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Abstract 

 The understanding of hydrodynamic heat transport in finite-size graphitic materials 

remains elusive due to the lack of an efficient methodology. In this work, we develop a 

computational framework enabling an accurate description of heat transport in anisotropic 

graphite ribbons, by a kinetic theory approach with full quantum mechanical first-principle 

input. A unified analysis of the size scaling of the thermal conductivity in the longitudinal 

and the transverse directions of the system is made within the computational framework 

complemented with a macroscopic hydrodynamic approach. As a result, we demonstrate a 

strong end effect on the phonon Knudsen minimum, as a hallmark of the transition from 

ballistic to hydrodynamic heat transports, along a rectangular graphite ribbon with finite 

length and width. The phonon Knudsen minimum is found to take place only when the ribbon 

length is about 5-10 times the upper limit of the width range in the hydrodynamic regime. 

The present study contributes to a unique methodology with high efficiency and a deeper 

understanding of the size effect on phonon hydrodynamics, which would open new 

opportunity for its theoretical and experimental investigation in graphitic micro- and nano-

structures.  
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I. Introduction 

 Hydrodynamic heat transport is a collective phenomenon in condensed matter in the 

presence of dominant momentum-conserving normal scattering of phonons [1-3]. The 

investigation of phonon hydrodynamics was motivated by the exploration of second sound 

(wave-like heat transport) in solids at low temperatures [4,5]. On the other hand, it has 

significantly promoted the development of macroscopic hydrodynamic equations for non-

Fourier heat transport [5-9]. There is a renewed interest in hydrodynamic heat transport in 

graphitic materials in recent years due to its occurrence at relatively high temperatures [10-

12], which shows great potential for thermal management applications [13-15]. 

 The theoretical prediction of phonon hydrodynamics in graphitic materials is mainly 

based on the homogenous solution of Boltzmann equation in the bulk limit [10,11,16]. To 

have a deeper understanding of hydrodynamic heat transport in micro- and nano-structures, 

a direct solution of the space- and time-dependent phonon Boltzmann equation becomes 

indispensable, yet a challenging task. The widely used phonon Boltzmann equation under 

single mode relaxation time (SMRT) approximation does not work well in this situation due 

to the collective effect from strong normal scattering [10,16,17]. Crucial progress towards 

this challenge is the Monte Carlo solution of the phonon Boltzmann equation with a full 

scattering term on two-dimensional (2D) reciprocal space [18], which has been mostly 

applied to study phonon hydrodynamics in 2D graphene ribbons [3,19] due to the model 

applicability and a considerable computational cost. As the theoretical prediction has been 

confirmed by the recent experimental reports of second sound [12] and phonon Poiseuille 

flow [20] in graphite, an efficient methodology for modeling the hydrodynamic heat transport 

in micro- and nano-ribbons of graphite with three-dimensional (3D) reciprocal space is 

highly desired, which is the main aim of the present work. 

 The Callaway’s dual relaxation model [21] represents a good approximation to the 

full scattering term in phonon Boltzmann equation [10,22] and has been widely adopted in 

analyzing heat transport in the hydrodynamic regime by analytical or semi-analytical 

methods [5,23-29]. The direct solution of the phonon Boltzmann equation under Callaway’s 
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model has been advanced recently by few numerical schemes including both deterministic 

methods [30,31] and stochastic ones [32,33]. However, the determinstic numerical method 

[30,31] was designed for heat transport in 2D graphene ribbons with empirical isotropic 

phonon properties. The gray Monte Carlo simulation [32,33] was conducted in hypothetical 

graphitic materials due to the lack of knowledge of normal and umklapp scattering rates and 

the pending development of the methodology. Thus none of the previous methods [30-33] 

are available to describe heat transport in realistic anisotropic graphite ribbons. In this work, 

a pertinent computational framework will be developed based on a determinstic numerical 

solution of the Callaway’s model. The normal and umklapp phonon scattering rates in 

graphite are calculated through careful consideration of both the van der Waals (vdW) 

interaction [34] and the special definition of umkapp process in strongly anisotropic systems 

[26,35]. We also introduce an efficient approximate scheme to treat the anisotropic phonon 

properties of graphite, which is essentially different from the 2D graphene system [30,31]. 

As a result, our computational framework provides a unique and efficient platform capable 

of modeling phonon hydrodynamics in graphite micro- and nanostructures. 

 Within the computational framework, we will investigate the hydrodynamic heat 

transport in graphite ribbon with finite length and width. The in-plane [19,26,30,36] (or cross-

plane [28,32]) heat transports along infinitely long (or wide) graphitic ribbons were widely 

studied previously [3]. A very important hydrodynamic phenomenon, the phonon Knudsen 

minimum, has been predicted in infinitely long graphene ribbons [30] firstly and then in 

graphite ribbons [26]. The phonon Knudsen minimum represents a transition of heat transport 

from the ballistic regime to the hydrodynamic one, which is a definite evidence for the 

experimental detection of phonon hydrodynamics. However, in the realistic experiment, the 

graphite ribbon will always have a finite length, the influence of which remains unknown. 

As another aim of this work, we will uncover a very strong end effect from the finite length 

on the phonon Kundsen minimum. The end effect shall be indeed relevant to the size 

dependence of the cross-plane thermal conductivity. In comparison to the well established 

super-ballistic scaling with the width of in-plane thermal conductivity [19,26,37,38], the size 

scaling in the cross-plane case remains less clear in spite of few notable efforts [28,32]. We 
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will quantify the size scaling of both in-plane and cross-plane thermal conductivities in the 

same footprint based on the direct numerical solution and a hydrodynamic approach, which 

helps to understand the end effect on phonon Knudsen minimum. The remaining of this 

article is arranged as follows: the methodology will be introduced in Section II, and the results 

and discussions will be given in Section III, with the concluding remarks finally made in 

Section IV.  

