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Isolated many-body quantum systems quenched far from equilibrium can eventually equilibrate,
but it is not yet clear how long they take to do so. To answer this question, we use exact numerical
methods and analyze the entire evolution, from perturbation to equilibration, of a paradigmatic
disordered many-body quantum system in the chaotic regime. We investigate how the equilibration
time depends on the system size and observables. We show that if dynamical manifestations of
spectral correlations in the form of the correlation hole (“ramp”) are taken into account, the time
for equilibration scales exponentially with system size, while if they are neglected, the scaling is
better described by a power law with system size, though with an exponent larger than what is
expected for diffusive transport.

I. INTRODUCTION

One major question in studies of nonequilibrium dy-
namics of isolated many-body quantum systems is how
long it takes for an experimentally relevant observable to
reach equilibrium. By equilibration we mean that after
initial transients, the expectation value of the considered
quantity exhibits small fluctuations around its infinite-
time average, being thus very close to this saturation
point for the vast majority of times, and in addition to
that, the size of these fluctuations decreases as the system
size increases [1–8].

The variety of approaches taken to address this ques-
tion and the lack of agreement among the existing results
are worrisome. Several analyses are based on assump-
tions about the spectrum, observables, and initial con-
ditions, and often provide bounds for the equilibration
time. Some suggest that this time should decrease with
system size [9, 10], others that it should depend weakly
on it [11], and others yet that it should increase with it [3–
6, 12–16], possibly exponentially [9, 17]. Studies aligned
with transport behavior [18–31], on the other hand, ex-
pect the equilibration time to increase as a power law
with system size.

Confronted by so many options, it is worth to step
back and try first to identify a general scenario. For
this purpose, we focus on many-body quantum systems
that are in the chaotic regime and initial states that are
far from equilibrium and that have energy expectation
values away from the edges of the many-body spectrum.
With this choice, we avoid the particularities of integrable
models and non-generic initial states.

The largest possible timescale of quantum systems is
given by the inverse of their mean-level spacing, the so-
called Heisenberg time, which grows linearly with the di-
mension of the Hilbert space, and thus exponentially with
the size of many-body systems. The Heisenberg time is
the absolute upper bound for the equilibration time, but
do experimental observables take this long to equilibrate?

This is the main question addressed by this work. The
answer is yes [32] if the dynamical manifestations of spec-
tral correlations, known as correlation hole [32–41] and
sometimes referred to as “ramp” [42–44], are taken into
account. However, as we show here, these manifestations
can in practice be neglected for some observables, so that
the time for them to reach equilibrium can be defined at
a point before the correlation hole. In this case, the equi-
libration time scales as a power law with system size, a
result that is in better agreement with studies of trans-
port behavior [31, 45].

We use exact numerical methods to study the time
evolution of four observables in the chaotic regime of a
disordered spin-1/2 Heisenberg chain, which is a general
setting for theoretical and experimental studies of the
nonequilibrium quantum dynamics of one-dimensional
systems with short-range couplings. In addition to ex-
amining the scaling of the equilibration time with sys-
tem size, we also briefly discuss its dependence on the
disorder strength. We study two correlation functions
of local operators which have been accessed experimen-
tally, namely the spin autocorrelation function and the
connected spin-spin correlation function. The former is
related to the imbalance used in experiments with cold
atoms [46] and the latter is measured in experiments with
ion traps [47]. Both are few-body observables and should
thus reach thermal equilibrium when the system is in the
chaotic regime [45, 48, 49]. We also study the survival
probability, which is the absolute square of the correla-
tion function of the initial state with its evolved coun-
terpart and may be accessible to experiments with cold
atoms [50, 51]. A semi-analytical expression exists for the
evolution of this quantity in the chaotic regime, which
provides insights into our analysis [32, 40]. Our fourth
observable is the inverse participation ratio, which de-
scribes the spread of the initial state in the many-body
Hilbert space and whose logarithm is the participation
second-order Rényi entropy.

The article is organized as follows. Section II intro-
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duces the disordered model, initial conditions, and ob-
servables. In Sec. III, we revisit the concept of the cor-
relation hole, its timescales, and the equilibration time
after it. In Sec. IV, the correlation hole is neglected and
a new definition for the equilibration time is proposed.
Its dependence on the disorder strength is also provided.
Conclusions are presented in Sec. V. Additional numeri-
cal results are presented in the Appendix.

