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We study electric polarization and nonlinear optical effects in spin systems with broken inversion
symmetry. We apply strong coupling expansion to the underlying electronic Hamiltonians, and
systematically derive expressions for electric polarization in spin systems that are represented in
terms of spin operators. The magnon representation of the obtained electric polarization operator
allows us to compute linear and nonlinear optical responses by the standard diagrammatic method.
We apply our formalism to Heisenberg model with alternating coupling constants and J1-J2 model
with inversion symmetry breaking. We demonstrate that these inversion broken spin systems support
dc current flow upon magnon excitations which arises from the shift current mechanism.

I. INTRODUCTION

Nonlinear responses of quantum materials are actively
studied due to both fundamental and technological im-
portance [1–3]. For example, quantum materials with
broken inversion symmetry exhibit photovoltaic effects
for various intrinsic mechanisms including shift current
[4–14], injection current [6, 15, 16] and ballistic current
[17, 18], which suggests their potential application to so-
lar cells and photodetectors. In particular, shift current
is a photovoltaic effect in noncentrosymmetric crystals
and arises from a geometrical origin. Specifically, the
center of electron wave packet is shifted upon optical ex-
citation and this motion of electrons leads to dc current
response. The shift of the wavepacket is quantified by
the so-called shift vector that is formulated with Berry
connection. The shift current is closely related to the
modern theory of polarization since the electric polariza-
tion is given by the Berry phase that is the integral of
Berry connection over the Brillouin zone [19–21].

Strongly correlated systems are known to support in-
teresting optical properties [22]. In particular, collec-
tive modes appear in low energy region, and they can
be frequently accessible with optical excitation [23, 24].
However, previous studies on shift current responses have
been mostly focused on systems of noninteracting elec-
trons, and shift current from strongly correlated systems
has been not fully explored so far. Since the low energy
excitations can lead to larger coupling to electromagnetic
fields via larger vector potential, the collective modes are
expected to show an enhancement in nonlinear responses.
Also, understanding of their nonlinear responses can re-
veal novel nonlinear functionalities of quantum materials
with strong electron correlation.

Among a variety of strongly correlated materials, here
we focus on noncentrosymmetric magnets that exhibit
multiferroic responses [23, 25–27]. The collective mode in
noncentrosymmetric magnets is an electromagnon, which
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FIG. 1. Schematic picture of shift current induced by magnon
excitations under the light irradiation.

is a magnetic excitation that accompanies electric polar-
ization. The nonzero polarization of magnons is closely
related to the appearance of the electric polarization in
the ground state of the noncentrosymmetric spin sys-
tems and is a consequence of their multiferroic nature
[26, 28–31]. Electromagnons can be excited with exter-
nal light field [32–34] and are shown to induce dichro-
ism [35, 36]. Shift current response in noncentrosym-
metric spin systems has been previously studied based
on electronic models in the presence of spin-orbit cou-
pling, by one of the authors [37]. Specifically, as the
electromagnons are excited by light irradiation, the po-
larization P increases in time, which induces flow of dc
current J due to the relationship J = dP/dt as schemat-
ically illustrated in Fig. 1. In Ref. [37], shift current of
magnons were demonstrated based on a 1D toy model,
while its derivation strongly relies on the underlying elec-
tronic Hamiltonian and was difficult to apply to general
spin systems described with spin Hamiltonians. Also,
the magnitude of the obtained shift current was limited
since it is proportional to the magnitude of spin-orbit
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coupling which is generally small. To fully explore shift
current responses in general spin systems to seek large
nonlinear functionality, it is highly desired to establish
a more general framework that enables to study optical
responses in terms of spin operators (without relying on
the underlying electronic operators).

Motivated by these, in this paper, we present a formal-
ism to study linear and nonlinear optical effects of mag-
nets relying on their spin Hamiltonians. To this end, we
systematically derive expressions for the electric polar-
ization represented with spin operators in Hubbard-type
systems, by using Schrieffer-Wolff transformation and de-
generate perturbation theory [38] with applied electric
fields taken into account [39–41]. Combining Green’s
function approach for magnon excitations (via Holstein-
Primakoff transformation) and the obtained expressions
for electric polarization, we derive formulae for linear and
nonlinear optical conductivities based on the diagram-
matic method which was previously used to study non-
linear optical responses of electronic excitations [42]. We
apply this method to Heisenberg model and J1-J2 model
with broken inversion symmetry. We find that these spin
systems support shift current responses due to the su-
perexchange mechanism. Since the present mechanism
does not require spin-orbit coupling that is small and
usually suppresses the optical responses, such shift cur-
rent response has a potential to exhibit large nonlinear
functionality. One interesting application of such shift
current response would be a photodetector that works in
far infrared/THz regime.

The rest of this paper is organized as follows. In Sec.
II, we present spin Hamiltonian and polarization opera-
tor, taking 1D Rice-Mele model with Hubbard interac-
tion as an example. In Sec. II, we study magnon excita-
tions using Holstein-Primakoff transformation and derive
its Green’s function. In Sec. III, we derive formulae for
linear and nonlinear optical conductivities based on the
diagrammatic approach. In Sec. IV, we apply our formu-
lae to optical responses in Heisenberg model with alter-
nating coupling constants and J1-J2 model, and demon-
strate their shift current responses. In Sec. V, we give a
brief discussion.

II. POLARIZATION IN SPIN SYSTEMS

In this section, we derive electric polarization in spin
systems. First, we review electric polarization for a
Heisenberg model obtained as a low-energy effective the-
ory of Rice Mele model with Hubbard interaction [23, 31].
Then we present our systematic derivation of polarization
operator in spin systems with Schrieffer-Wolff transfor-
mation.

A. Rice Mele Hubbard model

We start from Rice Mele model with Hubbard interac-
tion U (Rice Mele Hubbard model) and derive an effec-
tive spin model in the Mott insulator phase. This model
was previously studied in Ref. [23, 31] and the polariza-
tion operator has been derived. The Rice Mele model
is a representative 1D model of ferroelectrics [43] which
breaks inversion symmetry. We introduce Hubbard in-
teraction U to this Rice Mele model and derive a spin
model that lacks inversion symmetry as its low energy
effective theory. The derived spin model is one of the
simplest models to study electric polarization and non-
linear optical effects using spin operators.

First we consider the Hamiltonian

H0 =
∑
i,s

{[(t+ (−1)iδt)c†i+1,sci,s + h.c.] + (−1)imc†i,sci,s}

+ U
∑
i

ni,↑ni,↓, (1)

where ci,s is the annihilation operator of the electron at

site i and spin s =↑, ↓, ni,s = c†i,sci,s is the density op-
erator of electrons. t is the overall hopping strength, δt
is the hopping alternation, m is the staggered potential,
and U is the repulsive Hubbard interaction, respectively.
When the Hubbard interaction is sufficiently large, the
ground state is in the Mott insulator phase, where each
site is occupied with a single electron on average. While
the charge excitation costs large energy (' U), the spin
excitations are allowed at low energy. We can obtain the
effective spin Hamiltonian that describes the low energy
spin excitations by perturbation theory with respect to
the hopping terms. Starting from the unperturbed state
where each site is occupied with a single electron, we con-
sider the perturbative process where an electron at the
site i hops to the site i+1 and then hops back to the site
i. This process gives the Heisenberg interaction term,

2
[t+ (−1)iδt]2

U − (−1)i2m
Si · Si+1, (2)

where the hopping amplitude is t + (−1)iδt and the in-
termediate state costs the energy of U − (−1)i2m. The
Heisenberg coupling 2Si · Si+1 arises as this process is
allowed only when the spins at the site i and i+1 are an-
tiparallel. Collecting such contributions from the second
order perturbation in t, we obtain Heisenberg Hamilto-
nian

H =
∑
i

JiSi · Si+1, (3)

with alternating coupling constants

J2i = 2(t+ δt)2

(
1

U − 2m
+

1

U + 2m

)
, (4)

J2i+1 = 2(t− δt)2

(
1

U − 2m
+

1

U + 2m

)
. (5)
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Next we consider an effective spin Hamiltonian in the
presence of an external electric field E. We introduce
electrostatic potential to the original Hamiltonian as

HE = H0 +
∑
i,s

iẼc†i,sci,s, (6)

where we defined the potential difference Ẽ = eEa be-
tween the neighboring sites with the electric charge e and
the lattice constant a. (Hereafter, we set e = 1 and ~ = 1
for simplicity. The charge of an electron is given by −e.)
The change of the onsite potential modifies the spin in-
teraction term that arises from the perturbation process,
where an electron hops from the site i to i+ 1 and then
hops back to i, as

2
[t+ (−1)iδt]2

U − (−1)i2m+ Ẽ
Si · Si+1. (7)

The total spin Hamiltonian is given by

H̃ =
∑
i

J̃iSi · Si+1, (8)

with

J̃2i = 2(t+ δt)2

(
1

U − 2m+ Ẽ
+

1

U + 2m− Ẽ

)
,

(9a)

J̃2i+1 = 2(t− δt)2

(
1

U − 2m− Ẽ
+

1

U + 2m+ Ẽ

)
.

