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We present a computationally efficient approach to perform systematically convergent real-space
all-electron Kohn-Sham DFT calculations for solids using an enriched finite element (FE) basis.
The enriched FE basis is constructed by augmenting the classical FE basis with atom-centered
numerical basis functions, comprising of atomic solutions to the Kohn-Sham problem. Notably, to
improve the conditioning, we orthogonalize the enrichment functions with respect to the classical FE
basis, without sacrificing the locality of the resultant basis. In addition to improved conditioning,
this orthogonalization procedure also renders the overlap matrix block-diagonal, greatly simplifying
its inversion. Subsequently, we use a Chebyshev polynomial based filtering technique to efficiently
compute the occupied eigenspace in each self-consistent field iteration. We demonstrate the accuracy
and efficiency of the proposed approach on periodic unit-cells and supercells. The benchmark studies
show a staggering 130× speedup of the orthogonalized enriched FE basis over the classical FE basis.
We also present a comparison of the orthogonalized enriched FE basis with the LAPW+lo basis, both
in terms of accuracy and efficiency. Notably, we demonstrate that the orthogonalized enriched FE
basis can handle large system sizes of ∼10,000 electrons. Finally, we observe good parallel scalability
of our implementation with 92% efficiency at 22× speedup for a system with 620 electrons.

I. INTRODUCTION

Density Functional Theory (DFT) has been the
workhorse of electronic structure calculations over the
past several decades. The theory states that all ground-
state properties of materials can be completely deter-
mined from the ground-state electron density1. One
of the most common methods to construct this den-
sity is by using the Kohn-Sham formulation2 which re-
places the many-body problem with a single electron
problem in an effective potential. The many body in-
teractions are encapsulated in one component of this
potential—the exchange-correlation potential. While the
exact form of this potential is unknown, several approxi-
mations are available3. Beyond the exchange-correlation
approximation, typical DFT calculations also employ
a pseudopotential approximation4–8, to attain a good
balance of computational efficiency and accuracy. To
elaborate, the pseudopotential models the effect of the
singular nuclear potential and the core electrons into
a smooth effective potential. As a result, it simpli-
fies the Kohn-Sham problem to the evaluation of only
the smooth pseudo-wavefunctions corresponding to the
valence electrons. Despite the success and widespread
use of pseudopotentials, some numerical studies over
the past two decades have highlighted the limitations
of the pseudopotential approximation. Some of them
include the study of ground-state properties of com-
pounds of inner-transition metals9,10, phase transition
properties of semiconductors11,12 and transition metal
oxides13, ionization potentials of actinide atoms14, point
defects in refractory metals15, excited state properties

with many-body perturbation theory16,17, etc. Although
substantial recent progress has been made with the ad-
vent of multi-projector pseudopotential formulations18,
all-electron calculations serve as a useful avenue for sys-
tems where pseudopotentials lack in accuracy and also
aid pseudopotential transferability studies.

Although all-electron calculations provide for a com-
plete description of the materials system, they come at
a substantially high computational cost, owing to the
numerical challenge in capturing the sharp variations of
the electronic fields and the need to compute for much
larger number of single electron states. Historically, all-
electron calculations have been conducted using atom-
centered orbitals19–21. This entails the use of a few
atom-specific basis functions per atom, and thereby af-
ford good computational efficiency. However, owing to
the incomplete nature of the basis, they lack system-
atic convergence and may not provide the desired ac-
curacy, especially for metallic systems22–24. The other
widely used approach to all-electron DFT calculations
involves the augmented planewave25 family of methods,
which includes the augmented planewave (APW)26,27,
linearized augmented planewave (LAPW)28–30, APW+lo
(localized orbitals)31–33, and LAPW+lo34,35 methods. In
these methods, the simulated physical domain is divided
into two regions: atom centered spheres called muffin tins
(MTs) and the interstitial region. The basis functions in
the interstitial region are planewaves. Inside the MTs,
the basis functions are products of radial functions and
spherical harmonics. The radial functions are solutions
to the 1D radial Kohn-Sham equation, solved using a
spherically averaged potential and a choice of an energy
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parameter. While the planewave augmented methods are
efficient for all-electron calculations, the quality of the
basis remains sensitive to choice of the MT radius, the
core-valence split, the function matching constraints at
sphere boundary, and the energy parameter used in con-
structing the radial functions. Moreover, with the usage
of planewaves in the interstitial regions they inherit cer-
tain notable disadvantages of planewaves, such as their
restrictions to periodic boundary conditions and the lim-
ited parallel scalability owing to the the extended nature
of planewaves.

An alternative approach that has recently gained
prominence for DFT calculations is the finite element
(FE) method36, which comprises of local piecewise con-
tinuous polynomials. Like planewaves, the FE basis is
complete, and provides systematic convergence. How-
ever, unlike planewaves, the FE basis offers additional
advantages of locality that affords good parallel scalabil-
ity, ease of adaptive spatial resolution, and the ability to
handle arbitrary boundary conditions. In the context of
pseudopotential calculations, there exists a growing body
of works37–48 that establishes usefulness of the FE basis.
Particularly, recent efforts47,48 at efficient FE based DFT
calculations have outperformed planewaves by 5 − 10×,
for pseudopotential calculations beyond system sizes con-
taining a few hundred atoms. For all-electron calcu-
lations, although some of the works37,45,46,49–57 have
demonstrated the promise of the FE basis, the efficiency
of the FE basis remains unsatisfactory when compared
to the atomic orbitals type basis. As shown in46, with
regards to all-electron calculations, the FE basis is an
order of magnitude slower than the gaussian basis.

An enriched finite element (EFE) basis, wherein the
classical FE (CFE) basis (i.e., the standard FE basis)
is augmented with atom-centered basis, termed as en-
richment functions, offers a way to greatly improve the
efficiency of the FE basis. Several efforts have explored
the efficacy as well as the various numerical aspects of
employing an EFE basis for DFT calculations. Previous
efforts have explored the EFE basis for the solution of the
Schrödinger and the Kohn-Sham equations in the context
of pseudopotential calculations58–60 as well as the elec-
trostatic problem arising in all-electron calculations59,61.
In these works, the size of EFE basis required to reach
chemical accuracy was shown to be an order of magni-
tude smaller than the corresponding planewave basis and
two orders of magnitude smaller than the corresponding
CFE basis59,60. In the context of the full ground-state
all-electron calculations, the promise of an EFE basis
was, first, established by combining the CFE basis with
the standard gaussian basis62 (see63 for more about the
standard gaussian basis). More recently, in64 a more ef-
ficient EFE basis for all-electron calculations have been
proposed by combining the CFE basis with numerical
atom-centered basis. Given that the enrichment func-
tions are extended in space, maintaining the locality of
the resultant basis as well as the sparsity of the discrete
matrices (Hamiltonian and overlap) remains a challenge.

To that end, the partition-of-unity finite element method
(PUFEM)65,66 ensures locality by modulating the enrich-
ment functions with a set of local polynomials that form
a partition-of-unity (i.e., akin to the CFE basis functions)
and has been adopted in58–60. As a result of maintaining
the locality of the basis at the same level of the CFE ba-
sis, PUFEM simplifies the discrete matrix structure and
load balancing in a parallel computing framework. How-
ever, given that each enrichment function in PUFEM are
modulated with several local polynomials, PUFEM en-
tails a large number of additional functions. An alter-
native approach is to multiply the the enrichment func-
tions with a single smooth cutoff function and has been
adopted in64, in the context of large-scale all-electron cal-
culations. As demonstrated in64, this particular EFE ap-
proach attains a staggering 50 − 100× speedup over the
CFE basis, and a 3−8× speedup over the gaussian basis.
While enrichment of the FE basis resulted in impressive
improvements in efficiency, such an enrichment is prone
to ill-conditioning with increasing refinement of the CFE
basis60,67–70. To elaborate, since, unlike the planewave
augmentations, the enrichment functions spatially over-
lap with the CFE basis functions, they remain suscepti-
ble to becoming linearly dependent on the CFE basis. In
turn, it affects the robustness and accuracy of the EFE
basis, especially while dealing with a refined CFE basis.

The ill-conditioning problem is also present in
PUFEM, and several efforts ranging from stabiliza-
tion68,71 to orthogonalization procedures72 have been
proposed to alleviate the problem. However, these
schemes have been designed keeping in view engineer-
ing applications (e.g., fracture mechanics, elastostatics)
as well as the local structure of the partition-of-unity,
and hence, cannot be trivially extended to all-electron
DFT calculations involving an EFE basis which does
not employ a partition-of-unity. Recently, a combi-
nation of flat-top partition-of-unity approach and local
partial-orthogonalization67 has been extended to solve
the Schrödinger equation with a localized potential, at-
taining an O(1010) decrease in the condition number over
PUFEM69. However, its efficacy for all-electron DFT cal-
culations remains unexplored.