II. MODEL, INITIAL STATES, AND
OBSERVABLES

A. Model

The disordered spin-1/2 Heisenberg chain that we con-
sider is a representative model of disordered interacting
one-dimensional systems and has been extensively used in
experimental and theoretical studies of many-body local-
ization [52–57]. It is given by the following Hamiltonian,

Ĥ =

L∑
i=1

J Ŝi · Ŝi+1 + hiŜ
z
i , (1)

where Ŝi ≡
(
Ŝxi , Ŝ

y
i , Ŝ

z
i

)
are spin-1/2 operators, L is the

system size, periodic boundary conditions are assumed,
we set J = 1 and hi to be independent and uniformly dis-
tributed random variables in [−W,W ], with W being the
onsite disorder strength. The system conserves the to-

tal magnetization in the z-direction, Ŝztot =
∑L
i Ŝ

z
i , and

exhibits a transition to the many-body localized phase
at a critical disorder strength Wc. The value of Wc is
still under debate [58–67], some papers estimate that
3 < Wc < 4 and others that Wc > 4.

We work in the Ŝztot = 0 subspace that has the Hilbert

space dimension D =
(
L
L/2

)
, and consider finite systems

away from the critical region, 0.5 ≤ W . 1, although a
short discussion for values of disorder closer to the critical
region 1 < W < 3 is also provided.

B. Initial states and equilibration

We use initial states |Ψ(0)〉 that are product states in
the Sz-basis, |φn〉, such as | ↑↓↓ . . . ↑〉, which can be
experimentally realized. We choose initial states with
an energy expectation value 〈Ψ(0)| Ĥ |Ψ(0)〉 far from the
edges of the spectrum to guarantee that they fall in the
chaotic region of the many-body Hamiltonian and that
a given few-body observable Ô reaches thermal equilib-
rium. In the absence of degeneracies in the spectrum,
the infinite time average of Ô expressed in terms of the
many-body eigenstates Ĥ |α〉 = Eα |α〉 is given by

Ō =
∑
α

|Cα|2 〈α| Ô |α〉 , (2)

where Cα ≡ 〈α |Ψ(0)〉.
We use either exact diagonalization or Krylov-space

methods to evolve the system in time. All results are av-
eraged over 104 samples composed of 0.01D initial states
and 104/(0.01D) disorder realizations. The average over
samples is denoted by the angle brackets 〈·〉. We have
also verified that fixing a single initial state and using 104

disorder realizations leads to equivalent results, though
the numerical procedure is less efficient. All statistical
errors are accessed using a bootstrap procedure.

C. Observables

We study the time-evolution of the survival probability
and the inverse participation ratio, which are non-local
quantities in real space; and two correlation functions
of local operators, the spin autocorrelation function and
the connected spin-spin correlation function. The last
two correlation functions are few-body observables, and
therefore are expected to reach thermal equilibrium in
the chaotic limit of realistic systems [45].

The survival probability is defined as

PS(t) = |〈Ψ(0)|Ψ(t)〉|2 . (3)

Taking the mean gives

〈PS(t)〉 = 〈
∑
α6=β

|Cα|2|Cβ |2e−i(Eα−Eβ)t〉+ 〈
∑
α

|Cα|4〉,

(4)
which is related to the spectral form factor,
〈∑α 6=β e

−i(Eα−Eβ)t〉. While 〈PS(t)〉 is a true dy-
namical quantity, which depends on the initial state
through the components Cα, the spectral form factor
involves only the eigenvalues of the Hamiltonian and
is used to study the manifestation of level statistics in
the time domain [68]. Filter functions are sometimes
added to it [44, 69], but they do not come from the
quench dynamics, as the coefficients Cα in 〈PS(t)〉.
The survival probability is widely used in studies of
nonequilibrium quantum dynamics and quantum speed
limit. Both the survival probability [32] and the spectral
form factor [69] have been used in the analysis of the
many-body localization transition and exhibit a robust
correlation hole in the chaotic regime, which fades away
as the system approaches the many-body localized
phase [32, 38–40, 69].

The other non-local quantity that we consider is the
inverse participation ratio,

IPR(t) =
∑
n

|〈φn|Ψ(t)〉|4 , (5)

which measures the spreading in time of the initial state
|Ψ(0)〉 over the many-body Hilbert space; the symbol
|φn〉 denotes a state of the computational basis. Its loga-
rithm, − ln IPR(t), corresponds to the second-order Rényi
entropy. The minimum of the inverse participation ratio
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indicates the full spread of the initial state in its energy
shell.