(9b)

Taylor expansion with respect to Ẽ gives

H̃ =
∑
i

(JiSi · Si+1 + EΠiSi · Si+1) +O(E2), (10)

with

Π2i = 2a(t+ δt)2

(
− 1

(U − 2m)2
+

1

(U + 2m)2

)
,

(11a)

Π2i+1 = 2a(t− δt)2

(
1

(U − 2m)2
− 1

(U + 2m)2

)
.

(11b)

This equation indicates that the E linear coupling term
vanishes when m = 0, and becomes asymmetric depend-
ing on the parity of i as Π2i = −Π2i+1 when δt = 0.

Equation (10) implies that the electric polarization of
the system is given by

P = −
∑
i

ΠiSi · Si+1. (12)

Indeed, by evaluating the expectation value of the elec-

tric polarization −
∑
i,s ia〈c

†
i,sci,s〉 using the perturbative

correction to the electronic eigenvectors, we can confirm
that it coincides with −

∑
i Πi〈Si ·Si+1〉 evaluated in the

spin system. In the following, we extend this relation to
general Hubbard-type systems (and higher orders of E)
using Schrieffer-Wolff transformation in the presence of
applied electric fields.

B. Derivation of polarization operator in spin
systems

For general Hubbard type systems, we can derive the
electric polarization in terms of spin operators in a simi-
lar way. We employ Schrieffer-Wolff transformation and
degenerate perturbation theory [38] to deduce the polar-
ization operators in spin operators from the underlying
electronic Hamiltonians in the following.

We show below that the electric polarization of generic
Hubbard-type systems,

Pel = −
∑
i,s

Ric
†
i,sci,s, (13)

is expressed in the low-energy spin description by a sim-
ple formula

Pspin = P̂0Û
†PelÛ P̂0 ∼ −

∂Hspin

∂E
. (14)

Here, Û is the unitary transformation from Hubbard
to spin Hamiltonian in the presence of the (dc) electric

field [39–41], and P̂0 denotes the projection operator to

the spin Hilbert space. Specifically, Û is defined to satisfy

[Heff, D] = 0, (15)

with

Heff = Û†(Hel −E · Pel)Û , (16)

D =
∑
i

ni,↑ni,↓. (17)

Namely, Heff is the block-diagonalized Hamiltonian that
preserves the number of doubly-occupied sites D, and
its sector with no mobile charge (doubly-occupied or
empty sites) corresponds to the spin HamiltonianHspin =

P̂0HeffP̂0.
Since the low-energy eigenstate of the Hubbard model,

Hel|αel〉 = εα|αel〉, is given as |αel〉 = Û |αspin〉 with
Hspin|αspin〉 = εα|αspin〉, we can show that

〈αel|Pel|αel〉 = 〈αspin|Û†PelÛ |αspin〉. (18)

Namely, Pspin = P̂0Û
†PelÛ P̂0 is indeed the effective op-

erator to describe the polarization of the underlying elec-
tronic system [44]. This operator is related to the E
derivative of the spin Hamiltonian as

∂Hspin

∂E
= P̂0

∂

∂E

[
Û†(Hel −E · Pel)Û

]
P̂0 (19)

= −P̂0Û
†PelÛ P̂0 +

[
Hspin, P̂0Û

†∂EÛ P̂0

]
, (20)

where we have used Û†Û = 1, ∂EÛ
† = −Û†(∂EÛ)Û†.

We can confirm the formula (14) by showing that the
last term is small compared with ∂EHspin.
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To this end, let us write the Hubbard-type Hamil-
tonian as Hel = λHhop + Hloc, where Hloc is the lo-
cal part of Hamiltonian preserving the number of elec-
trons on each site, while Hhop transfers electrons be-
tween different sites. The dummy parameter λ bridges
the macroscopically-degenerate atomic limit λ = 0 and
the Hubbard system of interest λ = 1, and is formally
regarded as a small parameter (as the perturbation Hhop

is small). When the application of Hhop on the ground
state manifold of Hloc costs high energy, we can perform
the perturbation expansion with respect to λ to obtain
the low-energy (spin) Hamiltonian. Namely, by consid-
ering a formal expansion

Û = 1 + λU (1) + λ2U (2) + · · · ≡ e−iΛ, (21)

Λ = λΛ(1) + λ2Λ(2) + . . . , (22)

and imposing that each order of Û†(Hel − E · Pel)Û is

block-diagonal, we can determine Û order by order. For
example, the first order term U (1) = −iΛ(1) is determined
by the condition

〈αloc|(λHhop + [iλΛ(1), Hloc −E · Pel])|βloc〉 = 0 (23)

for the eigenstates |αloc〉, |βloc〉 of Hloc−E ·Pel that have

different eigenenergies ε
(0)
α 6= ε

(0)
β . We choose Λ that

leaves intrasector matrix elements intact, i.e., 〈α|Λ|β〉 =

0 for ε
(0)
α = ε

(0)
β . Thus we arrive at

〈αloc|Û (1)|βloc〉 =


−〈αloc|Hhop|βloc〉

ε
(0)
α − ε(0)

β

ε
(0)
α 6= ε

(0)
β

0 ε
(0)
α = ε

(0)
β

.

(24)

This solution implies that Û (1) is a block-offdiagonal ma-
trix (in particular, P̂0Û

(1)P̂0 = 0). In other words, Û (1)

always involves charge excitations. Combining this prop-
erty with the perturbative evaluation of Û†∂EÛ ,

Û†∂EÛ = λ∂EÛ
(1) + λ2(Û (1)†∂EÛ

(1) + ∂EÛ
(2)) + . . . ,

(25)
we find that the first term vanishes on the Hilbert space
of the spin Hamiltonian, λP̂0∂EÛ

(1)P̂0 = 0. Thus the
last term of Eq. (20) is higher-order than Hspin by (at
least) λ2, while Hspin and ∂EHspin is usually in the same
order in λ. This leads to Eq. (14).

As an example, let us consider a single-orbital Hubbard
model with an arbitrary onsite potential

Hhop =
∑
ijs

tijc
†
i,scj,s, (26a)

Hloc =
∑
i

[Vi(ni,↑ + ni,↓) + Uni,↑ni,↓]. (26b)

As detailed in Appendix A, application of the above
formalism leads to the effective spin Hamiltonian as

Hspin =
1

2

∑
ij

4|tij |2Si · Sj
U − Vij −E ·Rij

, (27)

and the effective polarization operator as

Pspin = −1

2

∑
ij

4|tij |2Rij(Si · Sj)
(U − Vij −E ·Rij)2

(28)

= −1

2

∑
ij

8UVij |tij |2Rij(Si · Sj)
(U2 − V 2

ij)
2

+O(E2), (29)

in the second-order perturbation, where Rij = Ri −
Rj , Vij = Vi − Vj . We can indeed confirm that Eq. (14)
holds true including higher orders of E. We can also
see that it reproduces the result for P in Rice-Mele-
Hubbard model; Eq. (29) coincides with the result for
Πi in Eq. (11) in the limit E → 0.

We note that the formula (14) slightly deviates when
we consider ac electric fields. However, as we show in
Appendix A, it turns out that the correction term in the
low-frequency regime scales as ∼ ω2/U2 with ω being
the driving frequency, which is negligible since we are
interested in optical excitation of magnons.

The rough estimation of the spin-dependent electric
polarization P in the Hubbard-type systems is obtained
from Eq. (29) as

P ' JVij
U2

a, (30)

where J is the Heisenberg coupling (J ' t2ij/U) and a
is the lattice constant. Note that the difference in the
onsite potential Vij cannot be as large as U with keeping
the half-filled condition. The electric polarization in spin
systems is enhanced if P is expressed in the lower power
in 1/U . In fact, we can realize

P ' J

U
a, (31)

in the so called superexchange mechanism where neigh-
boring spin sites are bridged by ligand ions. Details are
presented in Appendix B. In the superexchange mecha-
nism, the Heisenberg coupling appears in the fourth order
perturbation in hopping between spin and ligand sites.
Such situation reduces the power of 1/U in P and en-
hances the electric polarization and an effective coupling
to external electric fields.

