
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Elementary band representations for the single-particle
Green's function of interacting topological insulators

Dominik Lessnich, Stephen M. Winter, Mikel Iraola, Maia G. Vergniory, and Roser Valentí
Phys. Rev. B 104, 085116 — Published 11 August 2021

DOI: 10.1103/PhysRevB.104.085116

https://dx.doi.org/10.1103/PhysRevB.104.085116


Elementary band representations for the single-particle Green’s function of
interacting topological insulators

Dominik Lessnich,1, ∗ Stephen M. Winter,1, 2, † Mikel Iraola,3, 4 Maia G. Vergniory,3, 5 and Roser Valent́ı1, ‡

1Institute of Theoretical Physics, Goethe University Frankfurt,
Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

2Department of Physics, Wake Forest University,
1834 Wake Forest Road Winston-Salem, NC 27109-7507, USA

3Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
4Department of Physics, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain

5IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
(Dated: July 27, 2021)

We discuss the applicability of elementary band representations (EBRs) to diagnose spatial- and
time-reversal-symmetry protected topological phases in interacting insulators in terms of their single-
particle Green’s functions. We do so by considering an auxiliary non-interacting system HT(k) =
−G−1(0,k), known as the topological Hamiltonian, whose bands can be labeled by EBRs. This
labeling is robust if neither (i) the gap in the spectral function at zero frequency closes, (ii) the
Green’s function has a zero at zero frequency or (iii) the Green’s function breaks a protecting
symmetry. We demonstrate the use of EBRs applied to the Green’s function on the one-dimensional
Su-Schrieffer-Heeger model with Hubbard interactions, which we solve by exact diagonalization for
a finite number of unit cells. Finally, the use of EBRs for the Green’s function to diagnose so-called
symmetry protected topological (SPT) phases is discussed, but remains an open question.

I. INTRODUCTION

Non-interacting topological insulators are well under-
stood in terms of band topology.1–5 An insulator is called
topologically trivial if it is possible to continuously de-
form its band structure and corresponding eigenstates to
those of an atomic insulator without closing the energy
gap or breaking a symmetry. On the other hand, a phase
characterized by a non-trivial topological invariant indi-
cates an obstruction to such a continuous deformation
to an atomic insulator. The Chern number, first pro-
posed for the integer quantum Hall effect, is the most
common example for a topological invariant.6 Actually,
all non-interacting topological phases protected by com-
binations of time-reversal symmetry (TR), particle-hole
symmetry (PH) and chiral symmetry (CS), i.e. which be-
long to one of the ten Cartan-Altland-Zirnbauer (CAZ)
symmetry classes,7 have been classified by K-theory.8,9

An important class of topological insulators are topo-
logical crystalline insulators which are protected by spa-
tial symmetries.10 In three dimensions non-interacting
topological crystalline insulators have been systemati-
cally investigated in all 230 space groups, with and with-
out TR present, in the formalism of topological quantum
chemistry (TQC)11,12 in terms of elementary band repre-
sentations (EBRs)13–15 or equivalently in the formalism
of symmetry indicators16,17 or the algorithm in Ref. 18.
These formalisms are based on the fact that Bloch wave
functions at high symmetry k-points can be classified by
irreducible representations (irreps) of the little group of
these k-points. In this way spatial symmetries place con-
straints on the connectivity of the bands in the Brillouin
zone, which can be used to identify those band structures
that are compatible with an atomic insulator.

The applicability of such approaches when interactions

are included is, however, unclear. In principle, non-
interacting insulators have a very simple structure. Their
ground state wave function is given by a Slater determi-
nant of all single-particle states below the Fermi level.
Thus, the gap in the single-particle spectrum makes the
ground state wave function unique. To decide if two non-
interacting insulators are topologically equivalent is the
same as to investigate whether the corresponding Hamil-
tonians can be smoothly connected while maintaining
symmetries and maintaining the gap. The gap mani-
fests in terms of (i) the many-body ground state staying
gapped, or (ii) the presence of a gap in the single-particle
excitations. Both features are equivalent in the absence
of interactions. Hence it is sufficient to analyze the topo-
logical properties of the map k 7→ H0(k), where k is a re-
ciprocal wavevector and H0(k) is the Bloch Hamiltonian.
For non-interacting systems, this corresponds to inves-
tigating the topological properties of the single-particle
Matsubara Green’s function G(iω,k), which for the non-
interacting case is given as:

G0(iω,k) =
(
iω −H0(k)

)−1
(1)

where iω denotes the Matsubara frequency. In the pres-
ence of interactions investigating the adiabatic connectiv-
ity of Hamiltonians while the ground state stays gapped
and investigating the Green’s function is a priori not
equivalent anymore.

In a more general context, the concept of symmetry
protected topological (SPT) phases19–25 has been intro-
duced to investigate the smooth connectivity of gapped,
short range entangled phases while maintaining sym-
metries. Alternatively, the topological characterization
of the full interacting single-particle Matsubara Green’s
function G(iω,k) was put forward in Refs. 26–33. For the
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CAZ symmetry classes it was shown that one obtains the
same topological classification for the Green’s function
as for non-interacting Hamiltonians i.e. Z, Z2 or 0.29 A
similar Green’s functions-based framework for identify-
ing spatial-symmetry-protected topological phases in in-
teracting systems has, however, not been fully explored.

For this purpose, in the present work we first demon-
strate that an EBR classification –successfully imple-
mented to diagnose band topology of non-interacting
topological insulators in the framework of TQC–, can be
applied to G(iω,k) and, secondly, we discuss its suitabil-
ity/practicability to identify spatial- and time-reversal-
symmetry protected topological insulating phases.