This work presents a robust approach to construct
a well-conditioned and local EFE basis for all-electron
DFT calculations. We resolve the ill-conditioning in the
EFE basis by introducing an orthogonalized enriched FE
(OEFE) basis. To elaborate, we recast the enrichment
functions such that they are orthogonal to the under-
lying CFE basis, while maintaining the locality of the
resultant basis. In addition to the orthogonalization of
the enrichment functions, in this work, we generalize the
enrichment to handle periodic systems. In particular,
we employ k-point dependent enrichment functions, so
as to afford greater computational efficiency. To effi-
ciently solve for the electrostatic potentials, we use the
smeared charge approach proposed in61. This procedure
involves replacing the point nuclear charge by an analyt-
ical smeared charge whose corresponding potential can
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be used to correct for the electrostatic potential. Lastly,
as an efficient solution strategy for solving the discrete
Kohn-Sham eigenvalue problem, we employ the Cheby-
shev polynomial based filtering approach46,73,74 to com-
pute the subspace spanned by the occupied eigenstates,
and then solve the Kohn-Sham eigenvalue problem by
projecting the problem onto the Chebyshev-filtered sub-
space.

We demonstrate the accuracy and efficiency of the pro-
posed OEFE basis for all-electron DFT calculations, us-
ing both unit cell and large scale periodic calculations.
First, we study the rate of convergence in the ground-
state energy with respect to mesh size by performing
Γ-point calculations on lithium fluoride (LiF) and dia-
mond. Next, we assess the accuracy of the proposed
method against the LAPW+lo basis by comparing the
k-point converged ground-state energy and band struc-
ture on magnesium sulfide (MgS) and cerium (Ce) unit
cells. Additionally, we demonstrate the competence of
the OEFE basis for large scale all-electron calculations
on four materials systems: (i) silicon carbide (SiC) diva-
cancy, (ii) NV-diamond, (iii) copper (Cu) monovacancy,
and (iv) silver chloride (AgCl) divacancy, each of increas-
ing supercell sizes. We attain a substantial 130× speedup
of the OEFE basis over the CFE basis. Moreover, the
OEFE basis outperforms the LAPW+lo implementation
in the Elk75 code for the moderately sized SiC divacancy
and the NV-diamond systems. For systems containing
heavier atoms—the Cu monovacancy and the AgCl diva-
cancy systems—the LAPW+lo implementation outper-
forms the OEFE basis. Notably, with the OEFE basis
we are able to perform calculations on large systems,
ranging up to 9,980 electrons, using modest computa-
tional resources, which are otherwise inaccessible to the
LAPW+lo implementation in Elk. Lastly, we study the
strong scaling behaviour of the OEFE basis, using a 62
atom SiC divacancy system, and observe an efficiency of
92% at 22× speedup (192 processors).

The rest of the paper is organized as follows. In Sec. II,
we present the real-space formulation for periodic all-
electron Kohn-Sham density functional theory calcula-
tions employed in this work. The details of the OEFE
disretization are presented in Sec. III, which is followed
by the numerical approach employed in the solution of
the discrete Kohn-Sham problem in Sec. IV. In Sec. V,
we demonstrate the accuracy, efficiency and parallel scal-
ability of the OEFE basis. Finally, we summarize our
findings and present the future scope of this work in
Sec. VI.

II. FORMULATION OF KOHN-SHAM DFT

For periodic systems, the Kohn-Sham eigenvalue prob-
lem can be written as(

−1

2
∇2 + Veff(ρ,R)

)
ψα,k(x) = εα,kψα,k(x) , (1)

where ψα,k(x) and εα,k are the Kohn-Sham eigenfunc-
tions and eigenvalues, respectively, corresponding to
the k point in the reciprocal space; the index α runs
over all the electrons (Ne) in the system; and R =
{R1,R2, . . . ,RNa

} corresponds to the position of the Na
atoms in the system. The effective Kohn-Sham potential
Veff(ρ,R) is constructed using the electron density ρ(x).
We remark that as the first effort at an OEFE basis for
all-electron DFT, we present the formulation in the con-
text of non-relativistic DFT. Nevertheless, the ideas ex-
plored can be extended to relativistic DFT (scalar rela-
tivistic and spin-orbit coupling) as well. Furthermore,
in the current work, we restrict our analysis to spin-
independent systems. However, all the ideas discussed
subsequently can be generalized, in a straightforward
manner, to spin-dependent systems.

The constituents of the effective potential Veff(ρ,R) are
given by

Veff(ρ,R) = Vxc (ρ) + VH (ρ) + Vext (R) , (2)

where Vxc (ρ) = δExc[ρ]
δρ(x) is the exchange-correlation po-

tential computed as the functional derivative of the
exchange-correlation energy Exc [ρ] with respect to ρ.
Vxc (ρ) is a mean-field potential which accounts for
quantum mechanical many-body interactions. In this
work, we use the local density approximation (LDA)
exchange-correlation functional with Ceperley and Adler
constants76,77. VH and Vext are the Hartree and nuclear
potentials, respectively, and are given by

VH (x) =

∫
R3

ρ(x′)
|x− x′|dx

′ , (3)

Vext (x) = −
∑
J

ZJ
|x−RJ |

, (4)

where ZJ is the atomic number of the J th nucleus in
R3. Equivalently, the evaluation of the electrostatic po-
tentials can be recast as a Poisson problem41,43,78,79. In
this work, we compute the total electrostatic potential
which combines both the Hartree and the nuclear po-
tentials. The total electrostatic potential φtot(x) can be
evaluated by solving the following Poisson problem

− 1

4π
∇2φtot(x) = b(x) + ρ(x) , (5)

where b(x) is the sum of all nuclear charges. Convention-
ally, in an all-electron calculation the nuclear charges are
treated as point charges, i.e.,

b(x) = −
∑
I

ZI δ̃(x−RI) , (6)

where δ̃(x−RI) is the Dirac delta function representing a
point nuclear charge at RI . Equivalently, as shown in61,
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one could evaluate φtot using an appropriately scaled
smeared charge such that it integrates to the same value
as the point charge. To elaborate, we can define a
smeared nuclear charge bsmear(x) given as

bsmear(x) = −
∑
I

ZIg(|x−RI |, rc,I) , (7)

where g(|x − RI |, rc,I) denotes a unit smeared charge
which is localized within |x −RI | < rc,I and integrates
to unity. In this work, we employ the following form for
the unit smeared charge61

g(r, rc) =

{
−21(r−rc)3(6r2+3rrc+r2c)

5πr8c
, 0 ≤ r ≤ rc,

0, r > rc
(8)

The rc,I ’s are chosen to be the largest possible values that
avoid overlap between two neighboring smeared charges.
Subsequently, we use bsmear to compute an auxiliary elec-
trostatic potential φaux(x) given as

− 1

4π
∇2φaux(x) = bsmear(x) + ρ (x) . (9)

Finally, the total electrostatic potential φtot is obtained
from φaux by adding a correction term, and is given as

φtot(x) =φaux(x)+∑
I

(
VN,I (|x−RI |)− V smear

N,I (|x−RI |, rc,I)
)
,

(10)

where the second term is the correction term compris-
ing of the sum of the difference between the exact nu-
clear potential (VN,I) and the smeared nuclear potential
(V smear

N,I ), both corresponding to the Ith nucleus. The ex-

act and smeared nuclear potentials for the Ith nucleus
are given by

VN,I(r) = −ZI
r
, (11)

V smear
N,I (r, rc,I) = −ZIvg(r, rc,I) , (12)

where vg(r, rc) is the potential corresponding to the
g(r, rc) and is given by

vg(r, rc) =

{
9r7−30r6rc+28r5r2c−14r2r5c+12r7c

5r8c
, 0 ≤ r ≤ rc

1
r , r > rc .

(13)
At this juncture, we note that in a sufficiently refined FE
basis, as is typically warranted in a CFE basis based
all-electron calculation, both the point and smeared
charge approaches provide comparable accuracy. How-
ever, while using a coarse FE basis, as is the case while
employing an EFE basis, the smeared charge approach
fares better in terms of computational efficiency. Thus,

for the remaining of the paper, we restrict our discus-
sion regarding the electrostatic potential to the smeared
charges.

Returning to Eq. 1, we invoke the Bloch theorem80 to
write ψα,k (x) in terms of the Kohn-Sham periodic func-
tion, uα,k (x)—a quantity which respects the periodicity
of the crystal—and is given by

ψα,k (x) = exp (ik · x)uα,k (x) . (14)

Using the above relation, Eq. 1 becomes(
−1

2

(
∇2 + 2ik · ∇ − |k|2

)
+ Veff(ρ,R)

)
uα,k(x) =

εα,kuα,k(x) .