III. MAGNON EXCITATIONS

We consider magnon excitations using Holstein-
Primakoff transformation. While 1D Heisenberg model
with alternating coupling supports spin gap, the present
treatment with Holstein-Primakoff transformation is jus-
tified for higher dimensional systems (such as a stack of
the Heisenberg chains).

We consider antiferromagnetic ground state and use
Holstein-Primakoff transformation of spin operators for
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spin S states given by

S+
i =

√
2S

√
1− a†iai

2S
ai, (32a)

S−i =
√

2Sa†i

√
1− a†iai

2S
, (32b)

Szi = S − a†iai, (32c)

for even sites (i = 2j) and

S+
i =

√
2Sa†i

√
1− a†iai

2S
, (32d)

S−i =
√

2S

√
1− a†iai

2S
ai, (32e)

Szi = −S + a†iai, (32f)

for odd sites (i = 2j + 1), with boson annihilation op-
erator ai at site i. When S is large and boson density is
small, these equations reduce to

S+
i =

{√
2Sai, (i = 2j)√
2Sa†i , (i = 2j + 1)

(33)

Szi = (−1)i(S − a†iai). (34)

A. Heisenberg model with alternating coupling
constants

We consider the Hamiltonian

H =
∑
i

(JeS2i · S2i+1 + JoS2i+1 · S2i+2), (35)

which is obtained from Rice Mele Hubbard model by
setting Je = J2i and Jo = J2i+1. We assume that
the ground state is an antiferromagnetic state and ap-
ply Holstein-Primakoff transformation to study magnetic
excitations. We obtain

H =
∑
i

JeS
(
a†2i a2i+1

)(1 1
1 1

)(
a2i

a†2i+1

)
+
∑
i

JoS
(
a†2i+2 a2i+1

)(1 1
1 1

)(
a2i+2

a†2i+1

)
. (36)

By performing a Fourier transformation, we obtain

H =
∑
q

(
a†A,q aB,−q

)
Hq

(
aA,q
a†B,−q

)
, (37)

Hq = 2S

(
J J cos qa− iδJ sin qa

J cos qa+ iδJ sin qa J

)
(38)

where aA,q and aB,q are annihilation operators of
magnons at the even and odd sites with the momentum

q, and J = (Je + Jo)/2 and δJ = (−Je + Jo)/2. The
Green’s function for the magnon excitation is given by

G(iω, q) = (iωσz −Hq)
−1 (39)

with Matsubara frequency iω and the momentum q.
Here, σz appears from the fact that the basis of the two
by two Hamiltonian is spanned by an annihilation oper-
ator and a creation operator of bosons and incorporates
the right signs of the two modes. Since the poles of the
Green’s function are given by the eigenvalues of σzHq,
the excitation energy of magnons are

E = 2SJ

√
1− cos2 qa− δJ2

J2
sin2 qa

= 2SJ

√
1− δJ2

J2
| sin qa|. (40)

In the same two by two representation, the modifica-
tion of the spin HamiltonianH → H−EP in the presence
of the electric field E defines the polarization operator P
as

P = −
∑
q

(
a†A,q aB,−q

)
Πq

(
aA,q
a†B,−q

)
, (41)

Πq = 2S

(
Π Π cos qa− iδΠ sin qa

Π cos qa+ iδΠ sin qa Π

)
,

(42)

which is obtained from Rice Mele Hubbard model by set-
ting Π = (Π2i + Π2i+1)/2 and δΠ = (−Π2i + Π2i+1)/2.

B. General magnon Hamiltonian

Finally, we consider a general magnon Hamiltonian in
a bilinear form of magnon operators which is written as

H =
∑
q

Ψ†qHqΨq, (43)

with a 2n by 2n matrix Hq and a 2n dimensional vector
of bosonic operators Ψq. In this general case, the Green’s
function of magnons is given by

G(iω, q) = (iωB −Hq)
−1 = (iω −BHq)

−1B. (44)

Here B is the diagonal matrix with entries ηi,

B ≡ diag(ηi), (45)

where ηi = 1 if the (Ψq)i is an annihilation opera-
tor, and ηi = −1 if the (Ψq)i is a creation operator.
Namely, B is related to the commutation relation as
[(Ψq)i, (Ψ

†
q)j ] = (B)ij . The energy dispersion of magnon

excitations corresponds to the poles of G(iω, q) and is
given by the eigenvalues of BHq. Note that B2 = I
where I is the identity matrix. Let us assume that this
matrix can be diagonalized as

BHq = V EqV
−1, (46)
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where Eq = diag(εi) with the eigenvalues εi. The eigen-
values εi appear as pairs of a positive mode and a negative
mode, and the magnon dispersion is determined by the
positive eigenvalues of BHq.

Let us remark the relation between the diagonalization
using V and that using Bogoliubov transformation. We
find that the diagonalized form of the Hamiltonian reads

H =
∑
q

(Ψ†qBV B)BEq(V
−1Ψq) (47)

and the transformed operators satisfy the commutation
relation

[(V −1Ψq)i, (Ψ
†
qBV B)j ] = (B)ij . (48)

Therefore the diagonalized Hamiltonian coincides with
the Bogoliubov-transformed one that satisfies canonical
commutation relation, if (V −1Ψq)

† = Ψ†qBV B holds.
Namely, the Bogoliubov-transformed result is recovered
by further imposing V †BV = B (while it is not neces-
sary for the following calculations). When this condition
is met, the diagonal entries of BEq have physical meaning
as the excitation energies.

IV. OPTICAL RESPONSES

We study linear optical conductivity and shift cur-
rent response using the Green’s function formalism for
magnon excitations. In particular, we derive expressions
for optical conductivities in terms of matrix elements
of the polarization operator using the general magnon
Hamiltonian.

A. Linear optical conductivity

We consider the linear optical conductivity σ(1)(ω)
which characterizes the current response

J(ω) = σ(1)(ω)E(ω), (49)

where J(ω) and E(ω) are Fourier components of the cur-
rent and the external electric field, respectively. Our
formalism of magnon excitations with E naturally in-
cludes the polarization operator (H ′/E) in the Hamilto-
nian. Since the current J is given by the time deriva-
tive of the polarization P , we have the relationship
J(ω) = −iωP (ω). Thus the optical conductivity is ob-
tained from the dielectric function ε(ω) as

σ(1)(ω) = −iωε(ω) (50)

where ε(ω) satisfies P (ω) = ε(ω)E(ω). The dielectric
function ε(ω) is given by the two point correlation func-
tion of polarization as

ε(iΩ) =

∫
dq

2π

∫
dω

2π
tr[ΠqG(iω + iΩ, q)ΠqG(iω, q)],

(51)

where q is the momentum of the magnon and the q in-
tegral is performed over the Brillouin zone. Here, Πq is
a 2n by 2n matrix that defines the polarization operator
as

P = −
∑
q

Ψ†qΠqΨq. (52)

(We note that there is an overall extra minus sign in the
above expression for the two-point correlation function
when compared to the fermionic case, which is canceled
with the minus sign in P = −

∑
q ΠqΨ

†
qΨq.)

Now we derive an explicit expression for the linear con-
ductivity in terms of the matrix elements of the general
magnon Hamiltonian Eq. (43). The expression for the
linear susceptibility can be rewritten as

ε(iΩ) =

∫
dq

2π

∫
dω

2π
tr[ΠqG(iω + iΩ, q)ΠqG(iω, q)]

=

∫
dq

2π

∫
dω

2π
tr[ΠqV (iω + iΩ− Eq)−1V −1B

×ΠqV (iω − Eq)−1V −1B]

=

∫
dq

2π

∫
dω

2π

∑
ab

Π̃abΠ̃ba

(iω + iΩ− εb)(iω − εa)

=

∫
dq

2π

∑
ab

Π̃abΠ̃ba
fab

iΩ− εba
. (53)

The matrix Π̃ is defined by

Π̃ = V −1BΠqV, (54)

and Π̃ab is its matrix element. fab = fa − fb is a factor
assuring that the positive energy mode is excited with
fa ≡ θ(−εa), and εab = εa − εb. By performing ana-
lytic continuation of Matsubara frequency iΩ → ω + iγ,
we obtain the expression for the linear conductivity of
magnons as

σ(1)(ω) = −iω
∫

dq

2π

∑
ab

Π̃abΠ̃ba
fab

ω − εba + iγ
. (55)

We note that the matrix Π̃ is not Hermitian and Π̃ab 6=
Π̃∗ba generally.