II. Methods 

 In Section II A, the phonon Boltzmann equation under Callaway’s dual relaxation 

model will be firstly introduced. The ab initio phonon properties (dispersion and scattering 

rates) of graphite will be computed and verified in Section II B. In Section II C, a discrete-

ordinate method will be presented for the numerical solution of the phonon Boltzmann 

equation under Callaway’s model. Finally, a validation of the methodology is demonstrated 

by comparison to the available semi-analytical solution in Section II D. 

A. Phonon Boltzmann equation under Callaway’s model 

 The phonon Boltzmann equation under Callaway’s scattering model is written as 

[21,30,31]: 

,                                  (1) 

where  f ≡ f (r, t, q, p) is the number distribution function of phonon mode (q, p),  with q and 

p the wave vector and polarization of phonons, respectively. The phonon group velocity is 

denoted by vg. The equilibrium distribution functions for the intrinsic resistive and normal 

scattering processes are the Bose-Einstein and the displaced Bose-Einstein distributions 

separately:  
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where  and kB are the Planck constant and Boltzmann constant respectively. The two 

local pseudo-temperatures ( ) in Eqs. (2) and (3) are intermediate quantities to 

ensure the local energy conservation conditions of both resistive and normal processes: 

,                    (4) 

and the local phonon drift velocity u is determined by the local quasi-momentum 

conservation condition of normal process: 

.                                          (5) 

The relaxation times (the inverse of scattering rates) of resistive and normal processes (  

and ) are dependent on the local thermodynamic temperature T, and will be obtained by 

the ab initio calculation in the following sub-section II B. 

 For the convenience of numerical treatment, the deviational energy distribution 

function of phonon modes is introduced as [39]: , with T0 the 

average system temperature. Furthermore, we assume a small temperature difference 

throughout the system such that the phonon Boltzmann equation (1) is linearized as: 

,                                    (6) 
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where the modal heat capacity is defined as: , whereas the local energy and 

quasi-momentum conservation conditions in Eq. (4) and Eq. (5) are reduced respectively to: 

,              (9) 

.                                       (10) 

In Eqs. (9) and (10), we have introduced the short notations as: , 

, and . The fact that is diagonal 

has been used in deriving Eq. (10), where the subscript ‘α’ denotes the index of cartesian 

coordinates (x, y, z). Note that the phonon intensity form of Boltzmann equation (1) in our 

previous work [30] is not adopted here due to the anisotropic phonon properties of graphite. 

 Once the deviational energy distribution function of phonons in Eq. (6) is resolved, 

the macroscopic field variables (thermodynamic temperature and heat flux) are computed by 

a statistical process: 

,                                               (11) 
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graphite. An approximate scheme is presented in Section II B 3 for efficient integration over 

the anisotropic first Brillouin zone (BZ) of graphite. Finally, in Section II B 4, the ab initio 

phonon properties are verified by calculating the bulk thermal conductivity of graphite. 

1. First-principle calculation 

 The first-principle calculation of graphite is implemented in the open-source package 

QUANTUM ESPRESSO (QE) [40]. The projected augmented wave (PAW) pseudo-

potential with the PBE exchange-correlation functional is adopted. To include the vdW 

interlayer interaction, the non-local vdW functional named optB88 is used as recommended 

by the previous studies [26,34]. A kinetic energy cutoff of 60 Ry and 400 Ry are used for the 

wave function and charge density respectively, and a convergence threshold of 10-12 is used 

for the self-consistent field calculation. Since graphite is semi-metallic, the Marzari-

Vanderbilt (mv) smearing [41] with a tiny Gaussian spreading of 0.02 Ry is adopted for the 

electronic BZ integration. As a first step, the basal plane lattice constant and interlayer 

distance of graphite are obtained as a = 2.4646 Å and d = 3. 3364 Å through a unit cell 

relaxation in QE with an electronic wave vector grid of 24 × 24 × 10 and the convergence 

thresholds of 10-6 a.u. (atomic unit), 10-4 a.u. and 0.05 kbar for the total energy, force and 

pressure respectively. The values of lattice constants agree well with the widely accepted 

experimental data at low temperatures (a = 2.46 Å and d = 3.34 Å [42]). Then the harmonic 

force constants are computed by DFPT (density functional perturbation theory) in QE with 

an electronic wave vector grid of 24 × 24 × 12 and a phonon q-mesh of 5 × 5 × 2. The third-

order force constants are computed by the finite-displacement method implemented in the 

open-source script THIRDORDER [43]. A supercell of 4 × 4 × 2 is adopted with the 4th 

nearest-neighbor atomic interaction included. The DFT calculation of atomic forces for 

different configurations is done in QE with an electronic wave vector grid of 4 × 4 × 4. All 

the parameters in the first-principle calculation are chosen after a careful independence check. 

2. Modified definition of normal and umklapp scattering rates 

 With the harmonic and third-order force constants, the bulk phonon properties of 

graphite are computed in the open-source package SHENGBTE [43], with a phonon q-mesh 
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of 40 × 40 × 6 after an independence verification. The normal or umklapp scattering rate is 

usually counted based on whether the phonon quasi-momentum is conserved or not. Based 

on this original definition, the results at 100 K for the BA (bending acoustic) phonons at 

different dimensionless qz (denoted by Qz) are shown as the circle points in Figure 1. The 

umklapp scattering is much weaker than the normal scattering in the low- and moderate-

frequency ranges at Qz = 0, whereas it becomes stronger at larger Qz and even comparable to 

normal scattering at Qz = 1/2 (at the transverse edge of the first BZ). This result seems to 

make sense since the phonon with a wave vector close to the transverse edge of the first BZ 

would easily go out of the first BZ when interacting with another phonon, i.e. an umklapp 

scattering happens. However, it contradicts the results of phonon drift in graphite as detailed 

in Appendix A. The recent studies [26,35] proposed that the classification of normal and 

umklapp scatterings in anisotropic materials should be based on the projected momentum 

along the heat flow direction. We adopt a slightly different direction-dependent definition 

here. For heat transport along the basal plane of graphite, the normal or umklapp scattering 

is counted based on whether the projected momentum along the basal plane is conserved or 

not in a three-phonon scattering: 

,                                                   (13) 

where G is the reciprocal lattice vector and the subscript ‘ab’ denotes the component along 

the basal plane (ab-axis). The three-phonon scattering is a normal process if Gab = 0, or an 

umklapp process if Gab ≠ 0. The modified definition is similar for heat transport along the c-

axis direction. The present definition has one advantage over the previous one [26,35]: the 

normal and umklapp scattering rates would be unique when the heat flow direction varies in 

real space along the basal plane of a graphite ribbon with irregular geometrical shapes. With 

the modified definition in Eq. (13), the trends of normal and umklapp scattering rates shown 

by the plus symbols in Figure 1 become consistent with the phonon drift results in Appendix 

A. Only the modified normal and umklapp scattering rates based on Eq. (13) are calculated 

in this work since we mainly focus on heat transport along the basal plane of graphite ribbon.         