The paper is organized as follows. In Sec. II we estab-
lish the conditions that G(iω,k) needs to fulfill to define
topological invariants in terms of G(iω,k) and, we review
the concept of a topological Hamiltonian. This analysis
sets the framework for the EBR classification of Green’s
functions. In Sec. III we investigate the implications that
the spatial symmetries of the many-body Hamiltonian
have on G(iω,k). In Sec. IV we discuss the EBR-based
classification of the topological Hamiltonian and argue
about its use and limitations. In Sec. V we analyze
the interacting Green’s function of the one-dimensional
Su-Schrieffer-Heeger model34 with Hubbard interactions
(SSH+U) within the framework of TQC, diagnosing its
topological phases by making use of the spatial inversion
symmetry present in the model and, in Sec. VI we present
our conclusions.

II. INTERACTING GREEN’S FUNCTION AND
TOPOLOGICAL HAMILTONIAN

For the analysis of symmetry-protected topological in-
variants in terms of Green’s functions26–33 it is assumed
that the exact ground state of the many-body Hamilto-
nian is unique and the chemical potential is included in
the many-body Hamiltonian. Further, we consider the
zero-temperature limit so that the discrete Matsubara
frequencies iωn become continuous iωn → iω. In this
case, the topological invariants are well defined and main-
tained under continuous changes of the Green’s function
as long as the GNSC-conditions (gapped, non-singular,
symmetries preserved, continuously differentiable) de-
fined below, are fulfilled.

Definition 1. A Matsubara Green’s function G(iω,k)
(matrix) with associated spectral function A(ω,k) to-
gether with a set of protecting symmetries fulfills the
GNSC-conditions if all following conditions hold:

1. There is a non-zero gap in A(ω,k) at zero fre-
quency, i.e. there exists an ε > 0 such that
A(ω,k) = 0 for all ω ∈ [−ε, ε] for all k.

2. G(0,k) is non-singular which implies that all eigen-
values are non-zero for all k.

3. G does not break a symmetry contained in the set
of protecting symmetries.

4. G(iω,k) is continuously differentiable in k for all
iω.

G does not break a spatial symmetry means that
G(iω,k) commutes with the band representation (or qua-
siband representation) matrices as discussed in Sec. III.
For the implications of TR, PH and CS on G see Ref. 29.
For completeness we review in appendix A analytic prop-
erties of the Green’s function.

In Ref. 32 it was shown that it is sufficient to focus on
the Green’s function at zero frequency to obtain the topo-
logical invariants for the CAZ symmetry classes. Equiva-
lently it is possible to define an auxiliary non-interacting
Hamiltonian33 – the topological Hamiltonian – which has
the same topological invariants as the full interacting
single-particle Green’s function

HT(k) = −G−1(0,k). (2)

If the spectral function is gapped, HT(k) is a Hermitian
matrix with absolute values of the eigenvalues bounded
from below for all k-points (see appendix A).

The analysis of topological invariants in terms of the
Green’s function has been applied to a variety of model
systems in which the topology is protected by symme-
tries in the CAZ symmetry classes35–44 and it has been
shown that, if at least one of the GNSC-conditions is vi-
olated, the respective CAZ invariant is not well defined
anymore.29,35 An alternative approach based on the local
in-gap Green’s function has been developed in Ref. 45. In
what follows, we analyze G(iω,k) through the topologi-
cal Hamiltonian HT within the framework of TQC and
investigate the range of applicability of the method.

III. SPATIAL SYMMETRIES OF THE
MATSUBARA GREEN’S FUNCTION

In this section, we recall the action of spatial sym-
metries on the Green’s function and HT(k). We show
that these always transform in the same way as non-
interacting Bloch Hamiltonians. For clarification of our
notation see appendix A. For a given space group G, the
spatial symmetries h = {R|v} ∈ G act in real space as
r → Rr + v. If we associate a unitary operator Uh with
the symmetry operation h ∈ G, then Uh acts on creation
and annihilation operators as:

Uhc
†
kαU

†
h =

∑
β

ρkG(h)βαc
†
k′β , (3)

UhckαU
†
h =

∑
β

(
ρkG(h)∗

)
αβ
ck′β , (4)

where (∗) denotes the conjugate transpose of a matrix,
and α labels e.g. band and spin indices. Each transforms
according to the band representations ρkG(h).11,12 Note
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that for simplicity we consider the Bloch-like wave func-

tion associated with c†kα and ckα to originate from expo-
nentially localized, symmetry consistent Wannier func-
tions (see appendix A). In principle, the discussion is also
applicable to isolated sets of topological bands without
an atomic limit, i.e. bands that transform as representa-
tions that can not be written as linear combinations of
EBRs with positive integer coefficients. In this case the
topological set of bands correspond to a so-called quasi-
band representation, i.e. any solution of the compatibil-
ity relations.11,12

Here and in the following we set k′ ≡ Rk, with k′ be-
ing the corresponding k-point in the first Brillouin zone.
The representations ρkG(h) are sets of unitary matrices
with the dimension given by the number of orbitals in
the unit cell (including spin). See Ref. 12 for the explicit
construction of the band representation matrices. A gen-
eral Hamilton operator H is invariant under the action
of h if it commutes with Uh.

Let us first review the consequences of unitary spatial
symmetries on non-interacting Hamiltonians. These can
be written as

H0 =
∑
k

Hk
0 =

∑
k

∑
αβ

c†kα
(
H0(k)

)
αβ
ckβ . (5)

where H0(k) is the Bloch Hamiltonian matrix. The
Hamiltonian transforms under symmetries as

H0 = UhH0U
†
h

=
∑
kαβ

Uhc
†
kα

(
H0(k)

)
αβ
ckβU

†
h

=
∑

kαβγδ

c†k′γρ
k
G(h)γα

(
H0(k)

)
αβ
ρkG(h)∗βδck′δ, (6)

So for the Bloch Hamiltonian must transform with the
band representations as(

H0(k′)
)
γδ

=
∑
αβ

ρkG(h)γα
(
H0(k)

)
αβ
ρkG(h)∗βδ. (7)

To determine the irreps of wave functions in a particular
k-point k in the first Brillouin zone, one needs to focus
on the little group Gk of the respective k-point, which
includes all symmetries {R|v} satisfying k = k′ = Rk +
G, where G is a vector of the reciprocal lattice. If H0

is invariant under a spatial symmetry h, then from the
above relation it follows that at all k-points with h ∈
Gk the Bloch Hamiltonian matrix H0(k) commutes with
the band representation ρkG(h). From this commutative
property it follows that eigenstates of H0(k) transform
as irreps of Gk, thus identifying these irreps is equivalent
to determining symmetry properties of bands.