(15)

The electron charge density is computed in terms of uα,k
as follows

ρ (x) = 2
∑
k

wk

∑
α

f (εα,k, µ) |uα,k (x) |2 , (16)

where f (εα,k, µ) is the fractional occupancy of the eigen-
state with eigenvalue εα,k, and µ denotes the Fermi level.
The sum over k is a discrete sum over grid points lying in
the Brillouin zone, and wk is the associated weight. Typ-
ically, the k-point grid is chosen based on the Monkhorst-
Pack (MP) scheme81. We use the Fermi-Dirac distribu-
tion for the fractional occupancy, given by

f (ε, µ) =
1

1 + exp
(
ε−µ
kBT

) , (17)

where T is the smearing temperature and kB is the Boltz-
mann constant. The Fermi level µ is determined by the
constraint on the number of electrons Ne in the simula-
tion domain Ω, and is given by∫

Ω

ρ (x) = 2
∑
k

wk

∑
α

f (εα,k, µ) = Ne . (18)

We remark that by exploiting the symmetry of the
crystal82,83, we can achieve a reduction3 in the number
of k-points of the MP grid for which uα,k needs to be
computed. To elaborate, if k1 and k2 belong to an MP
grid and k2 = R̂k1, where R̂ is a point group operation
of the crystal, we have

uα,k1 (x) = uα,k2(R̂x + f̂), and εα,k1 = εα,k2 , (19)

where f̂ is a fractional translation3 corresponding to R̂.
Finally, upon solving Eq. 15 and Eq. 16 self-

consistently, the ground-state energy of the system is
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given by

Etot = Eband + Exc + Eelec −
∫

Ω

ρVxc dx−
∫

Ω

ρφtot dx .

(20)
In the above equation, Eband is the band energy given by

Eband = 2
∑
k

wk

∑
α

f (εα,k, µ) εα,k . (21)

Eelec is the electrostatic energy given by61

Eelec =

∫
Ω

1

2
(bsmear(x) + ρ(x))φaux(x)dx+∑

I

∫
ΩI

ρ(x)
(
VN,I (|x−RI |)− V smear

N,I (|x−RI |, rc,I)
)

+

∑
I

1

2
Z2
I (Ig(rc,I)− vg(0, rc,I)) ,

(22)

where ΩI denotes a sphere of radius rc,I centered at
RI (i.e., the compact support of (VN,I − V smear

N,I )), and

Ig(rc) = 10976/(17875rc) .

III. ORTHOGONALIZED ENRICHED FINITE
ELEMENT (OEFE) METHOD

We now present the details of the OEFE discretization
proposed in this work. To begin with, the EFE discretiza-
tion64 augments the CFE basis (a continuous localized
piecewise polynomial basis36,84) with atom-centered nu-
merical basis—termed as enrichment functions. The key
idea here is to account for the sharp variations in the
orbitals and the electrostatic potentials close to nuclei,
largely, through the enrichment functions, and thereby
eliminate the need for a refined classical finite element
mesh close to the nuclei. Although it offers an efficient
basis for all-electron calculations, it can result in an ill-
conditioned basis. To elaborate, the enrichment func-
tions remain prone to being linearly dependent on the
CFE basis, especially while using refined finite element
meshes, thus potentially affecting the accuracy and ro-
bustness of the EFE basis. While one can control the ill-
conditioning by decreasing the compact support of the
enrichment functions through a smooth cutoff function
(as adopted in Ref.64), it results in three issues: (i) the
decrease in the compact support leads to a deterioration
of the enrichment functions, in terms of capturing the
electronic fields, and hence, results in the use of higher
number of CFE basis functions to compensate; (ii) the
improvement to the conditioning through this approach
is both limited and marginal (as will be demonstrated
in Sec. V A); (iii) a reasonable choice of truncating the
enrichment functions becomes dependent on the under-
lying classical FE mesh, thereby affecting the ease and
robustness of generating a suitable EFE basis. To this

end, we alleviate the problem of ill-conditioning in the
EFE basis by formulating an OEFE basis.

A. Orthogonalized enriched finite element
discretization

The OEFE discretization of the Kohn-Sham periodic
functions, (uhα,k(x)), is given by

uhα,k(x) =

nh∑
i=1

NC
i (x)uCα,k,i︸ ︷︷ ︸

Classical

+

Na∑
I=1

nI∑
j=1

NO,uk

j,I (x)uOα,k,j,I︸ ︷︷ ︸
Orthogonalized Enriched

.

(23)
In the above equation, the superscript h indicates a dis-
crete field, and the superscript C and O are used to
distinguish the classical and the orthogonalized enriched
components, respectively. NC

i (x) denotes the ith CFE
basis function, and uCα,k,i denotes the expansion coeffi-

cient of NC
i (x) for uα,k. Similarly, NO,uk

j,I (x) denotes the
k-point dependent orthogonalized enrichment function
for uα,k (∀α). The index I runs over all the atoms (Na)
in the system, and the index j runs over all the atomic
Kohn-Sham orbitals (nI) we include for the atom I. In
other words, the Ith atom, situated at RI , contributes nI
enrichment functions, each centered around RI . u

O
α,k,j,I

represents the expansion coefficient of NO,uk

j,I (x) corre-
sponding to uα,k.

Turning to the form of the orthogonalized enrichment

function, NO,uk

j,I (x), we split it into two parts, given as

NO,uk

j,I (x) = NA,uk

j,I (x)−NB,uk

j,I (x) . (24)

In the above equation, NA,uk

j,I (x) is the atomic part that
encapsulates the single atom Kohn-Sham orbital infor-

mation. On the other hand, NB,uk

j,I (x) denotes the com-

ponent of NA,uk

j,I (x) along the CFE basis which, when

subtracted from NA,uk

j,I (x), guarantees the orthogonality

of NO,uk

j,I (x) with respect to the CFE basis {NC
i (x)}.

We note that NA,uk

j,I (x) needs to be both periodic as
well as incorporate k-point dependence. To that end, we

choose NA,uk

j,I (x) to be

NA,uk

j,I (x) = e−ik.(x−R
x
I )ψ̃j,I(x,R

x
I ) . (25)

In the above equation, Rx
I denotes position of the near-

est image of the atom at RI to x. In other words, for
a given point x and nucleus I, Rx

I is the position cho-
sen from the set consisting of RI and its periodic images
such that it yields the smallest distance from x. This
ensures periodicity of the enrichment functions by wrap-
ping them around the periodic boundaries. The function
ψ̃j,I(x,R

x
I ) is a truncated Kohn-Sham orbital of the iso-

lated atom of the atom type located at Rx
I (i.e., of the



6

atom of the Ith nucleus). ψ̃j,I(x,R
x
I ) is given by

ψ̃j,I(x,R
x
I ) = ψnlm,I(|x−Rx

I |, βRx
I
, γRx

I
)h(|x−Rx

I |, r0, t) ,
(26)

where ψnlm,I is an atomic Kohn-Sham orbital indexed
by the principal quantum number n, azimuthal quantum
number l, and magnetic quantum number m, for an iso-
lated atom of the atom type of the Ith nucleus, defined
in spherical coordinates. We maintain an appropriate
correspondence between j and (n, l,m). βRx

I
and γRx

I

are the polar and azimuhthal angles, respectively, with
respect to a shifted origin at Rx

I . Typically, we include
all the ψnlm,I with non-zero fractional occupancy as en-
richment functions. The function h(r, r0, t) is a smooth
cutoff function, parameterized by a cutoff radius r0 and
smoothness factor t, and has the following properties,

h(r, r0, t) =


1 0 ≤ r < r0,

0 ≤ h < 1 r0 < r ≤ r0 + r0
t ,

0 r > r0 + r0
t .

(27)

We remark that h(r, r0, t) offers two vital functions: (i)
it avoids spurious self interaction of the enrichment func-
tions, especially for periodic problems with small lattice
constants; and (ii) it renders locality to the basis, and
hence, is crucial to the parallel efficiency of its imple-
mentation. We refer to64 for a detailed discussion on the
form of ψnlm,I and h(r, r0, t) as well as the choices for r0

and t. In particular, we localize the enrichment functions
within 2.5 − 3.5 a.u. from its corresponding nucleus or
to the maximum extent feasible to avoid self-interaction,
whichever is smaller. In this work, we use the radial
Kohn-Sham solver code dftatom85 to precompute ψnlm,I .

At this stage, for simplicity of notation, we combine

the {j, I} indices in NO,uk

j,I (x), NA,uk

j,I (x), NB,uk

j,I (x) into

a single index ν. Further, we define nuO =
∑Na

I=1 nI to
denote the total number of orthogonalized enrichment
functions used for discretizing uα,k.

