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Twisted bilayer transition metal dichalcogenides have emerged as important model systems for the
investigation of correlated electron physics because their interaction strength, carrier concentration,
band structure, and inversion symmetry breaking are controllable by device fabrication, twist angle,
and most importantly, gate voltage, which can be varied in situ. The low energy physics of some
of these materials has been shown to be described by a “moiré Hubbard model” generalized from
the usual Hubbard model by the addition of strong, tunable spin orbit coupling and inversion
symmetry breaking. In this work, we use a Hartree-Fock approximation to reach a comprehensive
understanding of the moiré Hubbard model on the mean field level. We determine the magnetic and
metal-insulator phase diagrams, and assess the effects of spin orbit coupling, inversion symmetry
breaking, and the tunable van Hove singularity. We also consider the spin and orbital effects of
applied magnetic fields. This work provides guidance for experiments and sets the stage for beyond

mean-field calculations.

I. INTRODUCTION

Twisted bilayer transition metal dichalcogenides
(tTMD) have recently come to attention as important
model systems for the investigation of basic issues in cor-
related electron physics [1-3], due in part to the ability
to tune electronic parameters over wide ranges by vary-
ing gate voltages without changing the device. Exper-
imental studies of twisted homobilayer WSes (tWSes)
[4-6] demonstrate interesting correlated electron behav-
ior including continuous metal insulator transitions and
“bad metallic” and “non Fermi liquid” transport. Un-
like the delicate flat band in twisted bilayer graphene,
which arises from phase cancellation of different hop-
ping pathways and occurs only at specific “magic an-
gles” [7], the behavior of tTMD materials is controlled
by correlation physics in relatively narrow bands, which
can be achieved over a range of twist angles. More-
over, the monolayer components of t TMD materials have
both a broken inversion symmetry and a strong spin or-
bit coupling, implying that the bands of tTMD mate-
rials also have these features. Consequences include a
Dzyaloshinski-Moriya term in the spin Hamiltonian that
describes strongly-coupled half filled bands and a gate
voltage tunable shift in the energy position of the van
Hove singularity. The spin orbit coupling also produces a
relatively large (9 ~ 13 instead of 2) g factor [8, 9] which,
with the narrow bandwidth and large unit cell, dramati-
cally increases the sensitivity to applied magnetic fields.
The ability to tune parameters over wide ranges in an
experimentally accessible manner makes tTMD materi-
als an important platform to explore open problems in
condensed matter physics and motivates theoretical stud-
ies. For example, recent experimental studies of twisted
homobilayer WSes discovered a strange metal behavior
near half filling and a metal-insulator transition that can
be tuned continuously by varying gate voltages [5, 6].

Previous work [1-4, 10, 11] has shown that the low en-
ergy physics of twisted homobilayers of TMD materials
such as WSes can be modelled as a variant of the trian-
gular lattice Hubbard model, which we term the moiré
Hubbard model. In this paper, we use Hartree-Fock
calculations to achieve a comprehensive understanding
of the moiré Hubbard model appropriate to tWSes on
the mean field level. We investigate the magnetic and
metal-insulator phase diagram as a function of interac-
tion, gate voltage and magnetic field, finding reentrant
metal-insulator transitions driven by magnetic field and
gate voltage at fixed carrier concentrations. We discuss
the influence of the gate voltage dependent shift of the
van Hove singularity on the phase diagram. Comparison
of our work to experiments helps locate the experimental
materials on the generic Hubbard model phase diagram
and opens up new directions for more accurate theoreti-
cal calculations.

The rest of this paper is organized as follows. In Sec-
tion IT we present the model and parameters and describe
their relation to the actual tWSes. In Section III we
present the methods. In Section IV we present the phase
diagram as a function of gate voltage and magnetic field
at half filling, and discuss the physical properties. In
Section V we discuss possible magnetic ground states at
general fillings. Section VI is a summary and conclusion.
Appendices present the details of our numerical methods.

II. MODEL

In this paper, we focus on the twisted WSe, bilayer as
an example of twisted homobilayer dichalcogenides. In
monolayer form, WSe, is a triangular lattice semiconduc-
tor with inversion symmetry breaking and strong spin-
orbit coupling (especially in the valence band). The top
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hexagonal Brillouin zone of the two dimensional mono-
layer (see Fig. 1). The strong spin-orbit coupling implies
that the single-particle eigenstates have spin polarized
perpendicular to the plane. Because of the strong inver-
sion symmetry breaking, the highest-lying valence-band
states dispersing downwards from the I?O point have spin
up and the highest-lying valence band states dispersing
downwards from the I_('(’) point have spin down, with a
gap ~ 0.4 eV to the opposite spin states [12].

Twisted WSes is formed by stacking a second WSe,
layer with a small commensurate twist angle. The re-
sulting system is again a triangular lattice with a large
“moiré” unit cell and the corresponding “moiré” Brillouin
zone, with the Ko point of the top layer and the l_('(’) of
the bottom layer mapping onto the moiré Brillouin zone
K point, and conversely the 1?6 point in the top layer
and the I?O point in the bottom layer mapping onto the
moiré Brillouin zone K’ point (see Fig. 1(a)).