The spin autocorrelation function measures the prox-
imity of the spin configuration in the z-direction at a time
t to the initial spin configuration,

I(t) =
4

L

L∑
i=1

〈Ψ0| Ŝzi (0) Ŝzi (t) |Ψ0〉 , (6)

where Ŝzi (t) = eiHtŜzi (0)e−iHt. For the Néel initial state,
| ↑↓↑↓↑↓ . . .〉, it reduces to the density imbalance between
even and odd sites that is measured in experiments with
cold atoms [46].

The connected spin-spin correlation function is defined
as

C(t) =
4

L

∑
i=1

[
〈Ψ(t)| Ŝzi Ŝzi+1 |Ψ(t)〉

− 〈Ψ(t)| Ŝzi |Ψ(t)〉 〈Ψ(t)| Ŝzi+1 |Ψ(t)〉
]

(7)

and has been measured in experiments with ion
traps [47].

III. EQUILIBRATION AFTER THE
CORRELATION HOLE

In this section we analyze the appearance of the corre-
lation hole for the four observables introduced above and
discuss the use of the time after the interval of the hole as
a definition of the equilibration time. How the timescale
for the correlation hole depends on the system size L and
on the disorder strength h [32] and how its depth depends
on h [38–40] were studied before for the survival prob-
ability and the spin autocorrelation function. Here, we
investigate how the depth of the correlation hole depends
on the system size and whether it survives in the ther-
modynamic limit for the four quantities considered.

A semi-analytical expression for the entire evolution
of the average of the survival probability was derived
for realistic chaotic many-body quantum systems with
short-range interactions [32, 40], as the one described by
Eq. (1), and it is given by

〈PS(t)〉 =
1−

〈
PS
〉

(D − 1)

[
Db21(Γt)− b2

(
Γt√
2πD

)]
+
〈
PS
〉
,

(8)
where

Γ2 = 〈Ψ(0)|Ĥ2|Ψ(0)〉 − 〈Ψ(0)|Ĥ|Ψ(0)〉2 (9)

is the squared width of the energy distribution of the
initial state,

〈
PS
〉

is the mean of the infinite-time average
of PS(t),

b21(Γt)=
e−Γ2t2

4N 2

∣∣∣∣erf

(
Emax + itΓ2

√
2Γ

)
−erf

(
Emin + itΓ2

√
2Γ

)∣∣∣∣2,
(10)

N is a normalization constant, erf is the error function,
Emax and Emin are the largest and smallest eigenvalues
of Ĥ, respectively, and

b2(t) =

1− 2t+ t ln(2t+ 1) t ≤ 1

t ln

(
2t+ 1

2t− 1

)
− 1 t > 1,

(11)

is the two-level form factor.
The decay of the survival probability is controlled by

b21(Γt). This function and the b2 function meet at the
time tm ∝ D2/3/Γ, where the survival probability reaches
its minimum value of ∼ 2/D. After this point, the evolu-
tion is described entirely by the b2 function, which brings
〈PS(t)〉 from its minimum up to the saturation value,
which is ∼ 3/D. Saturation happens at the Heisenberg
time tH ∝ D/Γ.

The time interval governed by the b2 function, where
〈PS(t)〉 <

〈
PS
〉
, is known as correlation hole [32–

37, 39, 40] or “ramp” [42–44]. This is a dynamical man-
ifestation of spectral correlations, and, therefore, a dy-
namical signature of quantum chaos. The point in time
where the ramp starts, tm, has been referred to as Thou-
less time [32, 69]. It coincides with the time where the in-
verse participation ratio reaches its minimum value [32],
indicating that tm is the time that it takes for the initial
state to maximally spread over the many-body Hilbert
space and acquire weight over the unperturbed many-
body states |φn〉 in its microcanonical energy shell given
by the width Γ.

The evolution of the mean survival probability for the
spin model (1) is shown in Fig. 1 (a) for different system
sizes. There is an excellent agreement between the nu-
merical results and expression (8) when W = 0.5, which
corresponds to the deep chaotic regime. The correlation
hole is evident in all the curves, after a sufficient number
of samples is used for the averages [70], and it does not
fade away as L increases. This means that the complete
equilibration of this quantity takes place only after the
hole ends at the Heisenberg time tH. Since this time is
exponentially long in the system size L, we use exact di-
agonalization to resolve the entire dynamics, which limits
the accessible systems sizes to L = 18.