B. Nonlinear optical conductivity

The second order nonlinear conductivity is defined by
the current response

J(ω1 + ω2) = σ(2)(ω1 + ω2;ω1, ω2)E(ω1)E(ω2), (56)

where the external electric fields of the frequencies ω1

and ω2 yields the current of the sum frequency ω1 + ω2.
Similarly to the case of the linear response, nonlinear
conductivity is related to the nonlinear susceptibility via

σ(2)(ω1 + ω2;ω1, ω2) = −i(ω1 + ω2)χ(ω1 + ω2;ω1, ω2),
(57)
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where the nonlinear susceptibility characterizes the non-
linear response of polarization as

P (ω1 + ω2) = χ(ω1 + ω2;ω1, ω2)E(ω1)E(ω2). (58)

The shift current is the generation of dc current flow
proportional to the intensity of the light field in non-
centrosymmetric crystals. Such current response is de-
scribed by the nonlinear conductivity in the dc response
limit,

σ(2)(ω) ≡ lim
δω→0

σ(2)(δω;ω + δω,−ω). (59)

In terms of nonlinear susceptibility, we can express the
shift current response as

σ(2)(ω) = lim
δω→0

(−iδω)χ(δω;ω + δω,−ω). (60)

The nonlinear susceptibility χ is contributed by the two
point correlation function of Πq and ∂qΠq and the three
point correlation function of Πq. The above expression

for σ(2) indicates that the part of χ that is proportional to
1/δω makes a contribution. Such 1/δω term appears in
the three point correlation function χ(3) of Πq. (The two
point correlation part does not include a singular part
with respect to δω and vanishes after taking the limit.)
Therefore, the shift current response is given by

σ(2)(ω) = lim
δω→0

(−iδω)χ(3)(δω;ω + δω,−ω), (61)

where the three point correlation function χ(3) is written
as

χ(3)(iΩ1 + iΩ2; iΩ1, iΩ2)

=

∫
dq

2π

∫
dω

2π

tr
[
ΠqG(iω + iΩ1 + iΩ2, q)ΠqG(iω + iΩ1, q)ΠqG(iω, q)

+ ΠqG(iω + iΩ1 + iΩ2, q)ΠqG(iω + iΩ2, q)ΠqG(iω, q)
]
.

(62)

We note that we perform analytic continuation of Mat-
subara frequencies as

iΩ1 → ω + δω + iγ, iΩ2 → −ω + iγ, (63)

where γ corresponds to the energy broadening and it en-
ters with plus signs from causality.

Now that we sketched the overview of the derivation of
σ(2)(ω), we derive the explicit expression for the nonlin-
ear conductivity σ(2)(ω) in terms of the matrix elements
for the general magnon Hamiltonian in Eq. (43). The

nonlinear susceptibility χ(3) can be expressed as

χ(3)(iΩ1 + iΩ2; iΩ1, iΩ2)

=

∫
dq

2π

∫
dω

2π

∑
abc

Π̃acΠ̃cbΠ̃ba

×
{ 1

(iω + iΩ1 + iΩ2 − εc)(iω + iΩ1 − εb)(iω − εa)

+
1

(iω + iΩ1 + iΩ2 − εc)(iω + iΩ2 − εb)(iω − εa)

}
=

∫
dq

2π

∑
abc

Π̃acΠ̃cbΠ̃ba

×
{ fa

(iΩ1 − εba)(iΩ1 + iΩ2 − εca)
− fb

(iΩ1 − εba)(iΩ2 − εcb)

+
fc

(iΩ1 + iΩ2 − εca)(iΩ2 − εcb)

}
+ (iΩ1 ↔ iΩ2). (64)

Among the terms in the above expressions, we are inter-
ested in the pieces proportional to 1/δω as we analytically
continue as

iΩ1 → ω + δω + iγ,

iΩ2 → −ω + iγ, (65)

iΩ1 + iΩ2 → δω + 2iγ.

The factor 1/δω arises from 1/(iΩ1 +iΩ2−εca) by setting
c = a which leads to 1/(δω + 2iγ). (Here we assume
γ � δω. We further discuss the effects of dissipation in
Sec. VI.) Collecting those terms, we obtain

χ(3)(iΩ1 + iΩ2; iΩ1, iΩ2)

=

∫
dq

2π

∑
ab

Π̃aaΠ̃abΠ̃ba

(iΩ1 + iΩ2)

{( fab
iΩ1 − εba

+
fab

iΩ2 − εab

)
+

(
fab

iΩ2 − εba
+

fab
iΩ1 − εab

)}
+O(1), (66)

which yields

lim
δω→0

δωχ(3)(δω + 2iγ;ω + δω + iγ,−ω + iγ)

=

∫
dq

2π

∑
ab

Π̃abΠ̃ba(Π̃aa − Π̃bb)

×
(

fab
ω − εba + iγ

+
fab

−ω − εab + iγ

)
. (67)

Focusing on the optical excitation of magnons, we obtain

σ(2)(ω)

= −2π

∫
dq

2π

∑
ab

Re[Π̃abΠ̃ba(Π̃aa − Π̃bb)]fabδ(ω − εba).

(68)

In the above expression, the factor Π̃aa−Π̃bb corresponds
to the polarization difference for the two magnon modes
labeled by a and b, and can be regarded as a counterpart
of shift vector for the electronic shift current which is a
geometric quantity involving Berry connection of Bloch
electrons.
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c d

a

FIG. 2. Optical responses of Heisenberg model with broken inversion symmetry. (a) A schematic picture of the antiferromagnetic

state in inversion broken Heisenberg model. (b) Magnon dispersion. (c) Linear optical conductivity σ(1)(ω). The peak at
ω/2SJ = 1.9 corresponds to the optical excitation of magnons at the zone boundary qa = π/2. (d) Nonlinear conductivity

σ(2)(ω) characterizing shift current response. We used parameters 2S(J, δJ) = (1, 0.2), 2S(Π, δΠ) = (1, 0.1)a, g = 0.01.

V. APPLICATIONS

In this section, we apply our formulation of linear and
nonlinear conductivities to various spins systems that
break inversion symmetry and show that shift current
emerges by magnon excitations in those systems.

A. Heisenberg model with alternating coupling
constants

First we consider optical responses in the Heisenberg
model with alternating coupling constants. In this case,
we can derive analytical expressions for linear and non-
linear conductivities from Eq. (55) and Eq. (68) as

σ(1)(ω) =
(ω/2S)3(JδΠ−ΠδJ)2

4a(J2 − δJ2)2
√

4(J2 − δJ2)− (ω/2S)2
,

(69)

σ(2)(ω) = − (ω/2S)3(JδΠ−ΠδJ)2(JΠ− δJδΠ)

2a(J2 − δJ2)3
√

4(J2 − δJ2)− (ω/2S)2
.

(70)

Figure 2 shows the magnon spectrum, linear conductivity
σ(1)(ω), and nonlinear conductivity σ(2)(ω). Magnon ex-
citation shows a linear dispersion around q = 0 and band
bending at q = π/2a (Fig. 2(b)). The linear conductiv-

ity shows a peak structure at ω/2S = 2J
√

1− δJ2/J2

(Fig. 2(c)), which is associated with two magnon excita-
tions around the zone boundary (q = π/2a) due to the
large density of states of magnons at q = π/2a. We find
that the nonlinear conductivity σ(2) is nonzero as a conse-
quence of inversion breaking encoded in the polarization
operators (Fig. 2(d)). σ(2) also shows a peak structure at

ω/2S = 2J
√

1− δJ2/J2 which is again associated with
two magnon excitations around the zone boundary. This
nonlinear response can be interpreted as follows. (i) Light
irradiation excites magnons due to the coupling term pro-
portional to E. (ii) Magnons accompany nonzero polar-
ization due to inversion symmetry breaking (which are so
called electromagnons). (iii) Constant light irradiation
induces increase of polarization from magnon excitations
which drives dc current flow. We can see that inversion
symmetry breaking is necessary for nonvanishing non-
linear conductivity. For example, when the site center
inversion symmetry is present, we have δt = 0 indicating
δJ = 0,Π = 0, for which we can verify σ(2)(ω) vanish.
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Similarly, the bond center inversion symmetry requires
m = 0, which constrains Π = δΠ = 0 and naturally leads
to σ(2)(ω) = 0.