The highest valence bands of tWSes may be under-
stood [1, 4] by taking the bands dispersing from the
monolayer Ko / I?(’) points of each layer, back-folding them
into the moiré Brillouin zone and then hybridizing them
with a matrix element that is diagonal in moiré crystal
momentum & and in spin. Details are given in Appendix
A. The strong spin-momentum locking of the individual
layers and the momentum alignment, shown in Fig 1(a),
indicates that the spin up (down) states near the moiré K
point come predominantly from the top (bottom) layer.
The broken inversion symmetry of the individual layers
leads to inversion symmetry breaking in the the moiré
system, which however retains a Cj three-fold rotation
symmetry and, if the two layers are identical, a Csy; two-
fold rotation symmetry that swaps the two layers. The
combination of Cs, and time reversal symmetry leads to
a band degeneracy along high symmetry lines from I to
K/K' and K/K' to M/M’, as seen in Fig. 1(b), upper
panel. Application of a transverse “displacement field”
(interlayer potential difference tuned by the top and bot-
tom gate voltages, conventionally denoted as D) breaks
the Cs, symmetry between planes, lifting the degeneracy
along these high symmetry directions and changing the
band structure significantly, as shown in Fig. 1(b), lower
panel.

Even for zero displacement field, D = 0, the moiré
single particle eigenstates at a general wavevector k are
non-degenerate [13, 14]. However, for small twist angle
(many atoms in the moiré unit cell) and weak interlayer
hybridization we may restrict our attention to monolayer
states very near the single layer K, /I_('{) points, so that
the single layer valence band may be approximated as a
parabola e = —(k — Ko)%/2m* (“continuum model”).
In this approximation the moiré system has an emergent
inversion symmetry (E, (k) = E,(—Fk)) if the two individ-
ual layers are identical, so combining with time reversal
symmetry, at D = 0 the bands at any k point would
be spin degenerate. This degeneracy is broken by terms
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FIG. 1. (a) Brillouin zones of the top (solid line) and bot-
tom (dashed line) layer components of a twisted WSez bi-
layer. Blue Ko 4 (red K,D,J,) represents one valley with spin up
(down) band at the valence band edges. Small hexagons indi-
cate moiré Brillouin zones. (b) An illustrative band structure
based on the continuum model of tWSes. We highlight the
top most valence bands that can be matched to the Hubbard
model. Blue solid (dashed) arrows represent the dominant
spin of the top (bottom) layer at the Ko valley. Green dotted
lines indicate the energy level of half filling of the topmost
valence bands.

of order |k — K* in the monolayer band structure [15].
These cubic terms have effects that are small by a factor
of the order of the inverse of the number of atoms in the
moiré unit cell. We neglect these small terms here, so
that the model we study is fully inversion symmetric at
D = 0 with inversion symmetry broken by the displace-
ment field.

The result of these considerations is that the one-
electron properties of the top of the valence band of
tWSey can be described by a tight binding model with
hopping czgtf;jcj)g, where tiJ = |t|ei?%4. o indicates
spin and also valley due to the spin-valley locking, and
the phase ¢ parametrizes the inversion symmetry break-
ing arising from a non-zero displacement field. Ref. [4]
shows that we need only to retain the nearest neighbor
hopping, with a second neighbor term ~ 20% of the first
neighbor term. Our convention for ¢;; for nearest neigh-
bor hopping is shown in Fig. 2(a). At zero displacement
field ¢/ may be taken to be independent of o (up to terms
of order of the inverse of the number of atoms in the moiré
unit cell, which we neglect); as the displacement field is
increased, the spin dependence of ¢ becomes more pro-
nounced and the magnitude of ¢ changes. Previous work
also indicates that the important interaction effects come
from an on-site repulsion, so the twisted bilayer material
is governed by the generalized “moiré” Hubbard Hamil-
tonian with only nearest neighbor hopping [1, 3]:

H=- Z 2/t cos(k - @ + U(b)C%UCE’U + UZniTnii,
K, i
o=%

(1)

where d,,—123 are the lattice a; =

anr(1,0), @ = an(~3, %), @5 = an(~3,—%), and
a s is the moiré cell lattice constant. From previous DFT
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calculations [4], physically achievable values of D corre-
spond to changing ¢ over the range 0 < ¢ < £7%, and
increasing the magnitude of |¢| from ¢ (hopplng ampli—
tude at zero displacement field) to ~ 1.3tg. In this work,
we set |[t| = 1 as the unit of energy scale, and thereby
U represents the ratio of on-site interaction and the hop-
ping amplitude |t|. Due to the spin-valley locking, the
sum over spins in Eq. (1) is also a sum over both valleys;
consequently, in coupling spins, the U term also couples
the two valleys.

In this model changing ¢ <+ —¢ interchanges spin up
and spin down, and a particle-hole transformation |t| —
—|t| corresponds to ¢ — ¢ —r, so that the physics can be
entirely reconstructed from the physics of 0 < ¢ < 7/2
by a combination of particle-hole transformation and spin
inversion.

The nearest neighbor hopping model has additional
symmetries which may be understood by considering the
spin-dependent phase factor in the hopping [t|e?? as ei-
ther a spin dependent Peierls phase factor arising from a
spin-dependent gauge field or a position-dependent spin
rotation. Taking the first point of view we observe that
a DM field characterized by an angle ¢ corresponds to a
system in a spatially varying magnetic field producing a
flux of +3¢ through each triangular plaquette. The flux
is opposite for the two spin directions and changes sign
between the two sublattices of the dual lattice formed by
the centers of the triangular plaquettes. The form |t|e’"?®
is a gauge choice consistent with this flux. Changing
¢ — ¢+ 27m/3 corresponds to introducing a flux of +27
per plaquette which which does not change the spectrum
(although as discussed below it does change the wave-
function). Changing ¢ — ¢ + 7/3 corresponds to intro-
ducing a flux of +7 = 37 per plaquette. A phase change
of m on each link is equivalent to a particle-hole trans-
formation, so the spectrum at n,¢ is the same as the
spectrum at 2 —n, ¢ + /3.

While the spectrum is invariant under certain changes
in ¢, the wave function (and therefore the magnetic or-
dering pattern) will change. To see this, note that a
space-dependent rotation of the electron spin by an an-
gle 2v; about the z axis is implemented by the matrix
R; = e~%= and leads to the change tij — tijei(%*"’j)"ﬁ
Thus, the DM field can be thought of as a space-
dependent spin rotation.