1, 2, 3,ab ab ab ab+ = +q q q G



9 
 

 
Figure 1. Normal and umklapp scattering rates of BA phonons in isotopically pure graphite at 100 K 
at different dimensionless qz from Γ to A points in the first Brillouin zone:  (a) Qz = 0; (b) Qz = 1/6; 
(c) Qz = 1/3; (d) Qz = 1/2. The red and black circles (or plus symbols) denote respectively the 
normal and umklapp scattering rates based on the original (-o) definition (or modified (-m) 
definition in Eq. (13)). The representative results along the Γ-M direction for Qz = 0 and along the 
directions parallel to Γ-M within ΓALM for other Qz (c.f. Figure 2(a)) are shown. 

3. Approximation of the first Brillouin zone 

 The numerical solution of the space- and time-dependent phonon Boltzmann equation 

(6) would be computationally complicated and intensive if we directly integrate over the first 

BZ of graphite, as shown in Figure 2(a). Here we introduce an approximation of the first BZ 

by a cylindrical zone as shown in Figure 2(b), where the phonon wave vector components 

 turn into . This approximate treatment makes the numerical integration 

very efficient since we could utilize the Gauss-Legendre (G-L) quadrature in the cylindrical 

coordinate, as to be introduced later in Section II C. Note that the first principle calculation 

in Section II B 1 and II B 2 does not account for the approximations in this Section II B 3. 

The obtained ab initio phonon properties along the Γ-M direction and the directions parallel 

to Γ-M within ΓALM in the original first BZ in Figure 2(a) are assumed respectively for Qz 

= 0 and for other Qz in the approximate first BZ in Figure 2(b). Such an assumption is rather 

reasonable since the phonon properties along the -  plane at a specific Qz are more or less 

isotropic. The present approximation is also applicable for other materials with a hexagonal 

( ), ,x y zq q q ( ), ,r zq qq

xq yq
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first BZ, such as the hexagonal BN [44], hexagonal GaN and AlN [45] and so on. For 

materials with a complex first BZ where a good approximation is hard to find, we may have 

to integrate over the full first BZ in solving the phonon Boltzmann equation. As a last 

simplification, we only consider the six low-lying phonon branches (BA, TA, LA, BO´, TO´, 

LO´) in the numerical solution of Eq. (6). The phonon dispersions of those branches at 

different Qz are illustrated in Appendix B. The contribution of the other six optical phonon 

branches to steady-state heat transport in this work is much smaller and not taken into account 

for reducing the computational cost by half. As demonstrated in the recent work [26], even 

the BA, BO´ and TA branches contribute to more than 90% of the total thermal conductivity 

at 100 K where the hydrodynamic transport is relevant. The present consideration of six 

branches ensures a very good approximation in a broad range of temperatures, as to be shown 

in the following sub-section II B 4. Technically speaking, all the phonon branches could be 

considered when necessary, for instance, in transient heat transport where all of them may 

significantly contribute to the heat capacity. Note that the effect of the omitted optical phonon 

branches is still included in the scattering rates of the considered branches through the 

perturbation theory calculation in the original full first BZ with all the phonon branches taken 

into account in Section II B 2. 

 
Figure 2. Approximation of the first Brillouin zone (BZ) of graphite: (a) the realistic hexagonal first 
BZ; (b) the approximate cylindrical first BZ for solving Eq. (6). The dashed light-blue lines within 
ΓALM in (a) denote the discrete directions parallel to Γ-M at different qz from Γ to A points. 

4. Bulk thermal conductivity calculation 

 The ab initio force constants and phonon properties are verified by computing the 

bulk thermal conductivity of graphite, as reported in Figure 3 for the isotopically pure (0% 
13C) case. The result of the natural abundance (1.1% 13C) case is provided in Appendix C 
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with a comparison to available experimental data. The iterative solution of the phonon 

Boltzmann equation with full scattering term is obtained in SHENGBTE with the ab initio 

force constants as input, whereas the results of the SMRT and Callaway’s models are 

obtained with the phonon properties extracted from SHENGBTE. Both the SMRT model and 

the Callaway’s model with the original definition of normal and umklapp scatterings 

appreciably underestimate the basal plane thermal conductivity, as shown in Figure 3 (a). 

The underestimation increases with decreasing temperature and reaches almost 100 % around 

100 K as given in Figure 3(b). In contrast, with the modified definition of normal and 

umklapp scattering rates in Section II B 2, the Callaway’s model shows an overall good 

agreement with the iterative solution. Furthermore, under the approximations in Section II B 

3, i.e. based on a cylindrical first BZ with only six phonon branches considered, the 

Callaway’s model with the modified definition still agrees with the full iterative solution 

within 20 % as quantified in Figure 3(b). The Callaway’s model [21] has also been shown to 

agree with the iterative solution within 20 ~ 30 % for the lattice thermal conductivity of 

diamond between 100 ~ 500 K covering the regime with comparable normal and umklapp 

scatterings [22]. In spite of sacrificing some accuracy, a direct numerical solution of the 

Callaway’s relaxation model is more efficient and feasible, while it remains an open 

challenge to solve the space-dependent phonon Boltzmann equation with full scattering term 

in 3D materials. To sum up, the results demonstrate that the modified Callaway’s model with 

