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We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating
instead of work, in two different setups: a minimal set up based on coupled qubits, and two non-
linearly coupled resonators. Considering ZZ interaction between the two qubits, we outline the
basic ingredients required to achieve cooling. Using local as well as global master equations, we
observe that inclusion of XX type term in the qubit-qubit coupling is detrimental to cooling. We
compare the cooling effect obtained in the qubit case with that of non-linearly coupled resonators
(multi-level system) where the ZZ interaction translates to a Kerr-type non-linearity. For small to
intermediate strengths of non-linearity, we observe that multi-level quantum systems, for example
qutrits, give better cooling effect compared to the qubits. Using Keldysh non-equilibrium Green’s
function formalism, we go beyond first order sequential tunneling processes and study the effect
of higher order processes on refrigeration. We find reduced cooling effect compared to the master
equation calculations.

I. INTRODUCTION

Minimal heat engines and refrigerators based on quan-
tum systems offer the prospect for future thermal de-
vices. Understanding thermal transport in quantum sys-
tems along with subsequent realization of corresponding
thermal devices has been the focus of intense research
for some time1–12. This effort has been further fueled by
experimental advancement13–21 in the field giving new
insights about heat flow in quantum thermal devices.

In this article, we will focus on absorption refrigera-
tion in minimal quantum setups. Absorption refrigera-
tion refers to the phenomenon of cooling a cold bath by
maintaining a thermal bias across other two baths, see
Fig. 1. Intriguingly, the refrigeration process is driven
by heating the hot bath. The phenomenon has been
studied theoretically in a variety of setups ranging from
quantum dots9,22,23, electronic cavities24,25, supercon-
ducting systems26,27, trapped ions28 to qubits29–39 and
resonators37,40. However, to our knowledge, the only ex-
perimental work on absorption refrigeration was done in
Ref. 28 for the case of trapped ions.

The absorption refrigerators based on two-body in-
teractions are studied both for electronic22 and bosonic
systems29,37. The smallest possible two-body refrigerator
proposed by Linde et al in Ref. 29 consisted of a coupled
qubit-qutrit system. Recently, it was noticed that refrig-
eration can also be achieved with anisotropically coupled
qubits37. In this article, we demonstrate that the ab-
sorption refrigeration can be obtained in a simpler setup,
namely a qubit-qubit system with ZZ coupling. Notably,
ZZ-coupling between two qubits has been experimentally
realized in circuits ranging from qubits based on quan-
tum dots to Josephson junctions41,42. An electronic ver-
sion of our set up based on Coulomb coupled quantum
dots was studied in Ref. 22. However, a natural ques-
tion arises regarding if the setup based on qubits is the
best refrigerator. We will address this question by inves-
tigating refrigeration in non-linearly coupled resonators
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Figure 1. Schematic representation of the setup. The two
systems S1 and S2 can either be qubits or resonators. The
system S1 is connected to two baths L and R which are kept
at temperatures TL and TR whereas the system S2 is coupled
to the bath C which is kept at temperature TC, such that
TL > TR ≥ TC . The baths have Lorentzian spectral density
as defined in Eq. (3).

(multi-level system).

To obtain absorption refrigeration in small setups, se-
lective transport is the key. There are different ways
to introduce selective transport - one of the main ap-
proach which we will consider in this article is to intro-
duce energy filters in the contact region22,24,43. Most of
the previous works on quantum absorption refrigeration
are based on single photon transition (sequential) pro-
cesses with a sharp energy requirement. In this regime,
suitable engineering of the device can lead to highly selec-
tive transport. But higher order processes which include
two or more photons can decrease the effectiveness of
selective transport by broadening the energy window for
transport. These processes become more important when
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the system-bath coupling is not weak enough. Seemingly,
the effect of higher order processes on absorption refrig-
eration calls for research.

The paper is organized as follows. In the next sec-
tion, we will propose a model for obtaining absorption
refrigeration based on coupled qubits or resonators. In
Sec. III, we will present a detailed study of absorption
refrigerators based on two qubits with ZZ coupling. In
Sec. III B, we further our investigation by considering a
more generic qubit-qubit coupling condition. Particu-
larly, we take XX as well as ZZ coupling between the
qubits and use both local as well as global master equa-
tion to study the dynamics. In Sec. IV, we will study
absorption refrigeration in two non-linearly coupled res-
onators. We will also compare the cooling effects in the
aforementioned two setups. Finally in Sec. IV B, we will
use the Keldysh nonequilibrium Green’s function formal-
ism to study absorption refrigeration in the case of cou-
pled resonators going beyond first order sequential tun-
neling processes.

II. MODEL

The setup under investigation, depicted in Fig. 1 con-
sists of two coupled systems, namely S1 and S2. The
system S1 is attached to two baths: one of them is kept
at temperature TH = T + ∆T and the other one at tem-
perature T . The system S2 has only one bath attached
to it which is kept at a colder temperature TC. The total
Hamiltonian for the set up is given by

H = HS +HB +HC , (1)

where HS represents the Hamiltonian for the system. We
shall consider two different types of systems: 1) coupled
qubits (Q) and 2) non-linearly coupled resonators (R).
Further, we consider bosonic baths (B) with Hamiltonian

HB =
∑

k,α

εkαb
†
kαbkα, (2)

where εkα is the energy of mode k of bath α. bkα(b†kα)
are the annihilation (creation) operators for bath α. The
contact Hamiltonian (HC) depends on whether the sys-
tem is taken to be a qubit or a resonator. It has been
observed in several previous works that energy filtering
plays a significant role in achieving refrigeration22,24,43.
For that purpose, we take a harmonic resonator between
the baths and the system which helps in energy filter-
ing. The coupling strength between the bath η and the
resonator is taken to be γη and the one between the
resonator and the system as Γη. The frequency of the
resonator attached to the bath η is Ωη/~. We consider
Γη � γη, such that the bath-resonator acts as an effective
bath with a Lorentzian-type spectral density

Kη(ω) =
Γη(ω)

(ω − Ωη)2 + Γ2
η(ω)

, (3)

where η = L,R,C and Γη(ω) = ΓηωΘ(ω − εc), εc be-
ing the cut-off frequency. The energy filters allow pho-
tons with energy equal or close to the resonant energy of
the resonator to pass from the system to the baths and
vice-versa. The energy window available for transport
is determined by the width of the Lorentzian given by
the system-bath coupling strength(Γη(ω)). Hence, the
degree of filtering depends on the system-bath coupling
strength as well as the details of the system. When the
system is discrete and the adjacent levels are well sepa-
rated, the filtering effect is strong provided system-bath
coupling is weak enough. The filters become less efficient
when more than one level exists within the energy win-
dow provided by the system-bath coupling strength and
vanishes for systems with continuous degrees of freedom.