Twisted WSe, has a large g factor and a large moiré
unit cell compared to usual untwisted materials. Thus, it
is interesting to consider the spin and orbital effects of the
magnetic field perpendicular to the lattice. The strong
spin orbital coupling characteristic of monolayer WSe,
implies a Zeeman interaction term H; = —gupB.S, with
g~ 9—13 [8, 9]. The consequences of the Zeeman in-
teraction will be discussed in Section IV. In addition, t;;

will pick up an additional phase @/}%B ~ {(e /h) fij A df]
where A is the vector potential, due to the Aharonov-

Bohm effect. The phase can be thought of as propor-
tional to the flux through a closed loop of a triangular

plaquette of a moiré unit cell. The area of the “moiré”
unit cell is estimated to be S ~ ﬁ o 1/62. TableI
shows the estimated phase ¥ 4p per triangular plaquette
of a unit cell in tWSey with monolayer lattice constant a
= 0.328 nm.

We see that for small twist angle, achievable fields can
produce a flux per unit cell of order 1. But for the twist
angle > 3° used in recent experiments, the orbital effects
are much smaller. Thus, we do not consider these effects
any further.

TABLE I. Estimation of ¢ap due to the magnetic field in
tWSes at different twist angles.

B (T) 1° 2° 3° > 3°
5 0.377 0.097 0.04r < 0.04r
10 0.74x 0.187 0.087 < 0.087

III. METHOD

We solve the model in the Hartree-Fock approxima-
tion, focusing on the effects of a non-zero displacement
field. For orientation it is useful to summarize previous
considerations of the half filled large U limit, in which the
low energy physics is described by a Heisenberg model
with an interesting dependence on the displacement field
[3]. The Hamiltonian in this limit is given by:

H =Y JS;S; + Jcos2 (S7Sy + SYSY)
(id)
+ Jsin2¢ &, - (S; x S). (2)

Here S is the vector of § =
denotes nearest neighbors.
Possible ordering patterns are shown in Fig. 2(b). At
¢ = 0 the Heisenberg model exhibits 120° order [16, 17].
An alternative striped state is found to be slightly higher
in energy, as is a tetrahedral state with a non vanishing
S; - (S; x Si) on each triangular plaquette [18]. As dis-
cussed in Ref. [18, 19] and below, the tetrahedral state
is favored at electron density n=1.5 and weak coupling.
At ¢ = 0 the magnetic states have a high degree of
ground state degeneracy. For the 120° state the spins
lie in a plane and there is a family of ground states char-
acterized by O(3) rotations of the vector normal to the
plane. In addition the ground states are degenerate un-
der a uniform rotation of all spins about the axis normal
to the plane. Finally, the ground state is characterized
by a staggered chirality (sense of rotation of spins about
a triangle) to which corresponds a Z5 degeneracy. For
¢ # 0,7 the situation is different. The Dzyaloshinski-
Moriya (DM) term é,-(S;x ;) breaks the O(3) invariance
[20, 21], favoring configurations in which the spins lie in
the x — y plane, and also breaks the Z, invariance, fa-
voring only one staggered chirality. The chirality is fixed

1 Pauli matrices and (ij)
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FIG. 2. (a) Sketch of the phase ¢; ; between a given site i
and its neighbor site j on a triangular lattice, which is cho-
sen based on symmetry. (b) Possible magnetic ordering pat-
terns. For the tetrahedral order, the magnetic order on site
i is defined as %(cos Qo - Ri,cos Q1 - Ri,cos Q_1 - R;), with
@0 = (2m, 0),Qi1 = (—m,£v37). The magnetic moment
directions on the lattice are specified by the corresponding
arrows shown in the tetrahedral sketch. For 120° order, there
are two chiralities. ”4” and ”-” are defined by the sign of
K = 3%/5(51 x Sy + 5, x S5+ 55 x §1) &, We only draw
the basic patterns; others can be generated by applying ap-
propriate symmetry operations.

by the assignment of the hopping phase of spin up elec-
trons, shown in Fig. 2(a). Further, for 7/4 < ¢ < 37/4
the in-plane Heisenberg coupling changes sign, favoring
ferromagnetic alignment of spins.

These considerations lead us to investigate the Hartree-
Fock energies of the stripe, ferromagnetic, tetrahedral,
and 120° ordered states. More specifically, we propose
nine possible states: 120° orders with two opposite stag-
gered chiralities in the  — y plane (120-xy-1, 120-xy-2)
and in the z — z plane (120-xz-1, 120-x2z-2), a ferromag-
netic state along the z direction and in-plane (ferro-z,
ferro-xy), a stripe state along the z direction and in-
plane (stripe-z, stripe-xy), and a tetrahedral state. These
states are illustrated in Fig. 2(b).

In the Hartree-Fock treatment, the onsite interaction
in Eq. (1) is approximated as:

Unipnip = U Y, (nip)niy + nip(nag) — (nap) (nay)
= (887 = (S8 + (SIS (3)
Different magnetic states correspond to different position
dependences of the averaged value (S?) = (n; — niy)
and (SE) = (c%cii)ﬂchcn). For example, in the © —y
plane 120° magnetic state, the averaged spin on each site
i follows (SZ) = mcos(Q-R;+0), (SY) = msin(Q-RE;+0),
where m is the magnetization, 6 is an arbitrary phase
that determines where the spin points along the x axis,
and @ = (+47/3,0) is the wave vector. Details of the
Hartree-Fock Hamiltonian are given in Appendix B.