(i) ab initio phonon properties and (ii) the approximate treatment of the first BZ, represents 

a good theoretical description of hydrodynamic heat transport along the basal plane of 

graphite. 
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Figure 3. Temperature-dependent bulk thermal conductivity of isotopically pure graphite: (a) basal 
plane result; (b) relative error of the relaxation approximations comparing to the iterative solution. 
The line with circles denote the iterative solution of phonon Boltzmann equation with full scattering 
term, the line with squares denote the single mode relaxation time (SMRT) approximation, the line 
with cross symbols (or triangles) denote the Callaway’s dual relaxation model with the original (-o) 
definition (or modified (-m) definition in Eq. (13)) of normal and umklapp scattering rates, whereas 
the line with plus symbols denotes the Callaway’s model with the modified definition of normal and 
umklapp scattering rates under the approximations made in Section II B 3. 

C. Discrete-ordinate method 

 In this sub-section, we introduce a discrete-ordinate method (DOM) for the direct 

numerical solution of the phonon Boltzmann equation (6) in the approximate cylindrical first 

BZ shown in Figure 2(b). The steady-state heat transport along the basal plane of graphite 

ribbon is considered. Due to the weak interlayer vdW interaction, the size effect along the c-

axis (thickness direction) of graphite is usually very small. As demonstrated in previous first-

principle calculations [46] and experimental measurements [47], the thermal conductivity of 

multi-layer graphene converges to that of bulk graphite as the number of atomic layers 

increases to be larger than about five. Thus the c-axis direction could be in principle treated 

as bulk (i.e. periodic) as long as the thickness of graphite ribbon is larger than few nanometers, 

which is often the case in experiments [12] and in the focus of the present work. In other 

words, we consider 2D heat transport along the 3D graphite ribbon, where the size effect only 

comes from the boundary along the basal plane direction. The modeling of phonon 

hydrodynamics in very thin graphite ribbon (or few-layer-graphene ribbon) with considerable 
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size effect in c-axis is more complicated and pending in a future work. Therefore, Eq. (6) is 

reduced to: 

,                                    (14) 

where , and the basal plane mean free paths (MFPs) of the resistive and 

normal scatterings are calculated as: , with the basal 

plane group velocity defined as: . 

 The basic idea of the DOM scheme is to discretize the phonon distribution function 

on the real-space and reciprocal-space coordinates, with the details given in Appendix D. 

Here we present the discrete integration scheme for the following general integral over the 

first BZ: 

,                                                   (15) 

where g(q, p) is an arbitrary function of phonon mode. In the cylindrical coordinate system 

considered here, Eq. (15) is rewritten as: 

,                                  (16) 

where we have used a uniform rectangular integration over  with an interval of , as 

consistent with the calculation of bulk thermal conductivity in Section II B 4. The maximal 

basal plane wave vector is denoted by , which corresponds to the wave vector value at 
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where wk, wn are weight coefficients and the integration factor . The DOM 

scheme shown in Appendix D is derived based on the discretization in Eq. (17). Note that to 

ensure the symmetry of the discrete angular space,  is divided into [0 π] and [π 2π], 

and for each the G-L quadrature with an equal number of abscissae Nθ/2 is applied [30]. 

D. Validations 

 In this sub-section, we demonstrate a validation of the DOM scheme for the phonon 

Boltzmann equation under the Callaway’s model with the anisotropic ab initio input. Heat 

transport along an infinitely long isotopically pure graphite ribbon with a finite width at 300 

K and 100 K is considered. A temperature gradient of -108 K/m is exerted along the graphite 

ribbon. Such a case has been deeply investigated based on a semi-analytical solution of the 

Callaway’s phonon Boltzmann equation in the recent work [26]. This case is modeled by the 

present DOM solution with a grid of  after independence 

verification. Note that  and  are used for all the numerical solutions throughout 

this work. The periodic heat flux boundary condition [30,48] is used to implement the 

constant temperature gradient along the transport direction, whereas the diffuse scheme is 

used for the transverse adiabatic boundary [30,31]. The details of the boundary treatment are 

provided in Appendix D. We obtain the cross-sectional heat flux distributions along the 

graphite ribbons with various widths, which show an excellent agreement with the semi-

analytical solutions [26] in Figure 4(a) and Figure 5(a). As a result, the width-dependent 

thermal conductivity of the graphite ribbon is also well consistent with the semi-analytical 

result [26], as shown in Figure 4(b) and Figure 5(b). This benchmark study thus indicates the 

validation of the present DOM scheme. In this following Section III, we will apply our 

computational framework to investigate heat transport in graphite ribbons with finite length 

and width, which would be no longer doable by semi-analytical solutions. 
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Figure 4. Heat transport along an infinitely long graphite ribbon with a finite width at 300 K: (a) 
cross-sectional heat flux profile at different widths (W); (b) width-dependent thermal conductivity. 
The discrete symbols denote the present discrete-ordinate method (DOM) solution, whereas the 
solid lines denote the semi-analytical solution from Ref. [26]. Isotopically pure graphite is 
considered, and a temperature gradient of -108 K/m is exerted. 

 
Figure 5. Heat transport along an infinitely long graphite ribbon with a finite width at 100 K: (a) 
cross-sectional heat flux profile at different widths (W); (b) width-dependent thermal conductivity. 
The discrete symbols denote the present discrete-ordinate method (DOM) solution, whereas the 
solid lines denote the semi-analytical solution from Ref. [26]. Isotopically pure graphite is 
considered, and a temperature gradient of -108 K/m is exerted. 