III. MINIMAL ABSORPTION REFRIGERATOR
WITH TWO QUBITS

In this section, we will present a minimal model for the
absorption refrigerator based on a coupled qubit system.
We consider the set up of Fig. 1, where we will take a
qubit (Q1) as system S1 and another qubit (Q2) as sys-
tem S2. The Hamiltonian for the coupled qubit system
is given by

HS =
∑

n=0,1,2

εnπnn + εdπdd + ∆x (π21 + π12) , (4)

where the projection operator on the system states
πmm = |m〉〈m|, m represents different possible sates of
the coupled qubit system: 0 when both the qubits are
in the ground state, 1 when Q1 is in the excited state,
2 when Q2 is in the excited state and d when both the
qubits are in the excited state. εn is the energy associated
with the corresponding state n. For the sake of simplic-
ity, we consider ε0 = 0. In the presence of ZZ interaction
between the two qubits, εd = ε1 +ε2 +∆z where ∆z gives
the strength of ZZ interaction. Finally, the last term on
the right hand side gives the XX interaction between the
two qubits. The contact Hamiltonian is given by

HC =
∑

k,α

Vkα (π01 + πd2 + h.c.) (bkα + b†kα)

+ VkC (π02 + πd1 + h.c.) (bkC + b†kC), (5)

where α = L,R. The baths are bosonic baths as given
in Eq. (2). Moreover, we shall consider Lorentzian spec-
tral density for the baths as given in Eq. (3). We shall
use both the local and global master equations to study
the energy dynamics (see App. A for details). Although
for the sake of completeness, we keep both rotating and
counter rotating terms in the contact Hamiltonian, the
master equation takes into account only the contributions
coming from the rotating terms.
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A. ZZ coupling

In this section, we will discuss the mechanism as well
as the necessary conditions to cool the coldest bath in
the absence of XX coupling (∆x = 0). We can describe
the state of the coupled qubit system by assigning prob-
abilities to different states. Hence, we assign p0, p1, p2, pd
for the states 0, 1, 2, d respectively. In order to calculate
the master equation, we need to define different possible
transition rates. We consider weak system-bath coupling
such that only one photon processes are allowed. Let
Γlm =

∑
α Γlm,α be the total transition rate from state

l to state m corresponding to all possible baths α. The
transition rates can be broadly categorized into outgoing
rates (transitions which take one of the qubit to ground
state) and incoming rates (transitions which take one of
the qubit to excited state). The outgoing and incom-
ing transition rates corresponding to same qubit states
and same bath satisfy detailed balance equation. For
instance,

Γ
(o)
lm,α = e(εl−εm)/kBTαΓ

(i)
ml,α, (6)

gives the relation between the outgoing (o) rate Γlm,α
and the incoming (i) rate Γml,α.
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Figure 2. Cartoon for the cooling mechanism: a) the system is
in the ground state, |0〉, b) Q1 goes to the excited state when a
photon enters from the left (L) bath taking the system to state
|1〉, c) Q2 goes to the excited state by absorbing an amount
of energy ε2 + ∆z from bath C, d) Q1 goes to the ground by
emitting a photon and finally Q2 goes to the ground state by
emitting a photon with energy ε2 (not shown in the figure).
Once this cycle |0〉 → |1〉 → |d〉 → |2〉 → |0〉 is completed, the
bath C loses an amount of energy equal to ∆z.

The steady state probabilities for different states can
be obtained using the master equation formulation. Once
the steady state probabilities are known, calculating heat
current flowing out of the bath C is straightforward (see
App. A 3 for details). The heat current flowing out of

bath C can be expressed as

JC = ε2 (Γ02,Cp0 − Γ20,Cp2)

+ (ε2 + ∆z) (Γ1d,Cp1 − Γd1,Cpd) . (7)

Using the detailed balance equation, along with the prob-
abilities obtained from the master equations, we obtain
following condition for cooling

eβCε2
(
eβRε1Γ10,L + eβLε1Γ10,R

) ∑

α=L,R

eβαεd2Γ2d,α

> e

∑
α=L,R

βα(ε1+βCεd1)

Γ10Γ2d, (8)

where εlm = εl − εm and βα = [kBTα]−1. A similar con-
dition for cooling was obtained in Ref. 22 for the case of
Coulomb coupled quantum dots. Using the above con-
dition, we observe that JC is a decreasing function of
Γ10,R and Γ2d,L. Choosing the optimal condition, i.e.
Γ10,R = Γ2d,L = 0, the condition for cooling reduces to

βCε2 + βRεd2 > βCεd1 + βLε1. (9)

Under the weak coupling approximation, Γ10,R = Γ2d,L ≈
0 can be obtained by taking a Lorentzian-type spectral
density as expressed in Eq. (3) with ΩL = ε1 and ΩR =
ε1 + ∆z, ∆z is the energy gain/loss. Taking symmetric
thermal bias TL/C = T ± ∆T , the condition for cooling
reduces to a very simple relation given by

βC∆z < βLε1. (10)

In terms of Boltzman factor for systems in equilibrium,
Eq. (10) becomes peqC (∆z) > peqL (ε1), where peqη (ε) =

e−βηε is the Boltzman factor for the qubit kept in contact
with bath η where ε gives the energy gap of the qubit.
Hence, refrigeration can be achieved if the Boltzmann
factor associated with a qubit of gap ∆z and attached to
the coldest bath is larger than the Boltzman factor of a
qubit with gap ε1 kept in contact with the hottest bath.

In light of the above derived condition for refrigera-
tion, we argue that the process of refrigeration follows
the following steps22 (see Fig. 2): 1) Initially both Q1
and Q2 are in the ground state. Q1 goes to the excite
state 1 when a photon enters from one of the baths (L
or R) 2) Q2 goes to the excited state absorbing energy
ε2 + ∆z from the bath C (the system goes to state d) 3)
Q1 goes to the ground state by emitting a photon (the
system goes to state 2) and 4) Q2 emits a photon with
energy ε2 and both qubits are back to the ground state.
Each time the cooling cycle is completed, bath C loses an
amount of energy equal to ∆z. There is an alternative
cycle which begins with the excitation of Q2 and leads
to the dissipation of heat into the cold bath C. We make
the cooling cycle dominant by suitably engineering the
energy filters. Similar cycles were considered to study
Coulomb drag43 as well as thermal drag44 in Coulomb
coupled electronic systems.
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Figure 3. Heat current flowing out of the bath C as a function
of ∆T using Eq. (7). Parameters: ΓL = 0.02, ΓR = 0.08,
ΓC = 0.06, ε1 = 2kBT , ε2 = 2kBT , ΩL = ε1, ΩR = ε1 + ∆z,
ΩC = ε2 + ∆z, TR = T , TL = T + ∆T , TC = T − ∆T ,
εC = 20kBT .