Now we analyze the Green’s function of an interacting
system. We assume a non-degenerate many-body ground
state |0〉. It directly follows that the ground state is an
eigenstate of every Uh. Since Uh is unitary the eigenval-
ues must have modulus one and we can write for h ∈ G

Uh |0〉 = eiφh |0〉 , (8)

with φh ∈ [0, 2π). For imaginary time τ > 0 we have

Gαβ(τ,k) = −〈0| ckα(τ)c†kβ |0〉
= −〈0| eHτ ckαe−Hτ c†kβ |0〉
= −〈0| eU†

hHUhτ ckαe
−U†

hHUhτ c†kβ |0〉
= −〈0|U†heHτUhckαU

†
he
−HτUhc

†
kβU

†
hUh |0〉

= −
∑
γδ

ρkG(h)∗αγ 〈0| ck′γ(τ)c†k′δ |0〉 ρkG(h)δβ

=
∑
γδ

ρkG(h)∗αγGγδ(τ,k
′)ρkG(h)δβ . (9)

A similar calculation holds for τ < 0. Going to Mat-
subara frequencies i.e. G(iω,k) yields the same result
for each value of iω. The above result shows, for a
unique many-body ground state, that the Green’s func-
tion transforms under the band representations in the
same way as a (non-interacting) Bloch Hamiltonian.46

Similarly, provided the GNSC-conditions are fulfilled, a
topological Hamiltonian HT may be defined according to
HT = −G−1(0,k), which transforms in the same way(

HT(k)
)
αβ

=
∑
γδ

ρkG(h)∗αγ
(
HT(k′)

)
γδ
ρkG(h)δβ . (10)

In particular, if G(iω,k) fulfils the GNSC-conditions,
HT(k) is also continuous (even continuously differen-
tiable) in k. It follows that the eigenvalues of HT(k)
form continuous bands in k-space that can be labeled
by irreps of the little group of the respective k-points.
Analogous to the non-interacting case, compatibility re-
lations yield restrictions on the connectivity of the bands.
This allows to write symmetry representations of bands
as linear combinations of EBRs. Also in the case of TR
present in the interacting system the resulting irreps of
the little groups and EBRs have been classified and can
be applied.11,12 We later clarify the meaning of assigning
EBRs to the bands of a topological Hamiltonian in an
interacting system.

IV. EBR-BASED ANALYSIS OF THE
TOPOLOGICAL HAMILTONIAN: USE AND

LIMITATIONS

In this section, we discuss the interpretation of EBR-
based analysis of the topological Hamiltonian in the spirit
of TQC. For gapped non-interacting Hamiltonians, topo-
logical indices are invariant under unitary transforma-
tions of occupied (unoccupied) single-particle states. As
a result, in terms of an EBR analysis we are concerned
usually with the combined transformation properties of
occupied single-particle states, independent of their en-
ergy ordering.11,12 In order to apply non-interacting clas-
sifications to HT(k), an equivalent distinction is required.
Following Ref. 31 and 32, for a Green’s function fulfilling
the GNSC-conditions, the eigenvalues of HT(k) can be
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ε0

Eigenvalue of HT(k)
labeled by irrep

Moves continuously as
parameters of H are varied

FIG. 1. Eigenvalues of the topological Hamiltonian at high
symmetry k-points can be labeled by irreps of the little group
of the k-point. The gap in the spectral function at ω = 0
causes the eigenvalues to be real. Depending on the sign of
the eigenvalue it is either an R-zero or an L-zero. As the pa-
rameters in the many-body Hamiltonian are varied, the eigen-
values move on the real axis as long as the gap is maintained.
The gap further prevents the eigenvalues from crossing zero.
By assumption we excluded a zero eigenvalue of G(0,k), so
that all eigenvalues of the topological Hamiltonian are finite.
If also the Green’s function does not break a symmetry while
the parameters of the many body Hamiltonian are varied, the
multiplicity of irreps of R-zeros cannot change.

classified as either an L-zero or an R-zero.47 An eigen-
value of the topological Hamiltonian µα(k) is called an
R-zero if µα(k) < 0 and an L-zero if µα(k) > 0. The
R-zeros and L-zeros can each be written as linear combi-
nation of EBRs with positive integer coefficients if they
each correspond to a trivial set of bands or as a quasi-
band representation if they each correspond to a topolog-
ical set of bands. In a non-interacting system the R-zeros
correspond to the occupied single-particle states and the
eigenvalues µα(k) are equal to the single-particle ener-
gies. For interacting systems, the eigenvalues can give
some indication how the spectral weight is distributed
on the real frequency axis.