We work in the canonical ensemble. In each magnetic
state, the combination of spin order and t{; determines a
band structure. In the band structure, electron states are
filled up to the chemical potential, and m is determined
by minimization of the total energy. In this way, the
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FIG. 3. (a) Phase diagram at half filling. The solid black line
marks the transition to the indicated magnetic order. The
dashed black line marks the opening of the gap. The energy
gap is calculated as the energy difference AF between the
highest filled electron state and the lowest unfilled electron
state. The gap opening position is defined as the position
where AE > 0.01. The red arrow shows the parameter space
trajectory followed when the displacement field is increased in
experiments, which changes ¢ from 0 to ~ /3 and increases
t thus decreasing U/t.

energy of each possible magnetic states is calculated, and
the final ground state is chosen as the global minimum.

IV. RESULT: AT HALF-FILLING

Performing the Hartree-Fock calculation described in
Section III at a carrier concentration n = 1 per state, we
find the phase diagram shown in Fig. 3. The solid line
marks the transition to magnetic order, and the dashed
line marks the opening of a charge gap. Three magnetic
phases are found: the in-plane 120° phase (with chirality
determined by the DM phase ¢), an in-plane ferromag-
netic phase, and a paramagnetic phase. The magnetic
phases are insulating over most of the U values, but ex-
hibit a small range of U where metallic behavior and
magnetic order coexist. The sequence of magnetic phases
occurring as ¢ is varied at large U may be understood
from the Heisenberg model shown in Eq. (2) or more
generally from the symmetries discussed above. The U-
independence of the critical ¢ at which the magnetic or-
der changes from 120° to ferromagnetic and the periodic-
ity of the metal insulator phase boundary as ¢ — ¢+7/3
follow from the invariance of the spectrum under inser-
tion of integer multiples of 7 and the symmetries under
¢ <> —¢. We further note that the ferromagnetic state
at ¢ = m/2 is connected to the appropriate-chirality 120°
states by the space-dependent spin rotation discussed
above.

Inclusion of further neighbor hopping terms in the
band structure will break the symmetry. Second neigh-
bor terms do not change the phase boundary but inclu-



sion of third neighbor hopping will increase slightly the
range of ¢ for which ferromagnetism is found and pro-
vide a weak U dependence. Recent beyond Hartree-Fock
studies of the model with ¢ = 0 suggest that while the
120° state found here is the large U ground state, this
state is separated from the paramagnetic metal state by
an intermediate phase which has a charge gap but lacks
obvious long ranged magnetic order and is potentially a
spin liquid [22-25].

Fig 4 shows the U dependence of the magnetization
m and energy gap at two representative phases ¢ = 0
and 7/6. The transition between paramagnetic metal
and magnetic insulator exhibits a strong ¢ dependence,
which is related to the van Hove singularity and nest-
ing structure discussed in the next section. The transi-
tion is found to be two-staged for almost all values of ¢.
As U is increased a first transition to a magnetically or-
dered but still metallic state is observed, and then as U
is increased further a metal-insulator transition occurs.
However it should be noted that the details of the narrow
transition region between paramagnetic metal and anti-
ferromagnetic insulator are complicated, with different
incommensurately ordered magnetic metal states possi-
bly occurring in a narrow U range between the para-
magnetic metal and antiferromagnetic insulator states
[16, 17]. More detailed investigation of these issues in
the ¢ # 0 model requires consideration of longer period
incommensurate orders which is beyond the scope of this
paper.

Figure 3 shows that at U < 5t the properties are reen-
trant as ¢ is varied, with a metallic phase at ¢ = 0 giving
way to an insulating phase for ¢ near /6 then evolv-
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FIG. 4. Magnetization m and energy gap of 120° spiral order
(120-xy-2) at ¢ = 0 and 7/6 from Hartree-Fock calculation.
The transition is found to be two-staged for almost all val-
ues of ¢ (a magnetic transition followed by a metal-insulator
transition). At ¢ = m/6, the magnetic transition coincides
with the metal-insulator transition.

ing back to a metallic phase as ¢ is increased beyond
/6. Experimentally, ¢ is increased from 0 by varying
the “displacement field” D (interlayer potential differ-
ence), which also increases |t|, so the experimental sys-
tem explores a trajectory shown qualitatively by the red
dashed lines, going from metallic at D=0 through insu-
lating and back to metallic as D is increased, indicating
that the interaction in tWSes is at an intermediate level
as has previously been noted [4, 5].

energy bands of 120-xy-2 at mU/t =1.2
¢=0 ‘ ¢=m/6

r, K M, T, r K- M, T,

FIG. 5. Energy bands of 120-xy-2 at ¢=0 and 7 /6 at an inter-
mediate interaction U. The band is plotted along lines in the
folded zone of the 120° three sublattice spiral order, which is
one third of the original moiré Brillouin zone. The green zone
shows the hole pocket of the lower band and the yellow zone
shows the electron pockets of the upper band at ¢=0. In the
left panel, the dashed blue line indicates the chemical poten-
tial at half filling. In the right panel, any chemical potential
in the band gap corresponds to half filling.

To clarify the nature of the metal-insulator transition
in this model, we plot in Fig. 5 the band structure in the
magnetic Brillouin zone for ¢ = 0 and ¢ = 7/6 at a mod-
erate U. At ¢ = 0 we see that the band structure consists
of a hole pocket centered at I’ and electron pockets cen-
tered at the M point. As the interaction is increased the
energy separation between the lower and upper bands
increases, decreasing the sizes of the electron and the
hole pockets. As ¢ is varied at fixed U, the bands flat-
ten and separate, similarly leading to a metal-insulator
transition. At ¢ = /6, the perfect nesting, which will
be discussed in next section, leads to flat bands in the
magnetic zone and a metal-insulator transition coinci-
dent with the magnetic transition, which indeed occurs
at U = 0.