B. J1-J2 spin chains

We consider J1-J2 spin chain which is described by the
Hamiltonian,

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2. (71)

For J1 < 0 and J2 > 0, the ground state exhibits the
cycloidal spin structure of

Si = S(sinQia, 0, cosQia) (72)

with the momentum Q given by cosQa = −J1/4J2 [45].
We adopt the polarization operator

P = −
∑
i

ΠiSi · Si+1

= −
∑
i

{Π1 + (−1)iδΠ1}Si · Si+1, (73)

which consists of uniform Heisenberg term Π1 and cou-
pling alternation δΠ1 between the nearest spins. This
form of polarization operator arises from exchange stric-
tion mechanism in general. Indeed we present an explicit
derivation of this form of the polarization operator in Ap-
pendix B, where we consider effects of ligand ions that
bridge spin sites and perform perturbation theory incor-
porating exchange processes involving such nonmagnetic
bridging sites. We note that the direction of P is model
dependent. In the following, we choose the directions of
the electric field of the incident light and the induced dc
current to be the same as that of P .

We study the magnetic excitations and the associated
current responses by using the magnon representation
for the Hamiltonian and the polarization operator. If we
consider the magnon excitations from the cycloidal spin
structure in Eq. (72), the operator O defined by

O =
∑
i

{c1 + δc1(−1)i}Si · Si+1 + c2
∑
i

Si · Si+2

(74)

can be represented with magnon operators as [46, 47]

O =
∑
q

Ψ†q

Aq Bq C−q D−q
Bq Aq D−q C−q
Cq Dq Aq Bq
Dq Cq Bq Aq

Ψq + u0Ψq=0, (75)

with

Ψq =


aqA
a†−qA
aqB
a†−qB

 , (76)

where aqA/B is the annihilation operator of magnon with
the momentum q on the sublattice A/B (sublattice A:
odd sites, B: even sites), and the coefficients are given by

Aq = −c1S cosQa+ c2S{cos2Qa cos 2q − cos 2Qa},
(77)

Bq = −c2S sin2Qa cos 2qa, (78)

Cq = S cos2 Qa

2
(c1 cos qa+ iδc1 sin qa), (79)

Dq = −S sin2 Qa

2
(c1 cos qa+ iδc1 sin qa), (80)

and

u0 = 2S

√
S

2
δc1 sinQa(1, 1,−1,−1). (81)

(For derivation, see Appendix C). Using this formula,
we can obtain magnon representation for H by setting
(c1, δc1, c2) → (J1, 0, J2), which gives only a bilinear
form in magnon operators (u0 = 0). We obtain the
energy dispersion of magnon excitations by diagonal-
izing H thus obtained. Similarly, magnon representa-
tion for the electric polarization is obtained by replacing
(c1, δc1, c2) → (Π1, δΠ1, 0) with an overall minus sign,
which reads

P = −
[∑

q

Ψ†qΠqΨq + π0Ψq=0

]
. (82)

Specifically, the first term in the right hand side of
Eq. (75) gives the bilinear part with Πq, and the sec-
ond term gives the single magnon term with π0. The
bilinear part with Πq leads to the two magnon contribu-
tion to optical conductivities as we formulated in Sec. IV.
In contrast, the single magnon term with π0 gives rise to
the single magnon contribution to the optical conductiv-
ities which requires a separate treatment as we detail in
Appendix C.

We show the magnon dispersion and the linear and
nonlinear conductivities in Fig. 3. Both linear and
nonlinear conductivities show peak structures around
ω/|J1| = 1.1, 1.5 and 3. The peaks at ω/|J1| = 1.1 and 3
correspond to two magnon resonances at the zone bound-
ary and q = 0, represented by dashed red and solid red ar-
rows in Fig. 3(b), respectively. The peak at ω/|J1| = 1.5
is the single magnon resonance at q = 0, represented by
a blue arrow in Fig. 3(b). Single magnon contribution
to the conductivities comes from magnons with q = 0
only and gives a sharp resonance, while the two magnon
contribution arises from magnons with all momenta and
shows a broader structure. It turns out that the single
magnon peak in the optical conductivities is relatively
larger for larger S due to the factor S3/2 in Eq. (81).
These results clearly show that the cycloidal phase of
J1-J2 spin chain supports shift current at magnon reso-
nances.

One candidate system to observe such shift current re-
sponse is the cycloidal spin structure in RMnO3. Since
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Two magnon
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Total
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Total

FIG. 3. Optical responses of J1-J2 spin chains with broken inversion symmetry. (a) A schematic picture of the cycloidal spin
structure. (b) Magnon dispersion. The solid (dashed) lines represent positive (negative) energy modes. Three arrows represent
dominant optical excitations (blue for single magnon resonance, and red for two magnon resonances). (c) Linear optical

conductivity σ(1)(ω). Blue, red and black curves represent the single magnon contribution, the two magnon contribution, and
the total conductivity, respectively. Three peaks correspond to the three dominant optical excitations where the joint density
of states is large. (d) Nonlinear conductivity σ(2)(ω) characterizing shift current response. Blue, red and black curves represent
the single magnon contribution, the two magnon contribution, and the total conductivity, respectively. We used parameters
(J1, J2) = (−1, 0.5), (Π1, δΠ1) = (−1, 0.2)a, S = 1, g = 0.1.

both single and two (electro)magnon resonances are ob-
served in the linear optical conductivity in RMnO3 [33],
we expect nonzero shift current response induced by
those magnon excitations.

VI. DISCUSSIONS

We have demonstrated that magnon shift current gen-
erally appears in noncentrosymmetric magnets due to
the electric polarization that depends on spin configu-
rations. In the present mechanism, dc current flows so as
to compensate increasing polarization of electromagnons
excited by light irradiation. This increase of polarization
is characterized by the factor 1/(δω+ 2iγ) in the nonlin-
ear susceptibility χ(3)(δω;ω+ δω,−ω) in Eq. (66), where
γ represents the dissipation strength for magnons. This
factor means that the polarization P increases in time t
and is saturated at the relaxation time of magnons∼ 1/γ.
In order to support dc current flow in the steady state,

the current (of electrons) should be extracted into the
electrodes in a time scale relatively faster than 1/γ. This
indicates that the magnon shift current requires a suit-
able dissipation mechanism for the underlying electrons
that consists of spin systems in the low energy; and an
efficient dissipation for electrons (including an efficient
coupling to the electrodes) is essential for magnon shift
current.

One important question is how large the magnon shift
current can be in the present mechanism, especially when
compared to the electronic shift current that is induced
by optical transition across the electronic band gap. We
can give a crude estimation by comparing the expression
for the magnon shift current σ(2) in Eq. (68) with that

for electronic shift current σ
(2)
el which is given by [6, 9]

σ
(2)
el = 2π

∫
dk

2π

∑
ab

|rab|2Rabfabδ(ω − Eab). (83)

Here, the subscripts a, b label the electronic bands,
rab = i〈a|∂k|b〉 is the interband Berry connection with
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the Bloch wavefunction |a〉, Rab is the shift vector, and
Eab(k) is the energy difference between the band a and

b. Thus the ratio between σ(2) and σ
(2)
el is determined by

that between the integrands as

σ(2)

σ
(2)
el

' Π̃abΠ̃ba(Π̃aa − Π̃bb)

|rab|2Rab
Eab
εab

, (84)

where a, b are typical states involved in the optical exci-
tations, and we approximated the delta functions (which
leads to the density of states) with the typical magnon
and electronic excitation energies (band widths). For
electronic excitations, we adopt typical parameters rab '
Rab ' 0.1 Å for a ferroelectric material Sn2P2S6 [48] and
Eab ' 1 eV. For magnon shift current, we consider the
superexchange mechanism in Appendix B which gives an
estimate of P as

P ' aJ

U
' 10−2Å, (85)

assuming the energy scale of magnons J ' εab ' 10 meV,
U ' 3 eV and a ' 3 Å. These lead to a rough estimation

of the ratio as σ(2)/σ
(2)
el ' 0.1, indicating that magnon

shift current is typically one order smaller than the elec-
tronic shift current. We note that the magnon shift cur-
rent could become larger depending on the magnon en-
ergy scale and the involved matrix elements. Also, the
single magnon contribution that we found for the J1-J2

model has the same order of magnitude. One difference
is that the single magnon peak is contributed only by
q = 0 state and is typically more significant in the spec-
trum compared to the two magnon contribution which
comes from the magnon continuum and leads to a broad
spectrum. In addition, the single magnon contribution
is enhanced for larger S due to the factor S3/2 in the
magnon-photon coupling.