A correlation hole is also visible for the spin autocor-
relation function, as depicted in Fig. 1 (c), suggesting
that for sufficiently small system sizes, where it develops
for times that are not exceedingly long and reaches min-
imum values that are not too small, the hole might be
experimentally detected.

In contrast to the survival probability and the spin au-
tocorrelation function, the effects of the spectral correla-
tions in the evolution of 〈IPR(t)〉 [Fig. 1 (b)] and of 〈C(t)〉
[Fig. 1 (d)] are minor and the correlation hole is hardly
discernible. Furthermore, the analysis in Figs. 1 (e)-(h)
of the relative depth of the correlation hole [38, 39, 71],

κ =
〈O〉 − 〈O〉min

〈O〉 , (12)
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FIG. 1. Upper panels: Time evolution of the mean (a) survival probability 〈PS(t)〉, (b) inverse participation ratio 〈IPR(t)〉,
(c) spin autocorrelation function 〈I(t)〉, and (d) connected spin-spin correlation function 〈C(t)〉 for different system sizes, as
indicated in panel (a), and for disorder strength W = 0.5, as shown in panel (b). The horizontal dotted-dashed lines mark the
asymptotic values and the stars indicate the crossing time t∗. In Fig. 1 (a), the numerical data overlap with the curves for
the semi-analytical expression in Eq. (8). Lower panels: Relative depth of the correlation hole, κ, as a function of L, for (e)
〈PS(t)〉, (f) 〈IPR(t)〉, (g) 〈I(t)〉, and (h) 〈C(t)〉 for three values of the disorder strength in the chaotic regime, as indicated in
Fig. 1 (e). The horizontal dashed line in panel (e) corresponds to the value κ = 1/3 obtained for GOE random matrices. Most
error bars in panels (e)-(h) are smaller than the symbols.

where 〈O〉min stands for the value of a given observ-

able Ô at the minimum of the correlation hole, indicates
that, contrary to what happens for 〈PS(t)〉, the hole for
〈IPR(t)〉, 〈I(t)〉, and 〈C(t)〉 gets smaller as the system
size increases. This motivates an alternative definition of
the equilibration time for these three quantities, which
neglects the correlation hole, as done below in Sec. IV.

When the survival probability is evolved using full ran-
dom matrices taken from a Gaussian orthogonal ensem-
ble (GOE), it is known analytically that

〈
PS
〉
∼ 3/D

and 〈PS〉min ∼ 2/D [32, 36], which yields κ = 1/3. In
Fig. 1 (e), we show κ for the survival probability of the
spin model as a function of system size for different dis-
order strengths in the chaotic regime. The relative depth
clearly converges to κ = 1/3, which is indicated with a
horizontal dashed line. The correlation hole is therefore
a robust property of the survival probability.

Contrary to the survival probability, the relative depth
κ for 〈IPR(t)〉 [Fig. 1 (f)], 〈I(t)〉 [Fig. 1 (g)], and 〈C(t)〉
[Fig. 1 (h)] decays with L. In the case of the inverse
participation ratio and the connected spin-spin correla-
tion function, the decay is exponential, while for the spin
autocorrelation function, the results are more subtle and
make apparent the danger of finite-size effects. While for
W = 0.5, κ decreases monotonically with L, forW = 0.75
and W = 1, κ increases for small values of L and the de-
cay becomes clear only for L > 14.

One sees that the dynamical behavior of the four quan-
tities considered transcends any simple categorization in
terms of locality or non-locality in real space. One might
be tempted to associate the visible onset of the correla-
tion hole, at least for the relatively small system sizes that
we study, with non-locality in time. However, to confirm

this speculation, quantities other than the spin autocor-
relation function and the survival probability, which is
also an autocorrelation function, need to be investigated.

IV. EQUILIBRATION BEFORE THE
CORRELATION HOLE

Ignoring the correlation hole, we can define the equi-
libration time as the point where 〈Ô(t)〉 first crosses the
infinite-time average 〈O〉. We denote this time by t∗,
which is clearly much smaller than the Heisenberg time,
t∗ � tH . These crossing points are marked with stars in
Figs. 1 (a)-(d). The fact that the correlation hole exists
for a finite-size system, even if this is minor, indicates
that t∗ is well defined, because finding its value consists
of finding a crossing point. This is to be contrasted with
the determination of the Heisenberg time tH. Since the
b2(t) function, which controls the evolution in the inter-
val of the correlation hole, follows a power-law behavior
at long times, finding tH relies on an arbitrary threshold
δ between the observable and its infinite-time average,
|〈O(tH)〉 −O|/O ∼ δ, as discussed in [32].