We next discuss the effect of a Zeeman magnetic field.
A Zeeman field perpendicular to the plane generally will
cause the in-plane magnetic order m(cos@ . ﬁi7siné .
éi,O) to gradually cant towards the z direction with a
canting angle . Again we use the Hartree-Fock treat-
ment. We assume the in-plane magnetic state becomes
m(cos 6 cos Q- R;,cos0sin Q- R;,sin ) and then calculate
the ground state by minimizing the energy with respect
to m and 6. Results are summarized in Fig. 6 at sev-



eral intermediate U. Since the g factor in tWSes has a
relatively large uncertainty, and Hartree-Fock is good at
qualitatively capturing the changes, the picture is plotted
for a wide range of the magnetic field.

At small U and B = 0, magnetic orders are found
around ¢ = % (120-xy-2) and 7 (ferro-xy) with non-zero
energy gaps. Other regions are paramagnetic. As the
magnetic field increases, the original in-plane magnetic
order first increases the canting angle 6 without changing
m much, then increases both 6 and m until they reach
a maximum, and the energy gap gradually decreases to
zero. In paramagnetic regions, after the field is turned on,
spins will quickly align to the z direction with zero energy
gap. If the magnetic field is extremely large (gup B/t >
6), there will be a new gap opening, due to the splitting
of the spin up and spin down bands.

For intermediate U, applying a z direction magnetic
field can produce xy order at ¢ values where there is no
order at B = 0. For example, at U/t = 3.5, the left panel
(“phase diagram”) clearly shows that the ¢ range of mag-
netic orders widens as B is increased. For this interaction
strength, increasing B can produce an energy gap in a
finite range of B (see curve marked in Fig. 6). Thus,
by tuning the displacement field and the magnetic field,
there could be some gap opening and closing, related to
the appearance of canted magnetic order.

To conclude this section we consider briefly some ex-
tensions of our results. The Hartree-Fock theory we
present here is restricted to classically definable magnetic
orders. The putative spin liquid phases indicated by nu-
merics for the model with ¢ = 0 are not captured by our
formalism. Understanding how such phases evolve as ¢
is varied is an important open problem. Our restriction
to only first neighbor hopping fixes the critical value of
¢ where the van Hove point coincides with the half filled
Fermi surface to be ¢ = (2n+1)7/6. Inclusion of further
neighbor hopping would shift the critical ¢ and would
remove the perfect nesting, but the van Hove singularity
remains, and the qualitative behavior is unchanged.

V. GENERAL FILLINGS

When the density n # 1, charge fluctuations mean
that Hartree-Fock calculations becomes less reliable. A
complicated variety of commensurate and incommensu-
rate ordered phases along with regions of phase separa-
tion have been reported for the model without spin orbit
coupling [19, 26], but the effect of beyond-Hartree-Fock
fluctuations has not been established. In this section, we
present a qualitative discussion focussed on the ¢ depen-
dent weak coupling instabilities, which are controlled by
nesting and van Hove singularities, for which a Hartree-
Fock based approach is more reliable.

For general ¢ the spin up and spin down Fermi surfaces
do not coincide. The van Hove (saddle point) singular-
ity, which is generically present in two dimensional band
structures, lies at a band filling which varies smoothly

with displacement field ¢, and is visible as a divergence
in the density of states plots, as shown in Fig. 7(a). We
extract the numerically calculated density n,ps where
the Fermi surface intersects with the van Hove singular-
ity, and find that the numerically calculated n, g is well
fitted by n,gs ~ cos(3¢)/2 + 1.

Fig. 7(b) shows the electron energy dispersion for spin
up at zero interaction for different values of DM phase
¢, along with the energy isosurface that passes through
the van Hove points. For the nearest neighbor model
studied here, the energy contour passing through the van
Hove points has flat regions, leading to nesting. The
combination of density of states divergence and nesting
destabilizes the paramagnetic metal state at infinitesimal
U if the density n = n,g(¢) is chosen so that the Fermi
energy passes through the van Hove point.

In the nearest neighbor hopping model considered here,
the van Hove points at ¢ = 0,7/6,7/2 are special. At
¢ = 0 the van Hove points of the spin up and spin down
Fermi surfaces coincide and the van Hove points are at
the M and M’ points of the Brillouin zone. As ¢ is in-
creased from 0 the van Hove points shift asymmetrically
away from the M / M’ points while remaining at the zone
boundary. At ¢ = 7/6 the van Hove points coalesce into
a third order singularity at the K (spin up) or K’ (spin
down) points; for 7/6 < ¢ < /2 the van Hove points
move inwards along the I'-K / K’ lines, coalescing again
at a third order singularity at the r point at ¢ = 7/2.
The particular numerical values of ¢ = 0,7/6,7/2 at
which the three special conditions occur are particular to
the nearest neighbor only model; use of a more general
dispersion will change the values of displacement field at
which the three special van Hove points occur and the
band fillings at which they lie at the Fermi surface, but
the special van Hove points will in general exist.

The weak coupling physics can be understood via con-
sideration of the saddle point action

S[{m}] = Trin [G&}, +my; - &) + Z % (4)

where G, =09, - t7; — w is the noninteracting Green
function, & is the Pauli matrix, and m; is a Hubbard-
Stratonovich field proportional to the expectation value
of the spin on site i. We study the free energy of static
configurations of the m;, evaluating the trace term by
expansion in m;. After the Fourier transformation, the

second order term is
2 1 a — ab/ A
FY =g 2 (U 00 = xi"(@) M5 )
Q a

where m® is the component of m in Cartesian direction
a, and we introduce the susceptibility coefficient ng

Q) = Tr [0 Go(B)o"Go (R + Q)] (6)
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where Gy is the (diagonal) Green function matrix in spin
and momentum space, and the trace is over spin and
momentum indices.