We now turn to NB,uk
ν (x)—the orthogonalizing part of

NO,uk
ν (x) (Eq. 24). Given that NB,uk

ν (x) represents the
component of NA,uk

ν (x) along the CFE basis, we define
it as

NB,uk
ν (x) =

nh∑
l=1

ckν,lN
C
l (x) , (28)

where the coefficients ckν,l are to be obtained using the
orthogonality condition,∫

Ω

NO,uk
ν (x)NC

j (x) dx = 0 , j = 1, 2, . . . , nh . (29)

From Eq.24 and Eq.29, we get

Mccckν = dk
ν . (30)

In the above equation, Mcc is the overlap matrix of the

CFE basis, given by

M cc
jl =

∫
Ω

NC
j (x)NC

l (x) dx , (31)

and ckν is the vector containing the coefficients ckν,l, and

the vector dk
ν is defined as

dkν,j =

∫
Ω

NA,uk
ν (x)NC

j (x) dx . (32)

We further simplify the evaluation of ckν by employ-
ing a combination of spectral finite-elements and Gauss-
Lobatto-Legendre (GLL) quadrature rule, which renders
Mcc diagonal. Typically, the CFE basis functions are
the Lagrange polynomials generated using equidistant
nodes in the finite element. In spectral finite elements,
however, the Lagrange polynomials are generated using
the Gauss-Lobatto-Legendre (GLL) node distribution86.
Thus, the use of spectral finite elements along with the
GLL quadrature rule make the nodal points and the
quadrature points coincident, resulting in the CFE over-
lap matrix (Mcc) being diagonal. We refer to46 for an
elaborate discussion on spectral finite elements. Thus,
the use of spectral finite-elements and GLL quadrature
simplifies the evaluation of ckν in Eq. 30 to

ckν,l =

∫
Ω
NA,uk
ν (x)NC

l (x) dx∫
Ω,GLL

NC
l (x)NC

l (x) dx
. (33)

We remark that the function NA,uk
ν (x) has a compact

support governed by the smooth cutoff function h(r, r0, t)
(Eq. 27). Thus, ckν,l is non-zero for only those l indices for

which NC
l (x) has an overlap with the compact support of

NA,uk
ν (x). In other words, NO,uk

ν (x) retains the locality
of NA,uk

ν (x).
Having constructed the OEFE basis for uα,k, the dis-

crete Kohn-Sham eigenvalue problem corresponding to a
k-point k is obtained by using Eq. 23 in Eq. 15 and is
given by

HO
k u

O
α,k = εOα,kM

O
k u

O
α,k , (34)

where uOα,k is the eigenvector containing the coefficients

uCα,k,j and uOα,k,ν (see Eq. 23), and εOα,k is its correspond-

ing eigenvalue. HO
k represents the discrete Hamiltonian

matrix and is given by,

HO
k,mn =

1

2

∫
Ω

∇N†m(x) · ∇Nn(x)dx

−
∫

Ω

ik ·
(
N†m(x)∇Nn(x)

)
dx

+

∫
Ω

( |k|2
2

+ V heff (x,R)

)
N†m(x)Nn(x) dx ,

(35)

where the superscript † denotes the complex conjugate,
and the functions Nm(x), Nn(x) are generic represen-
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tations for NC
j (x) and NO,uk

ν (x). The matrix MO
k is

the overlap matrix and has the following block-diagonal
structure, owing to the orthogonality condition of Eq. 29,

MO
k =

[
Mcc 0

0 Moo
k

]
. (36)

In the above equation, Mcc block contains the overlap
between two CFE basis functions (as defined in Eq. 31),
and the Moo

k block contains the overlap between two or-
thogonalized enrichment functions, i.e.,

Moo
νµ =

∫
Ω

NO,uk
ν (x)NO,uk

µ (x) dx . (37)

We note that Eq. 34 is a generalized eigenvalue prob-
lem. However, we can invert MO

k to transform it into a
standard eigenvalue problem, given by

(MO
k )−1HO

k u
O
α,k = εOα,ku

O
α,k . (38)

We emphasize that the above transformation to a stan-
dard eigenvalue problem is crucial to our use of the
Chebyshev polynomial based filtering technique as an ef-
ficient eigensolver (see Sec. IV). Naturally, the trans-
formation to the standard eigenvalue warrants efficient
means to invert MO

k . The inverse of MO
k also has a block

diagonal form, given by

(MO
k )−1 =

[
(Mcc)−1 0

0 (Moo
k )
−1

]
. (39)

As discussed earlier, the evaluation of (Mcc)−1 is trivial,
given that Mcc is rendered diagonal through the com-
bined use of spectral finite elements and GLL quadra-
ture. The (Moo)

−1
block, being a small dense matrix of

size nuO × nuO, is evaluated through direct solvers.
Finally, we turn to the OEFE discretization of the aux-

iliary electrostatic potential φhaux (Eq. 9), given as

φhaux(x) =

nh∑
j=1

NC
j (x)φCj︸ ︷︷ ︸

Classical

+

Na∑
I=1

NO,φ
I (x)φOI︸ ︷︷ ︸

Orthogonalized Enriched

, (40)

where the supersript C and O denote the classical and or-
thogonalized enriched components, respectively. As with
the discretization of uα,k (Eq. 23), NC

j (x) denotes the

jth CFE basis function and φCj denotes its corresponding

coefficient. Similarly, NO,φ
I (x) is the Ith orthogonalized

enrichment function with a corresponding coefficient φCI .
Similar to uα,k, the enrichment function for φaux is also
split into two parts, given by

NO,φ
I (x) = NA,φ

I (x)−NB,φ
I (x) , (41)

where NA,φ
I (x) and NB,φ

I (x) are the atomic and orthog-

onalizing parts, respectively. The atomic part, NA,φ
I (x),

is expressed as

NA,φ
I (x) = φaux,I(x)h(|x−Rx

I |, r0, t) , (42)

where Rx
I is same as that defined in Eq. 25 and h(r, r0, t)

is the smooth cutoff function defined in Eq. 27. φaux,I is
the atomic auxiliary potential given as

φaux,I(x) = VH,I(|x−Rx
I |)+V smear

N,I (|x−Rx
I |, rc,I) , (43)

where VH,I(r) denotes the radial Hartree potential of an
isolated atom of the same type as located at RI , and
V smear

N,I (r, rc,I) is the smeared nuclear potential defined in

Eq. 12. The orthognalizing part, NB,φ
I (x), of NO,φ

I (x) is

evaluated similar to NB,uk
ν (x) (Eq. 28). That is, NB,φ

I (x)
is defined as a linear combination of {NC

j (x)} which

guarantees the orthogonality of NO,φ
I (x) with respect to

{NC
j (x)}.

Finally, employing the OEFE discretization of φaux in
Eq. 9 results in the following discrete Poisson problem

AOφO = cO , (44)

where φO is the vector containing coefficients φCj and

φOI . AO is the Laplace operator discretized in the OEFE
basis for φaux and is given by

AEmn =
1

4π

∫
Ω

∇Nm(x) · ∇Nn(x) dx , (45)

where Nm(x) and Nn(x) are generic representations for

NC
j (x) and NO,φ

I (x). The vector cO is the forcing vector,
given by

cOm =

∫
Ω

(bsmear(x) + ρ (x))Nm(x) dx . (46)

B. Adaptive quadrature

The enrichment functions, NO,uk
ν (x) and NO,φ

I (x), are
characterized by sharp gradients or oscillations near the
nuclei. As a result, an accurate evaluation of the inte-
grals involving the orthogonalized enrichment functions
warrants a high quadrature density near the nuclei. How-
ever, a uniformly high quadrature density throughout the
domain would be inefficient, given that the enrichment
functions have a small compact support. To this end,
we strike a balance of accuracy and efficiency by using
an adaptive quadrature. The key idea is to adopt a di-
vide and conquer strategy in constructing the quadra-
ture grid, based on certain trial integrals87,88. In the
context of the EFE basis this entails recursively refin-
ing each finite element of spatial extent Ωe until a set of
trial integrals, involving the enrichment functions, attain
convergence59,60,64,89. We refer to89 for an enrichment
function based adaptive quadrature in the context of an
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EFE basis for DFT and to64 for the specific details of the
adaptive quadrature strategy employed in this work.

IV. SELF CONSISTENT FIELD ITERATION
AND CHEBYSHEV FILTERING

The Kohn-Sham eigenvalue problem in Eq. 1 is a non-
linear eigenvalue problem as the Kohn-Sham Hamilto-
nian depends on the electron density, which in turn de-
pends on the Kohn-Sham eigenfunctions that are solu-
tions of the eigenvalue problem. Thus, the Kohn-Sham
equations, which can be viewed as a fixed point prob-
lem, are solved using a self-consistent field (SCF) it-
eration. The SCF iteration involves using a starting
guess density, ρin, that is used to construct Veff. Sub-
sequently, the eigenstates {εα,k, uα,k} are evaluated, and
are, in turn, used to evaluate the output density ρout.
If ||ρin(x) − ρout(x)|| (in an appropriately chosen norm)
drops below a tolerance, we declare convergence and
compute the ground-state properties corresponding to
ρout(x). Otherwise, ρin is updated by mixing90–93 ρin

and ρout from previous iterations, and the iteration is
continued until convergence in the density.