A. Weak disorder region: 0.5 ≤W ≤ 10.5 ≤W ≤ 10.5 ≤W ≤ 1

For sufficiently weak disorder, W = 0.5 [72], we can
make use of the semi-analytical expression in Eq. (8)
to estimate the dependence of t∗ on system size. At
long times, disregarding the correlation hole, the decay
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FIG. 2. Upper [Lower] panels: Analysis of the crossing time for the spin autocorrelation function 〈I(t)〉 [connected spin-
spin autocorrelation function 〈C(t)〉]. (a) [(d)] Evolution of the mean spin autocorrelation function [connected spin-spin
autocorrelation function] for L = 18. Each curve corresponds to a different disorder strength W , as indicated. The horizontal
dotted-dashed lines represent the asymptotic value of the observable and the crossing time t∗ is marked with a star. (b) [(e)]
Scaling of the crossing time t∗ with L. Symbols are the data and solid lines give power-law fits to t∗ ∝ Lγ . Error bars indicate
the standard deviation of the bootstrap procedure. (c) [(f)] Exponent γ extracted from the power-law fit to the data points in
(b) [(e)] as a function of W . Error bars indicate the standard deviation on the fitted exponent.

of 〈PS(t)〉 is given by [73, 74]

〈
PS(t� Γ−1)

〉
decay

' e−E
2
max/Γ

2

+ e−E
2
min/Γ

2

2πN 2Γ2t2
. (13)

Using that Emin, Emax and Γ2 are extensive, namely pro-
portional to the size of the system, and that the survival
probability saturates at

〈
PS
〉
∼ 3/D, we find that t∗ ∝

exp(0.22L), which agrees very well with the crossing time
obtained numerically for L = 10, 12, 14, 16, 18, 20, 22.
Knowing the saturation value of the survival probabil-
ity, we can evolve |Ψ(t)〉 up to a vicinity of t∗ only, which
is a major saving compared to the evolution up to tH.
This allows us to use Krylov-space methods for the time
evolution of the survival probability and access to sys-
tem sizes L > 18. For the seven system sizes considered,
we verified that the exponential scaling of t∗ with L is
indeed better than a power-law scaling.

While an analytical expression is not available for the
time-dependence of the inverse participation ratio, in the
weak disorder regime, its saturation value is known ana-
lytically,

〈
IPR

〉
∼ 2/D [75], so we can also obtain t∗ for

system sizes L > 18. To do that, we apply a Savitzky-
Golay filter to smooth the curves for 〈IPR(t)〉 and then
extract the crossing time [76]. For this quantity, which
is non-local in real space just as the survival probability,
we find that a power-law scaling of t∗ with L actually
works better than an exponential scaling. This makes us
suspect that the exponential dependence of the crossing
time with system size found for the survival probability
may be related to the prevalence of the correlation hole,
a conjecture that is further reinforced by the next results.

For the two few-body observables, we do not have an-
alytical results for the saturation values, hence our anal-
ysis is restricted to five system sizes. In Fig. 2 (a) and
Fig. 2 (d), we fix the system size at L = 18 and mark
the crossing time for the curves of 〈I(t)〉 and 〈C(t)〉 ob-
tained for different disorder strengths. In Fig. 2 (b) and
Fig. 2 (e), we present the scaling analysis for both quan-
tities and those values of W . We find that, similarly to
the inverse participation ratio, the dependence of t∗ with
L is better fitted with a power law than an exponential,
that is

t∗ ∝ Lγ with γ > 3. (14)

The exact value of the exponent γ varies with the disor-
der strength, as shown in Fig. 2 (c) and Fig. 2 (f). For
disorder strength 0.5 ≤ W ≤ 1, we find that on average
γ ≈ 3.8 ± 0.3. The value of the exponent is somewhat
close to that argued in [28], but larger than the value
which typically appears in studies of transport behav-
ior [31, 45]. In particular, in [28], it was argued that
matrix elements of local operators in the energy basis of
chaotic Hamiltonians remain correlated down to frequen-
cies parametrically lower (corresponding to parametri-
cally larger times) than those expected from the diffu-
sive scaling, beyond which true random-matrix behavior
occurs, while other measures of thermalization seemed
otherwise fulfilled. The observation that these elements
remain correlated down to such low frequencies was fur-
ther tested numerically in [77], although the scaling of a
critical frequency with system size could not be obtained.

