΓA↓↑ ΓA↓↓ 0 0

0 0 ΓA↓↓ ΓA↓↑

0 0 ΓA↑↓ ΓA↑↑


, (D2)

¯̄χkk
′q

0,‖ =



χAA0,↑↑ 0 χAB0,↑↑ 0

0 χAA0,↓↓ 0 χAB0,↓↓

χAB0,↓↓ 0 χAA0,↓↓ 0

0 χAB0,↑↑ 0 χAA0,↑↑


, ,(D3)

Appendix E: Intraband bubble contributions

In this appendix, we discuss more in detail the con-
tributions to the bubble terms arising from intraband
processes in the AF case.

The bubble terms expressed in the physical basis read:

χxx0 (q) =
1

N

∑
k

{
u+
q

[
fω

(
ω+
k+q, ω

+
k

)
+ fω

(
ω−k+q, ω

−
k

)]
+ u−q

[
fω

(
ω−k+q, ω

+
k

)
+ fω

(
ω−k+q, ω

+
k

)]}
,

(E1)

χxȳ0 (q) =
1

N

∑
k

{
w+

q

[
fω

(
ω−k+q, ω

−
k

)
− fω

(
ω+
k+q, ω

+
k

)]
+ w−q

[
fω

(
ω+
k+q, ω

−
k

)
− fω

(
ω−k+q, ω

+
k

)]}
,

(E2)

where fω(x, y) = nF (x)−nF (y)
y−x+ω , u±q = 1

4

[
1± εkεk+q−∆2

EkEk+q

]
and w±q = i∆

(
±Ek−Ek+q

4EkEk+q

)
, with ∆ = mSU/2.

We shall now focus on the intraband terms and analyze
their low-energy properties. For q ∼ 0, and in the case of
particle doping, the intraband terms read:

χxx0,intra = −
∫

dk

4π2

ε2k
2E2

k

δ(ω+
k )

∇ω+
k · q

ω −∇ω+
k · q + i0+

,

χx̄x̄0,intra =
∆2

8

∫
dk

4π2

(
∇εk · q
E2

k

)2

δ(ω+
k )

∇ω+
k · q

ω −∇ω+
k · q + i0+

,

χxȳ
0,intra = −i∆

∫
dk

4π2

∇Ek · q
4E2

k

δ(ω+
k )

∇ω+
k · q

ω −∇ω+
k · q + i0+

,

(E3)

where χx̄x̄0 (q) = χxx0 (q + Π). As these contributions are
given by line integrals along the FS, we can expand the
bands around the point k = (π, 0), that is the center of
one of the four Fermi pockets in the BZ, and therefore
ω+
k ∼ −4α t+ ∆ + 2α t[(kx − π)2 + k2

y]− µ and ∇ω+
k ∼

4α t (kx − π, ky). Hence, the intraband bubble terms
become:

χxx0,intra = Aq4
F I

xx

(
ω

4αt qF |q|
, cos 4θ

)
,

χx̄x̄0,intra = A |q|2 q2
F I

x̄x̄

(
ω

4αt qF |q|
, cos 4θ

)
,

χxȳ
0,intra = A |q| q3

F I
xȳ

(
ω

4αt qF |q|
, cos 4θ

)
, (E4)

where qF is the absolute value of the Fermi momentum,
A = 1/ [4π (∆/t)

√
α)]2 and:

Ixx(λ, b) = −2

∫ π

0

dφ
(1 + b cos 4φ) cosφ

λ− cosφ+ i0+
,

I x̄x̄(λ, b) = −
∫ π

0

dφ
(1 + b cos 2φ) cosφ

λ− cosφ+ i0+
,

Ixȳ(λ, b) = −i
∫ π

0

dφ
(cosφ+ b cos 3φ) cosφ

λ− cosφ+ i0+
, (E5)

with −1 < b < 1.
In presence of doping the system becomes anisotropic

and this is formally encoded in the angle (θ) depen-
dence of the intra-band terms in Eq.(E4). Further, when



24

−1 < λ < 1, the integrals in Eq.(E5) have a non-vanishing
imaginary part. This introduces a damping of the Gold-

stone modes, which survives at low energy through the
leading contribution χxx0,intra, as the latter does not tend

to zero for |q| → 0.
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