III. Results and Discussions 

 In this section, the methodology developed in Section II will be applied to model the 

classical in-plane and cross-plane heat transports along infinitely long and infinitely wide 

graphite ribbons respectively in Section III A. The size scaling of in-plane and cross-plane 
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thermal conductivities will be revealed by the direct numerical solution and be analyzed by 

a macroscopic hydrodynamic approach. In Section III B, the end effect on phonon Knudsen 

minimum in a graphite ribbon with a finite length and width will be studied. An effective 

MFP model combining the size scaling of in-plane and cross-plane transports is introduced 

to interpret the results. For all the cases, the isotopically pure graphite is considered, which 

avoids the resistive isotope scattering to deteriorate the hydrodynamic effect. 

A. In-plane and cross-plane heat transports 

 In this sub-section, we model the in-plane heat transport along an infinitely long 

graphite ribbon with a finite width W in Figure 6(a), and the cross-plane heat transport along 

an infinitely wide graphite ribbon with a finite length L in Figure 6(b). Both the in-plane and 

cross-plane transports are along the basal plane of graphite. Three different average system 

temperatures are considered: T0 = 80 K, 100 K, 300 K, which covers both the hydrodynamic 

regime (80 K and 100 K) and the diffusive regime (300 K). A constant temperature gradient 

is implemented along the transport direction of the in-plane case, whereas hot and cold 

sources are exerted with a tiny temperature difference of 1 K in the cross-plane case. The 

numerical grids and boundary treatment for the in-plane transport are the same as those in 

Section II D. For the cross-plane transport, the DOM in Section II C is reduced to a one-

dimensional (1D) formulation, with a spatial grid of  and  adopted for T0 = 

80 K, 100 K and T0 = 300 K respectively, whereas  for all. The phonon 

blackbody isothermal boundary conditions [30,31] are used for the hot and cold sources.  

 

 
Figure 6. Schematics of heat transport in the basal plane of the graphite ribbon: (a) in-plane heat 
transport along an infinitely long graphite ribbon with a finite width W; (b) cross-plane heat 
transport along an infinitely wide graphite ribbon with a finite length L. 

201xN = 101xN =
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1. Size scaling of thermal conductivity 

The size-dependent in-plane and cross-plane thermal conductivities of graphite 

ribbons at different temperatures are demonstrated in Figure 7. In all the three cases, the in-

plane thermal conductivity is higher than the cross-plane one at the same characteristic length 

(ribbon size), which is similar to the trend in the ballistic-diffusive heat transport through 

silicon thin films [49,50]. However, by decreasing temperature from 300 K to 80 K, the 

difference between in-plane and cross-plane thermal conductivities increases. Specifically, a 

considerably faster increase of in-plane thermal conductivity appears at intermediate ribbon 

size than the cross-plane one at 80 K and 100 K, as clearly seen in Figure 7(a) and (b). Thus 

the convergence of the thermal conductivity occurs at smaller size in the in-plane transport, 

for instance, at ~ 50 μm compared to ~ 500 μm in the cross-plane transport at 100 K, as shown 

in Figure 7(b). In other words, a much smaller characteristic length is required to see the size 

effect in the in-plane heat transport in the hydrodynamic regime at lower temperatures. 

 
Figure 7. Thermal conductivity of in-plane and cross-plane heat transport along infinitely long and 
infinitely wide graphite ribbons, respectively, at different temperatures: (a) 80 K; (b) 100 K; (c) 300 
K. Isotopically pure graphite is considered here, and the characteristic length denotes the width for 
the in-plane case or the length for the cross-plane case (c.f. Figure 6). 

 The very different size effects of the in-plane and cross-plane heat transports come 

from the different size scaling behaviors, as given by the normalized thermal conductivity by 

the ribbon size in Figure 8. The ribbon size is proportional to the thermal conductivity in the 

ballistic limit [36,51], where the phonon MFP is limited by the boundary of the graphite 

ribbon. The normalized cross-plane thermal conductivity always decrease with increasing 
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ribbon size at different temperatures. The continual decrease with ribbon size is different 

from the trend of convergence after a critical size comparable to phonon MFP in previous 

works [28,32] with only the normal scattering considered. In contrast, the normalized thermal 

conductivity shows a non-monotonic trend with the ribbon size in the in-plane transport at 

80 K and 100 K, as shown in Figure 8(a) and (b). For instance, at 80 K in Figure 8(a), it even 

increases with ribbon size after a minimum at ~ 800 nm and reaches a maximum at ~ 8 μm 

before decreasing again. The minimum is known as the phonon Knudsen minimum due to 

the transition from ballistic to hydrodynamic transports [26,30,36]. The increase with ribbon 

size between 0.8-8 μm represents the super-ballistic scaling of in-plane heat transport in the 

hydrodynamic regime [19,26]. This explains the much faster increase of in-plane thermal 

conductivity than the cross-plane one in Figure 7(a) and (b). The super-ballistic scaling with 

the transverse dimension in the presence of dominant normal scattering has been attributed 

to the effective momentum-destroying MFP: , which was deduced by a random 

walk theory [37,38]. In the following sub-section III A 2, we provide a unified analysis, based 

on a hydrodynamic approach, of the size scaling for the in-plane heat transport that is more 

or less known, and for the cross-plane transport that is less quantified. 

 
Figure 8. Normalized thermal conductivity of in-plane and cross-plane heat transport along 
infinitely long and infinitely wide graphite ribbons respectively at different temperatures: (a) 80 K; 
(b) 100 K; (c) 300 K. Isotopically pure graphite is considered here, and the characteristic length (Lc) 
denotes the width for the in-plane case or the length for the cross-plane case (c.f. Figure 6). The 
thermal conductivity normalized by the characteristic length denotes a normalization by the ballistic 
limit. 