We stress that the system has to be evolved for very
long times to obtain the time for the saturation of the
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dynamics, which limits the system sizes that can be ex-
plored. This is particularly problematic for the few-body
observables, where only 5 system sizes were considered.
Thus, any conclusion regarding the scaling analysis over
such small range of points should be taken with reserva-
tion.

We expect to obtain results analogous to those in
Sec. III and Sec. IV A for chaotic clean models, since
the correlation hole is, of course, present there as well.
However, the procedure to extract the equilibration time
requires sufficiently smooth curves, which is more difficult
to achieve in the absence of disorder average. To reveal
the correlation hole in clean models, one needs to resort
to averages over initial states and running averages. In
the Appendix A, we show the evolution of the survival
probability and the spin autocorrelation function for a
model without onsite disorder, so that the reader can see
that the behaviors are similar to those in Fig. 1, but the
curves are much less smooth.

B. Near critical region: 1 < W < Wc1 < W < Wc1 < W < Wc

Figure 2 shows the crossing time t∗ of the few-body ob-
servables computed for disorder strengths slightly larger
than the coupling parameter, W & J . The power-law fit
is still better than the exponential one, although γ [Eq.
(14)] for W = 1.5 is larger than 5, as seen in Fig. 2 (c)
and Fig. 2 (f). The scaling analysis with L of the crossing
time for W > 1 is more difficult, because in this region,
the use of random matrices for guidance is no longer justi-
fied and longer propagation times are typically required
to obtain equilibration. We leave open the question of
whether the scaling with system size remains power law
with even larger exponents or becomes exponential as
the critical point is approached (see related discussions
in [27, 31]). In the following, we analyze how the crossing
time t∗ depends on the disorder strength for a fixed L.

It was shown that the time for the minimum of the
correlation hole, tm, for the survival probability and for
the spin autocorrelation function grows exponentially as
the disorder strength increases [32], which was later con-
firmed for the spectral form factor [69]. It is thus rele-
vant to examine the dependence of t∗ on W , although its
behavior is not conclusive, as can be seen from Fig. 3.
Considering disorder strengths W ∈ [1, 3], the time t∗

is best fitted with a stretched exponential, but if we
consider disorder strengths closer to the critical point,
W ≥ 1.75, we see that either an exponential dependence

t∗ ∝ exp(W/W ′) or a critical form t∗ ∝ |W −Wc|−β
with an exponent β ≈ 2.6 ± 0.08 describe the data rea-
sonably well for all the quantities, except for the inverse
participation ratio, which exhibits strong fluctuations in
its corresponding crossing times. The quality of the fits
varies depending on the quantity: the survival probabil-
ity is better described by an exponential form [Fig. 3 (a)],
while the few-body observables seem to have critical scal-
ing [Fig. 3 (b)]. With respect to Fig. 3 (b), we did not

1.0 1.5 2.0 2.5 3.0
W

1

2

3

4

5

lo
g

(t
∗ )

(a)

〈PS(t∗)〉
〈IPR(t∗)〉

〈I(t∗)〉
〈C(t∗)〉

0.0 0.1 0.2 0.3

log (|W −Wc|)

3.0

3.5

4.0

4.5

lo
g

(t
∗ )

(b)

FIG. 3. Dependence of the crossing time t∗ on (a) [(b)] the
disorder strength W [the difference |W −Wc|; with Wc = 3.7]
for the survival probability 〈PS(t)〉, inverse participation ratio
〈IPR(t)〉, spin autocorrelation function 〈I(t)〉, and the con-
nected spin-spin correlation function 〈C(t)〉 for system size
L = 16. The symbols representing each quantity are shown
in panel (a). The dashed [dotted-dashed] lines in (a) [(b)]
correspond to exponential [power-law] fits obtained with the
points for W ≥ 1.75. Error bars indicate the standard devia-
tion of the bootstrap procedure.

see a qualitative change in our conclusions when varying
Wc from 3.5 to 6.

C. Alternative definition of the equilibration time

The two definitions for the equilibration time proposed
in this work lead to a time that increases with the sys-
tem size. The observation that the equilibration time
increases with system size can be intuitively understood
as the time it takes for an initial excitation to visit the full
system, a situation that is expected to occur in systems
with extensive conserved quantities where there is trans-
port, such as the Hamiltonian with short-range couplings
in Eq. (1).