In the following, we study the order dependence of the
heat current flowing out of bath C as a function of ∆z.
We observe that the heat current JC is second order in
∆z and it takes a simple form when expanded over both
∆T and ∆z. We obtain from Eq. (7),

JC =
−e2ε/kBTK(ε)K(ε+ ∆z)(−1 + eε/kBT )−1∆T

(1 + eε/kBT )2(K(ε+ ∆z) +K(ε)eε/kBT )

∆2
z

k2BT
2
,

(11)
where we assumed ε1 = ε2 = ε and KL(ε) = KR(ε) =
KC(ε) = K(ε).
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Figure 4. Heat current flowing into the bath C as a function
of ε1 using Eq. (7). Parameters: ∆z = 0.1, ΓL = 0.02, ΓR =
0.08, ΓC = 0.06, ΩL = ε1, ΩR = ε1 + ∆z, ΩC = ε2 + ∆z, TR =
T , TL = T + ∆T , TC = T − ∆T , ∆T = 0.3T , εC = 10kBT .
In the blue shaded region, the bath C gets cooled whereas in
the red shaded region it gets heated.

In Fig. 3, we plot the heat current flowing out of the
bath C as a function of thermal bias ∆T . The system-
bath coupling strengths are chosen small enough to be
well within the weak coupling regime. The positions of

the Lorentzians (in the definition of Kα(ε)) are chosen so
as to maximize the cooling effect. For the set of param-
eters considered, we observe cooling in the entire range
of thermal bias with a maximum around ∆T ≈ 0.3T .
Note that, positive values of JC implies that the heat is
flowing out of bath C, i.e. bath C is being cooled. We
further observe that the magnitude of cooling depends
on the value of ∆z. When plotted as a function of ∆z,
the heat current shows a maximum at some intermediate
values before going to zero for very large values of ∆z

(not shown in the figure).
In Fig. 4, we plot the heat current as a function of

ε1. We show that the heat is dissipated into the bath C
(heating) when ε1 < 0 whereas for ε1 > 0 heat gets ex-
tracted from bath C (refrigeration). Hence the direction
of heat flow in the lower circuit can be tuned by suitably
changing the energy of the upper qubit.

B. General case: Global master equation vs Local
Master Equation
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Figure 5. Heat current flowing out of the bath C as a function
of ∆z. Upper panel is for local master equation case whereas
the lower panel is for global master equation case. Parameters:
ΓL = 0.02, ΓR = 0.08, ΓC = 0.06, ε1 = 2kBT , ε2 = 2.1kBT ,
ΩL = ε1, ΩR = ε1 +∆z, ΩC = ε2 +∆z, TR = T , TL = T +∆T ,
TC = T −∆T , ∆T = 0.1T , εC = 10kBT .

In the presence of XX coupling, the derivation of mas-
ter equation in the diagonalized basis naturally leads to
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the global master equation whereas local master equation
follows from the approach which neglects the presence of
XX coupling when computing the effects of the baths.
Recently, the range of validity of local and global master
equation has received much attention, especially regard-
ing the consistency with the thermodynamic principles in
the case of local master equation. It has been observed
that the local master equation is a valid approximation
only when the XX coupling between the two qubits is suf-
ficiently small. However, global master equation followed
by a secular approximation is better suited for interme-
diate and large values of ∆x

45,46.

We study absorption refrigeration using both local and
global master equation. In Fig. 5, we plot the heat cur-
rent flowing out of bath C as a function of ∆z for a range
of values of ∆x - in the upper panel we use the local mas-
ter equation whereas in the lower panel we use the global
master equation (see Appendix A for details). In both
cases, we observe that the XX coupling between the two
qubit is detrimental to the cooling effect. However, local
master equation predicts that the cooling is not reduced
as drastically as predicted by the global master equation
for small values of ∆x. In particular for ∆x = 0.002kBT
(black dashed curves in both panels), global master equa-
tion predicts heating of the cold bath C (note that neg-
ative heat current means positive heat flowing into the
bath) for ∆z . 0.2kBT whereas the local master equa-
tion gives cooling effect in that parameter regime. As
mentioned previously, in the regime of interest, i.e. for
small values of ∆x, local master equation is better suited
to describe the dynamics.

IV. ABSORPTION REFRIGERATOR: TWO
COUPLED NON LINEAR RESONATORS

In this section, we investigate absorption refrigeration
in non-linearly coupled resonators. As shown in Fig. 6,
the setup consists of two resonators R1 and R2 non-
linearly coupled to each other. As in the previous section,
the upper resonator R1 is attached to two baths - one of
them is kept at relatively higher temperature whereas the
lower resonator R2 is attached to the coldest bath. The
system Hamiltonian is

HS = ε1a
†
1a1 + ε2a

†
2a2 + ∆za

†
1a1a

†
2a2, (12)

where εi/~ is the frequency of the resonator i and ∆z is
the parameter determining the strength of non-linearity.
We consider bosonic baths as defined in Eq. (2) and the

coupling Hamiltonian takes the following form

HC =
∑

k,α=L,R

Vkα a
†
1bkα +

∑

k

VkC a
†
2bkC + h.c., (13)

where we neglected the counter rotating terms. The
counter rotating terms do not give significant effects in
the weak coupling regime. In this section, we will study

𝑹𝟏

𝑻𝑳
𝑻𝑹

𝑻𝑪
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Figure 6. The model for absorption refrigerator based on two
non-linearly coupled resonators

heat transport using two different formulations: 1) mas-
ter equation technique and 2) Keldysh nonequilibrium
Green’s function formalism.

A. Master Equation Calculations

We start our analysis of coupled resonator system from
the weak system-bath coupling regime. In this regime,
the dynamics can be studied perturbatively in terms of
system-bath coupling HC . Up to the leading order se-
quential contribution (Born approximation), Linblad for-
mulation can be used to obtain the master equation for
the reduced system density matrix, provided dynamics
of the baths is fast compared to the system dynamics
(Markov approximation). The heat transport is carried
out by sequential tunneling processes where all possible
single photon processes (both incoming (absorption) and
outgoing (emission)) are taken into account. The details
of the calculation is presented in the App. B. The master
equation in the photon number basis reads
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ρ̇n1,n2 = −
[(
C1(n1, n2) +D1(n1, n2) + C2(n1, n2) +D2(n1, n2)

)
ρn1,n2 − C1(n1 − 1, n2)ρn1−1,n2

−D1(n1 + 1, n2)ρn1+1,n2
− C2(n1, n2 − 1)ρn1,n2−1 −D2(n1, n2 + 1)ρn1,n2+1

]
, (14)

where the incoming transition rates that brings the sys-
tem into the final state (n1 + 1, n2) and (n1, n2 + 1) from
the state (n1, n2) are respectively given by