Finally, we discuss another contribution to the electric
polarization in the spin systems. In this paper, we have
focused on electronic contribution to the electric polar-
ization. On top of electronic contribution, displacement
of ions also contributes to the electric polarization such as
magnetostriction mechanism, where ions move depending
on the surrounding spin configuration and cause electric
polarization. For example, we can compare electronic
and ionic contributions in the superexchange mechanism
for the model with ligand ions in Appendix B. Ionic con-
tribution is estimated by incorporating fluctuation of the
ligand ion positions as detailed in Appendix D. The ionic
contribution for polarization Pion is estimated as

Pion =
J

aMω2
' 10−4Å, (86)

with the mass of the ion M and the phonon frequency
ω, where we consider an oxygen ion as the ligand and
the optical phonon ~ω ' 100 meV. This indicates that
the ionic contribution Pion is usually much smaller than
the electronic contribution of the order of P ' 10−2 Å.

Thus the nonlinear optical effects of magnons are also
dominated by the coupling between the electronic part
of the polarization P and the external electric field, in
the case of the superexchange mechanism.

ACKNOWLEDGMENTS

We thank Yoshihiro Okamura, Youtarou Takahashi,
Yasuyuki Kato, and Naoto Nagaosa for fruitful discus-
sions. This work was supported by JST CREST (JP-
MJCR19T3). TM acknowledges funding from The Uni-
versity of Tokyo Excellent Young Researcher Program,
and JST PRESTO (JPMJPR19L9). SK acknowledges
funding from KAKENHI (20K14407).

Appendix A: Derivation of Eqs. (27), (29)

In this appendix, we provide a detailed derivation of

Hspin =
1

2

∑
ij

4|tij |2Si · Sj
U − Vij −E ·Rij

, (27)

and

Pspin = −1

2

∑
ij

4|tij |2Rij(Si · Sj)
(U − Vij −E ·Rij)2

(28)

= −1

2

∑
ij

8UVij |tij |2Rij(Si · Sj)
(U2 − V 2

ij)
2

+O(E2), (29)

to directly confirm the formula

Pspin = P̂0Û
†PelÛ P̂0 ∼ −

∂Hspin

∂E
, (14)

which were presented in Sec. II B. Then we also discuss
the deviation of Eq. (14) in ac-driven cases.

To obtain Eqs. (27) and (29), we perform perturba-
tive expansions for the spin Hamiltonian Hspin and the
polarization operator Pspin as

Hspin =
∑
n

λnH
(n)
spin, (A1)

Pspin =
∑
n

λnP
(n)
spin. (A2)

First let us consider the spin Hamiltonian Hspin. The

zeroth order term H
(0)
spin = P̂0HlocP̂0 can be regarded as a

constant term by definition. The first order term is given

as H
(1)
spin = P̂0HhopP̂0, which vanishes upon projection

to the spin space as Hhop changes the number of double
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occupancy D. The second order reads

H
(2)
spin = P̂0[iΛ(1), Hhop]P̂0 + P̂0[iΛ(2), Hloc −E · Pel]P̂0

+
1

2
P̂0[iΛ(1), [iΛ(1), Hloc −E · Pel]]P̂0 (A3)

=
1

2
P̂0[iΛ(1), Hhop]P̂0 (A4)

= −1

2
P̂0Û

(1)HhopP̂0 + H.c. (A5)

Here, the second term in the first line vanishes since
[P̂0, Hloc] = [P̂0,Pel] = 0, and P̂0Λ(2)P̂0 = 0. We have
also used Eq. (23) from first to second line. Using

Hhop =
∑
ijs

tijc
†
i,scj,s, (26a)

Hloc =
∑
i

[Vi(ni,↑ + ni,↓) + Uni,↑ni,↓], (26b)

we can write Eq. (24) as

P̂0Û
(1) =

∑
ijs

tijP̂0c
†
i,scj,s

U − Vij −E ·Rij
, (A7)

where Rij = Ri −Rj , Vij = Vi − Vj . Using this expres-
sion, we obtain

P̂0Û
(1)HhopP̂0

=
∑
ijs

tijP̂0c
†
i,scj,s

U − Vij −E ·Rij

∑
s′

tjic
†
j,s′ci,s′ P̂0 (A8)

=
∑
ijss′

|tij |2 (δs,s′ − 4Si · σs′sSj · σss′)
4(U − Vij −E ·Rij)

(A9)

= −2
∑
ij

|tij |2Si · Sj
U − Vij −E ·Rij

+ const.. (A10)

Here we have used P̂0c
†
i,sci,s′ P̂0 = δs,s′/2 +Si ·σs′s with

the Pauli matrices σi, and tr[σiσj ] = 2δi,j . Once we plug
in the above equation to Eq. (A5), we end up with the
spin Hamiltonian (27).

The effective polarization operator can be directly eval-
uated in a similar manner. The perturbative evaluation
reads

P
(2)
spin = P̂0[iΛ(2),Pel]P̂0 +

1

2
P̂0[iΛ(1), [iΛ(1),Pel]]P̂0

(A11)

=
1

2
P̂0iΛ

(1)[iΛ(1),Pel]P̂0 −
1

2
P̂0[iΛ(1),Pel]iΛ

(1)P̂0

(A12)

= −1

2
P̂0iΛ

(1)[Pel, iΛ
(1)P̂0] + H.c. (A13)

=
1

2
P̂0Û

(1)[Pel, (P̂0Û
(1))†] + H.c. (A14)

where the term with Λ(2) in the first line vanishes in a
similar manner as for H

(2)
spin, and we used [P̂0,Pel] = 0

from the second line to the third line. Using the expres-
sion for P̂0Û

(1), we obtain

[Pel, (P̂0Û
(1))†] =

∑
ijs

Rijtjic
†
j,sci,sP̂0

U − Vij −E ·Rij
, (A15)

which leads to Eq. (29). Namely, Eq. (14) holds within
the second-order perturbation in λ, including higher or-
ders of E.

We note that the formula (14) slightly deviates when
we consider ac electric fields. Control of spin systems
with ac electric fields are recently studied actively in the
context of Floquet engineering [39, 49–55], where the ef-

fective spin Hamiltonian is obtained by making Û time-
dependent. In the time-dependent case, we have an ad-
ditional term as

Heff = Û†(t)(Hel−E(t)·Pel)Û(t)−iÛ†(t) d
dt
Û(t), (A16)

which modifies Eq. (20) into

∂Hspin

∂E(t)
= −Pspin − i

d

dt

(
P̂0Û

†∂EÛ P̂0

)
+
[
Hspin, P̂0Û

†∂EÛ P̂0

]
. (A17)

The second term may appear in O(λ2) which is the same
order with the first term, and thus Eq. (14) does not
hold in general. However, we can neglect the additional
term in several situations. One is when the driving fre-
quency ω is so high that we can replace the expression
by the time-averaged one. In this case, a sufficiently slow
(dc) component of P is contributed by the second term
of the order of 1/T with the (long) period T which be-
comes negligible. Another is when the driving frequency
ω ∼ (d/dt) is sufficiently small. Indeed, we can check
these by combining the Floquet theory with Schrieffer-
Wolff transformation, which results in a spin Hamilto-
nian with time-periodic coupling [See Ref. [39]]. For the
Hamiltonian given by Eq. (26), we obtain

∂Hspin

∂E(t)
∼ 1

2

∑
ij

4|tij |2Rij(Si · Sj)
(U − Vij)2 − ω2

, (A18)

in the leading order of E. Namely, as we are interested
in optical excitation of magnons, we can neglect the cor-
rection ∼ ω2/U2 � 1, which reproduces Eq. (29).

Appendix B: Polarization in the superexchange
mechanism

In this section, we study electric polarization induced
by the superexchange mechanism, where the spin sites
are connected via ligand ions as illustrated in Fig. 4.

The expression for the effective polarization operator
Eq. (29) implies that the electric polarization is induced
along the potential difference on the path of the kinetic
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exchange process. We can apply this idea to the superex-
change mechanism via the ligand ions as well, where the
potential difference naturally appears. While the poten-
tial difference between magnetic sites cannot be as large
as U with keeping the half-filled situation, the potential
difference with the ligand sites may be, which can be
utilized for enhancing the current response.