Let us consider continuously changing the parameters
of the many-body Hamiltonian, while maintaining sym-
metries and the ground state staying non-degenerate. We
assume that G(iω,k) and hence G(0,k) also changes con-
tinuously on the path. For each point on this continu-
ous path we can label the eigenvalues of the topologi-
cal Hamiltonian at high symmetry k-points by the re-
spective little group irreps, see also Fig. 1. If the gap
in the spectral function at zero frequency remains non-
zero, then G(0,k) remains Hermitian and the eigenvalues
of the topological Hamiltonian move continuously on the
real axis. Additionally the eigenvalues cannot cross over
zero, because their absolute value is bounded from be-
low if the gap in the spectral function remains non-zero
as shown in appendix A. Further imposing the condition
that G(0,k) never becomes singular on the path makes
the inverse of G(0,k) well defined and finite. Hence the
eigenvalues of the topological Hamiltonian also stay fi-
nite. Taken the above considerations together, at a high
symmetry k-point the multiplicity of irreps of R-zeros (L-
zeros) must be maintained under the above assumptions.
The classification with respect to the EBR approach is
therefore robust under continuous changes of the Green’s

function.
The above considerations provide an interpretation

to the Green’s function invariants. For any ground
state of an interacting Hamiltonian that can be adiabati-
cally connected to a non-interacting Hamiltonian without
the corresponding Green’s function violating the GNSC-
conditions, the Green’s function invariants must match
the non-interacting invariants obtained in the limit. Sim-
ilarly, along any path on which the ground state is unique
and whose endpoints are non-interacting models with
ground states of different non-interacting topological in-
dices, there must be at least one point where an L-zero
becomes an R-zero and/or vice-versa. This requires at
least one of the GNSC-conditions to be violated, which
occur for three different scenarios:

(i) A gap closing in the spectral function at ω = 0,
which corresponds to a zero-energy excitation with fi-
nite quasiparticle weight. This is analogous to a change
of a topological invariant by a gap closing in the non-
interacting limit. For fixed filling, the L-zero and R-zero
of different irreps must exchange at ω = 0 in this sce-
nario.

(ii) A zero eigenvalue in G(0,k), corresponds to a di-
vergence in the self-energy Σ(iω,k) at zero frequency,
defined according to:

G(iω,k) =
(
iω −H0(k)− Σ(iω,k)

)−1
. (11)

This is only possible with interactions, as a non-
interacting G(0,k) cannot have zeros provided the energy
spectrum is bounded. For the invariants defined previ-
ously in Refs. 26–33 the possibility of a change by a zero
in the Green’s function was recognized in Ref. 29 and is
discussed in Refs. 35, 36, 48, and 49. In the present con-
text, this corresponds to an L-zero and R-zero of different
irreps exchanging at infinity.

(iii) A change in the symmetry of the many-body
Hamiltonian or ground state. The latter case may oc-
cur via spontaneous symmetry breaking, which lowers the
symmetry of both the ground state and Green’s function.
As a result, any Green’s function invariants associated
with the broken symmetries become ill-defined. See also
the discussion Ref. 35 for the case of a chiral symmetry.
However, since the many-body Hamiltonian is invariant
under the spontaneously broken symmetry this implies
that the ground state must be degenerate. We have ex-
cluded this possibility by assumption in our analysis.

At this point, we should note three caveats related to
the above discussion and a possible correspondence of the
Green’s function invariants to SPT phases in the presence
of interactions.

The first caveat, also discussed in Ref. 50, is that
there exist uniquely interacting SPT phases, which can-
not be adiabatically connected to non-interacting lim-
its provided certain symmetries are preserved. Within
these phases, Green’s function invariants obtained from
the topological Hamiltonian are not constrained by the
requirement of non-interacting correspondence. In prin-
ciple, they may take either any value when the GNSC-
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site 1 site 2
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site 1 site 2

1a1b 1b2c 2c

I II

FIG. 2. a) The SSH model with the unit cell, sites and hop-
pings shown, b) Unit cell of the SSH model with Wyckoff
positions 1a,1b and 2c. The centers of the inversion symme-
try I are located in 1a and 1b. See the text for the description
of the model.

conditions are fulfilled, or they may not be well-defined.
An example of the latter case was recently demonstrated
in Ref. 51 for a 1D model exhibiting two gapped phases
adiabatically connected to non-interacting limits, in ad-
dition to an interacting SPT phase. The latter was char-
acterized by a divergence in the self-energy at zero fre-
quency, i.e. a zero eigenvalue in G(0,k) over the entire
phase.

The second caveat is that the Green’s function only
probes single-particle excitations. As a result, the spec-
trum ofHT(k) may remain gapped with finite eigenvalues
even as the spectrum of the many-body Hamiltonian be-
comes gapless with respect to a multi-particle excitation.
This allows, in principle, for a transition between distinct
SPT phases where the single-particle Green’s function in-
variants do not change. On the other hand it is also pos-
sible that a transition with a gap closing of the spectral
function gets replaced by a zero eigenvalue of G(0,k) as
discussed in Refs. 35 and 49.

The third caveat is that the Green’s function invariants
may also change without a phase transition, i.e. while
the ground state remains non-degenerate. This applies
to cases where the topological classification breaks down
upon including interactions, as explicitly demonstrated
in Ref. 21 for the CAZ symmetry class BDI where the Z
classification breaks down to a Z4 (Z8 without particle
number conservation). For the model in Ref. 21 it was
argued that the Green’s function invariant changes by a
zero eigenvalue in the Green’s function.35 We expect the
same to apply regarding an application of EBRs to the
Green’s function, especially for cases where EBRs and
invariants may be explicitly related.

In conclusion we find that a precise statement in which
cases there is a correspondence between SPT phases and
an EBR analysis of the Green’s function remains an im-
portant topic for future research.

V. AN EXAMPLE: EBRS FOR THE GREEN’S
FUNCTION IN THE SSH+U MODEL

In this section we give a detailed demonstration of the
above extension of EBRs for the Green’s function on the
simple SSH+U model in the context of inversion symme-
try and discuss the correspondingly diagnosed topological
phases.

A. The SSH+U model

The SSH+U model is defined by:

H =t1
∑
jσ

(c†j2σcj1σ + c†j1σcj2σ)

+ t2
∑
jσ

(c†j+1,1σcj2σ + c†j2σcj+1,1σ)

+ U
∑
jα

(njα↑ −
1

2
)(njα↓ −

1

2
). (12)

where c†jασ (cjασ) creates (annihilates) an electron in unit

cell j, site α ∈ {1, 2} and with spin σ. We consider the
model at half-filling. The form of the interaction is such
that the chemical potential is zero and thus included in
the Hamiltonian. The unit cell with the hopping pa-
rameters is shown in Fig. 2. We also show the Wyckoff
positions and the centers of inversion symmetry.