C1(n1, n2) = 2
∑

α=L,R

(n1 + 1)Fα(ω̃1,n2
),

C2(n1, n2) = 2(n2 + 1)FC(ω̃2,n1) (15)

and the outgoing transition rates that leads the system
out of the state (n1, n2) are given by

D1(n1, n2) =
∑

α=L,R

2n1Gα(ω̃1,n2
),

D2(n1, n2) = 2n2GC(ω̃2,n1), (16)

where ω̃1,n2
= ε1 + ∆zn2, ω̃2,n1

= ε2 + ∆zn1 and

Fη(ω̃) =
1

2
Kη(ω̃)nη(ω̃)

Gη(ω̃) =
1

2
Kη(ω̃)(1 + nη(ω̃)), (17)

where nη(ω) is the Bose-Einstein distribution for bath η.
Similarly, the heat current flowing out of the bath C can
be written as

JC = Tr [HSLCρ] , (18)

where LC is the part of Lindbladian associated with the
bath C given by

[LCρ]n1,n2 = −
(
C2(n1, n2) +D2(n1, n2)

)
ρn1,n2

+ C2(n1, n2 − 1)ρn1,n2−1 +D2(n1, n2 + 1)ρn1,n2+1.
(19)

Although the number of levels in each resonator ranges
to infinity, under the low temperature and weak coupling
approximation, only the few lower levels participate in
transport. We define Ni as the the number of levels we
consider for the resonator i while undergoing the trace
in Eq. (18). Hence, Ni = max(ni), for i = 1, 2. For in-
stance, in the limit of N1 = N2 = 2 the coupled resonator
system reduces to the coupled qubit system with ZZ in-
teraction studied in Sec. III A. In Fig. 7, we study the ef-
fect of thermal bias on the heat current JC. We compare
the cooling effect for different N1, N2. In the param-
eter regime considered, we observe that the multi-level
systems (N1, N2 > 2) provide a more stronger cooling ef-
fect compared to the coupled qubit system (N1, N2 = 2).
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Figure 7. Heat current flowing out of the bath C as a function
of thermal bias, ∆T . Parameters: ∆z = 0.05kBT , ΓL = 0.02,
ΓR = 0.08, ΓC = 0.06, ε2 = ε1 = kBT , ΩL = ε1, ΩR = ε1+∆z,
ΩC = ε2 + ∆z, TR = T , TL = T + ∆T , TC = T − ∆T ,
εC = 10kBT . N1 and N2 give the number of levels considered
for R1 and R2 respectively for the numerical calculations.

For ∆T ≈ 0.3T , cooling effect is more than double in
the resonator case (black dashed curve) compared to the
qubits (magenta curve). Reasonably, the largest correc-
tion beyond the qubit-limit comes from the qutrit case
(N1, N2 = 3). However, the correction beyond the qutrit
limit are significant, although small.

As observed in Fig. 7, the major contribution to the
heat current JC comes from the first three levels of each
resonator. In Fig. 8, we study heat current flowing out of
bath C as a function of ∆z for 2 ≤ N1, N2 ≤ 3. In all the
cases, we observe that heat current reaches a maximum
before decreasing monotonously. We will explain this
behavior taking the qubit-qubit case, i.e. N1 = N2 = 2
(magenta curve). As discussed in Sec. III A, cooling takes
place when a photon leaves bath C with an energy ε+∆z

and enters with ε. Although for small values of ∆z (close
to 0), there are many photons that participate in trans-
port, the amount of heat they carry out of bath C is
significantly small. With increasing ∆z, the amount of
energy carried out of the bath C increases but at the
cost of number of photons. For large enough values of
∆z, the thermal energy of bath C becomes insufficient
to provide enough photons that could possibly excite the
resonator, which in turn leads to a decrease of heat cur-
rent. Moreover, for large values of ∆z, the state where
both resonators are excited becomes less probable which
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Figure 8. Heat current flowing out of the bath C as a function
of ∆z. Parameters: ΓL = 0.02, ΓR = 0.08, ΓC = 0.06, ε2 =
ε1 = kBT , ΩL = ε1, ΩR = ε1 + ∆z, ΩC = ε2 + ∆z, TR = T ,
TL = T + ∆T , TC = T − ∆T , ∆T = 0.3T , εC = 20. N1

and N2 give the number of levels considered for R1 and R2
respectively for the numerical calculations.

is crucial in achieving the cooling effect. Similar reason-
ing can be given for the multi-level case. In addition,
we observe that for ∆z . 0.2kBT , cooling is enhanced
for N1 = 3. This is because, for small values of ∆z the
resonator R2 can get excited either to the energy state
ε2 + ∆z or ε2 + 2∆z depending on whether R1 is in the
energy state ε1 or 2ε1 respectively. This creates an ex-
tra channel for the refrigeration process giving enhanced
cooling effect. However for ∆z > 0.35kBT , the heat cur-
rent JC becomes independent of N1 as long as N1 ≥ 2.
For large values of ∆z, the excitation of R2 to states
ε2 + 2∆z and 2ε2 + 2∆z becomes less probable. In addi-
tion, these processes become energetically costly. Hence,
only the first two levels of R1 determine the transfer of
heat in the bath C.

B. Non equilibrium Green’s function calculations

In this section we will address the effect of higher or-
der terms corresponding to system-bath coupling on ab-
sorption refrigeration. The amount of energy absorbed
or emitted under a first order sequential tunneling pro-
cess is given by the difference of energy of initial and
final states. A photon must have this amount of energy
to excite the qubit. This creates an ideal situation for
engineering energy filters. However, higher order pro-
cesses such as cotunneling can occur via virtual states
even if the photons do not have enough energy to ex-
cite the qubit. These processes can destroy the filtering
effect which are designed taking only the sequential pro-
cesses into account. In this section, we will employ the
Keldysh nonequilibrium Green’s function to address the
aforementioned scenario. We define the retarded Green’s

function for the system as

Gri;j(t, t
′) = −iθ(t− t′)

〈[
ai(t), a

†
i (t
′)
]〉
. (20)

We use the equation of motion to obtain following Dyson
equation for R2 in the mean field approximation

i∂tG
r
2;2(t, t′) = δ(t−t′)+ε2Gr2;2(t, t′)+∆z 〈n1〉Gr2;2(t, t′)

+

ˆ
dt1ΣrC(t, t1)Gr2;2(t1, t

′), (21)

n1 = a†1a1 and the self energy due to coupling to bath C
is given by

ΣrC(t1, t2) =
∑

k

|VkC |2grkC(t1, t2), (22)

where grkC(t1, t2) = −iθ(t1 − t2)
〈[
bkC(t1), b†kC(t2)

]〉
is

the retarded Green’s function for the free bath. The heat
current flowing out of the bath C at time t can be written
as

JC(t) =
d

dt
〈HB,C(t)〉 (23)

Using the Meir Wingreen approach, the heat current in
the steady state takes the final form given by47