The action is dominated by the susceptibility with per-
fect nesting wavevectors. From Fig. 8, we see that in
the nearest neighbor model we consider here, there are
two kind of nesting vectors: @Qil that connects the the
Fermi surface of same spins, and Qg 4, that connects

the the Fermi surface from spin up to spin down. ng =
(2m — 4¢,0), and Qil = Ri2ﬂ/3ég is obtained from Qg
by rotations of + 27/3 about z axis. For ¢ # 0,7/6,7/2,
the wave vector C_jg 41 both connects the nesting surfaces
and the van Hove points. The result is log? divergences
in susceptibilities, corresponding to shifting an electron
by Cj and flipping spin up to spin down. We also see that
the wavevectors —C_jfi 11 do not connect van Hove points
or flat regions of Fermi surface from spin up to down.
Further for generic ¢ # 0,7/6,7/2, @o,il does not con-

nect the van Hove points, and the flat regions of Fermi
surface connected by Qo are of different lengths, leaving
only a log divergence with a smaller coefficient. The re-
sult is that the dominant terms in y® are susceptibilities
_(Qg,ﬂ) = XO‘"’(fQ'gb’il), implying linear instabili-
ties to the three stripe spiral orders with spin pattern

S’f(ﬁ) = S cos (@l "R+ 91) ; Sly(é) = S;sin (@l "R+ 91) ;
o (7)
where Q; = Qg, 11, and 6; determines the locations where
the spin points along = in the spiral with wavevector
Q. The corresponding order parameters are most conve-
niently written as (m)") = (mf + im}) = S;e*(Q-F+00),
At the quadratic level the three spiral directions are
equivalent. At quartic level, expansion of the action gives
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where (3 o are constants, and the factors of 1" arise be-
cause if all four S share the same wavevector then the cor-
responding diagram is ~ G(p)2G(p + Q)? and is strongly
divergent at the nesting wavevector while if two different
wavevectors are involved then at most one pair of G can
be nested.

Minimizing Egs. (5), (8) we find that the free energy
minimum corresponds to three x — y plane spirals, along
the three wavevectors ng) 11, each of equal amplitude,
and with phases 6; that are arbitrary. In the nearest
neighbor hopping model considered here the trio of spiral
states fully gaps the Fermi surface, leading to an insula-
tor at the corresponding nesting density. As the coupling
strength is increased, commensurability energies come in
to play and we expect that the physical state corresponds
to regions of commensurate order with discommensura-
tions that can trap charge carriers, in analogy to the
stripe states found in the square lattice Hubbard model
[27-30]. Therefore, there will be an insulator-metal tran-
sition as interaction increases. If further neighbor hop-
ping is included, the perfect nesting is spoiled and regions
of the Fermi surface could remain ungapped at weak cou-

pling.

0% = +@rn— 44,0

FIG. 8. An illustrative sketch of occupied states. Blue (Red)
area represents the occupied Brillouin zone of spin up (down).
Blue (Red) dots are the van Hove locations of spin up (down).
The arrow indicates the wavevector that connects the perfect
nesting electrons between the same spins (Qo,+1) and between
spin up and down (Q_'g’il).

We now consider the three special cases, beginning
with ¢ = 0 at n = 1.5. For this ¢ the spin up and spin
down Fermi surfaces coincide. The van Hove points are at
the M and M’ points of the moire Brillouin zones (density
n = 1.5), and the nesting vectors are at Qp = +(2m,0)
and Qi1 = i2ﬂ(—%,i§). The coincidence of spin
up and spin down Fermi surfaces mean that the near-
est neighbor model has SU(2) spin invariance, seen here
in the fact that the spin up Fermi surface nests with
both the spin up and spin down Fermi surfaces, and :th
are both nesting vectors. The wavevector Qp = (2, 0)
means that the spiral has vanishing pitch, so the state is
a collinear stripe of form shown in Fig. 2(b). An analysis
similar to that sketched in Eqgs. (5), (8) gives an SU(2)-
invariant theory with quadratic term ), S5(Q) - S(@)

2
and dominant quartic term ), (g(él) . §(7Q'l)> SO
that at this level the free energy is minimized by three
equal amplitude collinear stripes, with orthogonal spin
directions. As noted in Ref. [18], sixth order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the
spin orbit coupling appearing if further neighbor interac-
tions are considered.

As ¢ increases from 0, we see from Fig. 8 that for
the same-spin nesting, the length of one nesting edge de-
creases continuously to zero, and the nesting vector is
separated from van Hove locations, implying a rapid de-



crease in the strength of the divergence. On the other
hand, the nesting vector of opposite spins still connects
the van Hove locations, implying the rapid development
of an easy plane anisotropy.

At ¢ = ¢, the same-spin nesting vectors disappear,
and the spin up (down) van Hove points merge at the high
symmetry points K (I? "), producing a cubic van Hove
singularity (e ~ k2 — 3k,k7). Such high order van Hove
singularity will lead to a power-law-divergent density of
states and y*, implying a stronger tendency towards or-
der [31-34]. The ordering wavevector G5 = (47,0) is
equivalent to its C5 rotations (up to a reciprocal lattice
vector), so the three spiral states merge into one 120°
spiral in-plane order with a definite staggered chirality.
This state will gain substantial commensurability energy,
and it is likely that the general Q states found at other
values of the displacement field will evolve into defected
versions of the 120° state as the interaction is increased.

For & < ¢ < 3, the van Hove points move to the

interior of the zone along the I'-K (K’ ) line, and the

opposite-spin nesting continues to exist at wavevectors

Q?; Lon (see Fig. 8). At ¢ = 7, all van Hove singularities
L3

merge into the third order singularity at I , there is no
nesting, and the predicted magnetic state is ferromag-
netic.
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FIG. 9. (a) nyms — ¢ curve for 0 < ¢ < § at U=0. The
blue points are extracted from the numerical density of states
calculation. n,ms is the density filling where the Fermi sur-
face intersects with the van Hove singularity. The orange line
is an empirical formula n,gs &~ cos(3¢)/2 + 1 that fits the
numerical calculation well. (b) Sketch of the predicted phase
diagram with only nearest neighbor hopping in the weak cou-
pling limit.