The model belongs to the CAZ symmetry class BDI,
which implies29 there is an integer topological classifica-
tion for the Green’s function, with a topological invariant
N1. A DMRG study on a finite system35 investigated
the case t1 + t2 > 0 and found the system to be trivial
with N1 = 0 for t1 − t2 > 0 while for t1 − t2 < 0 the
system is in a topological phase with N1 = 2 for all val-
ues of U > 0.35 At the transition at t1 = t2 the model
reduces to the 1D Hubbard model. While for U = 0
the system is in a metallic phase with band crossing at
k = π. For any U > 0 the system is a Mott insulator
with a charge gap and gapless spin excitations.52 Since
collective excitations are not visible in the single-particle
Green’s function the transition in the bulk Green’s func-
tion topological invariant N1 happens by a zero in the
Green’s function at k = π.36 In the following, we inves-
tigate how this transition at finite U is related to spatial
inversion symmetry.

B. Symmetry analysis

The model possesses time-reversal (TR), particle-hole
(PH) and chiral symmetries (CS). The latter can be asso-
ciated with the following representation for the Green’s
function in k-space:35

UCS =

(
1 0
0 −1

)
= σ3. (13)
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Here, it is not necessary to discuss the spin; since the
model is also invariant under spin rotations. We sup-
pressed the spin indices throughout the following. The
CS places a restriction on the topological Hamiltonian:

HT(k) = −σ3HT(k)σ3. (14)

We expand the topological Hamiltonian into Pauli ma-
trices. Because of eq. (14) only terms proportional to σ1
and σ2 are allowed. So we can write

HT(k) = q1(k)σ1 + q2(k)σ2. (15)

q1(k) and q2(k) are real, k-dependent coefficients. Setting
q(k) = q1(k)+iq2(k), the Green’s function topological in-
variant N1 can then be written in terms of the topological
Hamiltonian as29,35

N1 = 2 tr

∫
dk

4πi
UCSHT(k)∂kH

−1
T (k)

= 2

∫
dk

2πi
q(k)∂kq

−1(k). (16)

The factor of two in front of the integral comes from
the spin degeneracy in the model. The trace goes over
the matrix indices of the topological Hamiltonian. The
invariant just measures how often q(k) winds around the
origin in the complex plane.

We consider the inversion centered in the Wyckoff po-
sition 1a of the unit cell. The high-symmetry k-points
are κ = 0 and κ = π, whose little groups contain inver-
sion and the identity. For these k-points, the electron
operators transform as:

Ic†κασI† =
∑
β

(
ρκG(I)

)
βα
c†κβσ (17)

with the band representation of the inversion operator
ρkG(I) given by

ρkG(I) =

(
0 1
1 0

)
= σ1. (18)

At these high-symmetry k-points, the eigenvectors of the
topological Hamiltonian may be labelled by the eigen-
value of the inversion symmetry, which can be +1 or
−1. In this case working with the inversion eigenvalues
is equivalent to work with irreps, because there are only
two irreps which can be distinguished by the eigenvalue of
inversion. With only inversion symmetry there exist four
possible EBRs each containing one band (two degenerate
bands upon including time-reversal symmetry/degener-
acy in spin space). This provides four equivalence classes
for the Green’s function, defined by the EBR of the lower
band, as summarized in Table I. In the 1D group P 1̄, the
EBRs are induced by either an s-like (even under inver-
sion) or a p-like Wannier function (odd under inversion)
in the 1a or the 1b Wyckoff position. We label the EBR
by the orbital type in the respective Wyckoff position
which induces the EBR. See also Table I for all possible

TABLE I. Four possibilities to label the bands of the topo-
logical Hamiltonian by EBRs in the SSH+U model. The in-
version eigenvalues at k = 0 and k = π fully determine the
irreps. The EBR is labeled by the orbital type which induces
the EBR. The inversion eigenvalues are also indicated in the
band structure sketches.

Lower irrep
at k = 0

Lower irrep
at k = π

Lower
EBR

N1
Band structure

sketch

Γ+ X+ s1a 0

− −
+ +

0 π

Γ− X− p1a 0

+ +

− −
0 π

Γ+ X− s1b 2

− +

+ −
0 π

Γ− X+ p1b 2

+ −
− +

0 π

t1

t2

t1 = t2t1 = −t2

s1a
N1 = 0

p1a

N1 = 0

p1b

N1 = 2

s1b
N1 = 2

FIG. 3. Phase diagram obtained from an EBR analysis for
the Green’s function of the SSH+U model. The phases are
labeled by the EBR lowest in energy, derived from the inver-
sion eigenvalues (see Table I). The respective value of N1 is
also shown. The Green’s function EBRs are independent of
the value of the Hubbard interaction U , hence yielding the
same phase diagram for any value of U .

EBRs and band structures. In the SSH+U model where
both chiral and inversion symmetry are present the index
N1 can be directly related to the inversion eigenvalues at
k = 0, π: N1 = 4n+ 2 with n ∈ Z if both inversion eigen-
values have opposite sign and N1 = 4n if the signs are
equal (see Appendix B).
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(b) t1 = 0.5, t2 = 1.0

FIG. 4. Exact diagonalization results for the topological Hamiltonian as a function of U . Each figure corresponds to a
representative choice of the hopping parameters t1 and t2 for each topological phase. Labeled by the EBR of the lower band the
phases shown are (a) p1a, (b) p1b. The respective left plot shows the winding around the origin of the Pauli matrix expansion
coefficients q1(k) and q2(k) (see eq. (15)) when k sweeps the Brillouin zone. The respective right plot shows the eigenvalues of
the topological Hamiltonian together with the inversion eigenvalues of the respective eigenstates of the topological Hamiltonian
at the high-symmetry k-points denoted by + or −. The inversion eigenvalues fully determine the irreps. Increasing the Hubbard
interaction U enlarges the expansion coefficients q1(k) and q2(k) without changing the topology.