JC =

ˆ
dε

2π
ε
[
G>22(ε)Σ<C(ε)−G<22(ε)Σ>C(ε)

]
, (24)

where the lesser component of self energy, Σ<η =
−inηKη(ε) and the greater component, Σ>η (ε) =
−iKη(ε) (1 + nη(ε)). The existence of steady state in
interacting open quantum systems has been proved in
Refs. 48 and 49. G>ij(ε) and G<ij(ε) are the Fourier trans-
form of the greater and lesser Green’s functions respec-
tively defined through the relations

G>ij(t, t
′) = −i

〈
ai(t)a

†
j(t
′)
〉

G<ij(t, t
′) = −i

〈
a†j(t

′)ai(t)
〉
. (25)

They can be calculated using the following relation

G
≶
2;2(ε) = Gr2;2(ε)Σ

≶
tot,2(ε)Ga2;2(ε), (26)

where the self-energy

Σ
≶
tot,2 = Σ

≶
C + Σ

≶
int,2, (27)

The first term on the right hand side of Eq. (27) cor-
responds to the self-energy due to tunneling whereas
the second term results from the inter-resonator non-
linearity50. The latter self-energy can be broken down
into two parts Σint,i = ΣH,i + Σxc,i, where the first term
is the Hartree contribution and the second term is the
exchange correlation part. Note that Σ

≶
H,i = 0. Hence,

G
≶
2;2(ε) = Gr2;2(ε)

(
Σ

≶
C(ε) + Σ

≶
xc,2(ε)

)
(ε)Ga2;2(ε). (28)
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t t’

k

j

Figure 9. Single bubble Feynman diagram for the exchange
correlation where j, k = 1, 2 depending on the resonator. Note
that, j 6= k.

The exchange correlation self-energy can be expressed
as50–52

Σ
≶
j,xc(t, t

′) = −∆2
zG

≶
j;j(t, t

′)P
≶
k (t, t′), (29)

where P
≶
k (t, t′) = G

≶
k;k(t, t′)G

≷
k;k(t′, t)50. We use mean

field Green’s function to calculate the exchange correla-
tion self energy. Note that 〈nj〉 = i

´
dε/2πG<j;j(ε) en-

ters in the expression for retarded Green’s function. We
would solve the retarded and the lesser Green’s function
self-consistently. If we neglect the exchange correlation

0.0 0.2 0.4 0.6 0.8
∆T/T

0.0

0.2

0.4

0.6

0.8

1.0

J
C

[ k
2 B
T

2
/h̄
]

×10−6

ΓL = 0.01

ΓL = 0.02

0.00 0.25 0.50 0.75

0.0

0.5

1.0

1.5
×10−2

Figure 10. Heat current flowing out of the bath C as a func-
tion of ∆T for different values of ΓL using the nonequilibrium
Green’s function calculations. In the inset, we present the
results obtained using the master equation calculations. Pa-
rameters: ΓR = ΓC = 0.02, ε2 = 2kBT , ε1 = 2kBT , ΩL = ε1,
ΩR = ε1 + ∆z, ΩC = ε2 + ∆z, ∆z = 0.2kBT , εC = 7kBT ,
TR = T , TL = T + ∆T and TC = T

part of the self energy, the heat current in Eq. (24) using
Eq. (28) goes to zero. The only non-zero contribution to

the heat current JC comes from the exchange correlation
part of the self energy. We obtain

JC =

ˆ
dε

2π
εGr2;2(ε)Ga2;2(ε)

[
Σ>xc,2(ε)Σ<C(ε)

− Σ<xc,2(ε)Σ>C(ε)
]

(30)

Note that the mean field approximation is obtained by
decoupling the equation of motion for the time-ordered
Green’s function at first order (see Appendix C for de-
tails). Although the mean field approximation addresses
the strong system-bath coupling going beyond the se-
quential tunneling processes, it neglects tunneling pro-
cesses resulting from strong non-linearity. These pro-
cesses may contribute significantly to the refrigeration
process for strong enough non-linearity. Note that,
our calculations hold for small to intermediate strength
of non-linearity50. In order to properly address both
strong system-bath coupling and strong non-linearity,
one would have to go beyond the mean-field Hartree
approximation53 which is beyond the scope of present
work. In this section, the temperature of the left and
the cold bath are taken as TL = T + ∆T and TC = T
respectively.

We observe no cooling effect when the non-linearity is
considered very weak, ∆z � πΓηε1/2 for ε1/2 = 2kBT in
contrast to the master equation calculations (see Fig. 8).
The presence of cotunneling and higher order processes
in the nonequilibrium Green’s function calculations de-
stroys the cooling effect in the weakly non-linear regime.
This further demonstrates the importance of higher or-
der terms such as cotunneling which are often neglected
in the literature. In Fig. 10, we plot the heat current JC
as a function of ∆T for a couple of values of ΓL. We
consider the strength of non-linearity to be small enough
such that ∆z = 0.2kBT � ε1/2, kBT . We observe a large
decrease in cooling effect when the coupling strength in
the left contact is increased from ΓL = 0.01 to ΓR = 0.02
which is not the case for the master equation calculation
(see the inset). In addition, the cooling obtained from the
master equation calculations is much larger compared to
the nonequilibrium Green’s function calculations. The
reduction of cooling can be due to two different factors:
presence of cotunneling and higher order process, and
the mean field approximation which neglects the tunnel-
ing processes resulting from strong non-linearity. The
heat current approaches a maximum at ∆T ≈ 0.15T for
ΓL = 0.02 and at ∆T ≈ 0.7T for ΓL = 0.01 before de-
creasing monotonously for larger values of ∆T/T . The
observation of finite cooling effect proves the effectiveness
of the proposed models for absorption refrigerators.

V. CONCLUSIONS

We presented a minimal model for two-body absorp-
tion refrigerator based on two qubits coupled via ZZ cou-
pling. We derived the necessary conditions for cooling
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and also introduced the cooling mechanism. We showed
that other isotropic couplings, namely XX and YY cou-
pling can’t produce cooling effect. Instead, they are
detrimental to cooling. We verified above argument con-
sidering both local as well as global master equations.
In Sec. IV, we studied absorption refrigeration in non-
linearly coupled resonators. We compared the magni-
tude of refrigeration in the mentioned two setups. Non-
linearly coupled resonators (multi-level system) was ob-
served to produce better cooling effects in certain pa-
rameter regime. We also studied the process of refrig-
eration in the case of resonators using the Keldysh non-
equilibrium Green’s function formalism which holds for
small to intermediate values of non-linearity. Particu-
larly, we considered the mean field Hartree approxima-
tion for the Green’s functions and took exchange corre-
lations into account for the self energy. Albeit small we
observed finite cooling effect using the nonequilibrium
Green’s function formulation further validating the effec-
tiveness of our model as absorption refrigerator. There
can be basically three reasons for such a reduction in
cooling effect: 1) the higher order processes in terms of
system-bath coupling broadens the energy window for
transport, hence reducing the cooling effect 2) the higher
order processes in terms of non-linearity are not properly
addressed which might have an impact on cooling and
3) even a small broadening of energy window can lead to
drastic changes in the flow of heat current in the lower cir-
cuit which is non-locally coupled to upper circuit. How-
ever, the most interesting result is that although we ob-
serve cooling effect even for small values of non-linearity
with master equation calculations, the non-equilibrium
Green’s function calculations gives no cooling effect for
small ∆z. The non-equilibrium Green’s function calcula-
tions are exact for small values of non-linearity.