Computationally, the discrete eigenvalue problem
shown in Eq. 38 is the most expensive step in each SCF
iteration. The dimension of this problem ranges between
O(103) to O(106) per atom depending on the species of
the atom and our choice of discretization (OEFE basis or
CFE basis). Fortunately, we only need to compute the
occupied states, i.e. a fraction of the eigenstates at the
lower end of the spectrum given by NY = Ne/2 + Nb.
Here, Nb is a small buffer maintained to capture states
with fractional occupancy due to Fermi-Dirac smear-
ing. We compute these eigenstates by using the Cheby-
shev filtering technique46,73,74. The advantages of this
technique over other Krylov subspace methods like the
Jacobi-Davidson and Krylov-Schur, in the context of fi-
nite element discretization, has been previously demon-
strated46. The Chebyshev filtering technique involves ap-
proximating the occupied eigenspace from an initial set
of vectors Y of dimension NY . A Chebyshev polynomial
of degree m, pm(x), exhibits two salient properties: (i)
it grows rapidly outside [−1, 1], and (ii) |pm(x)| ≤ 1 for
x ∈ [−1, 1]. Thus, given a set of vectors Y, the Cheby-
shev filtering provides a recipe to construct a new set of

vectors, Ỹ, which spans a subspace that is a close ap-
proximation to the occupied eigenspace of interest. The
Chebyshev filtered vectors are given by

Ỹ = pm

(
H̃
O

k

)
Y , (47)

where H̃
O

k denotes a linear transformation of (MO
k )
−1

HO
k

such that the unoccupied eigenspectrum of (MO
k )
−1

HO
k is

mapped to [−1, 1] and the occupied spectrum is mapped

to (−∞,−1). In other words, pm

(
H̃
O

k

)
dampens the

components of the vectors in Y that lie along the un-
occupied eigenspace and amplifies those lying along the
occupied eigenspace. For the purpose of numerical con-

ditioning, we orthonormalize Ỹ to produce a set of or-
thonormal vectors Q. Subsequently, we simplify the large
eigenvalue problem in Eq. 38 by performing a Galerkin
projection onto Q and solving the following reduced gen-
eralized eigenvalue problem

HQ
k ũα,k = εQα,kM

Q
k ũα,k , (48)

where HQ
k = Q†HO

kQ, MQ
k = Q†MO

kQ, and ũα,k de-
notes the eigenvector represented in the Chebyshev fil-
tered subspace. Having solved the above reduced eigen-
value problem, we rotate the eigenvectors to obtain the
eigenvectors in the original space, given as: uOα,k =

Qũα,k. Lastly, the set of vectors Y is updated to Q for
the next SCF iteration. We note that although the above
procedure is shown in the context of the OEFE basis, it
holds even for the CFE basis46. The cost of Chebyshev
filtering is determined by the degree of Chebyshev poly-
nomial m required to attain chemical accuracy, which, in

turn, is governed by the largest eigenvalue of (MO
k )
−1

HO
k .

The largest eigenvalue increases as the finite element
mesh is progressively refined. In other words, the re-
quired Chebyshev polynomial degree, m, increases with
mesh refinement. In an all-electron calculation, to cap-
ture the core states, the rapidly oscillating valence states,
and the sharp electrostatic potential near the nucleus, the
CFE discretization requires a highly refined mesh in the
region. As a consequence, it suffers from the dual disad-
vantage of requiring large number of degrees of freedom
(DoF) as well as a high Chebyshev polynomial degree,
O(103), to compute the occupied eigenspace. In con-
trast, the OEFE discretization requires a much coarser
mesh, as the oscillatory orbitals and the sharp electro-
static potentials near the nuclei are, largely, embedded
in the enrichment functions. As a result, the OEFE ba-
sis accrues two benefits—a substantial reduction in both
the DoF (to obtain chemical accuracy) and the Cheby-
shev polynomial degree. We illustrate these advantages
in the next section.

V. RESULTS AND DISCUSSION

In this section, we present the numerical results that
demonstrate the accuracy and efficacy of the proposed
OEFE basis based all-electron calculations. To begin
with, we provide a comparative study of the conditioning
of the CFE, the EFE, and the OEFE basis, which forms
the basis of our adoption of the OEFE basis. Next, we
provide the rate of convergence of the ground-state en-
ergy with respect to mesh refinement for two benchmark
systems—an 8-atom carbon cubic diamond lattice and
an 8-atom halite lithium fluoride (LiF). For the purpose
of demonstrating the accuracy of our OEFE basis, we
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compare the ground-state energies and band-structure
against those obtained from LAPW+lo based calcula-
tions, for two unit cell systems—8-atom halite magne-
sium sulfide (MgS) and 4-atom cerium (Ce) face centered
cubic (FCC) unit cell. We demonstrate the performance
of the OEFE basis for large-scale all-electron calculations
by considering four sets of supercells of varying sizes:
(i) divacancy in silicon carbide (SiC), with the largest
system containing 9,980 electrons; (ii) NV-diamond; (iii)
monovacancy in copper (Cu); and (iv) divacancy in sil-
ver chloride (AgCl). For the supercell calculations, we
also provide, wherever possible, an accuracy and effi-
ciency comparison against CFE and LAPW+lo basis. All
our LAPW+lo calculations are performed using the Elk
code75. We note that Elk, by default, employs a rela-
tivistic calculation. Thus, in order to conduct a non-
relativistic calculation, we suppressed the relativistic ef-
fects by scaling the speed of light by a factor 1000 (i.e., by
setting the solscf (speed of light scaling factor) parameter
in Elk to 1000.0). We use an n-stage Anderson mixing90

for density mixing in all our OEFE and CFE calculations.
We use a Fermi-Dirac smearing at 500K in all our calcu-
lations to evaluate the occupation number of the Kohn-
Sham orbitals. For all calculations involving the OEFE
basis, excepting the conditioning studies (Sec. V A) and
the supercell calculations (Sec. V D), we use a uniform
FE mesh. For both these calculations, we use an un-
structured FE mesh that is refined closer to the nuclei
and coarser away from the nuclei. Lastly, we present
both the computational complexity (scaling with num-
ber of electrons) and strong scaling (scaling with number
of processors) of our OEFE implementation.

A. Conditioning of the basis

We demonstrate the effect of the finite element mesh
size (h) on the conditioning of the CFE, the EFE, and
the OEFE basis. The EFE basis is constructed as dis-
cussed in Ref.64. To elaborate, for the EFE basis, the
enrichment functions are taken to be same as the atomic
part (NA,uk

ν (x)) of NO,uk
ν (x) (i.e., NO,uk

ν (x) without the
orthogonalizing component). Additionally, for the EFE
and the OEFE basis, we also report the effect of the
smoothness factor t (defined in Eq. 27) on the condition-
ing of the basis. We assess the conditioning of the basis
through the condition number, κ, of its overlap matrix
(defined as the ratio of the highest to lowest eigenvalue
of the matrix). Given that the EFE and the OEFE basis
has a k-point dependence, we consider the overlap ma-
trix for the Γ-point as being representative of the con-
ditioning. The materials system considered here is an
8-atom silicon unit cell of lattice constant 10.26 a.u.. For
each of the three types of basis, we construct four differ-
ent meshes by progressively refining the mesh near the
nucleus. In the case of the EFE and OEFE basis, we
set the cutoff distance r0 (defined in Eq. 27) to 1.2 a.u.,
for all the enrichment functions, and vary the smooth-

ness factor t. The results are shown in Fig. 1. As is
expected, for all the three basis, the condition number
increases monotonically with increasing refinement. Ev-
idently, the condition number of the EFE discretization
(Fig. 1(b)) is a factor 105 − 106 higher than that of both
CFE and OEFE basis, reaching beyond 1010 even for
moderately refined meshes. Note that, for a given mesh
size, increasing t does lower the condition number for the
EFE basis, but the improvement is only marginal. In the
case of the OEFE basis (Fig 1(c)), while the condition
number increases with mesh refinement, it remains of
the same order as that of the CFE basis. Further, based
on our numerical studies, we observe convergence in the
ground-state energies well before the condition number
approaches 106.

In practical calculations, the implication of ill-
conditioning may be one of following: (i) larger number
of SCF iterations for convergence (ii) loss in accuracy, or
(iii) failure to converge. To demonstrate this, we consider
a Γ−point ground-state calculation on a 62 atom SiC di-
vacancy system using both the EFE and the OEFE ba-
sis. We use the same underlying mesh for both EFE and
OEFE calculations, and the resultant condition numbers
of the overlap matrix in the EFE and OEFE cases are
observed to be 1013 and 107, respectively. Both calcu-
lations use an n-stage Anderson mixing (mixing history
of 20 and mixing parameter of 0.5) with a stopping cri-
terion of 10−4 on the L2 norm of the density difference.
The variation of this norm with SCF iterations is plotted
in Fig. 2. It is observed that self-consistency is reached
in 25 iterations for the OEFE calculation while the EFE
calculation struggles to converge even after 43 iterations.
This demonstrates the importance of the OEFE basis for
attaining accuracy and robustness in all-electron DFT
calculations, while augmenting the CFE basis with en-
richment functions.