The experimental confirmation of our results depends
on several factors, such as the ability to reach very
long coherence times, the accuracy of the measure-
ments, and the quantity measured. Consider, for ex-
ample, the inverse participation ratio in Fig. 1 (b),
whose minimum value decreases with increasing sys-
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tem size. If the experimental precision would be lim-
ited to 10−2 one might conclude that the equilibration
time decreases as L increases. If, however, the exper-
iment would directly measure the entropies, ln[IPR(t)]

or −∑n |〈φn|Ψ(t)〉|2 ln[|〈φn|Ψ(t)〉|2], that limiting reso-
lution would be circumvented. In practice, it is therefore
worthwhile to keep in mind possible discrepant conclu-
sions between theory and experiment due to experimental
limitations.

V. CONCLUSIONS

We investigated how the equilibration time of the dis-
ordered spin-1/2 Heisenberg chain depends on the system
size L for four different observables. As mentioned be-
fore, for chaotic systems and few-body observables, this
time can also be identified with the thermalization time.
If the correlation hole is taken into account when defining
the equilibration time, then the latter coincides with the
Heisenberg time and thus grows exponentially with L.
This is what happens for the survival probability, where
the correlation hole persists in the thermodynamic limit.
However, for the inverse participation ratio, the spin au-
tocorrelation function, and the connected spin-spin cor-
relation function, the correlation hole fades away as L
increases, which justifies neglecting it. In this case, we
defined the equilibration time as the point where the evo-
lution of the observables first crosses their infinite-time
averages. The dependence of this crossing time on system
size is best described by a power law.

Chaotic systems with static Hamiltonians conserve at
least the total energy, have diffusive energy transport and
their equilibration time, namely the time it takes for a
non-uniformity in the energy density to spread across the
system, is expected to be bounded from below by L2. In
the particular case of disordered chaotic systems, trans-
port is presumably subdiffusive [18, 19, 24, 29, 62], in
which case their equilibration time is bounded from be-
low by Lγ with γ > 2, although for very weak disorder,
γ should eventually approach the lower bound γ ≈ 2 cor-
responding to diffusive transport. Interestingly, even for
the lowest disorder that we study, W ≈ 0.5, the equilibra-
tion (crossing) time for the few-body observables consid-
ered scales as Lγ with γ > 3, so it is parametrically larger
than the time it takes to make the energy density homo-
geneous. In future studies, we plan to explore in more
detail in which sense the system seems to remain out of
equilibrium for times L2 < t < L3, where the energy
density has already spread out, but other few-body ob-
servables, such as the spin autocorrelation function and
the connected spin-spin correlation function, have not yet
equilibrated.

We have provided a brief analysis of the dependence
of the crossing time t∗ on the disorder strength close to
the critical point, but it is hard to discern between an
exponentially growing t∗ with W and a critical behavior

t∗ ∝ |W −Wc|−β . The survival probability seems to

be better described by the former, while the few-body
observables appear to show the critical scaling with an
exponent β ≈ 2.6.

In summary, by analyzing the entire evolution of phys-
ical observables up to equilibration in a paradigmatic
many-body quantum system, we were able to identify
their equilibration time without any assumptions or ap-
proximations. Taking the correlation hole into account,
the equilibration time increases exponentially with the
system size. Disregarding the correlation hole, the equi-
libration time for the few-body observables considered
and the inverse participation ratio grows as a power law
with the system size, although still exponentially for the
survival probability. We leave it as an open question for
future studies to determine whether this apparent dif-
ference in the scaling is related to the vanishing of the
correlation hole in the thermodynamic limit.
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Appendix A: Clean model

We consider here a one-dimensional XXZ chain with
periodic boundary conditions, but in contrast to Eq. (1),
it does not have random onsite disorder and contains in-
stead a single defect (impurity) on site L/2. The Hamil-
tonian is given by

Ĥ = hL/2Ŝ
z
L/2 + J

L∑
i=1

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1 + ∆Ŝzi Ŝ

z
i+1

)
.

(A1)
We set the coupling constant to J = 1, the anisotropy
parameter to ∆ = 1.2, and hL/2 = 1.0, which guarantees
that the system is chaotic [78, 79]. We add two small

defects, h1Ŝ
z
1 and hLŜ

z
L, where h1,L are small numbers
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FIG. 4. Time evolution of the mean (a) survival probability
〈PS(t)〉 and (b) spin autocorrelation function for different sys-
tem sizes, as indicated in panel (a), of the clean chaotic model
in Eq. (A1). The horizontal dotted-dashed lines mark the
asymptotic values and the stars indicate the crossing time t∗.

uniformly distributed in [−0.1, 0.1], to break symmetries
and to use the averages over realizations to reduce finite-
size effects. As in the main text, we work in the Ŝztot = 0
subspace.