2
eff N~WL L
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2. Size scaling analysis by hydrodynamic approach 

 We adopt the following phonon hydrodynamic equation for our analysis: 

.                       (18) 

Equation (18) can be derived from the phonon Boltzmann equation under Callaway’s dual 

relaxation model with two assumptions [5,23]: (i) gray phonon properties; (ii) dominant 

normal scattering over resistive one ( ). It is actually a variant of the classical Guyer-

Krumhansl heat equation [4,52] with a minor coefficient difference in the non-local terms of  

the heat flux [5,23]. To model the in-plane and cross-plane heat transports, we also need the 

boundary conditions of heat flux slip and temperature jump respectively [23,53]: 

,                                                         (19) 

,                                                      (20) 

where the subscript ‘s’ denotes the boundary, and ‘n’ in the partial derivative represents the 

normal direction of the boundary. Equation (20) indicates that the cross-plane temperature 

jump near the heat source is only related to the resistive scattering. Physically speaking, this 

is because the phonon viscous effect via normal scattering only emerges in the presence of a 

transverse boundary, as in the in-plane heat transport. In other words, cross-plane heat 

transport in the hydrodynamic regime resembles the inviscid flow in fluid mechanics [54]. 

From the mathematical point of view, the non-local terms of heat flux on the right-hand side 

of Eq. (18) (similar to the viscous terms in Navier-Stokes hydrodynamic equation [54]) will 

vanish and have no contribution to the 1D cross-plane heat transport. The phonon 

hydrodynamic equation (18) together with the boundary conditions Eqs. (19) and (20) have 

been validated through a comparison to the direct DOM solution of the Callaway’s phonon 

Boltzmann equation [53]. 
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 For the steady-state in-plane heat transport, we obtain the heat flux solution of Eq. 

(18) with the boundary condition in Eq. (19), and then compute the effective thermal 

conductivity as follows [53]: 

,                                           (21) 

where , with the Knudsen numbers for normal and resistive 

scatterings defined as: . In the phonon hydrodynamic regime (or 

phonon Poiseuille flow regime) we are concerned with, the window condition applies as [4]: 

, which gives rise to . Therefore, Eq. (21) can be 

approximated as: 

.                (22) 

With the expressions of κ and Knm, Eq. (22) yields the effective thermal conductivity as 

.  Using the classical kinetic formula of thermal conductivity, we obtain 

an effective momentum-destroying MFP: , which is well consistent with the size 

scaling of based on the random walk theory [37,38]. 

 For the steady-state cross-plane heat transport, we obtain the solution of Eq. (18) with 

the boundary condition in Eq. (20) and then compute the effective thermal conductivity as 

follows [53]: 

,                                                       (23) 
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where  here. Using the kinetic formula of thermal conductivity, we obtain the 

effective momentum-destroying MFP from Eq. (23) as: 

.                                                       (24) 

Equation (24) is similar to the Mathiessen’s rule, and shows that the cross-plane thermal 

resistance combines the first term ( ) from the resistive scattering and the second term 

from the heat source boundaries (~ 1/L). In the phonon hydrodynamic regime here, , 

which means that the second term is dominant. The size scaling for cross-plane heat transport 

thus writes  and . The result based on the present analysis agrees well 

with the trends in Figure 8(a) and (b) where κ/Lc is weakly dependent on Lc within the range 

of the hydrodynamic regime (e.g., the corresponding range of ribbon size from the minimum 

to the maximum of the in-plane case). The recent study [32] in the hypothetical graphitic 

materials with constant normal scattering rate also showed an invariable thermal resistance 

when , i.e. in the hydrodynamic regime. Actually Eq. (23) and Eq. (24) are valid from 

the hydrodynamic regime ( ) to the diffusive regime ( ), as verified previously 

[53]. They yield the following scaling for the cross-plane thermal conductivity: 

,                                                    (25) 

which indeed captures the general trend in Figure 8(a) and (b) in the whole range of Lc. It is 

also interesting to find that Eqs. (23)-(25) are similar to the classical results for the transition 

from ballistic to diffusive transports across a thin film [55]. This explains the similarity of 

the hydrodynamic-to-diffusive transition at 80 K and 100 K in Figure 8(a) and (b) to the 

ballistic-to-diffusive transition in  Figure 8(c) at 300 K for the cross-plane case. It means that 

the viscous effect of normal scattering is almost invisible in the cross-plane heat transport as 

we mentioned precedingly.  
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 To provide an intuitive picture of the dominant thermal resistance from the heat 

source boundaries in the hydrodynamic regime, we display the temperature distributions for 

the cross-plane heat transport in Figure 9. In the range of the hydrodynamic regime (e.g., L 

= 5 μm at 80 K in Figure 9(a) and L = 1 μm at 100 K in Figure 9(b)), the temperature profile 

is very uniform inside the graphite ribbon whereas very large temperature jumps near both 

heat sources occur. Furthermore, a stronger nonlinearity of the temperature profile appears 

near the boundary in the hydrodynamic regime compared to that in the diffusive regime (i.e., 

at 300 K in Figure 9(c)), which is attributed to the large mismatch between the displaced 

phonon distribution inside the ribbon and the isotropic Bose-Einstein distribution in the heat 

source [28,32].  

 To sum up, we obtain the size scaling of  and  respectively for 

in-plane and cross-plane heat transports in the hydrodynamic regime based on a phonon 

hydrodynamic approach. The present analysis provides a good interpretation of the results in 

Section III A 1, and will also help to understand the end effect on phonon Knudsen minimum 

in the following Section III B. 

 
Figure 9. Temperature distribution of cross-plane heat transport along an infinitely wide graphite 
ribbon with different lengths (L) at several temperatures: (a) 80 K; (b) 100 K; (c) 300 K. 
Isotopically pure graphite is considered here. 

B. End effect on phonon Knudsen minimum 

 Phonon Knudsen minimum has appeared in the in-plane heat transport along an 

infinitely long graphite ribbon at 80 K and 100 K in Section III A. In this sub-section, we 

2
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investigate the end effect on phonon Knudsen minimum in a rectangular graphite ribbon with 

finite length and width at 100 K and 80 K, as shown in Figure 10. For the first case at 100 K, 

a series of ribbon lengths of 10 μm, 20 μm, 30 μm, 50 μm, and 80 μm are considered, and for 

each one the ribbon width varies from 100 nm to 50 μm to study the width dependence of 

heat transport. A spatial grid of  and  is adopted after an independence check. 

For the second case at 80 K, a series of ribbons lengths of 10 μm, 20 μm, 30 μm, 50 μm, and 

100 μm are considered, for each one the same range of width from 100 nm to 50 μm is studied. 