We here consider a Hubbard model consisting of two

magnetic ions d†js at Rj with j = 1, 2 and one ligand ion

p†mσ at Rp with m = x, y, whose Hamiltonian is given as
H = Hhop +Hloc,

Hhop = −
∑
s

(t1d
†
1,spx,s + t2d

†
2,spθ,s) + H.c., (B1a)

Hloc =
1

2
Ud
∑
j

(ndj − 1)2 +
1

2
Up(n

p − 4)2

− JHSp · Sp +
∑
j

V dj n
d
j + V pnp, (B1b)

where pθ,s = cos θpx,s + sin θpy,s with θ = ∠R1RpR2,

ndj =
∑
s d
†
j,sdj,s, n

p =
∑
m,s p

†
m,spm,s, and

Sp =
∑
m=x,y

∑
s,s′

1

2
p†m,sσs,s′pm,s′ . (B2)

We assume that ndj = 1, np = 4 is realized in the atomic
limit. Note that the onsite interaction for p is rotationally
invariant, and thus we have set px as the orbital parallel
to R1p = R1 −Rp.

The superexchange process under the applied dc elec-
tric field is studied in Ref. [41]. Following the calculation
there, the spin Hamiltonian for magnetic ions is obtained
as

Hspin = J12S1 · S2 (B3)

= (JA cos2 θ − JF sin2 θ)S1 · S2, (B4)

where

JA =
2|t1t2|2

(Ud + ∆1 −∆2)∆2
1

+
2|t1t2|2

(Ud + ∆2 −∆1)∆2
2

+

(
1

∆1
+

1

∆2

)2
2|t1t2|2

2∆H + JH
, (B5a)

JF =

(
1

∆1
+

1

∆2

)2
2|t1t2|2JH
4∆2

H − J2
H

(B5b)

describe antiferromagnetic and ferromagnetic interac-
tion, respectively, and

∆j =
1

2
(Ud + Up) + Vjp −

3

4
JH , (B6)

∆H =
1

2
(Ud + 2Up + V1p + V2p − JH). (B7)

The effective polarization operator can be obtained
by setting Vjp = V dj − V p → Vjp + E · Rjp and tak-
ing derivative. In the leading order of E, we obtain

Hspin = (J12 +E ·Π12)S1 · S2 with

Π12 =

(
R1 +R2

2
−Rp

)
(∂∆1

+ ∂∆2
+ ∂∆H

) J12

+
1

2
R12 (∂∆1

− ∂∆2
) J12. (B8)

Here, the second term is the counterpart of Eq. (29),
i.e., the polarization induced by the potential difference
between magnetic sites ∆1 − ∆2 = V1 − V2, which is
evaluated as

(∂∆1
− ∂∆2

) JA ∼
32|t1t2|2(V1 − V2)

(Ud + 2V1p)5

×

(
4− 3V1p

Ud
+

12V 2
1p

U2
d

+
4V 3

1p

U3
d

)
, (B9a)

(∂∆1
− ∂∆2

) JF ∼
256|t1t2|2(V1 − V2)JH

(Ud + 2V1p)6
, (B9b)

where we have neglect Up and the higher order of JH , V1−
V2 for simplicity. On the other hand, the first term is
evaluated under the same condition as

(∂∆1 + ∂∆2 + ∂∆H
) JA ∼ −

128|t1t2|2

(Ud + 2V1p)4

(
2 +

V1p

Ud

)
,

(B10a)

(∂∆1 + ∂∆2 + ∂∆H
) JF ∼ −

256|t1t2|2JH
(Ud + 2V1p)5

, (B10b)

which appear due to the potential difference between
magnetic and ligand ions, and may be much larger.

Note that the first term vanishes when the bond cen-
ter coincides with the position of the ligand ion (or the
average over equidistant ions). Here, let us provide an
example where the first term does not vanish. As de-
picted in Fig. 4, we put the magnetic ions in a zigzag
geometry as

Rj = (2j cosφ, (−1)j sinφ), (B11)

with j ∈ Z, 0 < φ < π/4, while the ligand ions are placed
at

Rp
j = ((2j + 1) cosφ− sinφ, (−1)j+1 cosφ), (B12)

where ∠RjR
p
jRj+1 = π/2. With this configuration, we

obtain ferromagnetic and antiferromagnetic exchange in-
teractions for nearest and next-nearest neighbors, respec-
tively. We obtain nonzero Πij for these interactions via

Rj +Rj+1

2
−Rp

j = (sinφ, (−1)j cosφ), (B13a)

Rj +Rj+2

2
−Rp

j+1 =
1√
2

sin
(
φ− π

4

)
(1, (−1)j),

(B13b)

if only the shortest hopping path is taken into account.
If we focus on the transport along e.g., (cosφ, sinφ) di-
rection, Eq. (B13a) describes polarization operator of a
form (73) with p1 = δp1.
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FIG. 4. An example of configuration with nonzero polar-
ization operator. The blue spheres represent magnetic ions,
while the red ones are ligand ions. Electrons can virtually hop
along the yellow bonds, which leads to the superexchange of
spins on the magnetic sites, which is represented by blue and
gray bonds.

Appendix C: Magnon representation and optical
conductivity for J1-J2 spin chains

In this section, we derive the magnon representation of
a bilinear form of spin operators in the cycloidal phase
of J1-J2 spin chains. This representation is applicable to
the magnon Hamiltonian and the polarization operator.

We consider the cycloidal spin structure for the J1-J2

spin chain defined by Eq. (71) in the main text. We ro-
tate the spin quantization axis along the cycloidal spin
structure in Eq. (72) as Sl = RS̃l, where R is the rota-
tion matrix given by

R =

 cosQla 0 sinQla
0 1 0

− sinQla 0 cosQla

 , (C1)

and S̃l is the spin structure in the rotated spin coordi-
nate. For example, a Heisenberg term Si · Si+n is ex-
pressed with the rotated spin coordinate as

Si · Si+n = S̃zi (S̃zi+n cosnQa− S̃xi+n sinnQa)

+ S̃xi (S̃zi+n sinnQa+ S̃xi+n cosnQa)

+ S̃yi S̃
y
i+n. (C2)

We introduce the magnon excitations using Holstein-
Primakoff transformation in Eq. (32) in the rotated spin
coordinate, which reads

S̃xi =

√
S

2
(a†i + ai), (C3)

S̃yi = −i
√
S

2
(a†i − ai), (C4)

S̃zi = S − a†iai, (C5)

assuming large S and small magnon density.

1. Magnon representation for Heisenberg
interactions

Now we derive the magnon representation for a bilinear
form of spin operators,

O =
∑
n=1,2

∑
i

ci,nSi · Si+n. (C6)

Here we consider Heisenberg interactions ci,n between the
ith spin and the (i+n)th spin, up to n = 2 (next nearest
neighbors). By expanding Eq. (C6) with respect to the

second-order of ai and a†i , we obtain

O =
∑
n=1,2

∑
i

ci,nS

×

{
cos2 nQa

2

(
a†iai+n + aia

†
i+n

)
− sin2 nQa

2

(
aiai+n + a†ia

†
i+n

)
− cosnQa

(
a†iai + ai+na

†
i+n

)
+

√
S

2
sinnQa

(
a†i + ai − ai+n − a

†
i+n

)}
(C7)

up to constant.
Hereafter, we consider the sublattice A and B for

even and odd sites, respectively. In addition to uniform
Heisenberg interactions c1 and c2 between nearest neigh-
bors and next nearest neighbors, we introduce alterna-
tion for the Heisenberg interaction δc1 between nearest
neighbors. Specifically, we consider the bilinear form of
spin operators

O =
∑
i

{c1 + δc1(−1)i}Si · Si+1 + c2
∑
i

Si · Si+2.

(C8)

By substituting ci,1 = c1 + (−1)iδc1 and ci,2 = c2 in
Eq. (C7) and performing Fourier transformation, we ob-
tain

O =
∑
q

Ψ†q

Aq Bq C−q D−q
Bq Aq D−q C−q
Cq Dq Aq Bq
Dq Cq Bq Aq

Ψq + u0Ψq=0, (C9)

with

Ψq =


aqA
a†−qA
aqB
a†−qB

 , (C10)

where aqA(B) is the annihilation operator of magnon with
the momentum q on the sublattice A(B). The coefficients
are given by

Aq = −c1S cosQa+ c2S{cos2Qa cos 2qa− cos 2Qa},
(C11)

Bq = −c2S sin2Qa cos 2qa, (C12)

Cq = S cos2 Qa

2
(c1 cos qa+ iδc1 sin qa), (C13)

Dq = −S sin2 Qa

2
(c1 cos qa+ iδc1 sin qa), (C14)

u0 = 2S

√
S

2
δc1 sinQa(1, 1,−1,−1). (C15)
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Note that the q summation in Eq. (C9) runs over the
whole Brillouin zone and hence Ψq covers each mode
(aqA/B) twice in the BdG representation.