C. Exact diagonalization results

In order to compute HT at finite U , we employ ex-
act diagonalization (ED) calculations with six unit cells
and periodic boundary conditions (PBC). In this context,
a significant advantage of employing the irreps at high-
symmetry k-points to characterize the topology of the
Green’s function is that they are well-defined in finite-
size calculations without extrapolation. Nonetheless, a
previous DMRG study that considered systems consist-
ing up to 125 unit cells also did not find any indication
for a finite size effect for the invariant N1.35

In ED, the Green’s function is obtained by evaluating
the Lehmann representation eq. (A2). Therefore we cal-
culate the exact ground state in the N particle sector
(N corresponding to half-filling) and the mmax lowest in
energy exact eigenstates in the N + 1 and N − 1 particle
sector of the full many-body Hamiltonian with Lanczos
method. The numbermmax is determined such that we at
least take into account 99% of the spectral function in the
respective Green’s function entry. Since we are interested
only in G(0, k) and the Lehmann representation being es-
sentially a (finite) pole expansion, this small neglect of
spectral function has no influence on the EBR classifica-
tion in the present system. From G(0, k) the topological
Hamiltonian is simply obtained by matrix inversion (see
eq. (2)). The topological Hamiltonian is then analyzed
in terms of EBRs and the invariant N1. The resulting
phase diagram from this analysis is shown in Fig. 3.

Let us focus on the cases where t1, t2 > 0, which yields
two phases: t1 > t2 corresponds to a lower band with
EBR p1a, while t1 < t2 corresponds to a lower band with
EBR p1b. The topological Hamiltonian and its eigenval-
ues together with the inversion eigenvalues are shown in

Fig. 4. For each phase we chose representative parame-
ters t1 and t2, while increasing U . The results illustrate
that a winding of the topological Hamiltonian in the q1-
q2-plane around the origin i.e. N1 = 2 corresponds to
the inversion eigenvalues of the lower band having oppo-
site sign at k = 0 and k = π. The inversion eigenvalues
of the lower band having the same sign corresponds to
N1 = 0. Increasing U enlarges the matrix elements of the
topological Hamiltonian and hence also its eigenvalues.
Intuitively this occurs because enlarging U enlarges the
gap in the spectral function. From the spectral represen-
tation, one expects that the matrix elements of G(0,k)
become smaller. However in the present system U has
no influence on the inversion eigenvalues or N1.

We now investigate what happens at the transition
t1 = t2. For U = 0, this transition occurs via gap clo-
sure at k = π, at which point eigenvalues labelled + and
− swap by crossing over zero. This behavior may be
contrasted with finite U , which we investigate in Fig. 5.
Approaching t1 = t2, we find that the topological Hamil-
tonian and hence the self-energy at zero frequency starts
to diverge at k = π, implying that the Green’s function
at zero frequency becomes zero. At the transition the
eigenvalues of the topological Hamiltonian labeled by +
and − swap by crossing over infinity. Thus the Green’s
function EBR classification changes by violating the con-
dition that G(0,k) must be non-singular i.e. condition
two in Definition 1. This agrees with the finding that
the simultaneous transition of N1 at t1 = t2 happens
by a divergence in Σ(0, π).36 Note that one has to tune
t2 very close to the transition to observe the divergent
behavior in the eigenvalues of the topological Hamilto-
nian. Initially it might look like the eigenvalues swap by
crossing over zero, implying a gap closing in the spec-
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FIG. 5. Exact diagonalization results for the topological Hamiltonian near the line t1 = t2. In each case, t1 = 1 and U = 1 are
fixed. The respective left figure shows the winding around the origin of the Pauli matrix expansion coefficients q1(k) and q2(k)
(see eq. (15)) when k sweeps the Brillouin zone. The respective right plot shows the eigenvalues of the topological Hamiltonian
together with the inversion eigenvalues of the respective eigenstates of the topological Hamiltonian at the high-symmetry k-
points denoted by + or −. The inversion eigenvalues fully determine the irreps. The results indicate that the transition happens
by a swap over infinity of the eigenvalues of the topological Hamiltonian labeled by the inversion eigenvalues.

tral function at zero frequency (violating condition one
in Definition 1) like in the non-interacting system.

VI. CONCLUSIONS

In this work we have investigated the applicability of
elementary band representations in the spirit of TQC
and symmetry indicators to diagnose spatial- and time-
reversal-symmetry protected topological phases in inter-
acting insulators in terms of their single-particle Green’s
functions.

Starting from the fact that spatial symmetries enrich
the topological classification of the Green’s function, and
provided there exists only a unique ground state of the
interacting system, we illustrated that it is possible to
define EBRs for the Green’s function via the topological
Hamiltonian in eq. (2), in analogy to previously defined
Green’s function invariants26–33 imposed by the symme-
tries in the CAZ symmetry classes. We further estab-
lished that the Green’s function EBR classification can
only change by (i) a gap closing in the spectral func-
tion at zero frequency, (ii) the Green’s function becom-
ing singular at zero frequency (i.e. det

(
G(0,k)

)
= 0)

or (iii) the Green’s function breaking a protecting sym-
metry. However, the question in which cases there is a
strict correspondence between an EBR classification of
Green’s functions and SPT phases remains a topic for
future research.

As an example, we demonstrated the use of the EBRs
for Green’s functions on the SSH+U model, which is in
the CAZ symmetry class BDI and has spatial inversion
symmetry. This model features a transition for U > 0
where the Green’s function becomes singular at zero fre-
quency, which allows the eigenvalues of the topological

Hamiltonian at high-symmetry k-points labeled by the
inversion symmetry to swap by crossing over infinity.
Although we demonstrated the usage of EBRs for the
Green’s function only in one dimension, a similar analy-
sis can also be applied in higher dimensions.