To summarize, for weak coupling, the nearest neigh-
bor hopping model predicts magnetically ordered insu-
lating states along the line in the density-¢ plane shown
in Fig. 9(a). For most values of ¢ the insulating states
correspond to a triple of x — y spirals with a fixed stag-
gered chirality (¢ dependent wavevector), but at ¢ = 0

the state is the chiral tetrahedral ordered state and at
¢ = /2 the state is an x — y ferromagnet. If further
neighbor hopping is included, then the incomplete nest-
ing means the very weak coupling state is a magnetic
metal. At general ¢, the incommensurate value of the
spiral wavevector and the absence of any energetic term
fixing the relative phases of the spirals means that the
state is very susceptible to fluctuations. Also, as U is in-
creased other states may occur. For example, at n near
1.5 and ¢ = 0, Hartree-Fock calculation indicates that
the tetrahedral state is replaced by a ferromagnetic state
as U is increased above a critical value ~ 3.5|¢| [19]. For
¢ closer to m/6 the commensurability energy gain of the
simple @ = (47/3,0) 120° spiral state suggests that at
intermediate and large U the state is likely to be a de-
fected 120° state. However, if weak coupling versions
of the material can be implemented, the lines of phase
transition noted here should be observed. In Fig. 9(b),
we show a sketch of the predicted phase diagram for the
nearest neighbor hopping model, where the insulator be-
havior could be found for general ¢, with the wavevector
of the insulating spiral state varying.

VI. CONCLUSION

phase diagram at general fillings
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FIG. 10. Hartree-Fock phase diagram at general fillings at
weak and strong couplings with nine commensurate orders
considered. Each color represents a different magnetic or-
der.“xy” indicates that the magnetic order is in the =z — y
plane, and “z” represents the z direction. Regions filled by
more than one color are viewed as degenerate regions, where
the energy difference between the two magnetic orders is
smaller than 102 from numerical calculations.

In this work, we present a comprehensive Hartree-Fock
study of the moiré Hubbard model believed to represent



the low energy physics of twisted WSey and related ma-
terials. The new feature of the moiré Hubbard model is
strong tunable spin orbit coupling, leading to a magnetic
easy-plane anisotropy and highly tunable van Hove singu-
larity. The g-factor parameterizing the electron-spin in-
teraction is large and anisotropic. The O(2) rather than
SU(2) spin symmetry of the generic model is expected to
reduce the importance of quantum fluctuations, increas-
ing the parameter ranges where the orders found in the
Hartree-Fock calculation are stabilized, and also ensur-
ing that magnetic phases found at 7' = 0 will persist for
a range of nonzero temperatures.

At half filling, we find that for U greater than a criti-
cal value ~ 5|t|, the model is magnetically ordered with
a charge gap at all ¢. The predicted magnetic order de-
pends on ¢, with regions of 120° spiral and regions of
ferromagnetism. The ferromagnetic regions occur at ¢
values corresponding to displacement fields at the edge
of what can be realized experimentally. At smaller U, a
reentrant phase diagram is found, with a metallic phase
at ¢ = 0 giving way to an insulating phase for ¢ near /6
and then reverting to a metallic phase. Experimental re-
sults for devices with twist angle ~ 4 —5° indicate a sim-
ilar reentrance, placing these devices in the intermediate
coupling regime. Smaller twist angles would enlarge the
unit cell [3], decreasing both the hopping and the inter-
action terms. Since the hopping decreases faster, the net
effect of a smaller twist angle is to increase U/t, pushing
the system into the strong coupling regime.

At general band fillings and interaction strengths, pre-
vious Hartree-Fock studies of the SU(2) invariant model
find a intricate phase diagram, with regions of stripes,
phase separation, and defected commensurate phases,
all occurring at general interaction strengths and carrier
concentrations. Fig. 10 shows our Hartree-Fock phase
diagram as a function of displacement field, where only
nine commensurate orders are considered. In the weak
coupling limit, if incommensurate orders are included
in the nearest neighbor model, the insulating behavior
should be found along the van Hove density and DM
phase n, s — ¢ curve, due to the van Hove singularities
and perfect nesting, as shown in Fig. 9. When the den-
sity is away from half filling, as interaction increases, it
is likely that a commensurate-incommensurate transition
will occur in the magnetism, so that away from half filling
the incommensurate insulating phases would be replaced
by commensurate magnetic metal phases.

A particularly interesting feature of the phase diagram
of the SU(2) invariant triangular lattice Hubbard model
is that at half filling the large U 120° phase is separated
from the low U fermi liquid metallic phase by an inter-
mediate phase occurring for U/t ~ 9 that has no obvious
long ranged order and has been interpreted as a spin lig-
uid [23], though the identification is not yet confirmed.
The evolution of this potential spin liquid state as ¢ and
carrier concentration are varied is an interesting open
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problem.

In conclusion we further observe that the Moire Hub-
bard model studied here, this model is an approximate
description of emergent low energy properties of a richer
and more complex system. For example, the microscopic
origin of spin up and down states in terms of the two val-
leys of the top and bottom layer, along with the strong
spin orbit coupling, raises the possibility of anomalous
electron-phonon interactions. The study of these and re-
lated phenomena are important open questions for future
research.
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Appendix A: Band Structure

The band structure was originally calculated using
density functional theory (DFT) in Ref. [4]. It can be
understood and qualitatively modelled based on a low-
energy continuum model [35].