A spatial grid of  and  is adopted for nm, whereas a spatial grid of 

 and  is used for other widths after an independence check. For both cases 

at 100 K and 80 K,  are considered after an independence check. A tiny 

temperature difference of 1 K is implemented on the graphite ribbon. The isothermal and 

adiabatic boundary treatments are the same as those in Section III A. 

 
Figure 10. Schematic of heat transport along a graphite ribbon with a finite length L and a finite 
width W. 

 The width-dependent thermal conductivity and its normalization over the ballistic 

limit (~ the width W) at different ribbon lengths are given in Figure 11 and Figure 12 for the 

cases of 100 K and 80 K respectively. The results for an infinitely long graphite ribbon are 

also included as a reference, where a Knudsen minimum is clearly seen around the lower 

limit of the ribbon width range in the hydrodynamic regime (from ~ 500 nm to ~ 3 μm at 100 

K and from ~ 800 nm to ~ 8 μm at 80 K). However, the minimum disappears when the ribbon 

length lies also within the similar range, for instance, at 10 μm. At both temperatures, the 

thermal conductivity of the graphite ribbon with a length of 10 μm converges very fast with 

width to a saturation value much smaller than the bulk limit, which implies a very strong size 

effect from the finite length. The ribbon length where the Knudsen minimum re-emerges is 

larger than ~ 50 μm at both 100 K and 80 K, i.e. much larger than the width range that 
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supports hydrodynamic transport. Also the minimum in the graphite ribbon with L = 80 μm 

at 100 K is comparatively milder than that in the ribbon with L = 100 μm at 80 K, due to the 

relatively stronger umklapp scattering and weaker hydrodynamic effect in the former case. 

Because of the strong end effect, a critical ribbon length to observe the phonon Knudsen 

minimum shall be roughly 5-10 times the upper limit of the width range in the hydrodynamic 

regime. This critical ribbon length is dependent on the system temperature, and could be 

estimated based on the temperature-dependent result of the width range in the hydrodynamic 

regime [26]. A similar critical length-to-height ratio of 5-10 has been found in the Knudsen 

minimum of gas flow in a planar microchannel with finite length [56,57]. To illustrate the 

end effect, we also display the middle cross-sectional heat flux profiles inside the graphite 

ribbon with W = 2 μm at 100 K and W = 5 μm at 80 K at different lengths, as shown in Figure 

13(a) and Figure 13(b) respectively. The results indicate that the finite ribbon length 

generates a significant restriction on the development of the hydrodynamic heat flow. 

 
Figure 11. Width-dependent thermal conductivity (a) and normalized thermal conductivity (b) of 
rectangular graphite ribbons with different lengths (L) at 100 K. Isotopically pure graphite is 
considered here, and the thermal conductivity normalized by the width (W) in (b) denotes the 
normalization by the ballistic limit. 
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Figure 12. Width-dependent thermal conductivity (a) and normalized thermal conductivity (b) of 
rectangular graphite ribbons with different lengths (L) at 80 K. Isotopically pure graphite is 
considered here, and the thermal conductivity normalized by the width (W) in (b) denotes the 
normalization by the ballistic limit. 

     
Figure 13. The middle cross-sectional dimensionless heat flux profile of heat transport in 
rectangular graphite ribbons with different lengths (L): (a) W = 2 μm, 100 K; (b) W = 5 μm, 80 K. 
Isotopically pure graphite is considered here, and the heat flux is normalized by the bulk limit. 

 To establish an intuitive understanding of the strong end effect on phonon Knudsen 

minimum, we provide an interpretation via a MFP analysis. The effective phonon MFP in a 

rectangular graphite ribbon can be estimated by the Mathiessen’s law as: 

,                                                     (26) 
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where correspond to the effective momentum-destroying MFP in the length and 

width directions respectively. Based on the preceding analysis of Section III A 2, the effective 

momentum-destroying MFPs in the hydrodynamic regime reads: 

.                                                   (27) 

Originated from the super-ballistic scaling in the width direction, the Knudsen minimum 

would take place only when , i.e. the phonon quasi-momentum is preserved in 

the width direction before it is destroyed in the length direction. Thus , which 

implies  since  in the hydrodynamic regime. Consequently, the length shall 

be much larger than the width to observe the phonon Knudsen minimum in a rectangular 

graphite ribbon, which is consistent with the results of our direct numerical solutions. 

Although the present effective MFP analysis is based on a gray phonon hydrodynamic model, 

it captures the crucial point and predicts the correct general trend. This work thus also 

demonstrates the power of macroscopic hydrodynamic equations [5] in understanding non-

Fourier heat transport, which have followed appreciable progresses in the recent years [6-

9,58]. 

IV. Conclusions 

 In summary, we investigate the phonon hydrodynamics in graphite micro- and nano-

structures based on a direct numerical solution of the phonon Boltzmann equation under 

Callaway’s model with input from the first-principle calculations of anisotropic phonon 

properties. In the hydrodynamic regime, the effective momentum-destroying phonon mean 

free paths in the transverse and the longitudinal directions are proportional to the width square 

and the length of the system respectively. A strong end effect is thus uncovered in the phonon 

Knudsen minimum along finite-size graphite ribbon, which occurs only when the ribbon 

length is much larger than the width. The present work provides an efficient and robust 

computational framework for the theoretical modeling and experimental investigation of 

hydrodynamic heat transport in anisotropic materials in the future. Our theoretical analysis 

also promotes the understanding of the size effect on thermal conductivity in the phonon 
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hydrodynamic regime. During the peer review process, we notice a report of Monte Carlo 

solution of the time- and space-dependent phonon Boltzmann equation with full scattering 

matrix in a circular graphite ribbon [59], which is generally more computationally intensive.  
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Appendix A. Phonon drift in graphite 

 The phonon drift is characterized by the normalized deviation of the distribution 

function defined as [11]: , with  the Bose-Einstein distribution 

and  obtained through an iterative solution of the phonon Boltzmann equation in 

SHENGBTE. As shown in Figure 14, the phonon drift along the basal plane of graphite is 

almost independent of Qz. In other words, the normal scattering shall be still much stronger 

than the umklapp one even near the transverse edge of the first BZ. This contradicts the 

results of normal and umklapp scattering rates based on the original definition in Figure 1. 