In Fig. 4, we show the time evolution of the survival
probability [Fig. 4 (a)] and the spin autocorrelation func-
tion [Fig. 4 (b)]. All results are averaged over 104 sam-
ples composed of 0.01D random product states in the
Sz-basis and 104/(0.01D) realizations for h1,L. Figure 4
exhibits features very similar to those in Fig. 1 (a) and
Fig. 1 (c), including the appearance of the correlation
hole, but the curves are now visibly much less smooth
than the corresponding curves in Fig. 1.
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L. F. Santos, Self-averaging in many-body quantum sys-
tems out of equilibrium: Chaotic systems, Phys. Rev. B
101, 174312 (2020).

[71] E. J. Torres-Herrera and L. F. Santos, Signatures of chaos
and thermalization in the dynamics of many-body quan-
tum systems, Eur. Phys. J. Spec. Top. 227, 1897 (2019).

[72] Since for W = 0 the system is integrable, the disorder
cannot be too small.

[73] M. Távora, E. J. Torres-Herrera, and L. F. Santos, In-
evitable power-law behavior of isolated many-body quan-
tum systems and how it anticipates thermalization, Phys.
Rev. A 94, 041603 R (2016).

[74] M. Távora, E. J. Torres-Herrera, and L. F. Santos,
Power-law decay exponents: A dynamical criterion for
predicting thermalization, Phys. Rev. A 95, 013604
(2017).

[75] E. J. Torres-Herrera, I. Vallejo-Fabila, A. J. Mart́ınez-
Mendoza, and L. F. Santos, Self-averaging in many-body
quantum systems out of equilibrium: Time dependence
of distributions, Phys. Rev. E 102, 062126 (2020).

[76] The statistical errors of this procedure were accounted
for using a bootstrapping procedure with 1000 bootstrap
samples, each composed of N = 9000 random samples
taken from the full random data set of over 104 elements.

[77] J. Richter, A. Dymarsky, R. Steinigeweg, and J. Gem-
mer, Eigenstate thermalization hypothesis beyond stan-
dard indicators: Emergence of random-matrix behavior
at small frequencies, Phys. Rev. E 102, 042127 (2020).

[78] L. F. Santos, Integrability of a disordered heisenberg
spin-1/2 chain, Journal of Physics A: Mathematical and
General 37, 4723 (2004).

[79] L. F. Santos and A. Mitra, Domain wall dynamics in
integrable and chaotic spin-1/2 chains, Phys. Rev. E 84,
016206 (2011).

https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
http://link.aps.org/doi/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.81.224429
https://doi.org/10.1103/PhysRevB.81.224429
http://link.aps.org/doi/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevB.89.220201
http://link.aps.org/doi/10.1103/PhysRevB.91.081103
http://link.aps.org/doi/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevLett.115.187201
https://doi.org/10.1103/PhysRevB.98.174202
https://doi.org/10.1103/PhysRevB.99.134205
https://doi.org/https://doi.org/10.1016/j.aop.2021.168415
https://arxiv.org/abs/1905.06345
https://doi.org/10.1103/PhysRevB.101.174312
https://doi.org/10.1103/PhysRevB.101.174312
https://doi.org/10.1140/epjst/e2019-800057-8
https://doi.org/10.1103/PhysRevA.94.041603
https://doi.org/10.1103/PhysRevA.94.041603
https://doi.org/10.1103/PhysRevA.95.013604
https://doi.org/10.1103/PhysRevA.95.013604
https://doi.org/10.1103/PhysRevE.102.062126
https://doi.org/10.1103/PhysRevE.102.042127
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1088/0305-4470/37/17/004
https://doi.org/10.1103/PhysRevE.84.016206
https://doi.org/10.1103/PhysRevE.84.016206

	Equilibration time in many-body quantum systems
	Abstract
	Introduction
	Model, initial states, and observables
	Model
	Initial states and equilibration
	Observables

	Equilibration after the correlation hole
	Equilibration before the correlation hole
	Weak disorder region: 0.5W 1- .4 
	Near critical region: 1 < W <Wc- .4 
	Alternative definition of the equilibration time

	Conclusions
	Acknowledgments
	Clean model
	References