In the monolayer WSes, the two valleys I?O and [?6
are dominated by opposite spins and are related by time
reversal symmetry, as discussed Section II. Here we focus
on the Ky valley, which is dominated by spin up. Using
k - 7 theory [15], the single layer Hamiltonian of the top
valence band can be approximated as

h(k — Ko) = —(k — Ko)?/2m* 4+ 1C|k — Ko|? cos(3ag),
(A1)
where m™ is the effective mass, 7 = 1 indicates the valley

Koy (—1 for Kj), and aj = arctan % The term

C|E — I_('0|3cos(2a,;) preserves the C3 symmetry of the
ffo point of the monolayer and was not explicitly writ-
ten in Ref. [35]. In the bilayer, this term preserves the
Cs rotation symmetry and Cs, symmetry and protects
a band degeneracy along certain high symmetry lines in
the Brillouin zone. When C = 0, the monolayer disper-
sions entering the bilayer model have an O(2) rotation in-
variance which becomes an emergent inversion symmetry
(E,(k) = E,(—k)) in the Moire Hubbard model. This
symmetry is broken by a nonzero C.

After stacking a second WSey layer with a small twist
angle 0, the effective Hamiltonian around I?O valley is:



where U (7) = (¢4(7), ¥s(7))T is a two-component spinor
with the top and bottom layer components. D represents
the effect of the displacement field. The diagonal term
hi(k—K) = h(Rg/g(lZ — K)) is the single layer Hamilto-
nian for the top layer after a twist angle g. ht is obtained
from h' by replacing 6 by —6 and K by K'. And the off-
diagonal term A7 describes the interlayer tunneling, and
is approximated as Ap(7) = w (1 + e~iGLT e*i@'F),

where C_}”z is the reciprocal lattice vector. In the strict con-
tinuum model with C = 0 and E—independent hybridiza-
tion the eigenvalues of ht(l;) are the same as those of
h?(—k) so that the Moire bands have an effective inver-
sion symmetry. However a nonzero C combined with the
non-zero twist angle means that the eigenvalues of ht(E)
and hb(—E) are not equal except along certain high sym-
metry lines such as I' — K.

®D=0,C#0

E (meV)
E (meV)

100 =

E (meV)
E (meV)

FIG. 11. Band structure of the continuum model of
tWSes with and without the displacement field D and the
high order term C\k — Ko( )|? cos(3a). Blue and red solid
lines represent Ko and KO valleys. Green dashed lines in-
dicate the energy level of half filling of the topmost valence
bands.

After a Fourier transform, with basis ¥(p) =
(wt(ﬁ)a wb(ma ¢b(ﬁ+ il)’ wb(ﬁ"i_ 52)7"')T7 the high-
est moiré band can be viewed as a result of back-folding
the monolayer bands into the moiré Brillouin zone with
spinless hybridization. In Fig. 11(a), we plot the band
structure for strict continuum model keeping only the
quadratic term hg = —(k — Kg)2/2m* in the mono-
layer Hamiltonian (eq. Al). If the higher order term
Clk — I?0|3cos(3a];) is retained (panel (b)), the degen-
eracy is lifted at general k-points; for example a small
splitting along I’ to M in the moiré Brillouin zone is
evident. These symmetry breaking terms are small for
small twist angle because only small deviations of k from
the single-layer K point are relevant. This symmetry
breaking term can be described by further neighbor hop-
ping in the moiré Hubbard model, with hopping ampli-

tude < 20% of the first neighbor hopping, and does not
change the physics much. On the other hand (panel (c)
and (d)) a non-zero displacement field distinguishes the
top and bottom layers and thus strongly splits the de-
generacy except along special high symmetry lines such
as I' — M where the symmetry of the monolayer protects
the spin degeneracy. [4].

Appendix B: Mean field approximation

The Hubbard model is written as

H = Z ekgcﬂ CkU+UZ”Zan
Fo=+

(B1)

where € = —2]t| cos(k - @ + o) is the single particle’s
dispersion of the nearest neighbor tight-binding model.
As mentioned in Section III, in the mean field treatment,
the interaction is factorized as an approximation shown
in Eq. (3). Here we use 120° spiral order in « — y plane
as an example and construct its Hamiltonian.

Assume the averaged spin on site ¢ is (S7) = 0 and
(S%) +i(SY) = me'@Fi where m is the magnetization,
and Q = (£47/3,0) is the wave vector of 120° spiral
order. Plus and minus sign indicate different staggered
chiralities. We assume the averaged electron density on
each site is (n;4) + (n;) = n. Therefore,

P n/2 meiQ R
<Ci,ach‘7> - ( me_i(j.ﬁi n/2 . (B2)
The interaction term is:
V=U Z c%cﬁchcu - c;rTcucziciT (B3)

R U Y (nin)niy +nig(ng) —
i

~(57)87
= —mUZ

The Brlllouln zone is three-fold, and the basis is cho-
sen as (CIZ—QT’CIZT7CE+QT’CE—Q¢’CE¢7CE+Q¢)T' After di-
agonalizing the Hamiltonian, we find six eigenvalues e;:

€ 64+ T € 3 €r, 5+ — €p_
€12 = QT k—Q i\/(mU)2+( k+Q.1 5 k Q,i)g

() (niy)

—(S7)SF+ (SIS
£ G- QT—‘rC ck+Q¢)+UN(n2/4+m2).

)

2
[ e i [ i
€34 = kT 2k+Q7$ + \/(mU)Q +( k.t 2k+Q7$)2’
€ +e€ €2_5+ — €7
56 = k Q7T2 k. + \/(mU)Q + ( k—Q7T2 k7¢)2
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And the total energy is written as

6
E:ZZej(E)njE—FUN(nQ/Zl—FmQ). (B5)
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