To conclude, we find that the best regime to obtain ab-
sorption refrigeration in multi-level quantum systems is
the weak system-bath coupling regime with intermediate
to strong non-linearity.
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Appendix A: Master equation for coupled qubit
system

1. Global master equation

In order to derive the “global master equations” we
diagonalise the system Hamiltonian in Eq. (4), such that

HS =



E0 0 0 0
0 E+ 0 0
0 0 E− 0
0 0 0 Ed


 , (A1)

where E0/d = ε0/d and

E+− =
ε1 + ε2

2
± 1

2

√
(ε1 − ε2)

2
+ 4∆2

x. (A2)

The contact Hamiltonian gets modified to

HC =
∑

k,η

∑

l=±

Vkη (λη,0l|0〉〈l|+ λη,l0|l〉〈0|)
(
bkη + b†kη

)

+
∑

k,η

∑

l=±

Vkη (λη,dl|d〉〈l|+ λη,ld|l〉〈d|)
(
bkη + b†kη

)
,

(A3)

where η = L,R,C. We have

λL,0+ = λR,0+ = −λC,0− = cos θ/2, (A4)

λL,0− = λR,0− = λC,0+ = sin θ/2, (A5)

λL,d+ = λR,d+ = λC,d− = sin θ/2, (A6)

λL,d− = λR,d− = −λC,d+ = − cos θ/2, (A7)

where θ = tan−1 [2∆x/ (ε1 − ε2)] and λη,lm = λη,ml. Fol-
lowing the calculations of Ref. 54, we obtain following
master equation

dp

dt
= W · p, (A8)

where

p =




p0
p+
p−
pd


 , (A9)

and

W =



− ∑
n=+,−

Γ0n Γ+0 Γ−0 0

Γ0+ − ∑
n=0,d

Γ+n 0 Γd+

Γ0− 0 − ∑
n=0,d

Γ−n Γd−

0 Γ+d Γ−d − ∑
n=+,−

Γdn



.

(A10)



10

Different transition rates are given by

Γmn =
∑

η

λ2η,mn (γ̃η(Emn) + γη(Enm)) , (A11)

where γη(Enm) = Kη(Enm)nη(Enm) and γ̃η(Enm) =
Kη(Enm) (1 + nη(Enm)). Note that, Kη(ε) = 0 for ε < 0,
so only one term survives in the right hand side of
Eq. (A11) depending on the choice made for the states
m and n.

The heat current flowing out of bath C can be ex-
pressed as

JC =
∑

l=±

[
El (Γ0l,Cp0 − Γl0,Cpl)

+ (Ed − El) (Γld,Cpl − Γdl,Cpd)
]
. (A12)

2. Local master equation

When the XX coupling term (∆x) is very small com-
pared to the system-bath coupling strength, local master
equation gives a better description of the dynamics. In
this case, it is considered that tunneling occurs locally
in and out of individual qubits and the energy required
for tunneling is independent of ∆x. The density matrix
satisfies a modified Liouville equation. In particular, the
diagonal terms of the density matrix satisfy

ρ̇nn = −i [HS , ρ]nn−
∑

m

Γnmρnn+
∑

m

Γmnρmm, (A13)

whereas the off-diagonal terms satisfy

ρ̇mn = −i [HS , ρ]mn −
1

2

∑

l

[Γml + Γnl] ρmn, (A14)

where the transition rates are defined as

Γmn = γ̃η(εmn) + γη(εnm), (A15)

where η is the bath associated with the transition. For
instance, let’s consider the diagonal component ρ11 ≡ p1.
We have

dp1
dt

= −i∆x (ρ21 − ρ12)

− [Γ10 + Γ1d] p1 + Γ01p0 + Γd1pd. (A16)

Using the fact that in the steady state ρ̇mn = 0 for all
m,n, the component ρ12 can be expressed as

ρ12 = ρ∗21 =
∆x (p1 − p2)

(ε1 − ε2)− i
2 (Γ10 + Γ1d + Γ20 + Γ2d)

,

(A17)

such that

0 =
dp1
dt

=
∆2
xΓ̃

(ε1 − ε2)2 + 1
4 Γ̃2

(p2 − p1)

− [Γ10 + Γ1d] p1 + Γ01p0 + Γd1pd, (A18)

where Γ̃ = Γ10 + Γ1d + Γ20 + Γ2d. Similarly

0 =
dp2
dt

=
∆2
xΓ̃

(ε1 − ε2)2 + 1
4 Γ̃2

(p1 − p2)

− [Γ20 + Γ2d] p2 + Γ02p0 + Γd2pd, (A19)

and

0 =
dp0
dt

= − (Γ01 + Γ02) p0 + Γ10p1 + Γ20p2. (A20)

Along with the condition, p0 + p1 + p2 + pd = 1, one
can solve the set of master equations. The heat current
flowing out of bath C for the case of local master equation
can be expressed as

JC = ε2 (Γ02p0 − Γ20p2) + (ε2 + ∆z) (Γ1dp1 − Γd1pd) .
(A21)

3. Master equations for ∆x = 0

For ∆x = 0, both global and local master equations
give the same result. We take the local master equations
and substitute ∆x = 0. For p1, we obtain

0 =
dp1
dt

= − [Γ10 + Γ1d] p1 + Γ01p0 + Γd1pd. (A22)

Similarly

0 =
dp2
dt

= − [Γ20 + Γ2d] p2 + Γ02p0 + Γd2pd, (A23)

and

0 =
dp0
dt

= − (Γ01 + Γ02) p0 + Γ10p1 + Γ20p2. (A24)

The heat current flowing out of bath C for the case of
local master equation can be expressed as

JC = ε2 (Γ02p0 − Γ20p2) + (ε2 + ∆z) (Γ1dp1 − Γd1pd) .
(A25)

Appendix B: Master Equation for non-linear
resonator

We take the following Hamiltonian for the system

HS = 1⊗
(
ε1a
†
1a1 + ε2a

†
2a2 + ∆za

†
1a1a

†
2a2

)
, (B1)

where the unit operator 1 represents the bath Hilbert
space. The energy eigenvalues can be written in terms
of number operators (which commute with the Hamilto-
nian), E = ε1N1+ε2N2+∆zN1N2. The contact Hamilto-
nian can be similarly written as a tensor product between
system and bath degrees of freedom