Such a contradiction indicates that the usual definition of normal and umklapp scatterings 

does not work well for the graphite as a strongly anisotropic system. 

 
Figure 14. Normalized deviation of distribution for BA phonons in isotopically pure graphite at 100 
K at different dimensionless qz from Γ to A points in the first Brillouin zone. The results are 
obtained through an iterative solution of phonon Boltzmann equation with the full scattering term. 
A temperature gradient of [-108 0 0] (K/m) is applied. The results at qy = 0 are shown. 

 

 

 

 

( ) ( )0 0 0 1pdf f f f f= - +é ùë ûq 0f

pfq



29 
 

Appendix B. Phonon dispersion of graphite 

 The phonon dispersion of the six low-lying branches of graphite is demonstrated in 

Figure 15.  

 
Figure 15. Phonon dispersion of graphite at different dimensionless qz from Γ to A points in the first 
Brillouin zone: (a) Qz = 0; (b) Qz = 1/6; (c) Qz = 1/3; (d) Qz = 1/2. Six phonon branches along the Γ-
M direction for Qz = 0 and along the directions parallel to Γ-M within ΓALM for other Qz (c.f. 
Figure 2(a)) are shown. 
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Appendix C. Experimental validation of ab initio phonon properties of graphite 

In the natural abundance case, the iterative solution and the modified Callaway’s 

model generally agree well with the available experimental data of bulk thermal conducitivity 

of graphite [60], as shown in Figure 16(a). Also, the present iterative solution is quite 

consistent with the reference one [35] with the same pseudo-potential and vdW functional, 

inferring that the first-principle calculation in Section II B 1 is reliable. For the c-axis thermal 

conductivity, both the SMRT model and the original Callaway’s model reproduce well the 

iterative solution and experimental result, as shown in Figure 16(b). This indicates weak 

hydrodynamic effect along the c-axis direction of graphite. 

 
Figure 16. Temperature-dependent bulk thermal conductivity of graphite with natural abundancy 
(1.1% 13C): (a) basal plane result; (b) c-axis result. The line with circles denote the iterative solution 
of phonon Boltzmann equation with full scattering term, the line with squares denote the single 
mode relaxation time (SMRT) approximation, the line with cross symbols (or triangles) denote the 
Callaway’s dual relaxation model with the original (-o) definition (or modified (-m) definition in 
Eq. (13)) of normal and umklapp scattering rates, whereas the line with plus symbols denotes the 
Callaway’s model with the modified definition of normal and umklapp scattering rates under the 
approximations made in Section II B 3. The line with diamonds refers to the iterative solution from 
Ref. [35] with the same pseudo-potential and vdW functional. The discrete filled circles with error 
bars denote the experimental results from Ref. [60]. 
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Appendix D. Discrete-ordinate method 

The details of the discrete-ordinate method are introduced for the phonon Boltzmann 

equation under Callaway’s dual relaxation model with anisotropic phonon properties. With 

the same numerical discretization in Eq. (17), the discrete form of the phonon Boltzmann 

equation (14) in the wave vector space is formulated as: 

,              (D1) 

where , ,  and  represents the index of 

discrete angular variables (θ), basal plane wave vectors ( ), c-axis wave vectors ( ) and 

phonon polarization (p). The discrete equilibrium distribution functions for the resistive and 

normal scatterings in Eq. (D1) can be derived from Eq. (7) and Eq. (8) with the aid of Eq. 

(17): 

,                        (D2) 

,                       (D3) 

where and  are the discrete forms of the modal heat capacity Cqp and 

frequency ωqp, and the explicit expressions of the phonon drift velocity components are 

respectively: 

,                      (D4) 
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 The step scheme is adopted for the spatial discretization of the phonon Boltzmann 

equation (D1), with a discrete form in the first quadrant of the angular space ( , i.e., 

) written as: 

,                  (D6) 

where  represent the indexes of discrete x- and y-coordinates, with 

the spatial steps being  and  respectively. The evolution equation for the discrete 

deviational energy distribution function is thus obtained from Eq. (D6) as: 

,                        (D7) 

where  are introduced for short notations, and 

the overall basal plane MFP is defined as: . The spatial discretization of the 

phonon Boltzmann equation and the evolution equations of discrete phonon distribution 

functions are similar in the other three quadrants, which could be found in Ref. [30].  

 Once the discrete deviational energy distribution is resolved, the macroscopic field 

variables are calculated by the discrete forms of Eq. (11) and Eq. (12) as: 
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Throughout this work, several types of boundaries are encountered: isothermal and 

adiabatic boundaries, and the periodic heat flux boundary. The isothermal boundary is treated 

by the following phonon black-body emission scheme: 

.                                  (D11) 

The adiabatic boundary is treated by the fully diffuse scheme as follows: 

,                    (D12) 

,                  (D13) 

where . To implement a constant temperature gradient in the in-plane heat transport, 

the following periodic heat flux boundary is adopted: 

.               (D14) 

The DOM numerical solution is implemented through an iteration process [30,61]. 

Within each iteration step, the discrete deviational energy distribution function for  

is firstly updated from the left-bottom boundary of the system based on Eq. (D7). The update 

is similar in the other three quadrants of angular space [30]. Then the discrete equilibrium 

distribution functions of resistive and normal scatterings are computed based on Eqs. (D2)-

(D5) and the macroscopic field variables are computed based on Eqs. (D8)-(D10). Before the 

next iteration step, boundary treatment is required for the deviational energy distribution 

function based on Eqs. (D11)-(D14) [30,31]. The iteration process is terminated until the 

relative differences of macroscopic field variables between two successive iteration steps are 

smaller than 10-6. 
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