B. Rate of convergence

We now demonstrate the rate of convergence of the
ground-state energy with respect to mesh refinement.
The error in ground-state energy as a function of the
mesh-size can be expressed as46

|Eh − E0| = Chq , (49)

where Eh is the ground-state energy corresponding to a
given finite element mesh of element size h, E0 is the con-
tinuum ground-state energy corresponding to h→ 0, C is
a mesh-independent constant, and q is the rate of conver-
gence. We first evaluate E0 using the OEFE basis with
a highly refined higher-order CFE mesh. Subsequently,
C and q are calculated by fitting the above relation to
a given set of Eh and h. As we are interested in study-
ing the convergence with respect to discretization, we
restrict these calculations to only Γ-point calculations.
We study the convergence on two materials systems: (i)
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FIG. 1. Condition number (κ) of the overlap matrix with
respect to mesh size (h) for (a) CFE basis (b) EFE basis, and
(c) OEFE basis.

an 8-atom carbon diamond-cubic system of lattice con-
stant 6.74 a.u., and (ii) an 8-atom lithium fluoride (LiF)
cubic halite system with lattice constant 7.6086 a.u.. For
each system, we consider two types of finite elements—a
quadratic finite element (HEX27) and a cubic spectral
finite element (HEX64SPECTRAL). For each type of fi-
nite element, we construct a series of uniform meshes by
refining the mesh-size h. Fig. 3 and Fig. 4 present the
relative error in the energy as a function of the mesh-size
for the diamond and the LiF systems, respectively. As
evident, the numerical rates of convergence (q), reported

0 10 20 30 40

Iteration

10−3

10−1

101

103

||ρ
o
u
t
−
ρ
in
|| 2

OEFE
EFE

FIG. 2. L2 norm of the density difference with respect to SCF
iteration number for the OEFE and the EFE basis.

in the figures, are in close agreement with the theoretical
rate of O(h2p), where p is the order of the finite element
(p = 2 for HEX27 and p = 3 for HEX64SPECTRAL).
The deviation from the theoretical rate is owing to errors
that are beyond the basis discretization, i.e., errors due
to quadrature, Chebyshev filtration tolerance, SCF con-
vergence tolerance, etc. Furthermore, the E0 per atom
for the diamond system is -37.724793 Ha and is in close
agreement with LAPW+lo value of -37.724827 Ha. Sim-
ilarly, the E0 per atom for the LiF system is -53.414248
Ha, which is again in good agreement with the LAPW+lo
value of -53.414218 Ha.
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FIG. 3. Convergence of ground-state energy with respect to
element size for diamond.
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FIG. 4. Convergence of ground-state energy with respect to
element size for LiF.

TABLE I. Ground-state energy per atom (in Ha) of MgS unit
cell for different k-point grid (Γ-point centered), using OEFE,
LAPW+lo, and CFE basis.

k-pt OEFE LAPW+lo CFE

1× 1× 1 -298.06378 -298.06383 -298.06390

3× 3× 3 -298.09548 -298.09558 n/a

5× 5× 5 -298.09556 -298.09564 n/a

C. Unit cell calculations

We assess the accuracy of the OEFE basis using two
unit cell systems: (i) an 8-atom halite magnesium sulfide
(MgS) with a lattice constant of 9.8266 a.u., and (ii) a
4-atom FCC cerium (Ce) unit cell with a lattice constant
of 9.05 a.u.. We perform k-point converged ground-state
calculations on both systems using the OEFE as well
as the LAPW+lo basis. The ground-state energies for
both MgS and Ce unit cells for different k-point grids are
listed Table I and Table II, respectively. As evident, the
OEFE and LAPW+lo values agree to within 0.1 mHa.
For MgS, we also show good agreement with the CFE
based ground-state energy, evaluated at Γ-point. In case
of Ce, a separate single atom in a box calculation (not
shown in table) was performed to benchmark the accu-
racy of the OEFE basis with the CFE basis, and the
results agree to within 1 mHa. This was done since the
4-atom Ce calculations were prohibitively expensive with
CFE basis. We also plot the bandstructure for the MgS
(Fig. 5) and the Ce (Fig. 6) near the Fermi level, ob-
tained using OEFE and LAPW+lo basis. For both these
materials systems, we see close agreement in the band
structure obtained from the OEFE and the LAPW+lo
calculations.

TABLE II. Ground-state energy per atom (in Ha) of Ce unit
cell for different k-point grid (Γ-point centered), using OEFE
and LAPW+lo basis.

k-pt OEFE LAPW+lo

1× 1× 1 -8563.72821 -8563.72813

5× 5× 5 -8563.63023 -8563.63018

7× 7× 7 -8563.63016 -8563.63011

Γ X M Γ R X M R Γ
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FIG. 5. Bandstructure plot for MgS. Solid lines represent
LAPW+lo data and points represent OEFE data.

D. Super cell calculations

We now demonstrate the accuracy and efficiency of
the OEFE basis for large-scale all-electron DFT calcu-
lations. Moreover, wherever possible, we compare the
performance of the OEFE basis against the CFE and the
LAPW+lo basis. We remark that calculations on large
periodic systems are often required to study the proper-
ties of defects in crystalline materials, so as to avoid the
spurious defect-defect interactions arising from periodic
boundary conditions.

Our large scale calculations consist of varying super-
cells for four different material systems: (i) divacancy in
silicon carbide (SiC); (ii) NV-diamond; (iii) monovacancy
in copper (Cu) ; and (iv) divacancy in silver chloride
(AgCl). The SiC supercell is constructed by translating
the 8-atom diamond-structure cubic SiC unit cell of lat-
tice constant 8.23845 a.u.. Subsequently, the divacancy
in SiC is created by removing a second-nearest-neighbour
pair of Si and C atoms from the supercell. The NV-
diamond system is constructed from a diamond supercell
by replacing a nearest-neighbor pair of C atoms by a ni-
trogen atom and a vacancy. The lattice constant of the
8-atom cubic diamond unit cell is taken to be 6.74 a.u..
The monovacancy in Cu is created by removing an atom
from a supercell that has been constructed by translat-
ing the 4-atom FCC cubic unit cell of lattice constant 6.8
a.u.. Lastly, the AgCl divacancy system is constructed
from the AgCl supercell by removing a pair of nearest
neighbour Ag and Cl atoms. The lattice constant of the
cubic hallite-structured AgCl unit cell is taken to be 10.3
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FIG. 6. Bandstructure plot for Ce. Solid lines represent
LAPW+lo data and points represent OEFE data.

a.u.. The supercell sizes used for each of these four sys-
tems are listed in Tables V–VIII.

For each materials system, the basis is selected such
that the discretization error in the ground-state energy
for the 2 × 2 × 2 supercell is less than 1 mHa per atom.
For the OEFE and the CFE basis, this amounts to using
appropriately refined meshes and finite element orders.
The approximate mesh sizes used near the nucleus and
away from the nucleus and the finite element order used
for the four materials systems have been listed in Ta-
ble III. The discretization error in the LAPW+lo basis,
on the other hand, is influenced by the rgkmax (the prod-
uct of the minimum muffin-tin radius and the maximum
planewave cutoff), the linearization energies, muffin-tin
radius, matching conditions at the muffin-tin boundary
etc. In all but the Cu monovacancy calculations, the
smallest possible rgkmax is selected to keep errors be-
low 1 mHa per atom. Default values were used for all
other basis parameters as prescribed in the Elk code’s
species file. In the case of Cu monovacancy, however, de-
fault basis parameters lead to large errors and hence the
highq parameter set was used. The highq parameter set
in the Elk code, improves the accuracy of the calculation
by boosting all basis-related parameters, including the
rgkmax, from the default values. The LAPW+lo basis
parameters used for the four material systems are sum-
marized in Table IV. A major difference between the
OEFE and the LAPW+lo basis based calculations lies
in their treatment of the core electrons. The LAPW+lo
employs a core-valence split, wherein the core states are
solved using 1D radial solves and only the valence states
are solved in 3D. However, as a first implementation of
the OEFE basis, we treat all the states on the same foot-
ing and solve them in 3D (Eq. 34).