For numerical finite-size calculations on interacting
models, the EBR evaluation may often prove valuable as
it requires only the calculation of irreps of the topolog-
ical Hamiltonian at a few high-symmetry k-points, and
thus does not require integrations over k-space or explicit
extrapolations to the thermodynamic limit.
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mann and J. L. Mañes for helpful discussions. D.L.
and R.V. acknowledge the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) for funding
through Grant No. TRR 288 - 422213477 (project B05).
M.G.V. and M.I. acknowledge support from the Span-
ish Ministerio de Ciencia e Innovacion (grants number
PID2019-109905GB-C21 and PGC2018-094626-B-C21)
and Basque Government (grant IT979-16). Part of the
work of M.G.V. and R.V. was carried out at Kavli Insti-
tute of Theoretical Physics (KITP), which is supported
by the National Science Foundation under Grant No.NSF
PHY-1748958.

Appendix A: Analytic properties of the Matsubara
Green’s function

In this appendix we investigate analytic properties of
the Green’s function, necessary to apply EBRs to inter-
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acting systems in terms of the Green’s function. For com-
pleteness and to clarify our notation we first review the
definition and the spectral representation of the Matsub-
ara Green’s function. We then proof that, for a Green’s
function fulfilling the first two GNSC-conditions, the cor-
responding topological Hamiltonian is Hermitian with fi-
nite eigenvalues whose absolute value is bounded from
below.

For simplicity we consider a lattice model defined on
a basis of exponentially localized, orthonormal Wannier
functions φiα(r) consistent with the symmetries of our
system, where the index i labels the unit cell with lat-
tice vector Ri to which φiα(r) belongs to. The Wannier
function in that cell is specified by the index α which can
also include spin. From the Wannier functions φiα(r)
one can construct Bloch-like wave functions ψkα(r) by a
Fourier transform. In the basis of Bloch-like wave func-
tions the single-particle Matsubara Green’s function in
the zero-temperature limit is defined as

Gαβ(τ,k) = −〈0| T ckα(τ)c†kβ |0〉 , (A1)

where c†kα (ckα) creates (annihilates) an electron in the
Bloch-like state with crystal momentum k and orbital
index α. The time evolution is in imaginary time τ . T
denotes time ordering in imaginary time and |0〉 denotes
the ground state, which in the following we assume to
be non-degenerate. Here and throughout this paper we
include the chemical potential µ in the Hamiltonian.53

Going to frequency space we can write the Green’s func-
tion in the Lehmann representation

Gαβ(iω,k) =
∑
m

[
〈0| ckα |m〉 〈m| c†kβ |0〉
iω − (Em − E0)

+
〈m| ckα |0〉 〈0| c†kβ |m〉
iω + (Em − E0)

]
. (A2)

For the ground state having N particles the sum runs
over the exact eigenstates |m〉 of the many-body Hamil-
tonian with N + 1 and N − 1 particles. The Em are the
corresponding exact energy eigenvalues. E0 is the ground
state energy. Note that in the zero-temperature limit
the discrete Matsubara frequencies ωn become continu-
ous iωn → iω. For the special case of a non-interacting
Hamiltonian the Matsubara Green’s function can be sim-
ply written in terms of the corresponding Bloch Hamil-
tonian, see eq. (1).

The Matsubara Green’s function G(iω,k) has an ana-
lytical extension from the imaginary axis to the whole
complex plane except the real axis, i.e. G(z,k) with
z ∈ C \ R. From the Lehmann representation one ob-
tains that G(z,k) has poles on the real axis. We can
write down the spectral representation for G(z,k)

G(z,k) =

∫ ∞
−∞

dω′

2π

A(ω′,k)

z − ω′ (A3)

with the matrix elements Aαβ(ω,k) of the spectral func-
tion given by

Aαβ(ω,k)

=
∑
n

〈0| ckα |n〉 〈n| c†kβ |0〉 2πδ
(
ω − (En − E0)

)
+
∑
n

〈n| ckα |0〉 〈0| c†kβ |n〉 2πδ
(
ω − (E0 − En)

)
, (A4)

where ω ∈ R. Inserting eq. (A4) into eq. (A3) reproduces
the Lehmann representation in eq. (A2). For the case of
an infinite crystal the poles of G(z,k) become dense and
form a branch cut.54 It can be shown from its definition
that the spectral function is Hermitian and positive semi-
definite for all k and ω. Further for a vector a with the
same dimension as the spectral function and ||a|| = 1 the
spectral function is normalized in the following sense∫ ∞

−∞

dω

2π

∑
α,β

aαAα,β(ω,k)aβ

=
∑
αβ

aα 〈0| {ckα, c†kβ} |0〉 aβ

=
∑
α,β

aαaβδαβ

= 1, (A5)

where aα denotes the complex conjugate of aα. Every
complex matrix can be decomposed into a Hermitian and
an anti-Hermitian part. Since A(ω,k) is Hermitian and
with z = x + iy with x, y ∈ R we can write the Green’s
function as

G(z,k) =

∫ ∞
−∞

dω′

2π
A(ω′,k)

(x− ω′)
(x− ω′)2 + y2

− i
∫ ∞
−∞

dω′

2π
A(ω′,k)

y

(x− ω′)2 + y2
, (A6)

which defines a decomposition G = G1 + iG2 with both
G1 and G2 being Hermitian. Evaluating the limit of z ap-
proaching the real axis we must distinguish between tak-
ing the limit coming from the upper or the lower complex
plane. For η > 0 and ω ∈ R one obtains

lim
η→0

G(ω ± iη,k) = PV

∫ ∞
−∞

dω′

2π

A(ω′,k)