Since the Hamiltonian (71) has only uniform Heisen-
berg couplings, its magnon representation is given by
bilinear form of magnon operators (i.e., u0 = 0 in
Eq. (C9)). In contrast, the polarization operator P con-
tains alternation δΠ1 and has a single magnon term in
its magnon representation. This term describes the (stag-
gered) tilting of the quantization axis from the cycloidal
spin structure, since the term can be absorbed by in-
troducing new bosonic operators ãq=0,A/B = aq=0,A/B ∓√
S/2(δc1/2c1) tanQa, which implies that the eigenstate

of O satisfies
√

2S〈a〉 = 〈S̃x + iS̃y〉 6= 0. This sin-
gle magnon terms enables a direct coupling of a single
magnon excitation to an external electric field, which
gives rise to single magnon resoances in the optical con-
ductivities. While the two magnon excitation from the
first term in Eq. (C9) can be treated with the formula-
tion presented in Sec. IV, this single magnon resonance
needs to be treated separately as we describe below.

2. Single magnon contribution to the optical
conductivities

Next let us consider the contributions of the single
magnon excitations to the optical conductivities in the
J1-J2 spin chains. Suppose that the electric polarization
P is written in terms of magnon operators as

P = −

(∑
q

Ψ†qΠqΨq + π0Ψq=0

)
. (C16)

The second term proportional to π0 (which is a row vec-
tor) gives rise to the single magnon contribution to the
optical conductivities. In the following, we consider the
contribution from π0 to the conductivities.

First, the single magnon contribution to the linear con-

ductivity σ
(1)
1ph is given by

σ
(1)
1ph(ω) = − iω

Vcell
(−π0)G(ω, q = 0)πT0 . (C17)

Here, Vcell is the unit cell volume and Vcell = 2a with
the lattice constant a for our representation (C9) for the
J1-J2 spin chains. Using the expression G(ω, q) = V (ω−
Eq + iγ)−1V −1B in Sec. IV, we can write

σ
(1)
1ph(ω) =

iω

Vcell

(π0V )a(V −1BπT0 )a
ω − εa + iγ

, (C18)

where the subscripts a in the numerator denotes the ath
component of the vectors.

Next the single magnon contribution to the nonlinear

conductivity σ
(2)
1ph is given by

σ
(2)
1ph(ω) = lim

δω→0
(−iδω)χ

(3)
1ph(δω;ω + δω,−ω). (C19)

Here the single magnon contribution to the nonlinear sus-

ceptibility χ
(3)
1ph is defined as

χ
(3)
1ph(iΩ1 + iΩ2; iΩ1, iΩ2)

=
1

Vcell

[
π0G(−iΩ2, q = 0)(−Πq=0)G(iΩ1, q = 0)πT0

+ π0G(−iΩ1, q = 0)(−Πq=0)G(iΩ2, q = 0)πT0

]
.

(C20)

In this expression, two incoming photons couples with
the magnons with the single magnon term π0, and the
resulting polarization (that causes shift current response)
is induced by the two magnon term Πq=0. (In principle,

χ(3) has an additional contribution from an E2 term in
the polarization operator P which we neglected. This
contribution does not lead to 1/δω divergence in χ(3)

which justifies the present treatment.) Using G(ω, q) =

V (ω − Eq + iγ)−1V −1B, we can rewrite χ
(3)
1ph as

Vcellχ
(3)
1ph(iΩ1 + iΩ2; iΩ1, iΩ2)

= −π0V (−iΩ2 − Eq)−1V −1BΠq=0V (iΩ1 − Eq)−1V −1BπT0
+ (iΩ1 ↔ iΩ2)

= −
∑
ab

(π0V )a(Π̃q=0)ab(V
−1BπT0 )b

(−iΩ2 − εa)(iΩ1 − εb)
+ (iΩ1 ↔ iΩ2).

(C21)

The divergent term ∝ 1/δω originates from the term with
a = b, as can be seen from

1

(−iΩ2 − εa)(iΩ1 − εa)

=
1

iΩ1 + iΩ2

(
1

−iΩ2 − εa
− 1

iΩ1 − εa

)
(C22)

Performing the analytic continuation in Eq. (65), we ob-
tain

lim
δω→0

δωχ
(3)
1ph(δω;ω + δω,−ω)

= − 1

Vcell

∑
a

(π0V )a(Π̃q=0)aa(V −1BπT0 )a

×

[
1

(ω − εa − iγ)
− 1

(ω − εa + iγ)
+ (ω ↔ −ω)

]
(C23)

Therefore, we obtain σ
(2)
1ph as

σ
(2)
1ph(ω) = − 2π

Vcell

∑
a

(π0V )a(Π̃q=0)aa(V −1BπT0 )a

× [δ(ω − εa) + δ(−ω − εa)]. (C24)

This expression clearly indicates that the polarization

(Π̃q=0)aa of the magnon in the ath branch induces dc
current upon its optical excitation.
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Appendix D: Comparison of electronic and ionic
contributions to the electric polarization

In this Appendix, we compare electronic and ionic
contributions to the electric polarization in the superex-
change mechanism discussed in Appendix B. Here, let
us roughly estimate the electric polarization induced by
the fluctuation of the ligand ion position. Such effect can
be treated by introducing the positional fluctuation as
Rp → Rp+δ [in Eq. (B1a)] and regarding δ as dynamical
degrees of freedom, i.e., phonon. The coupling between
the atomic displacement and spin is then encoded via the
modulation of the exchange interaction.

When the positions of ligand ions are modulated, they
affect the exchange coupling via (i) change in the bond
angle and (ii) change in the hopping amplitude due to
the modulated bond length. Let us take into account the
modulation of the exchange coupling, δJ , up to the first
order in δ. For the former contribution, we obtain

δJ = −2(JA − JF )
R1p ·R2p

|R1p|2|R2p|2

×
[
R1p

|R1p|2
(R1p ·R12)− R2p

|R2p|2
(R2p ·R12)

]
· δ,

(D1)

by inserting the modulation of the bond angle θ =
∠R1RpR2 to Eq. (B4). Namely, δJ ∼ Jδ/a with
a being the lattice constant. For the latter contribu-
tion, we assume that the hopping amplitude scales as
tij = t0e

−|Ri−Rj |/ξ, which leads to

δJ =
2J

ξ

(
R1p

|R1p|
+
R2p

|R2p|

)
· δ (D2)

via the modulation of |t1t2|2 in Eq. (B5). This contri-
bution δJ ∼ Jδ/ξ may be comparable to the former one
when ξ ∼ a.

The ionic contribution to the exchange striction
emerges when the expectation value of δ is perturbed by
the applied electric field. Namely, we obtain the field-
induced modulation of the exchange interaction J →
J +E ·Π as

Π =
∂(δJ)

∂δ
· ∂〈δ〉
∂E

. (D3)

Here let us roughly estimate the size of this effect. As
we have seen, ∂δ(δJ) ∼ J/a (or ∼ J/ξ). We estimate
|∂E〈δ〉| as follows. We model the phonon Hamiltonian
by a harmonic oscillator as Hph = P 2/(2M)+Mω2δ2/2,
where P is the momentum conjugate to δ, and M is the
mass of nuclei. The characteristic frequency ω should
correspond to that of optical phonons in more realistic
descriptions. When the electric field is applied, we obtain

Hph − qE · δ =
P 2

2M
+

1

2
Mω2

(
δ − qE

Mω2

)2

− q2E2

2Mω2
,

(D4)

which implies that the position of the oscillator should
shift by qE(Mω2)−1 in the adiabatic picture (q is the

total charge). Since (Mω2)−1 ∼ (3800(~ω)2)−1eV · Å2

for the oxygen atom, we obtain an estimation |∂E〈δ〉| ∼
(Mω2)−1 ∼ (1/38)Å

2
/eV for an optical phonon with

~ω ∼ 100meV. Therefore, the ionic contribution to the
elctric polarization can be estimated as

Π ' J

aMω2
' 10−4Å, (D5)

for J ' 10 meV and a ' 3 Å. This should be compared
with the electronic contribution Π ' aJ/U ' 10−2Å for
U = 3 eV and suggests that the ionic contribution is
usually much smaller than the electronic contribution in
the superexhcange mechanism.
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