We note that while the OEFE and the CFE implemen-
tation rely on an L2 norm difference between densities at
successive iterations as a convergence criterion for the
SCF, the LAPW+lo implementation in Elk code uses a
root mean square error (RMSE) in the Kohn-Sham po-
tential as the convergence criterion. Thus, to use a con-
sistent metric for comparing the OEFE basis against the

TABLE III. Minimum element size hmin (a.u.), maximum el-
ement size hmax (a.u.), finite element order (p) , Chebyshev
polynomial degree (m) and largest eigenvalue εmax (Ha.) for
OEFE and CFE calculations

Calculation hmin hmax p m εmax

SiC-divac (OEFE) 0.25 0.7 4 150 O(103)

SiC-divac (CFE) 0.02 0.7 5 2000 O(106)

Cu-monovac (OEFE) 0.2 0.6 3 150 O(103)

NV-diamond (OEFE) 0.6 0.6 4 50 O(102)

AgCl-divac (OEFE) 0.3 0.8 4 150 O(103)

TABLE IV. Basis set type and rgkmax for LAPW+lo calcu-
lations

Calculation Basis set rgkmax

SiC-divac Default 7.5

Cu-monovac highq 8.0

NV-diamond Default 7.0

AgCl-divac Default 8.0

LAPW+lo basis, we use a ground-state energy difference
(between successive iterations) of 10−6 Ha per atom as a
convergence criterion for the SCF for all calculations re-
ported in this section. The number of SCF iterations is
also influenced by the eigensolve tolerance and the type
of mixing scheme used. In the case of the OEFE/CFE,
instead of resorting to a tolerance for the eigensolve, we
simply use a fixed polynomial degree for Chebyshev fil-
ter, as listed in Table III. This is equivalent to having a
progressively tighter eigensolve tolerance with SCF itera-
tions. In the case of the LAPW+lo calculations, between
the iterative and the direct eigensolver available in Elk,
we have found the direct eigensolver to be more efficient.
Hence, we use the direct eigensolver for all the LAPW+lo
based calculations. We use an n-stage Anderson mixing
scheme, with a history size of 20 and mixing parameter
of 0.5, for the OEFE/CFE calculations, while the Elk
code uses the Broyden mixing scheme. Further, the k-
point sampling is restricted to the Γ−point, which is a
reasonable approximation for large periodic domains.

All the calculations, except the SiC divacancy systems,
are performed on the University of Michigan Great Lakes
clusters 36-core nodes. The SiC divacancy systems are
performed on NERSC’s 68-core Cori-KNL nodes. The
OEFE calculations for the four SiC divacancy systems are
performed using 3, 9, 30 and 60 nodes, respectively. Sim-
ilalrly, the OEFE calculations for the Cu monovacancy
systems are performed using 2, 6, 12 and 15 nodes, re-
spectively. The OEFE calculations for the NV-diamond
systems are performed using 1, 5 and 10 nodes, respec-
tively. Lastly, the OEFE calculations for the AgCl diva-
cancy systems are performed using 5 and 18 nodes respec-
tively. For most of the OEFE calculations, each compute
core is assigned to an MPI rank. The LAPW+lo calcula-
tions, on the other hand, are run on a single node with the



13

TABLE V. Ground-state energy per atom (in Ha) of various
SiC supercells with a divacancy, using OEFE, LAPW+lo, and
CFE basis. All reported energies are evaluated at Γ-point.

Supercell Atoms
(Electrons)

OEFE LAPW+lo CFE

2× 2× 2 62 (620) -163.1053 -163.1054 -163.1056

3× 3× 3 214 (2,140) -163.1119 -163.1117 -

4× 4× 4 510 (5,100) -163.1133 - -

5× 5× 5 998 (9,980) -163.1135 - -

TABLE VI. Ground-state energy per atom (in Ha) of various
NV-diamond supercells, using OEFE and LAPW+lo basis.
All reported energies are evaluated at Γ-point.

Supercell Atoms
(Electrons)

OEFE LAPW+lo

2× 2× 2 63 (379) -38.0520 -38.0522

3× 3× 3 215 (1,291) -37.8716 -37.8720

4× 4× 4 511 (3,067) -37.8276 -

number of OpenMP threads set to the number of cores
in the node. We note that the Elk code does not offer
distributed memory parallelism within a k-point. This
lack of distributed memory parallelism, in turn, limits
the system sizes that can be handled by the Elk code.

We, first, compare the accuracy of the OEFE, CFE,
and LAPW+lo basis, in terms of the ground-state ener-
gies. Tables V–VIII compare the ground-state energies
for all the four materials systems using the OEFE, CFE,
and LAPW+lo basis. Given the high computational cost
associated with the CFE basis, we limit the CFE calcu-
lations only to the 2 × 2 × 2 supercell in SiC divacancy
system. As is evident, the OEFE and CFE basis agree
to within 0.3 mHa for the 2 × 2 × 2 SiC divacancy sys-
tem. Furthermore, for the systems where the LAPW+lo
calculations are feasible, the OEFE and LAPW+lo basis
agree to 0.5 mHa, underlining the accuracy of the OEFE
basis even for large-scale systems.

We, next, compare the relative performance of the
OEFE basis against the LAPW+lo basis for all the four
systems. Tables IX, X, XI, and XII list the total compu-

TABLE VII. Ground-state energy per atom (in Ha) of var-
ious Cu supercells with a monovacancy, using OEFE and
LAPW+lo basis. All reported energies are evaluated at Γ-
point.

Supercell Atoms
(Electrons)

OEFE LAPW+lo

2× 2× 2 31 (899) -1637.9256 -1,637.9252

3× 3× 3 107 (3,103) -1637.9297 -1637.9294

4× 4× 3 191 (5,539) -1637.9355 -1637.9352

4× 4× 4 255 (7,395) -1637.9351 -

TABLE VIII. Ground-state energy per atom (in Ha) of var-
ious AgCl supercells with a divacancy, using OEFE and
LAPW+lo basis. All reported energies are evaluated at Γ-
point.

Supercell Atoms
(Electrons)

OEFE LAPW+lo

2× 2× 2 62 (1,984) -2,826.9589 -2,826.9584

3× 3× 3 214 (6,848) -2,826.9597 -2826.9592

TABLE IX. Comparison of OEFE, LAPW+lo, and CFE basis
for the ground-state calculation on various SiC supercells with
a divacancy: total computational cost (C in node-hrs), com-
putational cost per SCF iteration (c in node-hrs) and number
of SCF iterations (N). The total computational cost (C) in-
cludes the pre-SCF initialization costs.

Supercell
OEFE LAPW+lo CFE

C (c, N) C (c, N) C (c, N)

2× 2× 2 1.48 (0.08, 12) 1.28 (0.04, 32) 197 (10.9,18)

3× 3× 3 13.92 (0.76, 14) 45.5 (1.23, 37) - -

4× 4× 4 132.6 (6.4, 18) - - - -

5× 5× 5 1102.5 (45.9, 21) - - - -

tational cost for a ground-state calculation for the SiC,
NV-diamond, Cu, and AgCl systems, respectively. Given
that the OEFE and LAPW+lo implementations use dif-
ferent mixing scheme and eigensolve tolerances, which in
turn effect the number of SCF iterations, we also provide
the per SCF iteration computational cost as well as the
number of SCF iterations. Moreover, for a comparison
of the OEFE and CFE basis, we also provide the compu-
tational cost incurred by the CFE basis for the 2× 2× 2
SiC divacancy system.

The following observations can be made from the ta-
bles showing computational costs:

• It is evident from the SiC divacancy 2×2×2 calcu-
lations (cf. Table IX) that the OEFE basis is 130×
faster than the CFE basis. This staggering speedup
is owing to a ∼ 15× and a ∼ 13× reduction in the
number of basis functions and Chebyshev polyno-

TABLE X. Comparison of OEFE and LAPW+lo basis for the
ground-state calculation on various NV-diamond supercells:
total computational cost (C in node-hrs), computational cost
per SCF iteration (c in node-hrs), and number of SCF iter-
ations (N). The total computational cost (C) includes the
pre-SCF initialization costs.

Supercell
OEFE LAPW+lo

C (c, N) C (c, N)

2× 2× 2 0.19 (0.008,12 ) 0.32 (0.02, 16)

3× 3× 3 1.6 (0.071,16 ) 15.1 (0.84, 18)

4× 4× 4 16.1 (0.46,31 ) - -
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TABLE XI. Comparison of OEFE and LAPW+lo basis for
the ground-state calculation on various Cu supercells with
a monovacancy: total computational cost (C in node-hrs),
computational cost per SCF iteration (c in node-hrs), and
number of SCF iterations (N). The total computational cost
(C) includes the pre-SCF initialization costs.

Supercell
OEFE LAPW+lo

C (c, N) C (c, N)

2× 2× 2 0.92 (0.033, 24) 0.145 (0.004, 32)

3× 3× 3 20.6 (0.55, 36) 6.46 (0.144, 45)

4× 4× 3 93.12 (2.6, 35) 50.63 (0.92,55)

4× 4× 4 250.0 (6.0, 41) - -

TABLE XII. Comparison of OEFE and LAPW+lo basis for
the ground-state calculation on various AgCl supercells with
a divacancy: total computational cost (C in node-hrs), com-
putational cost per SCF iteration (c in node-hrs), and number
of SCF iterations (N). The total computational cost (C) in-
cludes the pre-SCF initialization costs.