(ω − ω′) ∓
i

2
A(ω,k),

(A7)

where PV denotes the Cauchy principal value.
We now focus on the case where the spectral func-

tion has a non-zero gap at zero frequency for every k-
point, i.e. the first condition in Definition 1. This causes
both limits limη→0G(ω ± iη,k) to coincide within the
gap and as a consequence G(iω,k) is analytic in iω. Fur-
ther in this case G(0,k) is Hermitian, because the anti-
Hermitian part iG2(0,k) is directly proportional to the
spectral function A(0,k) and hence vanishes, as can seen
from eq. (A7).
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FIG. 6. Illustration of the topological invariant N1 for the (non-interacting) SSH model with t1 = 1 fixed. The respective
left plot shows the winding of the Pauli matrix expansion coefficients q1(k) and q2(k) around the origin when k sweeps the
Brillouin zone (see eq. (15)). The respective right plot shows the band structure with inversion eigenvalues of the eigenstates
at the high-symmetry k-points, denoted by + or −. The inversion eigenvalues fully determine the irreps. The value of N1 can
already be read of from looking at the inversion eigenvalues. In the N1 = 0 phase the inversion values within the same band
have the same sign, in the N1 = 2 phase they have opposite sign. In Fig. (a) for t1 > t2 one finds N1 = 0 except for the point
of the transition at t1 = t2 = 1 where the gap closes. In Fig. (b) for t2 > t1 one finds N1 = 2.

We now show that for a gapped spectral function the
absolute values of the eigenvalues of G(0,k) are bounded
from above. To our knowledge this has not been shown
before. Since the gap is non-zero, there exists an ε > 0
such that the interval [−ε, ε] lies inside the gap. For a
vector a with the same dimension as G and ||a|| = 1 we
can make the following estimate

|
∑
αβ

āαGαβ(0,k)aβ |

≤
∑
αβ

∫ ∞
−∞

dω′

2π
āαAαβ(ω′,k)aβ

1

|ω′|

=
∑
αβ

∫
R\[−ε,ε]

dω′

2π
āαAαβ(ω′,k)aβ

1

|ω′|

≤ 1

ε

∑
αβ

∫
R\[−ε,ε]

dω′

2π
āαAαβ(ω′,k)aβ

=
1

ε
. (A8)

Going from the first to the second line we have used that
the spectral function A(ω,k) is positive semi-definite.
Using these properties it follows that the eigenvalues of
G(0,k) are real and and their absolute value is bounded.
It follows that the topological Hamiltonian, which for
G(0,k) non-singular (i.e. det

(
G(0,k)

)
6= 0) can be de-

fined by eq. (2), has real eigenvalues with their absolute
value being bounded from below.

Appendix B: Relationship between Green’s function
topological invariants and EBRs for the SSH+U

Model

As a consequence of inversion symmetry, we have ac-
cording to eq. (10)

HT(k) = σ1HT(−k)σ1. (B1)

For the Pauli matrix expansion coefficients in eq. (15)
this implies

q1(k) = q1(−k), (B2)

q2(k) = −q2(−k). (B3)

So this symmetry further restricts the form of the topo-
logical Hamiltonian. The eigenvalues of the topological
Hamiltonian are implicitly given by

µ±(k) = ±
√(

q1(k)
)2

+
(
q2(k)

)2
(B4)

For the eigenvectors of the lower and the upper band
v−(k) and v+(k) we find

v−(k) =
1√
2

(
1
−q(k)
|q(k)|

)
, (B5)

v+(k) =
1√
2

(
1
q(k)
|q(k)|

)
. (B6)

Of special interest are the high symmetry k-points κ =
0, π, where inversion symmetry implies that q2(κ) must
vanish, so that q(κ) = q1(κ). The inversion eigenvalues
can simply be calculated by multiplying the representa-
tion of the inversion operator with the eigenvectors. For
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both bands we get

ρκG(I)v−(κ) = −sign
(
q1(κ)

)
v−(κ), (B7)

ρκG(I)v+(κ) = sign
(
q1(κ)

)
v+(κ). (B8)

The evolution of the spectrum, inversion eigenvalues,
and Hamiltonian parameters for the non-interacting limit
U = 0 are shown in Fig. 6.

If the inversion eigenvalues have the same sign at both
κ = 0 and κ = π, it follows from eq. (B7) that q(0)
and q(π) also have the same sign. From eq. (B2) and
eq. (B3) we get that the q(k) curve is mirror symmetric
with respect to the q1 axis. Now it is easy to see that the
winding must be 2n in this case. Suppose the contrary
would be true and we would wind 2n + 1 times around
the origin. Then in the interval [0, π] q(k) winds exactly
an integer and a half times around the origin, because
of q1(k) = q1(−k) and q2(k) = −q2(−k) which also im-
plies q2(π) = 0 (imagine winding in the exact opposite

direction while k goes backwards form 2π to π). But this
would mean q1(0) and q1(π) have different signs. Hence
the winding number must be 2n.

With the same symmetry arguments it follows that if
at both high symmetry k-points the inversion eigenvalues
have the opposite sign and hence the signs of q1(0) and
q1(π) are opposite, then the winding number must be
2n + 1. Note that if q2(k) = 0 for all k and q1(0) and
q1(π) have different signs then then there must be a k-
point for which both q1 and q2 either vanish or become
infinite at the same time. But this is excluded by the
assumptions that we have a gap in the spectral function
and G(0,k) being non singular. So we really have to wind
2n+ 1 times around the origin.

To summarize: If in the SSH+U model the inversion
eigenvalues of the lower band at the high-symmetry k-
points have the same sign, then N1 = 2n with n ∈ Z. If
they have opposite signs, then N1 = 2n + 1 with n ∈ Z.
Spin degeneracy gives a further factor of two, i.e. N1 =
4n + 2 if both inversion eigenvalues have opposite sign
and N1 = 4n if the signs are equal.
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