HC =
∑

n

Bn ⊗An

=
∑

k,α=L,R

Vkαb
†
kα ⊗ a1 +

∑

k

VkCb
†
kC ⊗ a1 + h.c., (B2)
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where An gives the system degrees of freedom and Bn
the bath degrees of freedom such that

A1 = a1 B1 = b†kL,

A2 = a†1 B2 = bkL

A3 = a1 B3 = b†kR,

A4 = a†1 B4 = bkR

A5 = a2 B5 = b†kC ,

A6 = a†2 B6 = bkC (B3)

Further,

da1
dτ

= −iε1a1 − i∆zN2a1,

da†1
dτ

= iε1a
†
1 + i∆zN2a

†
1,

da2
dτ

= −iε2a2 − i∆zN1a2,

da†2
dτ

= iε2a
†
2 + i∆zN1a

†
2. (B4)

We can write

AH1 (τ) = AH3 (τ) = e−iω̃1τa1

AH2 (τ) = AH4 (τ) = eiω̃1τa†1

AH5 (τ) = e−iω̃2τa2

AH6 (τ) = eiω̃2τa†2, (B5)

where ω̃1 = ε1 + ∆zN2 and ω̃2 = ε2 + ∆zN1. After some
calculations, we obtain55

ρ̇(t) = −
ˆ ∞
0

dτ

[
C12(τ)

[
A1, A

H
2 (−τ)ρ(t)

]
+ C21(−τ)

[
ρ(t)AH2 (−τ), A1

]
+ C21(τ)

[
A2, A

H
1 (−τ)ρ(t)

]

+ C12(−τ)
[
ρ(t)AH1 (−τ), A2

]
+ C34(τ)

[
A3, A

H
4 (−τ)ρ(t)

]
+ C43(−τ)

[
ρ(t)AH4 (−τ), A3

]
+ C43(τ)

[
A4, A

H
3 (−τ)ρ(t)

]

+ C34(−τ)
[
ρ(t)AH3 (−τ), A4

]
+ C56(τ)

[
A5, A

H
6 (−τ)ρ(t)

]
+ C65(−τ)

[
ρ(t)AH6 (−τ), A5

]
+ C65(τ)

[
A6, A

H
5 (−τ)ρ(t)

]

+ C56(−τ)
[
ρ(t)AH5 (−τ), A6

]]
, (B6)

where Cαβ(τ) = TrB [Bα(τ)Bβ ]. We took the only com-
binations for α and β that give Cαβ 6= 0. We defined

Γαβ(ω) =

ˆ ∞
0

Cαβ(τ)ei
ˆ̃ωτ , (B7)

and

Γ∗αβ(ω̃) =

ˆ ∞
0

dτCαβ(−τ)e−iω̃τ . (B8)

Since the contact Hamiltonian is Hermitian, we have

Cαβ(−τ) = C†αβ(τ). Further, we have the following rela-
tion

Γαβ(ω) + Γ∗αβ(ω) =

ˆ ∞
−∞

dτCαβ(τ)eiωτ . (B9)

The real part of Γ’s give the dissipative contribution
whereas the imaginary part gives the Lamb shift. Sub-
stituting Eqs. (B7) and (B8) in Eq. (B6) we obtain

ρ̇ = −
[[
a1,Γ12(−ω̃1)a†1ρ(t)

]
+
[
ρ(t)Γ∗21(ω̃1)a†1, a1

]
+
[
a†1,Γ21(ω̃1)a1ρ(t)

]
+
[
ρ(t)Γ∗12(−ω̃1)a1, a

†
1

]

+
[
a1,Γ34(−ω̃1)a†1ρ(t)

]
+
[
ρ(t)Γ∗43(ω̃1)a†1, a1

]
+
[
a†1,Γ43(ω̃1)a1ρ(t)

]
+
[
ρ(t)Γ∗34(−ω̃1)a1, a

†
1

]

+
[
a2,Γ56(−ω̃1)a†2ρ(t)

]
+
[
ρ(t)Γ∗65(ω̃2)a†2, a2

]
+
[
a†2,Γ65(ω̃1)a2ρ(t)

]
+
[
ρ(t)Γ∗56(−ω̃2)a2, a

†
2

]]
. (B10)
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Keeping only the dissipative contributions, we can write the above expression as

ρ̇ = −
∑

α=L,R

[[
a1,Fα(ω̃1)a†1ρ(t)

]
+
[
ρ(t)Gα(ω̃1)a†1, a1

]
+
[
a†1,Gα(ω̃1)a1ρ(t)

]
+
[
ρ(t)Fα(ω̃1)a1, a

†
1

]]

−
[[
a2,FC(ω̃2)a†2ρ(t)

]
+
[
ρ(t)GC(ω̃2)a†2, a2

]
+
[
a†2,GC(ω̃2)a2ρ(t)

]
+
[
ρ(t)FC(ω̃2)a2, a

†
2

]]
, (B11)

where

FL(ω̃) = Re[Γ12(−ω̃)] = Re[Γ∗12(−ω̃)] =
1

2
KL(ω̃)nL(ω̃)

GL(ω̃) = Re[Γ∗21(ω̃)] = Re[Γ21(ω̃)] =
1

2
KL(ω̃)(1 + nL(ω̃)),

FR(ω̃) = Re[Γ34(−ω̃)] = Re[Γ∗34(−ω̃)] =
1

2
KR(ω̃)nR(ω̃)

GR(ω̃) = Re[Γ∗43(ω̃)] = Re[Γ43(ω̃)] =
1

2
KR(ω̃)(1 + nR(ω̃)),

FC(ω̃) = Re[Γ56(−ω̃)] = Re[Γ∗56(−ω̃)] =
1

2
KC(ω̃)nC(ω̃)

GC(ω̃) = Re[Γ∗65(ω̃)] = Re[Γ65(ω̃)] =
1

2
KC(ω̃)(1 + nC(ω̃)), (B12)

where Kη(ω) and nη(ω) are respectively the spectral density and the distribution function for the bath η. After some
calculations we obtain

ρ̇n1n2
= −2

∑

α=L,R

[(n1 + 1)Fα(ω̃1,n2
)ρn1,n2

− n1Fα(ω̃1,n2
)ρn1−1,n2

+ n1Gα(ω̃1,n2
)ρn1,n2

− (n1 + 1)Gα(ω̃1,n2
)ρn1+1,n2]

− 2 [(n2 + 1)FC(ω̃2,n1
)ρn1,n2

− n2FC(ω̃2,n1
)ρn1,n2−1 + n2GC(ω̃2,n1

)ρn1,n2
− (n2 + 1)GC(ω̃2,n1

)ρn1,n2+1] , (B13)

where ω̃1,n2 = ε1+∆zn2 and ω̃2,n1 = ε2+∆zn1. Defining

C1(n1, n2) = 2
∑

α

(n1 + 1)Fα(ω̃1,n2
),

C2(n1, n2) = 2(n2 + 1)FC(ω̃2,n1)

D1(n1, n2) = 2
∑

α

n1Gα(ω̃1,n2),

D2(n1, n2) = 2n2GC(ω̃2,n1
) (B14)

we obtain

ρ̇n1,n2
= −

[(
C1(n1, n2) +D1(n1, n2) + C2(n1, n2)

+D2(n1, n2)
)
ρn1,n2

−C1(n1 − 1, n2)ρn1−1,n2
−D1(n1 + 1, n2)

ρn1+1,n2
−C2(n1, n2 − 1)ρn1,n2−1−D2(n1, n2 + 1)ρn1,n2+1

]
.