Supercell
OEFE LAPW+lo

C (c, N) C (c, N)

2× 2× 2 2.17 ( 0.25 ,7 ) 0.24 (0.015, 16)

3× 3× 3 70.8 ( 9.0, 7 ) 9.8 (0.58, 17)

mial degree, respectively (cf. Table III).

• For moderate system sizes, the OEFE basis outper-
forms the LAPW+lo basis for the SiC divacancy
system and the NV-diamond system (cf. Tables IX
and X) by a factor 3− 9.

• For the Cu monovacancy system, the OEFE basis is
2× slower than the LAPW+lo, for the largest com-
parable system (cf. Table XI). In case of the AgCl
divacancy system, the LAPW+lo basis significantly
outperforms the OEFE basis (cf. Table XII).

We remark that this comparatively inferior perfor-
mance of the OEFE basis for systems with heavier
atoms can be substantially improved by incorpo-
rating a core-valance splitting approach. To elab-
orate, while the LAPW+lo basis has the ability to
split the spectrum into core and valence states and
solve for the core states using 1D radial solves, in
the OEFE basis, all states are treated on the same
footing and are solved in 3D using Eq. 34. How-
ever, substantial speedup for OEFE basis, espe-
cially for systems with heavier atoms (where most
of the states can be treated as core), can be real-
ized by employing a spectrum splitting approach94,
wherein a core-valence split can be attained by de-
composing the occupied eigenspace into core and
valence subspaces.

• In terms of scaling with number of electrons (Ne)
(i.e., weak scaling), the OEFE scales sub-cubically,

in terms of the computational cost for an SCF
iteration. To elaborate, we attain a scaling of
O(N2.3

e ), O(N2.0
e ), O(N2.4

e ) for the SiC divacancy,
NV-diamond, Cu monovacancy systems, respec-
tively, even while accounting for system sizes rang-
ing up to 9,980 electrons. This sub-cubic scaling
is obtained because, in the regime of the system
sizes considered, the dominant cost in OEFE calcu-
lation is the Chebyshev filtration step, which scales
quadratically with the number of electrons. This is
shown in greater detail for the SiC divacancy sys-
tem in Fig. 7, where the scaling of various parts of
the SCF algorithm are presented. In contrast, the
scaling of LAPW+lo in Elk code is almost cubic
even at smaller system sizes—O(N2.8

e ), O(N3.0
e ),

O(N3.0
e ) for the SiC divacancy, NV-diamond, Cu

monovacancy systems, respectively.

• Large system sizes are inaccessible using the imple-
mentation of the LAPW+lo basis in the Elk code,
owing to memory limitations or impractical wall-
clock times. The OEFE basis, on the other hand, is
amenable to parallel implementation making large
calculations possible within reasonable wall-clock
times.
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FIG. 7. Computational cost (node-hr) per self-consistent field
(SCF) iteration whose constituents include Cheby: Cheby-
shev filtration; QR: QR factorization; RR: Rayleigh-Ritz step
(Projection + Direct diagonalization + Rotation); Poisson:
Electrostatic Poisson problem; Other: Other costs including
density calculation and Hamiltonian matrix construction.

The above results, from the four material systems, un-
derline the efficiency and robustness of the OEFE basis
for large-scale all-electron DFT calculations, in compar-
ison to both the CFE and the LAPW+lo basis.
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E. Parallel efficiency

We now present the strong scaling efficiency of our im-
plementation of the OEFE basis using the 2× 2× 2 SiC
divacancy system. We used a discretization consisting
of ∼ 1 million CFE basis functions, and 434 and 62 or-
thogonalized enrichment functions for uhα,k(x) and φhaux,
respectively. The calculation is performed on increas-
ing number of MPI tasks, ranging from 8 MPI tasks to
192 MPI tasks. The parallel efficiency is measured using
the speedup relative to 8 MPI tasks, and is presented
in Fig. 8. We observe 22× speedup with a parallel effi-
ciency of 92% at 192 MPI tasks, which demonstrates the
good parallel scaling afforded by the formulation and the
numerical implementation of our OEFE basis.
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FIG. 8. Strong scaling efficiency of the numerical implemen-
tation of OEFE basis using the 2×2×2 SiC divacancy bench-
mark system.

VI. SUMMARY

We have presented a systematically convergent and ef-
ficient basis, termed orthogonalized enriched finite ele-
ment (OEFE) basis, for all-electron DFT calculations
by augmenting the classical finite element (CFE) basis
with enrichment functions constructed from single-atom
Kohn-Sham orbitals and electrostatic potentials. In par-
ticular, we modify our previous formulation of the en-
riched finite element (EFE) basis64 to alleviate the issue
of potential ill-conditioning in the EFE basis. The key
idea involved is to orthogonalize the enrichment functions
with respect to the underlying CFE basis, while simul-
taneously maintaining the locality of the resultant basis.
Additionally, we have optimized the basis for periodic
calculation by introducing a k-point dependence to the
enrichment functions. The resulting orthogonalized en-
richment functions largely captures the sharp features of
the electronic fields near the nuclei, reducing the require-
ment of a highly refined finite element mesh. This work
establishes substantial computational advantage afforded
by the OEFE basis over the CFE basis.

In terms of robustness, the OEFE basis attained a sig-
nificantly lower condition number of the overlap matrix
compared to the EFE basis, while targeting the same
chemical accuracy. The lower condition number, in turn,
lends more efficiency to the OEFE basis by expediting the
convergence of the SCF. Additionally, we demonstrated
close to optimal rates of convergence for the ground-
state energy with respect to the finite element mesh size,
thereby underlining the systematic convergence (com-
pleteness) afforded by the OEFE basis. We established
the accuracy of the OEFE basis by attaining excellent
agreement in ground-state energy and band structure
with LAPW+lo method on benchmark calculations. Fur-
thermore, we assessed the performance of the OEFE basis
against the CFE and the LAPW+lo basis using increas-
ing supercell sizes for four different materials system: (i)
divacancy in SiC; (ii) NV-diamond, (iii) monovacancy in
Cu; and (iv) divacancy in AgCl. For the system sizes
accessible to the CFE basis, the OEFE basis attained a
marked 130× speedup. Further, the OEFE basis out-
performs the LAPW+lo basis, for the moderate system
sizes of the SiC divacancy and NV-diamond supercells
considered in the study. However, the OEFE basis re-
mains slower than the LAPW+lo basis for systems with
heavier atoms—Cu monovacancy and AgCl divacancy su-
percells. We expect the performance of the OEFE basis
for heavier atoms to improve substantially with the in-
corporation of an appropriate core-valence splitting94 ap-
proach. Notably, using the OEFE basis we were able to
conduct large-scale calculations on the SiC divacancy su-
percells, the NV-diamond supercells, and the Cu mono-
vacancy supercells, with the largest system having 9,980
electrons. In contrast, LAPW+lo calculations on such
large systems remained infeasible, owing to the parallel
scaling and memory limitations of the LAPW+lo imple-
mentation in Elk code. Furthermore, within the bench-
mark systems considered, we attained a sub-cubic scaling
with respect to the number of electrons, even account-
ing for system sizes ranging up to 9,980 electrons. In
contrast, LAPW+lo basis in Elk exhibited cubic-scaling,
even on small-to-moderate system sizes. Thus, the OEFE
exhibits a later onset of the cubic scaling regime, as com-
pared to the LAPW+lo basis. Lastly, we demonstrated
close to ideal parallel scaling of our OEFE basis imple-
mentation up to ∼ 200 MPI tasks, for a 62 atom SiC
divacancy system.

Thus, the proposed OEFE basis offers a robust, effi-
cient, systematically convergent, and scalable basis for
all-electron DFT calculations, applicable to metallic and
non-metallic systems. Further improvement in the per-
formance of the OEFE basis for systems with heavier
atoms can be achieved by incorporating a core-valence
spectrum splitting approach94. The use of the OEFE
basis for all-electron time-dependent density functional
theory (TDDFT) calculations95,96 holds good promise,
and is currently being investigated. Given, the impor-
tance of relativistic effects in all-electron calculations,
an extension of this work to include both scalar rela-
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tivistic and spin-orbit coupling effects constitutes a fu-
ture direction of our research. Additionally, the OEFE
ideas, in conjunction with the incorporation of config-
urational forces97, offers a powerful tool for all-electron
Born-Oppenheimer molecular dynamics as well as Ehren-
fest dynamics, and form an active line of our research.
The OEFE basis can also offer a systematically con-
vergent and efficient basis for the solution of the in-
verse DFT problem to compute the exact exchange-
correlation potentials from ab-initio correlated densi-
ties98, and presents a worthwhile direction to pursue.
Lastly, the proposed basis offers an efficient and accu-
rate approach to treat the interaction between electronic
and nuclear spins, which typically warrant all-electron

calculations99.
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