(B15)

Hence we derived the master equation for coupled res-
onators. Similarly, the heat current flowing into the bath
C can be written as

JC = −Tr [HSLCρ] , (B16)

where LC is the part of Lindbladian associated with the
bath C given by

[LCρ]n1,n2 = −
[(
C2(n1, n2) +D2(n1, n2)

)
ρn1,n2

− C2(n1, n2 − 1)ρn1,n2−1 −D2(n1, n2 + 1)ρn1,n2+1

]
.

(B17)

Appendix C: Two coupled non-linear resonators:
Dyson equation in the mean field approximation

We define the time-ordered Green’s function for the
coupled resonator system as

Gi;j(t, t
′) = −i

〈
T ai(t)a†j(t′)

〉
. (C1)

Using the equation of motion, we obtain

i∂tGi;j(t, t
′) = −i

〈
T [ai(t), H(t)] a†j(t

′)
〉

+ δijδ(t− t′),
(C2)

where i, j = 1, 2. For the commutator, we have

[ai, H] = εiai +
∑

k

Vkibki + ∆znlai, (C3)
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where ni = a†iai and l 6= i. Substituting (C3) in (C2), we
obtain

i∂tGi;j(t, t
′) = δijδ(t− t′) + εiGi;j(t, t

′)

+ ∆zGnli;j(t, t
′) +

∑

k,η

VkηGkη;j(t, t
′), (C4)

where η = L,R for i = 1 and η = C for i = 2.

Gnii;j(t, t
′) = −i

〈
T ni(t)ai(t)a†j(t′)

〉
and Gkη;j(t, t

′) =

−i
〈
T bkγ(t)a†j(t

′)
〉

. Using equation of motion it is

straightforward to show that

Gkη;j(t, t
′) = Vkη

ˆ
dt1gkη;kη(t, t1)Gi;j(t1, t

′), (C5)

where gkη;kη is the time-ordered Green’s function for the
free bath. Substituting Eq. (C5) in Eq. (C4), we obtain

i∂tGi;j(t, t
′) = δijδ(t− t′) + εiGi;j(t, t

′)

+ ∆zGnli;j(t, t
′) +

∑

η

ˆ
dt1Σ(1)

η (t, t1)Gi;j(t1, t
′), (C6)

where Ση(t1, t2) =
∑
kη |Vkη|2gkη(t1, t2) is the embedded

self-energy due to system-bath coupling. Under the mean
field approximation

i∂tGi;j(t, t
′) = δijδ(t−t′)+εiGi;j(t, t′)+∆z 〈nl〉Gi;j(t, t′)

+
∑

η

ˆ
dt1Ση(t, t1)Gi;j(t1, t

′). (C7)

The Dyson equation for the retarded Green’s function
can be obtained simply by replacing time-ordered Green’s
functions and self energies with the retarded counterpart.

1 H. E. D. Scovil and E. O. Schulz-DuBois, “Three-level
masers as heat engines,” Phys. Rev. Lett. 2, 262–263
(1959).

2 J. E. Geusic, E. O. Schulz-DuBios, and H. E. D. Scovil,
“Quantum equivalent of the Carnot cycle,” Phys. Rev.
156, 343–351 (1967).

3 J B Pendry, “Quantum limits to the flow of information
and entropy,” Journal of Physics A: Mathematical and
General 16, 2161 (1983).

4 E. Geva and R. Kosloff, “On the classical limit of quantum
thermodynamics in finite time,” The Journal of Chemical
Physics 97, 4398–4412 (1992).

5 A. E. Allahverdyan and Th. M. Nieuwenhuizen, “Extrac-
tion of work from a single thermal bath in the quantum
regime,” Phys. Rev. Lett. 85, 1799–1802 (2000).

6 T. D. Kieu, “The second law, maxwell’s demon, and work
derivable from quantum heat engines,” Phys. Rev. Lett.
93, 140403 (2004).

7 P. Hänggi and F. Marchesoni, “Artificial brownian motors:
Controlling transport on the nanoscale,” Rev. Mod. Phys.
81, 387–442 (2009).

8 M. Horodecki and J. Oppenheim, “Fundamental limita-
tions for quantum and nanoscale thermodynamics,” Na-
ture Communications 4, 2059 (2013).

9 Giuliano Benenti, Giulio Casati, Keiji Saito, and Robert S
Whitney, “Fundamental aspects of steady-state conversion
of heat to work at the nanoscale,” Physics Reports 694, 1
(2017).

10 S. Vinjanampathy and J. Anders, “Quantum thermody-
namics,” Contemporary Physics 57, 545–579 (2016).

11 R. Alicki, “The quantum open system as a model of the
heat engine,” Journal of Physics A: Mathematical and
General 12, L103–L107 (1979).

12 Jing Yang, Jen-Tsung Hsiang, Andrew N. Jordan, and
B.L. Hu, “Nonequilibrium steady state and heat trans-
port in nonlinear open quantum systems: Stochastic influ-
ence action and functional perturbative analysis,” Annals
of Physics 421, 168289 (2020).

13 Keith Schwab, EA Henriksen, JM Worlock, and Michael L
Roukes, “Measurement of the quantum of thermal conduc-
tance,” Nature 404, 974 (2000).

14 Matthias Meschke, Wiebke Guichard, and Jukka P Pekola,
“Single-mode heat conduction by photons,” Nature 444,
187 (2006).

15 Valentin Blickle and Clemens Bechinger, “Realization of a
micrometre-sized stochastic heat engine,” Nature Physics
8, 143 (2012).

16 Jean-Philippe Brantut, Charles Grenier, Jakob Meineke,
David Stadler, Sebastian Krinner, Corinna Kollath,
Tilman Esslinger, and Antoine Georges, “A thermoelec-
tric heat engine with ultracold atoms,” Science 342, 713
(2013).

17 JV Koski, T Sagawa, OP Saira, Y Yoon, A Kutvonen,
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